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Abstract

This paper provides a characterization of QALYs, the most important outcome measure in medical decision
making, in the context of a general rank dependent utility model. We show that both for chronic and for
nonchronic health states the characterization of QALYs depends on intuitive conditions. This facilitates the
assessment of the validity of QALYs in rank dependent non-expected utility theories and a comparison with
other utility based measures of health.
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In many public policy decision contexts no good market data exist to value health out-
comes. In these circumstances, most studies have relied on surveys to derive values for
health outcomes (for an overview see Viscusi (1993)). The commonly used methodology
in surveys has been to ask members of a representative sample how much they are willing
to pay for reductions in the risk of contracting a particular disease. This methodology is
referred to as “contingent valuation.” Over the past decade, there has been an increasing
awareness of potential problems with the contingent valuation approach (e.g. Hausman
(1993)). As a result of these problems, several studies have suggested to use utility based
measures of health outcomes (Viscusi et al. (1991), Krupnick and Cropper (1992), Jones-
Lee et al. (1995), Magat et al. (1996)). The theoretical relationship between the contingent
valuation method and utility based measures is straightforward (Viscusi et al., 1991), but
empirical evidence suggests that the latter are more reliable.

The utility based approach to the valuation of health has been frequently applied in
allocative decisions in health care (Torrance (1986)). The most important utility model in
health decision making is a simple additive model: the quality-adjusted life-years (QALY)
model. According to the QALY model the utility of a stream of health outcomes is
calculated by multiplying each year of life by a weight reflecting the utility of the health
state in which this year is spent. A major advantage of the QALY model is that it is easy
to use. On the other hand, the QALY model can only be applied if individual preferences
satisfy certain restrictions. Insight in these restrictions is important both for an assessment
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of the validity of the model and for a comparison of QALY based analyses with other
utility based health measures and with studies using the contingent valuation method.

Existing characterizations of the QALY model all assume expected utility theory. It has
now become widely acknowledged that expected utility theory is not valid as a descriptive
theory of decision under risk. A number of the classic counterexamples to expected utility
theory deal with cases in which outcomes are expressed in terms of health status and life
or death. Among the alternative theories that have been proposed, the rank dependent
utility theories of decision under risk and uncertainty (Quiggin (1981,1982), Yaari (1987),
Schmeidler (1989)) and their derivative, cumulative prospect theory (Tversky and Kah-
neman (1992)) are currently the most important. Rank dependent utility models generalize
expected utility theory by not only transforming outcomes to utilities, but also probabili-
ties to decision weights p, which are monotonic, but need not be additive, i.e. p(a 1 b)
Þ p(a) 1 p(b) can happen. A correction for probability weighting is made to allow for
the common empirical finding that individuals put too much weight on small and very
large probabilities and not enough on probabilities in the middle range. We describe rank
dependent utility theories in some more detail in section 3.

The aim of this paper is to provide a characterization of QALYs in the context of a
general class of rank dependent utility models axiomatized by Miyamoto (1988). We
impose a basic additive structure on a rank ordered set and we use this basic additive
structure to provide a characterization of QALYs both for the situation where health status
is constant over time, i.e. chronic health states, and for the situation where health status
can vary over time.

In what follows, section 1 provides a brief overview of characterizations of QALYs that
assume expected utility theory to hold. For chronic health states characterizations are
available from the literature. We provide a characterization for nonchronic health states. In
section 2 we present the general rank dependent utility model and characterize QALYs
within this model. We show that if health states are chronic, then the central condition of
QALYs is constant marginal utility for life years. The concept of marginal utility is widely
used both in economics and in decision theory. For nonchronic health states, the central
condition is generalized marginality. Generalized marginality is a natural extension of
utility independence, a condition well-known from the decision theory literature. It is the
strength of our characterizations that QALYs can be characterized in terms of conditions
that are both relatively easily understood and straightforward to test empirically. This
facilitates an assessment of the validity of QALYs in a general rank dependent class of
utility models and a comparison with alternative valuations of health outcomes. In section
3 we show that rank dependent utility theory, Choquet expected utility theory and cumu-
lative prospect theory are consistent with the basic additive structure we employ in this
paper. Section 4 concludes the paper. Proofs are left for the appendix.

