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A CHARACTERIZATION OF QUALITY-ADJUSTED LIFE-YEARS
UNDER CUMULATIVE PROSPECT THEORY

HAN BLEICHRODT and JOHN MIYAMOTO

Quality-adjusted life-years (QALYs) are the most common utility measure in medical decision
analysis and economic evaluations of health care. This paper presents an axiomatization of QALYs
under cumulative prospect theory (CPT), currently the most influential model for decision under
uncertainty. Because the set of health states need not be endowed with a natural topology that is
connected, we first show how existing CPT characterizations can be extended to a class of outcome
sets for which no connected natural topology is given. We then characterize QALY models with
linear, power, and exponential utility for duration. Finally, we define loss aversion for multiattribute
utility theory and characterize the QALY models under general and constant loss aversion. The
measurement of QALYs belongs to the general field of multiattribute utility theory. Hence, our
results can be generalized to other multiattribute decision contexts and they thereby contribute to
the development of multiattribute utility theory under cumulative prospect theory.

This paper presents characterizations of quality-adjusted life-years (QALYs) under cumu-
lative prospect theory. QALYs are the most common outcome measure in medical decision
analysis and economic evaluations of health care (Gold et al. 1996, Drummond et al. 1997).
They provide a simple way to trade off the two main dimensions of health, duration, and
health status. QALYs are tractable and easy to communicate to decision makers. A disad-
vantage of QALYs is that they represent individual preferences over health profiles only
under strong assumptions.
Axiomatic foundations for QALY utility models have been studied under the assump-

tions of expected utility (Pliskin et al. 1980, Maas and Wakker 1994, Bleichrodt et al.
1997, Miyamoto 1999) and rank-dependent utility (Bleichrodt and Quiggin 1997, Miyamoto,
1999). This paper extends this work to cumulative prospect theory (Tversky and Kahne-
man 1992). Cumulative prospect theory (CPT) is currently the most influential model for
decision under uncertainty. CPT characterizes two major deviations from expected utility:
probability transformation, the nonlinear weighting of probabilities, and loss aversion, the
tendency to overweight outcomes that are perceived as losses relative to outcomes that are
perceived as gains. Both probability transformation and loss aversion are well-documented
in the empirical literature (see Tversky and Kahneman 1992, Starmer 2000, and the refer-
ences therein).
We consider chronic health states. If health status is constant, the QALY domain is a

Cartesian product, � ×� , where � is an interval of survival durations and � is a set of
health states. In many applications of QALYs, � is a finite set of health states with no
connected natural topology given. Hence, we would like our representation theorems to
include the possibility that � ×� is not endowed with a natural topology that is connected.
Previous characterizations of CPT assumed a connected outcome set (Luce and Fishburn
1991, Wakker and Tversky 1993, Luce and Fishburn 1995, Luce 2000). We show that
under an assumption that is entirely evident in the medical context, the zero-condition,
� ×� is connected in the order topology. This result makes it possible to extend previous
representation theorems to a class of outcome sets for which no connected topology is
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naturally given. Our results are related to Fishburn (1981) and Gonzales (1996, 2000),
which study additive representability for Cartesian products in which not every attribute set
is connected. However, Fishburn and Gonzales do not consider CPT, they use an algebraic
instead of a topological approach, and they do not use the zero-condition.
We derive three QALY models under cumulative prospect theory: the linear QALY model,

the power QALY model, and the exponential QALY model. The linear QALY model, in
which utility for duration is linear, is the most widely used QALY model. The assumption
of linear utility for duration is sometimes weakened to accommodate empirical evidence of
nonlinear utility for duration and to permit discounting and risk aversion. We consider the
two most widely used nonlinear utility functions: the power function and the exponential
function.
After characterizing the three QALY models we define loss aversion for multiattribute

utilities. The definition of loss aversion is not straightforward because the magnitude of gains
cannot be directly compared to the magnitude of losses due to differences in the decision
weights for gains and losses. Our definition does not preclude that loss aversion varies over
outcomes. In empirical work it is more convenient to assume that loss aversion is constant.
We, therefore, also characterize a special class of the three QALY models, to which we
refer as the decomposable QALY models, in which loss aversion is constant. The conditions
we impose to characterize the decomposable QALY models allow us to weaken the axioms
used to derive CPT by axioms that imply a more general rank- and state-dependent additive
utility model when the number of states of nature is at least three. CPT is derived from this
general model and the conditions used to characterize the decomposable QALY models.
The measurement of QALYs belongs to the general domain of multiattribute utility theory

(Keeney and Raiffa 1976). Previous characterizations of cumulative prospect theory assumed
single-attribute utility functions (Tversky and Kahneman 1992, Wakker and Tversky 1993).
Dyckerhoff (1994) and Miyamoto and Wakker (1996) studied multiattribute utility theory
without expected utility foundations, but only for outcomes of the same sign. Zank (2001),
like us, derived results on multiattribute utility theory under cumulative prospect theory. The
present study differs in two respects from Zank (2001). First, in Zank (2001) all outcomes
have quantitative attributes that constitute connected sets. In our decision framework, one
of the attributes, health status, is qualitative and need not be connected. Gonzales (2000)
mentions several decision contexts besides medical decision making in which attribute sets
on which no connected topology is given are important. A second difference with Zank
(2001) is that we define and characterize loss aversion for multiattribute utility theory.
In what follows, §1 gives the notation and the assumptions that are required for CPT rep-

resentations in a one-dimensional domain. Section 2 gives the notation and the assumptions
that are required for CPT representations in a multiattribute domain like health outcomes.
Section 3 presents a representation theorem that extends Wakker and Tversky’s (1993)
axiomatization of CPT to a class of outcome sets for which no connected natural topology
is given. In §4, the linear, power, and exponential QALY models are defined under CPT.
Characterizations of these models are given in §5. In §6, general loss aversion is defined,
and the three QALY models are characterized under general loss aversion. Section 7 char-
acterizes the three decomposable QALY models. Proofs are given in the appendix.

