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This paper reports a new test of intransitive choice using individual measurements of regret- and similarity-based intransitive
models of choice under uncertainty. Our test is tailor-made and uses subject-specific stimuli. Despite these features, we
observed only a few intransitivities. A possible explanation for the poor predictive performance of intransitive choice models
is that they only allow for interactions between acts. They exclude within-act interactions by retaining the assumption that
preferences are separable over states of nature. Prospect theory, which relaxes separability but retains transitivity, predicted
choices better. Our data suggest that descriptively realistic models must allow for within-act interactions but may retain
transitivity.
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1. Introduction
Transitivity is a fundamental axiom of rational choice.
It underlies most theories of decision making and is com-
monly assumed in applied decision analysis. There is broad
agreement that transitivity is normative, but its empirical
status is less clear. Starting with May (1954) and Tversky
(1969), many studies have observed systematic and sub-
stantial violations of transitivity, suggesting that transitivity
does not describe people’s preferences well (Brandstätter
et al. 2006, González-Vallejo 2002, Loomes et al. 1991).
However, these violations are controversial. Regenwetter
et al. (2011a) showed that these studies suffered from
methodological limitations and that the actual rate of tran-
sitivity violations was within statistical error and, therefore,
not sufficiently convincing to abandon transitive theories.1

All previous tests of transitivity faced the problem of
choosing the right stimuli. Typically, stimuli were selected
somewhat haphazardly, based on intuitive reasoning or on
some hypothesized parameterization of models of intran-
sitive choice. All subjects were then confronted with the
same stimuli. An obvious drawback of this “one-size-fits-
all approach” is that it is somewhat blunt. Subjects may be
intransitive, but the selected parameterization may hit the
critical range for only a minority of subjects. This approach
does not account for the extensive heterogeneity in prefer-
ences that is usually observed in empirical studies.

An alternative, “tailor-made approach,” which we adopt
in this article, is to select a model of intransitive choice,
measure it for each individual separately, and then use these
measurements to select the individual-specific stimuli that
will produce intransitive cycles according to the model. It is

widely believed that real-valued utility functions represent-
ing choices require transitivity and, consequently, that the
possibility of intransitive choice excludes the existence of
such functions. We show that intransitive models can be
measured even at the individual level and without simpli-
fying parametric assumptions. This measurement allows us
to perform the first tailor-made tests of intransitive choices.

Two important classes of intransitive choice models are
models based on regret and models based on similar-
ity judgments.2 Examples of regret models include Bell
(1982, 1983), Loomes and Sugden (1982, 1987), Fishburn’s
(1982) skew-symmetric bilinear (SSB) theory and, more
recently, the random regret minimization model (Chorus
2012), which is used in transport modeling.

Examples of similarity models include Leland (1994,
1998), Mellers and Biagini (1994), and Rubinstein (1988).
The intuition underlying these models is that subjects pay
less attention to dimensions that are similar and give weight
instead to dissimilar ones. A limitation of these models is
that they treat similarity judgments as dichotomous: there
is a threshold (not clearly specified) above which subjects
take stimuli into account and below which stimuli become
inconsequential. Loomes (2010) proposed the perceived rel-
ative argument model, a more general model that allows
continuous rather than dichotomous similarity judgments.
A related model is González-Vallejo’s (2002) proportional
difference model, which extends the deterministic similar-
ity models by adding a stochastic term reflecting decision
error.

We show how regret- and similarity-based intransitive
models can be measured, and we apply these measurements
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to derive subject-specific tests of intransitivity. Despite
using subject-specific tests, we found very little evidence
of intransitive cycles, and we could reject the predictions
of the intransitive models.

Our subjects deviated from expected utility, the model
that is traditionally used in decision analysis. There are
two approaches to explain deviations from expected util-
ity. The first approach, embodied by the intransitive
choice models, explains these deviations through interac-
tions between acts. The second approach, which contains
prospect theory (Kahneman and Tversky 1979, Tversky
and Kahneman 1992), excludes such between-act interac-
tions but permits within-act interactions through the rank-
ing of the outcomes of an act. We also measured and
tested prospect theory. Prospect theory predicted our choice
data better than the intransitive theories. We conclude that
descriptively realistic models of choice should allow for
within-act interactions. Whether between-act interactions
also play a role remains an open question, but we found no
evidence that transitivity should be abandoned.