1. Characterizations of QALYs under expected utility theory

1.1. Notation and structural assumptions

We study a set of simple probability distributions (lotteries) over a set of health profiles
(i.e. sequences of health outcomes). A typical element of the set of lotteries is
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(p1,h1;…;pm,hm), where hi stands for health profile i and pi is the corresponding probabil-
ity. A preference relation *, meaning “at least as preferred as”, is defined over the set of
lotteries. Denote the symmetric part of * (indifference) by ; and the asymmetric part
(strict preference) by s. Restricted to degenerate lotteries * is a preference relation over
the set of health profiles H. We assume that * satisfies the von Neumann Morgenstern
axioms (von Neumann and Morgenstern (1944)). Then * can be represented by the
expected utility model: EU(p1,h1;…;pm,hm)5(i51

m piU(hi), where U: HRR is a real-valued
utility function unique up to positive linear transformations.

1.2. Chronic health states

If health status is constant, then the set of outcomes consists of elements (Q,T), where Q
stands for (constant) health status and T for the number of life years. Several structural
assumptions are made with respect to the set of outcomes. These are given in the appen-
dix.

The best known characterization of the QALY model for chronic health states is Pliskin,
Shepard and Weinstein (1980). Pliskin et al. show that the QALY model follows if utility
independence, risk neutrality on life years and constant proportional tradeoffs for two
health states are imposed in addition to the axioms of expected utility theory. Utility
independence and risk neutrality are well known conditions in decision theory (cf. e.g.
Keeney and Raiffa (1976)). Constant proportional tradeoffs holds for two health states Q1

and Q2 if the proportion of life-years an individual is willing to give up for an improve-
ment in health is invariant with respect to the number of life years: U(Q1,T) 5 U(Q2,qT)
for positive q and all T.

Bleichrodt, Wakker and Johannesson (1996) have shown that utility independence and
constant proportional tradeoffs can be dispensed with in the presence of a condition that
is entirely self-evident for health outcomes, the zero-condition, which asserts that for a
time duration of zero life years all quality of life levels are equivalent. This leaves risk
neutrality on life years as the central condition in the characterization of the QALY model.

Both in Pliskin et al. and in Bleichrodt et al. the set of health states is confined to
positive health states, that is health states preferred to death. Miyamoto et al. (1996) show
that the QALY model can still be characterized by risk neutrality on life years and the
zero-condition if the set of health states is general and includes zero and negative health
states in addition to positive health states.

1.3. Nonchronic health states

For nonchronic health states, the set of outcomes H consists of profiles (q1,…qT) where qt

stands for health status in period t and the utility function thus contains T attributes: U 5
U(q1,…,qT). In comparison with section 1.2 time is no longer continuous, but discrete.
This does not make the two approaches incomparable. If we take a sufficiently fine
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discrete model, i.e. the length of the different time periods approaches zero, then the
discrete time model will approach the continuous time model. Structural assumptions with
respect to H are given in the appendix.

The first step in the characterization of QALYs is to impose additive independence
(Fishburn (1965)). Additive independence holds if preferences over lotteries on q1,…,qT

depend only on their marginal probability distributions and not on their joint probability
distribution. Theorem 4 in Fishburn (1965) shows that given additive independence
U(q1,…,qT) is equal to (tUt(qt). Continuity of the preference relation over H gives con-
tinuity of the one-period utility functions (Maas and Wakker (1994)). The characterization
of QALYs is completed by adding a symmetry condition, that makes the preference
relation invariant with respect to the point in time at which an outcome occurs: all time
periods have equal weight.

Symmetry

(q1,…,qT);(qp(1),…,qp(T)) for all health profiles (q1,…,qT)

and permutation function p(t).

where a permutation function p(t) is a function specifying a rearrangement of the time
periods. The preceding exposition is summarized in theorem 1, a proof of which is given
in the appendix.

Theorem 1

The following two statements are equivalent under expected utility theory and the struc-
tural assumptions made:

(i) the individual preference relation satisfies additive independence and symmetry.
(ii) The QALY model holds: U(q1,…qT) 5 (tU(qt), where U is continuous and unique up

to positive linear transformations.