1. Notation and structural assumptions for uniattribute domains. Let � =
�1� � � � � n� be a finite state space. Subsets of � are events. � denotes the set of outcomes.
A prospect is a function from � to � . Let � =�n denote the set of prospects. For f ∈ � ,
fi is the outcome if the ith state obtains. Given a prospect f ∈ � , a state j ∈ � , and an
outcome x ∈� , we denote by xjf the prospect f with fj replaced by x. Given prospects f �
g ∈� , and an event A⊆� , gAf denotes the prospect f with fj replaced by gj for all j ∈A;
(x�A� y) denotes the binary prospect, which gives x if event A obtains and y otherwise.
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Let � denote a preference relation over � . � is a weak order if it is transitive and
complete. The relations ��∼��, and ≺ are defined as usual. Outcomes are identified with
constant prospects. The preference relation � satisfies outcome monotonicity if for all f � g ∈
� , fj � gj for all j ∈� implies f � g, with strict preference holding if there is a j ∈� for
which fj � gj .
Outcomes are defined with respect to a designated outcome x0 ∈� . Any outcome y ∼ x0

is a reference outcome. An outcome x ∈ � is a gain if x � x0, a loss if x ≺ x0, a nonloss
if x � x0, and a nongain if x � x0. For any f ∈ � , let f + denote the prospect such that
f +
j = fj if fj � x0 and f +

j = x0 if fj ≺ x0. Similarly, let f − denote the prospect such that
f −
j = fj if fj � x0 and f −

j = x0 if fj � x0. The prospect f + denotes the nonloss part of
f , and the prospect f − denotes the nongain part of f . Let �+ be the set �x ∈ � 
 x � x0�
and �− the set �x ∈ � 
 x � x0�. �

+ is the set of nonloss prospects �f ∈ � 
 fj � x0 for all
j ∈� �. � − is the set of nongain prospects �f ∈ � 
 fj � x0 for all j ∈� �.
A prospect is rank-ordered if f1 � · · ·� fn. For each prospect there exists a permutation

� such that f��1� � · · ·� f��n�. For each permutation ���� = �f ∈ � 
 f��1� � · · ·� f��n��. For
A⊆� , the set � A contains those prospects that yield nonlosses on A and nongains on Ac.
� A

� = ��∩� A. Subsets of sets � A
� are sign-comonotonic.

A real function V 
 � →� represents � on � if V �f �≥ V �g� iff f � g. A capacity W on
� is a function on 2� such that W���= 0�W�S�= 1, and if A⊃ B, then W�A�≥W�B�.
The CPT functional assigns a CPT value to each prospect, defined next. The CPT value of
a prospect f ∈ � A

� with A= ���1�� ��� ��k�� for some k ≤ n is

CPT �f �=
k∑

i=1

�+
��i�U �f��i��+

n∑

i=k+1

�−
��i�U �f��i���(1)

with

�+
��i� =W+���1�� � � � � ��i��−W+���1�� � � � � ��i−1���(2a)

and

�−
��i� =W−���i�� � � � � ��n��−W−���i+1�� � � � � ��n���(2b)

where W+ and W− are capacities for gains and losses, respectively, and U is a real-valued
utility function over � .
Define �x� y��∗ �v�w� if there exist prospects f � g and a state j such that xjf � yjg and

vjf ≺ wjg and the four prospects �xjf � yjg� vjf � wjg� are sign-comonotonic. A state j
is nonnull on a sign-comonotonic set � A

� if there exist fjx� fjy ∈ � A
� such that fjx � fjy.

Define �x� y� �∗ �v�w� if there exist prospects f � g and a state j such that xjf � yjg and
vjf � wjg and the four prospects �xjf � yjg� vjf �wjg� are sign-comonotonic and state j is
nonnull on the sign-comonotonic set containing these prospects. As usual, �∗ and ≺∗ denote
the reversed relations and ∼∗ denotes the intersection of �∗ and �∗. Wakker and Tversky
(1993) showed that under CPT the star relations order utility differences, i.e., �x� y��∗ �v�w�
iff U�x�−U�y�≥ U�v�−U�w�.
The preference relation � satisfies sign-comonotonic trade-off consistency, or trade-off

consistency for short, if there exist no outcomes x� y�u� v ∈� such that both �x� y��∗ �u� v�
and �u� v� �∗ �x� y�. The preference relation � satisfies gain-loss consistency if for all
f � g ∈ � � f + ∼ g+� f − ∼ g−, and f ∼ x0 implies g ∼ x0. The preference relation � is truly
mixed if there exists a prospect f ∈ � with f + � x0 and f − ≺ x0. This definition obviously
implies that n≥ 2. If � is a connected topological space and � is truly mixed, Wakker and
Tversky (1993) showed that CPT represents preferences over prospects with U continuous,
U a ratio scale, and W+ and W− uniquely determined iff � is a continuous weak order that
satisfies trade-off consistency and gain-loss consistency.
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2. Notation and structural assumptions for multiattribute domains. � is a Cartesian
product of the set of durations � = �0�M��M > 0, and the set of health states � � � is
a general set. We assume that the reference outcome x0 = �t0� h0� � �0� h� for all h ∈ � .
Health status is assumed to be essential, i.e., there exist h1� h2 ∈ � such that for some
t ∈ � � �t� h1�� �t� h2�. Essentialness of duration is defined similarly and is implied by the
assumption that �t0� h0� � �0� h� for all h ∈ � . The preference relation � is continuous in
duration if for all f � g ∈ � , for all h ∈ � , and for all j ∈ � the sets �t ∈ � : �t� h�jf � g�
and �t ∈ � : �t� h�jf � g� are closed. The preference relation � is monotonic in duration if
for all h ∈ � , and t1� t2 ∈ � � t1 > t2 implies �t1� h�� �t2� h�.