2. Theory

2.1. A General Intransitive Additive Model

Consider a decision maker who faces uncertainty, modeled
through a set S of possible states of nature. Subsets of S
are events. P is a probability measure defined over events.
We will write (p11 x13 0 0 0 3 pn1 xn) if there are events Ej that
obtain with probability pj such that the decision maker
receives money amount xj if Ej obtains, and the events
Ej partition the state space. The decision maker chooses
between acts (p11 x13 0 0 0 3 pn1 xn5 and (p11 y13 0 0 0 3 pn1 yn),
where we implicitly assume that pj in (p11 x13 0 0 0 3 pn1 xn)
and pj in (p11 y13 0 0 0 3 pn1 yn5 refer to the same event Ej ,
j = 11 0 0 0 1 n.

Let � denote the decision maker’s preference relation
over acts. As usual, � and ∼ denote strict preference
and indifference. We assume that preferences between acts
(p11 x13 0 0 0 3 pn1 xn) and (p11 y13 0 0 0 3 pn1 yn) are represented
by an intransitive additive model (Bouyssou 1986; Fishburn
1990, 1991):

4p11 x13 0 0 0 3 pn1 xn5� 4p11 y13 0 0 0 3 pn1 yn5

⇔

n
∑

j=1

pj�4xj1 yj5¾ 00 (1)

The function � in Equation (1) is real-valued, strictly
increasing in its first argument and strictly decreasing in its
second argument, and it satisfies symmetry: for all money
amounts xi1 yi, −�4xi1 yi5 = �4yi1 xi5. Symmetry implies
�40105 = 0. The function � is a ratio scale, unique up to
the unit of measurement.

Equation (1) captures the key property of mod-
els of intransitive choice, that there exist interactions
between acts. Equation (1) can account for intransi-
tive cycles if � is either convex for all xi � yi � zi,

�4xi1 zi5¾ �4xi1 yi5+�4yi1 zi5, or concave for all xi � yi �
zi, �4xi1 zi5 ¶ �4xi1 yi5 + �4yi1 zi5. To explain the com-
mon deviations from expected utility, � should be convex
(Loomes and Sugden 1987).

Equation (1) includes several models as special cases.
For instance, if �4xi1 yi5= u4xi5−u4yi5, then expected util-
ity results. Of course, in that case, intransitivities cannot
occur. Another special case of Equation (1) is regret theory
(Bell 1982, Loomes and Sugden 1982), where �4xi1 yi5 =

Q4u4xi5− u4yi55. The strictly increasing utility function u
is an interval scale, unique up to scale and unit, and the
strictly increasing function Q, which reflects the influence
of regret, is unique up to unit. The convexity of � implies
convexity of Q, which is called regret aversion. Other spe-
cial cases are Fishburn’s (1982) SSB model and the general
regret model of Loomes and Sugden (1987). As Fishburn
(1992) showed, Tversky’s (1969) additive difference model
results from Equation (1) if an interstate uniformity axiom
is added. Equation (1) does not account for intransitive
models that result from lexicographic orders, such as the
priority heuristic (Brandstätter et al. 2006). In these models,
attributes are considered sequentially, and this process may
end before all attributes have been considered. Equation (1)
always considers all payoffs and all probabilities.

2.2. The Perceived Relative Argument Model

Equation (1) only permits between-act interactions on the
payoff dimension. It takes probabilities as they stand and
therefore excludes between-act interactions on the proba-
bility dimension. Loomes (2010) proposed a model, the
perceived relative argument model (PRAM), that permits
between-act interactions on both the probability and the
payoff dimension.