2. Characterizing QALYs under a general rank dependent utility model

2.1 Assumptions

We assume that there are two states of nature r and s. Probabilities for these states may but
need not be known. H is the set of health profiles and H2 5 H × H is a set of acts. An act
is a function from the set of states of nature to the real numbers, i.e. f 5 (fr , fs) [ H2 is
the act giving fr if r is the true state and fs if s is the true state. A preference relation *
is defined on H2, meaning “at least as preferred as.” We assume that * is a weak order:
* is transitive and complete. The relation f s g (strict preference) is defined as f * g and
not g * f. The relation f ; g (indifference) is defined as both f * g and g * f. Preferences
under certainty are derived from preferences over constant acts: for x,y [ H, x * y iff (x,x)
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* (y,y). The set of rank ordered acts HQ
2 is defined as the set {f [ H2:fr * fs} that is all

acts for which the outcome under state r is at least as preferred as the outcome under state
s. This set contains all constant acts.

Various non-expected utility theories, defined over the set of rank ordered acts, assume
that the preference relation * on HQ

2 is additive, i.e. that there exist functions Ur:HRR

and Us:HRR such that U(f) 5 Ur(fr) 1 Us(fs) represents * on HQ
2 . Expected utility

theory is the special case where Ur(fr) 5 prU(fr) and Us(fs) 5 psU(fs), with the decision
weights pr and ps equal to the (subjective) probabilities. Non-expected utility theories do
not necessarily use (subjective) probabilities as decision weights.

We impose preference conditions on the preference relation * on HQ
2 such that it can

be represented by an additive function. These conditions are given in the appendix. It
follows from these conditions that Ur and Us are both continuous and preserve * on H.
The assumptions we subsequently use in the derivation of QALYs ensure that Ur and Us

are linear with respect to each other and thus can be rewritten as Ur 5 prU and Us 5 psU,
with pr and ps scaling constants or decision weights that sum to one and that may but
need not be interpreted as probabilities.

Following Wakker (1984), we define a preference relation ** in the following way:

[a;b] * *[c;d] if

(a,z)*(b,y) and (c,z)&(d,y) and/or (s,a)*(t,b) and (s,c)&(t,d)

for all a,b,c,d,s,t,y,z[H and (a,z),(b,y),(c,z),(d,y),(s,a),(t,b),(s,c),(t,d) [ H↓
2.

The preference relation ** can be interpreted to measure strength of preference. To see
this suppose (a,z) * (b,y) and (c,z) & (d,y). Given the additive structure, Ur(a) 1 Us(z) $
Ur(b) 1 Us(y) and Ur(c) 1 Us(z) # Ur(d) 1 Us(y). Or Ur(a) 2 Ur(b) $ Us(y) 2 Us(z) $
Ur(c) 2 Ur(d). Evaluated by utility function Ur the strength of preference of a over b is
at least as great as the strength of preference of c over d. At this stage we cannot exclude
the possibility that evaluated by utility function Us the strength of preference of c over d
is greater than the strength of preference of a over b, because the additive representation
does not ensure that Ur and Us are linear with respect to each other.

We define [a;b] s* [c;d] if one of the above inequalities holds strict (i.e. one of the *
signs can be replaced by a s sign or one of the & signs can be replaced by a [a ]sign).

2.2. Chronic health states

Because the QALY model is linear in life years, we have to establish linearity of U(T). If
expected utility theory holds, linearity of the utility function follows from risk neutrality.
This characterization is possible, because probabilities are evaluated linearly, that is the
decision weights pr and ps are equal to the (subjective) probabilities of state s and state
t. In the general rank dependent utility model we have not restricted the decision weights
to be equal to the respective probabilities and therefore a different condition has to be
imposed.
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One reason expected utility theory has been criticized is that both risk attitude and
attitudes towards outcomes are modelled through the utility function and therefore cannot
be distinguished. Most rank dependent generalizations separate attitudes towards proba-
bilistic risk, which are modelled through the decision weights, from attitudes towards
outcomes, which are modelled through the utility function. Because we want to establish
linearity of the utility function, we have to use a condition about attitude towards out-
comes. In our derivation we use constant marginal utility:

Constant marginal utility

The preference relation * on HQ
2 satisfies constant marginal utility if [a 1 e;b 1 e] s*

[a;b] is excluded for all a,b,a 1 e,b 1 e [ H and all e [ R.