Our representation theorems and proofs will use notation for substructures of a multi-
attribute domain. For any h ∈ � , let �h = ��t� h�: t ∈ � �. Similarly, for any t ∈ � , let
�t = ��t� h�: h ∈ ��. Let �j = �n

j � j = h� t. For i = +�− and j = h� t� � i
j = �j ∩� i�

� i
j = �j ∩� i, and for each permutation �� ��� j = �� ∩�j � � i

�� j = ��� j ∩� i. There may
exist h ∈ � for which there is no t ∈ � such that �t� h�∼ x0. However, if � is continuous
in duration and there exists a t ∈ � such that �t� h� � x0, then there exists an s ∈ � such
that �s�h� ∼ x0 because �h is connected. Define r�h� = s with s the duration such that
�s�h� ∼ x0. If � is monotonic in duration, then s is unique. The duration r�h� is the ref-
erence level of duration with respect to h. Let � 0 = �h ∈ � 
 r�h� exists}. � −� 0 denotes
the complement of � 0 in � .
In later sections we will study conditions under which a utility function U exhibits

loss aversion. This construct is meaningful only if the outcome domain has a quantitative
measure, e.g., money or life years. We, therefore, consider loss aversion only for duration,
not for health status. In the context of QALY models, loss aversion is conditional on a
health state. The utility function U is loss averse with respect to health state h ∈ � 0 if

U�r�h�+x�h�−U�r�h�+y�h�≤ U�r�h�−y�h�−U�r�h�−x�h�(3)

whenever x > y > 0 and r�h�+x� r�h�−x ∈ � . The existence of r�h� is ensured because
h is in � 0. In other words, given h ∈ � 0, the utility function is steeper for losses than for
corresponding gains. Loss aversion holds if U is loss averse with respect to every h ∈ � 0.
If h ∈ � −� 0, then x0 � �t� h� for all t ∈ � so Equation (3) is vacuously satisfied.
Let us summarize the structural assumptions made throughout the paper.
Structural assumption 1. � is a finite state space. � = � ×� , � = �0�M� for some

M ∈ �+�� is general. Health status is essential. There exists a preference relation � over
� = �n. The reference outcome x0 satisfies x0 � �0� h� for all h ∈ � .

3. CPT for an outcome set that is not a connected topological space. Because � is
general, we cannot assume that � is endowed with a natural topology that is connected.
Hence, we cannot use Wakker and Tversky’s (1993) Theorem 6.3 to infer the existence of
a CPT representation for � over � . We can, however, extend this theorem to a domain
with no connected natural topology given, provided that � satisfies the zero-condition, i.e.,
for all h�h′ ∈ � : �0� h�∼ �0� h′�. The zero-condition is self-evident in the medical context
because �0� h� and �0� h′� are indistinguishable under the interpretation of time as survival
duration (Miyamoto and Eraker 1988, Bleichrodt et al. 1997, Miyamoto et al. 1998). The
zero-condition implies that all sets �h overlap in the preference order with respect to points
of the form �0� h�.
The next two lemmas are the main mathematical steps in our analysis. Lemma 3.1 is

central in extending earlier representations that concerned only connected topological spaces
to the outcome set of this paper for which no connected natural topology is given. Let T�
denote the order topology on � .

Lemma 3.1. Suppose that structural assumption 1 holds. If � is a weak order that
satisfies the zero-condition, then T� is connected.
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Lemma 3.2 is the most intricate part in the mathematical proof. Let � n
� denote the product

topology on � .

Lemma 3.2. Suppose that structural assumption 1 holds. If � is a weak order that is
continuous in duration and monotonic in duration and that satisfies outcome monotonicity
and the zero-condition, then � is continuous w.r.t. � n

� on � .

Note that we did not presuppose continuity with respect to a connected product topology.
Lemma 3.2 shows, however, that the preference relation is continuous with respect to the
product topology of the order topologies within every component. That is, the product
topology of the order topologies within every component is finer than the order topology
of the overall preference relation.

Theorem 3.3. Suppose that structural assumption 1 holds, that � is truly mixed, and
that � satisfies the zero-condition. Then the following two statements are equivalent:

(1) CPT holds with a utility function that is continuous in duration and increasing in
duration and with positive decision weights.

(2) � is a weak order that is continuous in duration and monotonic in duration and that
satisfies outcome monotonicity, trade-off consistency and, if n= 2, gain-loss consistency.

4. The QALY models.

4.1. The linear QALY model. Suppose that CPT holds. The linear QALY model holds
if t �→ U�t�h� is linear both for gains and for losses. Formally, if t < r�h� or if r�h� does
not exist, then

U�t�h�= *�h� ·+�h� · t−k�(4)

and if t ≥ r�h�, then

U�t�h�= +�h� · t+,�h��(5)

with +�h� and *�h� positive functions of h. The function value *�h� reflects different
sensitivity for losses than for gains. The function value ,�h� ensures continuity of U at
the reference level of duration. The scaling constant k ensures that U�x0� = 0. Note that
U�0� h�=−k for all h, so that this family automatically satisfies the zero-condition. Con-
versely, the zero-condition ensures that k is independent of h. The scaling U�x0�= 0 is com-
mon in prospect theory. In medical decision making it is more common to have U�0� h�= 0
for all h ∈ � .

4.2. The power QALY model. Suppose that CPT holds. The power QALY model holds
if t �→ U�t�h� is a member of the log/power family for gains and a possibly different
member of the log/power family for losses. The latter family will only include the positive
powers because zero is contained in its domain and negative powers and the logarithm are
not defined at zero. Formally, for each h ∈� there exist -�h�� .�h� such that if t < r�h� or
if r�h� does not exist, then

U�t�h�= *�h� ·+�h� · t.�h�·-�h�−k with .�h� ·-�h� > 0�(6)

and if t ≥ r�h�, then

U�t�h� = +�h� · t-�h�+,�h� if -�h� > 0�(7a)

U�t�h� = +�h� · log�t�+,�h� if -�h�= 0�(7b)

U�t�h� = −+�h� · t-�h�+,�h� if -�h� < 0�(7c)
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+�h��*�h��,�h�, and k are positive, and their interpretation is as in the linear QALY model.
The function value .�h� reflects different curvature for losses than for gains. The cases
.�h� · -�h� = 0 and .�h� · -�h� < 0 are excluded because zero is contained in the domain
of � . It is permissible that Equation (7a) holds for some h ∈ � 0 and Equation (7b) or (7c)
for other h ∈ � 0. Because U�0� h�=−k for all h, the family satisfies the zero-condition.