Because we only use acts with at most three differ-
ent states of nature in our experiment, we will explain
PRAM for such acts. Let X = 4p11 x13p21 x23p31 x35 and
Y = 4p11 y13p21 y23p31 y35 be any two acts. According to
PRAM,

X � Y ⇔ �4bX1 bY 5¾ �4uY 1 uX50 (2)

In Equation (2), � reflects the perceived argument for X
versus Y on the probability dimension, and � reflects the
perceived argument for Y versus X on the payoff dimen-
sion. The term bX equals the sum of the probabilities of
the states in which X gives a strictly better outcome than
Y , and the term bY equals the sum of the probabilities of
the states in which Y gives a strictly better outcome than
X. For example, if x1 > y1, x2 < y2, and x3 = y3—i.e., X
gives a better outcome than Y in the first state, Y gives a
better outcome than X in the second state, and X and Y
give the same outcome in the third state—then bX = p1 and
bY = p2.

Loomes (2010) assumed that

�4bX1 bY 5= 4bX/bY 5
4bX+bY 5

�

0 (3)
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In Equation (3), � is a person-specific variable, and its
value may vary from one individual to another to reflect
differences in perception. If � = 0, then the individual
takes probability ratios as they are, as in expected utility.
To capture the common violations of expected utility, �
should be negative. More negative values of � imply that
probability ratios become less important when the absolute
differences between the probabilities become smaller. For
example, a negative � means that if both bX and bY are
scaled down, and their absolute difference decreases (they
become more similar), they carry less weight. A compara-
ble idea underlies the similarity models of Leland (1994,
1998), Mellers and Biagini (1994), and Rubinstein (1988).3

In these models, similarity is dichotomous: above some
unspecified threshold, two stimuli are considered dissimi-
lar, but below it they become so similar that the difference
between them is ignored (� goes to −� in Equation (3)).
PRAM allows more diverse applications of similarity theo-
ries by making the similar/dissimilar judgment continuous.

Loomes (2010) further assumed that there exists a real-
valued utility function u defined over the set of outcomes.4

Let uY denote in utility terms the advantage that Y has
over X, and let uX denote the advantage that X has over Y .
For example, if u4x15 − u4y15 > 0 and u4x25 − u4y25 =

u4x35−u4y35 < 0, then uY = u4y25−u4x25= u4y35−u4x35
and uX = u4x15− u4y15. Loomes (2010) assumed that

�4uY 1 uX5= 4uY /uX5
�1 where �¾ 10 (4)

Expected utility is the special case of PRAM where �=

0 and � = 1. If � > 1, then whichever is the larger of uY

and uX receives disproportionate attention, and this dispro-
portionality increases as uY and uX become more and more
different. In §3, we show that PRAM predicts intransitive
cycles when �> 1.

3. Predicting Intransitivities
In this section, we introduce our tailor-made approach in
a deterministic context, i.e., using algebraic models and
assuming that subjects’ choices reveal preferences that are
perfectly represented by the algebraic models. In the next
section, we will show how, in the experimental implementa-
tion and analysis, we incorporated probabilistic components
to take into account that people’s choices may randomly
deviate from the deterministic models.

3.1. First Part: Measurement of a Standard
Sequence of Money Amounts

Our procedure for predicting intransitivities consists of
three parts. The first part uses the trade-off method of
Wakker and Deneffe (1996) to elicit for each subject
a standard sequence of money amounts x01 xi111 0 0 0 1 xi15.
The subscript i expresses that the elements of a subject’s
standard sequence (except the first) depend on the subject’s
answers and that the standard sequences are different for

each subject. This statement follows because in our method,
� in Equation (1) and � in Equation (4) are allowed to be
individual specific, which we also express through a sub-
script i below.