By constant marginal utility, if two outcomes are increased or decreased by the same
amount then this should have no effect on the strength of preference of one outcome over
the other. The implications of constant marginal utility are strong. In the appendix we
prove the following theorem:

Theorem 2

If the general rank dependent utility model U(f) 5 Ur(fr) 1 Us(fs) and the structural
assumptions hold, then the following two statements are equivalent:

(i) Constant marginal utility holds on H↓
2

(ii) There exists a continuous utility U, linear in life years, and unique up to positive linear
transformations and decision weights pr and ps such that * on H↓

2 is represented by
U(x,y) 5 prU(x) 1 psU(y).

We can now use a similar line of argument as in Bleichrodt et al. (1996) and in Miyamoto
et al. (1996) to derive the QALY model in the general rank dependent utility framework.
By constant marginal utility for life years, holding quality of life fixed, U(Q,T) takes the
form C(Q) 1 V(Q)*T, where C(Q) and V(Q) are constants that depend on Q but not on
T. Clearly this form is not yet equivalent to the QALY model, because in the QALY model
all quality of life levels are equivalent for a life duration of zero life years: U(Q,0) is
constant for all Q. This can be ensured by imposing the zero-condition. By the zero-
condition, U(Q,0) 5 C(Q) 1 V(Q)*0 5 C(Q) is constant. Finally we use the uniqueness
property of the utility function U, and subtract C(Q) to obtain U(Q,T) 5 V(Q)*T, which
is the QALY model.

To summarize, we have proved the following theorem:

Theorem 3

If the general rank dependent utility model U(f) 5 Ur(fr) 1 Us(fs) and the structural
assumptions hold, then the following two statements are equivalent:
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(i) the preference relation satisfies constant marginal utility on life years for each health
state and the zero-condition.

(ii) the QALY model U(Q,T) 5 V(Q)*T holds with U and V continuous and unique up to
positive linear transformations.

2.3. Nonchronic health states

By yt x we denote a health profile x with health state xt replaced by yt: (x1,P, xt21, yt ,
xt11,…, xT). Let xt yt1i z denote a health profile z with zt replaced by xt and zt1i by yt1i,
and let yAx be a health profile with elements equal to y for all t [ A and equal to x for all
t 5 A.

Utility independence in the general utility model is defined as follows:

Utility Independence

HJ (J , N) is utility independent on H↓
2 if (kJ x,lJ x) * (mJ x, nJ x) ⇔ (kJ y, lJ y) *

(mJ y, nJ y) when all acts are contained in H↓
2. Utility independence holds if HJ is utility

independent on H↓
2 for every J , N.

Utility independence gives linearity of Ur and Us with respect to each other and ensures
that U is either additive or multiplicative (Miyamoto and Wakker (1996)). If expected
utility theory holds, additive independence distinguishes between the additive and the
multiplicative specification of U. Additive independence is not available as a diagnostic
tool in the general rank dependent utility model, because it assumes linearity in probabil-
ity. To distinguish between the additive and the multiplicative model, we use the following
strengthening of utility independence, which generalizes a condition proposed by Miya-
moto (1988) for two-attribute utility functions.

Generalized marginality

The preference relation * on HQ
2 satisfies generalized marginality if for all acts in HQ

2 , for
all z,xt,yt,vt,wt,at1i,bt1i,ct1i,dt1i, and for all t,t 1 i the following holds:

(xt at1i z,ytbt1i z) * (vt at1i z,wt bt1i z) ⇔ (xt ct1i z,yt dt1iz) * (vt ct1i z,wt dt1i z)

If at1i 5 bt1i and ct1i 5 dt1i then it is easily seen that generalized marginality is equal
to utility independence for single attributes. Thus generalized marginality can be inter-
preted as a strengthening of utility independence for single attributes.