4.3. The exponential QALY model. Suppose that CPT holds. The exponential QALY
model holds if t �→ U�t�h� is a member of the linear/exponential family for gains and a
possibly different member of the linear/exponential family for losses. Formally, for each
h ∈ � there exist /�h� and .�h� such that if t < r�h� or if r�h� does not exist, then

U�t�h� = *�h� ·+�h� · �e.�h�·1�h�·t −1�−k if .�h� ·/�h� > 0�(8a)

U�t�h� = *�h� ·+�h� · t−k if .�h� ·/�h�= 0�(8b)

U�t�h� = −*�h� ·+�h� · �e.�h�·1�h�·t −1�−k if .�h� ·/�h� < 0�(8c)

and if t ≥ r�h�, then

U�t�h� = +�h� · e1�h�·t +,�h� if /�h� > 0�(9a)

U�t�h� = +�h� · t+,�h� if /�h�= 0�(9b)

U�t�h� = −+�h� · e1�h�·t +,�h� if /�h� < 0�(9c)

The interpretation of the parameters is similar as in the power QALY model. Again, it is
permissible that Equation (8a) holds for some h ∈ � and Equation (8b) or (8c) for other
h ∈ � and that Equation (9a) holds for some h ∈ � 0 and Equation (9b) or (9c) for other
h ∈ � 0. Because U�0� h�=−k for all h, the family satisfies the zero-condition.

5. Characterization of the QALY models under CPT. The preference relation �

satisfies constant sensitivity on �+ if for all h ∈ � and for all �s�h�� �t� h�� �s+ 2�h��

�t+ 2�h� ∈ �+, and for all 2 ∈ �� ��s+ 2�h�; �t+ 2�h�� �∗ ��s�h�� �t� h�� is excluded.
Constant sensitivity on �− is defined similarly.
For a given f ∈ �h, let 2 · f denote the operation defined by 2 · f = ��2 · t1� h�� � � � �

�2 · tn� h��� 2 > 0, whenever 2 · f ∈ �h. That is, duration in each state of the world is
multiplied by a common positive constant 2. The preference relation � satisfies constant
proportional risk aversion on � + if for all h∈� and for all 2∈�+, if f � g� 2 ·f � 2 ·g ∈� +

h ,
then f � g iff 2 · f � 2 ·g. Constant proportional risk aversion on � − is defined similarly.
For a given f ∈ �h, let 2+ f denote the operation defined by 2+ f = ��2+ t1� h��

� � � � �2+ tn� h��� 2 ∈ � whenever 2+ f ∈ �h. That is, a common constant 2 is added to
duration in each state of the world. The preference relation � satisfies constant absolute
risk aversion on � + if for all h ∈� and for all 2 ∈�, if f � g�2+f �2+g ∈ � +

h , then f � g

iff 2+ f � 2+g. Constant absolute risk aversion on � − is defined similarly.

Theorem 5.1. Suppose that statement (1) of Theorem 3.3 holds. Then
(a) The linear QALY model holds iff � satisfies the zero-condition and constant sensitivity

holds on �− and on �+.
(b) The power QALY model holds iff � satisfies the zero-condition and constant propor-

tional risk aversion holds on � − and on � +.
(c) The exponential QALY model holds iff � satisfies the zero-condition and constant

absolute risk aversion holds on � − and on � +.
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6. The QALY models with general loss aversion. Let us now turn to loss aversion.
We extend Wakker and Tversky’s (1993) definition of loss aversion to multiattribute util-
ity functions. Suppose that CPT holds with U continuous in duration and increasing in
duration. Let 3h�t� = U�t�h� be a utility function over duration defined with health sta-
tus held constant at h ∈ � . Loss aversion in the sense of Equation (3) means that for all
h ∈� 0, and for all r�h�+ t1� r�h�− t1 ∈� with t1 > t2 ≥ 0
 3h�r�h�+ t1�−3h�r�h�+ t2� <

3h�r�h�− t2�− 3h�r�h�− t1�. Let r�h�+ t1� r�h�− t1 ∈ � with t1 > t2 ≥ 0 and let
h ∈ � 0. Let f and g be sign-comonotonic prospects such that f + ∼ �r�h�+ t1� h��

f − ∼ �r�h�− t1� h�� g+ ∼ �r�h�+ t2� h�� and g− ∼ �r�h�− t2� h�. If t1 and t2 are not too
extreme, it is possible to find such prospects. Substitution gives CPT�f +�= 3h�r�h�+ t1�,
CPT�f −� = 3h�r�h� − t1�, CPT�g+� = 3h�r�h� + t2�, CPT�g−� = 3h�r�h� − t2�, and,
because CPT�f �=CPT �f +�+CPT�f −� and CPT�g�=CPT�g+�+CPT�g−�, loss aversion
holds iff f � g.
If t1 and t2 are too extreme to find such prospects f and g, then it may be pos-

sible to find t′1 > t′2 ≥ 0 and t′′1 > t′′2 ≥ 0 close to zero such that ��r�h� + t′1� h�;
r�h� + t′2� h�� ∼∗ ��r�h�+ t1� h�� �r�h� + t2� h�� and ��r�h�− t′′2 � h�� �r�h�− t′′1 � h�� ∼∗

��r�h�− t2� h�; �r�h�− t1� h��. That is, we try to copy ��r�h�+ t1� h�; �r�h�+ t2� h�� and
��r�h�− t2� h�� �r�h�− t1� h�� to a neighborhood of r�h� in which the required f and g

exist. Copies need not exist for arbitrary t1 and t2, but if t1 − t2 is sufficiently small the
required copies can be found.
From the ∼∗ relations we obtain 3h�r�h�+ t′1�− 3h�r�h�+ t′2� = 3h�r�h�+ t1�−

3h�r�h�+ t2� and 3h�r�h�− t′′2 �−3h�r�h�− t′′1 �= 3h�r�h�− t2�−3h�r�h�− t1�. Because
t′1, t

′′
1 , t

′
2, and t′′2 are all close to zero we can, by continuity in duration and the assump-

tion of the truly mixed case, find sign-comonotonic prospects f and g that satisfy f + ∼
�r�h�+ t′1� h�� g

+ ∼ �r�h�+ t′2� h�� f
− ∼ �r�h�− t′′1 � h�, and g− ∼ �r�h�− t′′2 � h�. It follows

that loss aversion holds iff f � g.