Theorem 4

If the general utility model U(x,y) 5 Ur(x) 1 Us(y) and the structural assumptions hold,
then the following two statements are equivalent:
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(i) The preference relation satisfies generalized marginality and symmetry
(ii) The QALY model holds: U(ql,…,qT) 5 (t U(qt) with U continuous and unique up to

positive linear transformations.

A proof of theorem 4 can be found in the appendix.
The proof of theorem 4 shows that imposing generalized marginality in the general rank

dependent utility model is necessary and sufficient to lead to an additive model:
U(ql,…,qT) 5 (t Ut(qt). Additive models satisfy utility independence for all subsets. Thus,
generalized marginality, which we motivated as a strengthening of utility independence
for single attributes, implies utility independence in full.

Corollary 1

If the general utility model is of the form U(x,y) 5 Ur(x) 1 Us(y), and the structural
assumptions given in the appendix hold, then generalized marginality implies utility
independence.

If utility independence holds, but not generalized marginality, then U is multiplicative:
U(qL,…,qT) 5 Pt Ut(qt) (Miyamoto and Wakker (1996)). It is easy to show using the proof
of theorem 1 that the Ut are identical if symmetry is imposed on top of utility indepen-
dence.

3. Compatibility of the general utility model with rank dependent utility theory
and cumulative prospect theory

We show in this section that the general rank dependent utility model is compatible with
rank dependent utility theory (Quiggin (1981)), Choquet expected utility theory
(Schmeidler (1989)), and cumulative prospect theory (Tversky and Kahneman (1992)),
currently the most influential alternatives for expected utility theory. It is important to
derive that the general rank dependent utility model encompasses these theories as special
cases, because it follows by implication that the results derived in section 2 are valid under
these theories.

3.1. Rank dependent utility theory

In rank dependent utility theory preferences are defined over rank-ordered lotteries
(p1,h1;…;pm,hm): hl *......* hm. Rank ordered lotteries are evaluated by:

(
j51

m

[w((
k51

j

pk) 2 w((
k51

j21

pk)]U(hk) (1)

where U:HRR is a continuous utility and w:[0,1]R[0,1] is a continuous, strictly increas-
ing function such that w(0) 5 0 and w(1) 5 1.
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For any p, the rank dependent utility representation of a lottery (p,h1;(1 2 p),h2) [
HQ

2 , w(p)U(h1) 1 [1 2 w(p)]U(h2), is an additive representation on HQ
2 and thus our

results apply within this structure, yielding characterizations of QALYs both for chronic
and for nonchronic health states.

3.2. Choquet expected utility theory

Choquet expected utility theory is the application of rank dependent utility theory to
decision making under uncertainty, i.e. probabilities are no longer given. In Choquet
expected utility theory, a continuous utility U:HRR is selected along with a capacity W.
Let S be the set of states of nature. We assume for simplicity that S is finite. 2s is the set
of all subsets of S. A capacity is a function W:2sRR such that W([) 5 0, W(S) 5 1, and
A # B ⇒ W(A) # W(B). f(s1) stands for the outcome of act f if s1 is the true state of
nature. To apply Choquet expected utility acts have to be rank ordered: f(s1) *......* f(sm).
Rank ordered acts are evaluated by:

(
j51

m

[W(s1,…,sj) 2 W(s1,…,sj21)]U(f(sj)) (2)

Let A , S and denote the complement of A by AC. The Choquet expected utility repre-
sentation of an act (A,h1;AC,h2) [ HQ

2 , W(A)U(h1) 1 [1 2 W(A)]U(h2), is an additive
representation on HQ

2 and thus our results apply within this structure.

3.3. Cumulative prospect theory

Decision under risk

In Tversky and Kahneman’s (1992) cumulative prospect theory the evaluation of a gamble
depends not only on the ranks of the outcomes but also on their signs: outcomes are
evaluated differently depending on whether they are gains or losses. The sign of an
outcome depends on its position relative to a reference outcome. For our analysis we can
restrict attention to the set of pure gain lotteries GQ

2 containing all lotteries
(p1,h1;…;pm,hm) such that h1 *......* hm * r, where r denotes the reference health profile
and to the set of pure loss lotteries LQ

2 containing all lotteries (p1,h1;…;pm,hm) such that
r * h1 *......* hm. Pure gain lotteries are evaluated as in rank dependent utility theory.

(
j51

m

[w1((
k51

j

pk) 2 w1((
k51

j21

pk)]U(hk),(p1,h1;…;pm,hm)[G↓
2 (3)

Pure loss lotteries are evaluated by:

(
j51

m

[w2((
k5j

m

pk) 2 w2
1( (

k5j11

m

pk)]U(hk),(p1,h1;…;pm,hm)[L↓
2 (4)
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where U:HRR is a continuous utility and both w1:[0,1]R[0,1] and w2:[0,1]R[0,1] are
continuous, strictly increasing functions such that w1(0) 5 w2(0) 5 0 and w1(1) 5
w2(1) 51.

For any p, the cumulative prospect theory representation of a pure gain lottery (p,h1;(1
2 p),h2) [ GQ

2 , w1(p)U(h1) 1 [1 2 w1(p)]U(h2), is an additive representation on GQ
2 and

the representation of a pure loss lottery lottery (p,h1;(1 2 p),h2) [ L↓
2, w2(p)U(h2) 1 [1

2 w2(p)]U(h1), is an additive representation on LQ
2 . Therefore, our results apply within

these structures, yielding characterizations of QALYs both for chronic and for nonchronic
health states.

Decision under uncertainty

In the situation of decision making under uncertainty, cumulative prospect theory gener-
alizes Choquet expected utility theory by introducing sign dependence. There are now
two, not necessarily equal, capacities W1:2S R R and W2:2S R R. Rank ordered pure
gain acts f(s1) * ...... * f(sm) * r are evaluated by

(
j51

m

[W1(s1,…,sj) 2 W1(s1,…,sj21)]U(f(sj)) (5)

and rank ordered pure loss acts r * f(s1) * ...... * f(sm) by

(
j51

m

[W2(sj,…,sm) 2 W2(sj11,…,sm)]U(f(sj)) (6)

where U:H R R is a continuous utility.
Let A,B , S and denote their complements by AC and BC. The cumulative prospect

theory representation of an act (A,h1;AC,h2) [ G↓
2, W1(A)U(h1) 1 [1 2 W1(A)]U(h2), is

an additive representation on G↓
2 and the cumulative prospect theory representation of an

act (B,h1;BC,h2) [ L↓
2, W2(B)U(h2) 1 [1 2 w2(B)]U(h1), is an additive representation on

L↓
2. Our results apply within these structures.

4. Concluding remarks

In this paper we have characterized the QALY model in the context of a general rank
dependent utility model, which is consistent with the most important non-expected utility
models. We have shown that the crucial conditions are constant marginal utility for life
years in the case of chronic health states, and generalized marginality, an extension of
utility independence for single attributes, in the case of nonchronic health states. It is the
strength of our characterization that even though expected utility theory is replaced by a
more general rank dependent utility model, the measurement foundation of QALYs is
easily understood and straightforward to test empirically.
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In the derivation of our main results we assumed that there are only two states of nature.
It is straightforward to extend the analysis to more than two states of nature. Similarly, our
results can be generalized to other contexts than medical decision making. If one of the
attributes in a two-attribute utility function corresponds directly to the set of real numbers,
i.e. the utility function for this attribute is a function from R to R, and a zero-condition
can be used, then constant marginal utility for attribute y characterizes the utility function
U(x,y) 5 U(x)*y. Generalized marginality can be used in any context and does not require
any of the attributes to correspond directly to the set of real numbers or a zero-condition
to hold.

Appendix: Structural assumptions and proofs

A1: Structural assumptions

Chronic health states

The set of life years T is a subset of the set of real numbers and therefore endowed with
the Euclidean topology which is connected and separable. The set of health states (quality
of life levels) Q is a connected and separable topological space. The set of chronic health
profiles H 5 Q × T is a Cartesian product of the set of life years and the set of health
states, and is endowed with the product topology. The preference relation * on H is
continuous: both {x [ H: x * y} and {x [ H: y * x} are closed for all y [ H. We further
assume that both health state and life years are essential: there exist Q1,Q2 [ Q and T1,T2

[ T such that (Q1,T) s (Q2,T) and (Q,T1) s (Q,T2). Essentiality implies that both quality
of life and quantity of life affect preferences over chronic health profiles.