Theorem 6.1. Suppose that the assumptions of Theorem 5.1 hold. Then the linear,
power, and exponential QALY models satisfy loss aversion iff for all h ∈ � 0 there are no
�r�h�+t1� h�� �r�h�+t2� h�, �r�h�+t′1� h�, �r�h�+t′2� h�∈�+

h , �r�h�−t1� h�, �r�h�−t2� h�,
�r�h�− t′′1 � h�, �r�h�− t′′2 � h� ∈ �−

h , with t1 > t2 ≥ 0, t′1 > t′2 ≥ 0, t′′1 > t′′2 ≥ 0 and f � g ∈ � A
�

such that ��r�h�+ t1� h�; �r�h�+ t2� h�� ∼∗ ��r�h�+ t′1� h�; �r�h�+ t′2� h��, ��r�h�− t2� h�;
�r�h�− t1� h�� ∼∗ ��r�h�− t′′2 � h�; �r�h�− t′′1 � h��, f

+ ∼ �r�h�+ t′1� h�, g
+ ∼ �r�h�+ t′2� h�,

f − ∼ �r�h�− t′′1 � h�, g
− ∼ �r�h�− t′′2 � h�, and f � g.

7. The decomposable QALY models. The decomposable linear, power, and exponen-
tial QALY models are defined by setting *�h� = * in Equation (4); *�h� = *, -�h� = -,
and .�h� = . in Equation (6); -�h� = - in Equations (7a)–(7c); *�h� = *�1�h� = 1, and
.�h� = . in Equations (8a)–(8c); and 1�h� = 1 in Equations (9a)–(9c). In the power and
exponential QALY models, defined in §4, the utility of duration still depends on health
status. In the decomposable QALY models, the utility of duration is independent of health
status and U�t�h� has been “truly” decomposed into a utility function over health status
and a utility function over duration. This explains our naming of these models. Because *

is also independent of health status, the decomposable QALY models imply constant loss
aversion.
In case n ≥ 3, the conditions that we impose to characterize the decomposable QALY

models allow us to weaken the assumption that CPT holds. In particular, trade-off consis-
tency need no longer be imposed. Instead we assume a more general utility model, defined
in Lemma A.1 in the appendix. CPT can be derived from this general model and the con-
ditions used to characterize the decomposable QALY models.
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7.1. Characterization. Health status is preferentially independent of duration if for all
t1, t2 ∈ � , and for all h1, h2 ∈ � 
 �t1� h1� � �t1� h2� iff (t2� h1� � �t2� h2�. The preference
relation � satisfies attribute monotonicity if � satisfies monotonicity in duration and health
status is preferentially independent of duration. Tail independence holds if �xAf � xAg iff
yAf � yAg� whenever A = ���1�� � � � � ��k�� or A = ���m�� � � � � ��n�� for some k�m ∈ �
and all prospects in question are from the same set ���h.

The preference relation � satisfies weak utility independence on � − if for all events A⊆
� , for all h�h′ ∈ � and for all s� t�w ∈ � with s� t�w ≤ r�h� if h ∈ � 0 and s� t�w ≤ r�h′�
if h′ ∈ � 0, �s�h�∼ ��t� h��A� �w�h�� iff �s�h′�∼ ��t� h′��A� �w�h′��.
The preference relation � satisfies mixed utility independence if for all events A ⊆ � ,

for all h�h′ ∈ � 0, for all s�w ∈ � with s�w ≥ max�r�h�� r�h′��, and for all t� z ∈ �
with t� z≤min�r�h�� r�h′��, ��s�h��A� �t� h��∼ ��w�h��A� �z�h�� iff ��s�h′�, A� �t�h′��∼
��w�h′��A� �z�h′��.
For h ∈ � 0, mixed utility independence implies weak utility independence. However,

mixed utility independence has no implications for h ∈ � −� 0. Therefore, we have to
impose both mixed utility independence and weak utility independence on � − in the next
theorem.

Assumption 7.1. The preference relation � satisfies weak utility independence on � −

and mixed utility independence. If n= 2 then statement (2) of Theorem 3.3 holds. If n≥ 3,
then � is a weak order that is continuous in duration and satisfies outcome monotonicity,
attribute monotonicity, and tail independence.

Theorem 7.2. Suppose that structural assumption 1 holds and that � is truly mixed.
Then
(a) CPT holds with the utility function equal to the decomposable linear QALY model iff

Assumption 7.1 holds, � satisfies the zero-condition, and constant sensitivity holds on �−

and on �+.
(b) CPT holds with the utility function equal to the decomposable power QALY model iff

Assumption 7.1 holds, � satisfies the zero-condition, and constant proportional risk aversion
holds on � − and on � +.
(c) CPT holds with the utility function equal to the decomposable exponential QALY

model iff Assumption 7.1 holds, � satisfies the zero-condition, and constant absolute risk
aversion holds on � − and on � +.

Appendix: Proofs.
Proof of Lemma 3.1. The following proof does not impose any restriction on � , and

this set can be completely general. Consider the order topology T� on � , i.e. the smallest
topology containing all sets �x ∈ � 
 x � y� and �x ∈ � 
 x ≺ y�. The preference relation �

on � is continuous with respect to this topology. We show that T� is connected.
A union of an arbitrary collection of connected sets with nonempty intersection is con-

nected again. For any topology, each element of the space is contained in a maximal con-
nected set, its topological component. Each topological component is closed. The topo-
logical components partition the space. Consider, for any arbitrary h ∈ � , the topological
component containing (0� h). This set contains:
(a) �h′ for each h′ ∈ � for which (0� h′) is contained in the component, because �h′ is

connected.
(b) (0� h′) for each h′ ∈ � because �0� h′� ∼ �0� h� and every closed set that contains

(0� h) also contains (0� h′).
Because of (a) and (b), the topological component of (0� h) is the whole set � . � is

connected with respect to the order topology indeed. �
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Proof of Lemma 3.2. Consider the product topology T n
� on the set of prospects � =

�n, which is also connected. We show that � on the set of prospects is continuous with
respect to T n

� .
Consider �g′ ∈ � 
 g′ � g� for some g ∈ � . We prove that this set is open with respect

to � n
�. Let f be an element of this set, i.e., f � g.