Nonchronic health states

The set of health profiles H is a Cartesian product of T $ 2 one period sets of health
states: Q1xQ2x.....xQT. The sets of one period health states are connected topological
spaces. They can be taken identical or different depending on whether all health states are
attainable at all ages. The set H is endowed with the product topology. Denote by x t q
health profile q with health state qt replaced by health state xt. The preference relation on
H is continuous and all periods are essential: x t q s y t q for at least two health states xt

and yt [ Qt and for all t.

Assumptions for an additive representation on a rank ordered set:

The set of health profiles H is a connected topological space. The preference relation *
on H derived from * on H2 is continuous as is * on the set of rank ordered lotteries
HQ

2 . Further * on HQ
2 satisfies outcome monotonicity. That is, if fr * gr & fs * gs then
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f * g with f s g if at least one of the inequalities is strict. Finally we assume that * on
HQ

2 satisfies the hexagon condition (Wakker (1989)): if (y1,a2) ; (x1,b2) & (v1,a2) ;
(y1,b2) & (y1,b2) ; (x1,c2) then (v1,b2) ; (y1,c2).

By theorems 3.2 and 3.3, proposition 3.5 and remark 3.7 in Wakker (1993) an additive
representation U(f ) 5 Ur(fr) 1 Us(fs) represents * on the topological interior of HQ

2 ,
where Ur and Us are continuous functions, unique up to positive linear transformations,
from the topological interior of H to R. The representation can be extended to the whole
of HQ

2 if Ur and Us are linear with respect to each other.

A2: Proofs

Theorem 1

We prove that symmetry ensures that all one period utility functions are identical. By
additive independence U(q1,…,qT) 5 U1(q1) 1 … UT(qT). By symmetry (q1,…,qT) ;
(q2,q3,…,qT,q1) which, given additive independence, is equal to U1(q2) 1 … 1 UT(q1).
Further (q2,q3,…,qT,q1) ; (q3,q4,…,q1,q2) ; … (qT,q1,…,qT 2 2,qT 2 1). Thus U(q1,…,qT)
5 U1(q1) 1 … UT(qT) 5 U1(q2) 1 … 1 UT(q1) 5 … 5 U1(qT) 1 … 1 UT(qT 2 1). Or
U(q1,…,qT) 5 1/T (tUt(q1) 1 … 1 1/T (tUt(qT). Thus all one period utility functions are
identical.

Theorem 2

That (ii) implies (i) is straightforward. So suppose (i) holds. First we derive that Ur and Us

are linear with respect to each other. Both Ur and Us are continuous and preserve the
ordering over H. Thus Ur and Us are related by a continuous nondecreasing transformation
f: Us 5 f(Ur). Linearity of Ur and Us with respect to each other follows by showing that
f is affine. Fix health status at a particular level. In the remainder of the proof we suppress
this health status level. Thus the arguments in the functions refer to number of life years.

Take an arbitrary element Ur(z) from the domain of f. There exists an open interval M
around Ur(z) so small that, for all Ur(a), Ur(b) in M, there are x and y such that

Ur(a) 2 Ur(b) 5 Us(y) 2 Us(x) (A1)

By continuity of f we can further take M such that for all Ur(a), Ur(b) there are v and w
such that

Us(a) 2 Us(b) 5 f(Ur(a) 2 Ur(b)) 5 Ur(w) 2 Ur(v) (A2)

Now choose e such that Ur(a 1 e) is in M and b 1 e 5 a. By constant marginal utility

Ur(a 1 e) 2 Ur(b 1 e) 5 Ur(a 1 e) 2 Ur(a) 5 Ur(a) 2 Ur(b). (A3)
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But by constant marginal utility Us(a 1 e) 2 Us(b 1 e) must also be equal to Us(a) 2
Us(b), because if for example Us(a 1 e) 2 Us(b 1 e) > Us(a) 2 Us(b) then this would
imply that [a 1 e; b 1 e] s* [a;b] which is excluded by the assumption of constant
marginal utility.