Claim 1. If f1 is nonminimal, then we can find f ′
1 ≺ f1 such that still �f ′

1� f2� � � � � fn�
� g.

Proof. The outcome f1 is nonminimal and, hence, is of the form (t� h) for some t > 0.
Assume that (�0� h�� f2� � � � � fn� � g (otherwise we are done). By continuity in duration,
connectedness of �h, outcome monotonicity, and monotonicity in duration, there exists
0< t′ < t such that ��t′� h�� f2� � � � � fn�� g. Take f ′

1 = �t′� h�. Q.E.D.
By induction, we can find f ′ � g with f ′

j ≺ fj for all nonminimal fj and f ′
j = fj for

all minimal fj . Define �j = � whenever fj is minimal, and �j = �, ∈ � : , � f ′
j � for

all j with fj nonminimal. Because of outcome monotonicity, �1×· · ·×�n is a subset of
�g′ ∈ � 
 g′ � g� that contains f and that is open with respect to the product topology T n

� . It
follows that �g′ ∈ � 
 g′ � g� is open with respect to T n

� . Similarly, each set �g′ ∈ � 
 g′ ≺ g�
is open with respect to the product topology for each g. �

Proof of Theorem 3.3. It is easily verified that CPT with positive decision weights
and a utility function that is continuous in duration and increasing in duration implies that �
is continuous in duration and monotonic in duration and that � is a weak order that satisfies
outcome monotonicity, trade-off consistency, and gain-loss consistency. By Lemma 3.1, the
order topology on �� T�, is connected. Hence, T

n
� , is connected. By Lemma 3.2, � on � is

continuous with respect to T n
� . � is truly mixed and � is a weak order that satisfies outcome

monotonicity, trade-off consistency, and, if n = 2, gain-loss consistency. By Theorem 6.3
and Observation 8.1 in Wakker and Tversky (1993), CPT holds. U is continuous in duration
because � is continuous in duration. U is increasing in duration because � is monotonic
in duration. The decision weights are positive by outcome monotonicity. �

Proof of Theorem 5.1. The “only if” parts of statements (a)–(c) are easily verified.
We prove the “if” parts. If h ∈ � −� 0, then �t� h� � x0 for all t ∈ � , and thus sign-
dependence does not affect preferences. CPT with all outcomes nongains is both a spe-
cial case of Bleichrodt and Quiggin’s (1997) general rank-dependent utility model and of
Miyamoto’s (1988) generic utility model. Hence, Part (a) follows from Theorem 2 in Ble-
ichrodt and Quiggin (1997) and Parts (b) and (c) from Theorems 3 and 4, respectively, in
Miyamoto (1988).
Suppose that h ∈ � 0. Let U be scaled such that U�r�h��h� = 0 and define 3−

h �t� =
U�t�h� for t < r�h� and 3+

h �t�= U�t�h� for t ≥ r�h�.
Proof of the “if” Part of Part (a) for h in � 0. By constant sensitivity and Corol-

lary 9.3 in Wakker and Tversky (1993), for each h ∈ � 0� i = +�−�3i
n�t� is both con-

vex and concave and thus linear on � i
h. Thus, 3

i
h�t� = ,i�h�+ +i�h� · t, with +i�h� pos-

itive and ,i�h� real. ,+�h� is chosen so as to establish continuity at r�h�. By the zero-
condition, ,−�h� is independent of h. Let ,−�h� = −k for all h ∈ � 0 and for some
k > 0. Setting +�h� = ++�h�, ,�h� = ,+�h�, and *�h� = +−�h�/++�h� gives the desired
representation. Q.E.D.
Proof of the “if” Part of Part (b) for h in � 0. By Theorem 3 in Miyamoto

(1988), constant proportional risk aversion implies that for each h ∈ � 0� i = +�−�3i
h�t�

is either power, 3i
h�t� = sgn�-i�h�� · +i�h� · t-i�h� +,i�h�, or logarithmic, 3i

h�t� = +i�h� ·
log�t�+,i�h� on � i

h, with +i�h� positive, ,i�h� real, and -i�h� a nonzero real. ,+�h� is cho-
sen so as to establish continuity at r�h�. The logarithmic and the negative power function are
excluded for 3−

h �t�, because 0 is in the domain of 3−
h �t� and these functions are undefined

at 0. Thus for each h ∈ � 0, -−�h� is positive. By the zero-condition, ,−�h� is independent
of h. Let ,−�h�=−k for all h∈� 0 and for some k> 0. Define for all h∈� 0, +�h�= ++�h�,
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,�h� = ,+�h�, *�h� = +−�h�/v+�h�. If 3+
h �t� is logarithmic, the representation follows

from setting -�h� = -−�h�, .�h� = 1. If 3+
h �t� is a negative or positive power function,

setting -�h�= -+�h�, ,�h�= ,+�h�, and .�h�= -−�h�/-+�h� gives the desired represent-
ation. Q.E.D.
Proof of the “if” Part of Part (c) for h in H 0. By Theorem 4 in Miyamoto

(1988), constant absolute risk aversion implies that for each h∈� 0� i=+�−�3i
h�t� is either

exponential, 3i
h�t� = sgn�/i�h�� ·+i�h� · e/i�h�·t +,i�h�, or linear, 3i

h�t� = +i�h� · t+,i�h�,
on � i

h with +i�h� positive and ,i�h� real. ,+�h� is chosen so as to establish continuity
at r�h�. Define g∗�h� = ,−�h� if 3−

h �t� is linear and g∗�h� = sgn�/−�h�� ·+−�h�+,−�h�
if 3−

h �t� is exponential. Then 3−
h �t� = +−�h� · t + g∗�h� or 3−

h �t� = sgn�/i�h�� · +i�h� ·
�e/

i�h�·t − 1�+ g∗�h�. By the zero-condition, ,−�h� is independent of h. Let ,−�h� = −k
for all h ∈ � 0 and for some k > 0. Define for all h ∈ � 0, +�h� = ++�h�, ,�h� = ,+�h�,
and *�h� = +−�h�/++�h�. If 3−

h �t� and 3+
h �t� are both exponential, then the representa-

tion follows from setting /�h�= /+�h�, ,�h�= ,+�h�, and .�h�= /−�h�//+�h�. If 3−
h �t�

is exponential and 3+
h �t� is linear, the representation follows from setting /�h� = /−�h�,