Thus Us(a 1 e) 2 Us(a) 5 Us(a) 2 Us(b) or f(Ur(a 1 e) 2 Ur(a)) 5 f(Ur(a) 2 Ur(b))
and so on M f satisfies Jensen’s equality: f((a 1 b)/2) 5 f(a)/2 1 f(b)/2. By corollary
A1.3 in Wakker (1989) this establishes that f is affine and thus Us 5 as 1 bUr, as [ R,
b > 0. Set U equal to Ur, and pr 5 1/(1 1 b) and ps 5 b/(1 1 b). This establishes the
representation U(x,y) 5 prU(x) 1 psU(y). U is continuous and unique up to positive
linear transformations because Ur is.

Linearity of U in T follows from corollary 16 in Wakker (1994) by noting that all that
is needed there is the representation U(x,y) 5 prU(x) 1 psU(y) with U unique up to
positive linear transformations and the decision weights uniquely determined.

Theorem 4

That (i) implies (ii) is routine. Suppose (ii). To derive is (i). First we establish linearity of
Ur and Us with respect to each other. For T 5 2 it is easy to see that generalized marginality
implies utility independence by setting either xt 5 yt and vt 5 wt or at1i 5 bt1i and ct1i

5 dt1i. Utility independence in combination with the structural assumptions gives linearity
of Ur and Us with respect to each other (Miyamoto and Wakker (1996)). Let T > 2. In the
proof of their theorem 4 Miyamoto and Wakker only need an additive representation on
H and utility independence for one coordinate. Both are ensured by generalized margin-
ality. Generalized marginality implies weak separability and independence of equal sub-
alternatives with subalternatives of length n 2 2 and thus by the proof of theorem III.4.1.
in Wakker (1989) the additive representation follows. Utility independence for one coor-
dinate follows by setting at1i 5 bt1i and ct1i 5 dt1i. By a similar line of proof as in
Miyamoto and Wakker (1996) it can be shown that Ur and Us are linear with respect to each
other and U(x,y) can be represented by prU(x) 1 psU(y). U is continuous and unique up
to positive linear transformations because both Ur and Us are. Moreover U is either mul-
tiplicative or additive. The multiplicative case is ruled out by generalized marginality. Sup-
pose U is multiplicative. The pattern of preferences (xt at1i z, yt bt1i z) * (vt at1i z, wt bt1i

z) implies, after division by common terms, that prUt(xt)Ut1i(at1i) 1 psUt(yt)Ut1i(bt1i) $
prUt(vt)Ut1i(at1i) 1 psUt(wt)Ut1i(bt1i) or that prUt1i(at1i)[Ut(xt) 2 Ut(vt)] $
psUt1i(bt1i)[Ut(wt) 2 Ut(yt)]. This does not imply that prUt1i(ct1i)[Ut(xt) 2 Ut(vt)] $
psUt1i(dt1i)[Ut(wt) 2 Ut(yt)] or that (xt ct1i z, yt dt1i z) * (vt ct1i z, wt dt1i z) which is
required by generalized marginality. If we choose Ut1i(ct1i) sufficiently small compared
to Ut1i(dt1i) preference will reverse and generalized marginality is violated. For additive
U, (xt at1i z, yt bt1i z) * (vt at1i z, wt bt1i z) implies, after subtraction of common terms,
that pr [Ut(xt) 1 Ut1i(at1i)] 1 ps [Ut(yt) 1 Ut1i(bt1i)] $ pr [Ut(vt) 1 Ut1i(at1i)] 1 ps

[Ut(wt) 1 Ut1i(bt1i)] or pr[Ut(xt) 2 Ut(vt)] $ ps[Ut(wt) 2 Ut(yt)]. The at1i and bt1i terms
vanish and can be replaced by any ct1i and dt1i terms without affecting preference and thus
generalized marginality holds.
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By generalized marginality U(q1,…,qT) 5 St Ut(qt). Symmetry then ensures that all Ut

are identical.
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