,�h�= ,+�h�, and .�h�= 1. If 3−
h �t� is linear and 3+

h �t� is exponential, the representation
follows from setting /�h�= /+�h� and ,�h�= ,+�h�. If 3−

h �t� and 3+
h �t� are both linear,

the representation follows from part (a). �

Proof of Theorem 6.1. Follows from applying Proposition 9.4 in Wakker and Tversky
(1993) to each �h. �

Proof of Theorem 7.2. The “only if” parts of statements (a)–(c) are easily verified.
We prove the “if” parts. We first establish that a CPT representation exists for � on � .
For n= 2 this follows from Theorem 3.3. Hence, let n > 2. Let � be a permutation and let
h ∈ � .
An outcome x ∈� is maximal if for no other outcome y ∈� we have y � x. An outcome

x ∈ � is minimal if for no other outcome y ∈ � we have x � y. An extreme prospect is
a prospect that either assigns to each state a maximal outcome or to each state a minimal
outcome.

Lemma A.1. There exist additive functions Vj���h
 � → �� j ∈ � � that are monotonic
in duration and continuous in duration such that f �→ ∑

j∈� Vj���h�fj� represents � on
���h\{extreme prospects}. The Vj���h are unique up to positive affine transformations with
a common unit.

Proof. By Lemma 3.1, the order topology on �� T�, is connected. Hence, T n
� is con-

nected. By Lemma 3.2, � on � is continuous with respect to T n
� . Lemma A.1 now fol-

lows from Lemma A.2 in Wakker and Zank (2002) and Corollary C.5 in Chateauneuf and
Wakker (1993). By Proposition 3.5 in Wakker (1993), the representation can be extended
to the entire set ���h if the Vj���h are linearly related. Q.E.D.

Lemma A.2. On ���h the representation in Lemma A.1 is the restriction of a CPT form.

Proof. If h ∈� 0, define, for all j ∈� , Vj���h�r�h��= 0. Let i=+�−. Partition � into
A = �1� � � � �m� and Ac = �m+ 1� � � � � n� and consider the sets of prospects �i

��h = �f ∈
� i

��h: for all i� j ∈A, fi = fj and for all r� s ∈Ac, fr = fs�. Elements of �i
��h will be denoted

by �x� y�m where fi = x for j ∈ �1� � � � �m� and fj = y for j ∈ �m+ 1� � � � � n�. On �i
��h,

� is represented by �x� y�m �→ V i
1�m���h�x�+V i

m+1� n���h�y� with V i
1�m���h =

∑m
j=1 Vj���h and

V i
m+1� n���h =

∑n
j=m+1 Vj���h.

By Theorem 2 in Bleichrodt and Quiggin (1997) and constant sensitivity on � i, or by
Theorem 2 in Miyamoto and Wakker (1996) and constant proportional risk aversion on � i,
or by Theorem 1 in Miyamoto and Wakker (1996) and constant absolute risk aversion on
� i, V i

1�m���h and V i
m+1� n���h are linear with respect to each other on � i

��h. That is, V
i
1�m���h =

ai
1�m���h ·V i

m+1� n���h+bi
1�m���h� a

i
1�m���h > 0� bi

1�m���h real.
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Because V i
1�m���h and V i

m+1� n���h are linearly related, we can extend the additive rep-
resentation to the entire set ���h. Let U+

��h�x� =
∑n

j=1 Vj���h�x� where all x are gains
and let U−

��h�x� =
∑n

j=1 Vj���h�x� where all x are losses. Define V i
1�m���h = �i

1�m���h ·U i
��h

and V i
m+1� n���h = �i

m+1� n���h · U i
��h, where �i

1�m���h = 1/�1+ ai
1�m���h� and �i

m+1� n���h =
ai
1�m���h/�1+ai

1�m���h� are uniquely defined, positive decision weights that sum to one. The
uniqueness of the decision weights follows from the common unit of the additive represen-
tation. Positivity follows from outcome monotonicity.
We can now define a CPTi

��h representation on � i
��h as in the proofs of Lemmas 7 and 8

in Zank (2001). For all f ∈ ���h, the additive representation, obtained earlier, is the sum of
a CPT+ and a CPT− functional. It is, therefore, a CPT functional on ���h, and we denote
this representation by CPT��h henceforth.
If h ∈ � −� 0, all outcomes are losses. If all outcomes are of the same sign, CPT

coincides with rank-dependent utility. By Theorem 2 in Bleichrodt and Quiggin (1997) and
constant sensitivity on �−, or by Theorem 2 in Miyamoto and Wakker (1996) and constant
proportional risk aversion on � −, or by Theorem 1 in Miyamoto and Wakker (1996) and
constant absolute risk aversion on � −, rank-dependent utility represents � on ���h. Q.E.D.

Lemma A.3. On � −
� the representation in Lemma A.1 is the restriction of a CPT form.

Proof. Rescale U−
��h such that U−

��h�0� h� = 0 for all h ∈ � . Let h�h′ ∈ � . By weak
utility independence, for all s� t�w ∈ � with s� t�w ≤ r�h� if h ∈ � 0 and s� t�w ≤ r�h′�
if h′ ∈ � 0, �s�h� ∼ ��t� h��A� �w�h�� iff �s�h′� ∼ ��t� h′�, A, �w�h′��. Because the equiv-
alences are independent of h, CPT−

��h and CPT−
��h′ are related by a positive affine trans-

formation. Hence, for a given h′′ ∈ � , CPT−
��h = +−

� �h� ·CPT−
��h′′ +,−�h�. Because the

decision weights have to sum to one, they are unique and for all h�h′ ∈ � and for all
j ∈ � , �−

j� ��h = �−
j� ��h′ . Hence, for a given h′′ ∈ � , U−

��h = +−
� �h� · U−

��h′′ + ,−�h�. By
the zero-condition, 0 = U−

��h�0� = +−
� �h� ·U−

��h′′�0�+,−�h� = ,−�h�. Select a h ∈ � and
define 3−

� �t� = U−
��h�t� h�. Rescale U−

��h such that U−
��h�0� h� = −k for some k ∈ �+ and

U−
��h�r�h��h�= 0 if r�h� exists. Then for all h ∈� , U−

��h�t� h�= +−
� �h� ·3−

� �t�−k. By con-
stant sensitivity (constant proportional risk aversion, constant absolute risk aversion) 3−

� �t�
is linear (positive power, linear/exponential). The function 3−

� �t� is independent of h and,
therefore, we obtain a CPT representation on � −

� . Q.E.D.

Lemma A.4. On � +
� the representation in Lemma A.1 is the restriction of a CPT form.

Proof. By the assumptions of the truly mixed case and outcome monotonicity, � 0 con-
tains at least one h. If � 0 contains just one health state, then we obtain a CPT representation
on � +

� by defining U+
� = U+

��h and for all j ∈� ��+
j� � = �+

j� ��h.
Suppose that � 0 contains at least two health states. Let h�h′ ∈ � 0 and let A ∈ � .

By mixed utility independence, for all s�w ∈ � with s�w ≥ max�r�h�� r�h′��, and for
all t� z ∈ � with t� z ≤min�r�h�� r�h′��, ��s�h��A� �t� h��∼ ��w�h��A� �z�h�� iff ��s�h′�,
A, �t� h′�� ∼ ��w�h′�, A, �z�h′��. Because the equivalences are independent of h, CPT��h

and CPT��h′ are related by a positive affine transformation. We showed in Lemma A.3
that CPT−

��h and CPT−
��h′ are related by a positive affine transformation. Hence, by mixed

utility independence, CPT+
��h and CPT+

��h′ are also related by a positive affine transfor-
mation. Consequently, for a given h′′ ∈ � 0, CPT+

��h′ = ++
� �h� ·CPT+

��h′′ +,+�h�. Because
the decision weights sum to one, they are unique. Therefore, for all h�h′ ∈ � and for all
j ∈ � ��+

j� ��h = �+
j� ��h′ . Hence, for a given h′′ ∈ � 0, U+

��h = ++
� �h� ·U+

��h′′ +,+�h�. Select a
h∈� 0 and define 3+

� �t�=U+
��h�t� h�. Then for all h∈� 0, U+

��h�t�= ++
� �h� ·3+

� �t�+,+�h�.
By constant sensitivity (constant proportional risk aversion, constant absolute risk aversion)
3+

� �t� is linear (logarithmic/power, linear/exponential). The function 3+
� �t� is independent

of h and, therefore, we obtain a CPT representation on � +
� . Q.E.D.

Hence, for all f ∈ ��, the additive representation, obtained earlier, is the sum of a CPT+

and a CPT− functional. It is, therefore, a CPT functional on ��, and we denote this repre-
sentation by CPT� henceforth.
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Lemma A.5. For any two different permutations � and �′, the CPT representations on
�� and ��′ coincide on common domain in the sense that the utility function U is the same
for both sets and the capacities coincide on common domain.

Proof. If �� ∩��′ contains nonconstant prospects, then this follows from fixing the
scales of U� and U�′ . If ��∩��′ contains only constant prospects then, because n > 2, we
can construct a sequence of permutations �1� � � � � �n such that �� ∩��1

, ��1
∩��2

� � � � �

��n
∩��′ all contain nonconstant prospects. By the first case, the CPT representations are

identical. Q.E.D.
The proof that the CPT representation thus defined is representing on � , the definition of

the unique capacity, and the derivation of the uniqueness results are similar to Zank (2001,
pp. 76–77).
We finally derive the decomposable QALY models. Because we have a CPT represen-

tation on � , we can apply the proof of Theorem 5.1 to derive the linear QALY model
(if constant sensitivity holds on �− and on �+), the power QALY model (if constant
proportional risk aversion holds on � + and on � −) or the exponential QALY model (if
constant absolute risk aversion holds on � + and on � −). The parameters .� -� and / in
Equations (6)–(9) are independent of h because 3−�t� and 3+�t� are independent of h. It
remains to be shown that *�h� = +−�h�/++�h� is independent of h. If h ∈ � −� 0, there
is nothing to prove, so let h ∈ � 0. If � 0 contains only one health state, then the represen-
tation follows from setting * = *�h�. So let there be at least two health states in � 0. Let
h�h′ ∈ � 0 and let A ⊆ � . By continuity in duration and connectedness of � we can find
s� y ∈ � with s� y ≥ max �r�h�� r�h′�� and t� z ∈ � with t� z ≤ min �r�h�� r�h′�� such that
��s�h��A� �t� h��∼ ��y�h��A� �z�h��. Evaluation by CPT gives

w+�A� · �+�h� ·3+�s�+,�h��+w−�Ac� · �*�h� ·+�h� ·3−�t�−k�

= w+�A� · �+�h� ·3+�y�+,�h��+w−�Ac� · �*�h� ·+�h� ·3−�z�−k��

where 3− and 3+ are either linear, power or logarithmic, or exponential. Solving for * gives

*�h�= w+�A��3+�s�−3+�y��
w−�Ac��3−�z�−3−�t��

�

By mixed utility independence also, ��s�h′��A� �t� h′��∼ ��y�h′��A� �z�h′�� and thus

w+�A� · �+�h′� ·3+�s�+,�h′��+w−�Ac� · �*�h′� ·+�h′� ·3−�t�−k�

= w+�A� · �+�h′� ·3+�y�+,�h′��+w−�Ac� · �*�h′� ·+�h′� ·3−�z�−k��

Hence,

*�h′�= w+�A��3+�s�−3+�y��
w−�Ac��3−�z�−3−�t��

�

which shows that for all h�h′ ∈ � 0�*�h�= *�h′�. �
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