Two gauge outcomes R and r (R > r > 0), a probabil-
ity p, and a starting outcome x0 were selected, and we
elicited xi11 such that 4p1xi1131 −p1 r5∼ 4p1x031 −p1R5.
The details of the elicitation procedure are provided in the
next section. According to Equation (1), this indifference
implies

�i4xi111 x05=
1 −p

p
�i4R1 r50 (5)

We then elicited xi12 such that 4p1xi1231 − p1 r5 ∼

4p1xi1131 −p1R5, which gives

�i4xi121 xi115=
1 −p

p
�i4R1 r50 (6)

It follows from Equations (5) and (6) that �i4xi121 xi115 =

�i4xi111 x05. Because �i is increasing in its first argument
and decreasing in its second, this equality implies that in
terms of �i, the distance between xi12 and xi11 is equal to
the distance between xi11 and x0. Continuing this procedure,
we elicited indifferences 4p1xi1 j+131 −p1 r5∼ 4p1xi1 j31 −

p1R5, j = 01 0 0 0 14, and thus obtained a standard sequence
for which successive elements are equally spaced in terms
of �i. Because �i is a ratio scale, we can set �i4xi111 x05=

1. Under regret theory and the additive difference model,
we obtain that ui4xi1 j5−ui4xi1 j−15= ui4xi115−ui4xi105, and
successive elements of the standard sequence are equally
spaced in terms of utility. Because ui is an interval scale,
we can set ui4x05= 0 and ui4xi155= 1. Then ui4xi1 j5= j/5,
j = 01 0 0 0 15.

Under PRAM, the indifferences 4p1xi1 j+131 − p1 r5 ∼

4p1xi1 j31 −p1R5, j = 01 0 0 0 14, imply

(

ui4xi1 j+15− ui4xi1 j5

u4R5− u4r5

)�i

=
1 −p

p
0 (7)

Consequently, ui4xi1 j+15 − ui4xi1 j5 = ui4xi115 − ui4x05,
j = 11 0 0 0 14. If we scale ui such that ui4x05 = 0 and
ui4xi155= 1, then ui4xi1 j5= j/5.

3.2. Second Part: Measurement of �i and �i

In the second part, we selected for each subject outcomes
x0, xi13, and xi14 from the individual’s standard sequence,
and we elicited zi1 p such that 4p1xi1431 − p1x05 ∼

4p1xi1331 −p1 zi1 p5. The second part provided information
about the individual functions �i in Equation (1) (and con-
sequently about the functions Qi in regret theory) and the
parameters �i in PRAM. Under Equation (1) and the cho-
sen scaling �i4xi111 x05 = �i4xi1 j1 xi1 j−15, the indifference
4p1xi1431 −p1x05∼ 4p1xi1331 −p1 zi1 p5 implies

�i4zi1 p1 x05=
p

1 −p
0 (8)
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Equation (8) defines �i as a function of zi1 p. By varying
p, we can measure as many points of �i as desired.5

The second part also allows measurement of the parame-
ter �i in PRAM. According to Equations (2)–(4), the indif-
ference 4p1xi1431 −p1x05∼ 4p1xi1331 −p1 zi1 p5 implies

(

ui4zi1 p5− ui4x05

ui4xi145− ui4xi135

)�i

= 45ui4zi1 p55
�i =

p

1 −p
0 (9)

From Equation (9), we can compute �i once we know
ui4zi1 p5. This value is generally unknown but could be esti-
mated using the utility function measured in the first part.

3.3. Third Part: Triples to Test Intransitivity

The elements of the standard sequence were used in the
third part to create triples to test intransitivity. The triples
were tailor-made because we used for each subject the indi-
vidual’s own standard sequence. For example, we presented
the following three choices:

(i) A = 41/31 xi1431/31 xi1431/31 xi125 versus B = 41/31
xi1231/31 xi1531/31 xi135.

(ii) B versus C = 41/31 xi1331/31 xi1331/31 xi145.
(iii) C versus A.

According to Equation (1), the comparison between A
and B gives

A� B ⇔
1
3�i4xi141 xi125+

1
3�i4xi141 xi155

+
1
3�i4xi121 xi135¾ 00 (10)

By the symmetry of �i, the chosen scaling, and the
properties of the standard sequence, �i4xi141 xi155 =

�i4xi121 xi135 = −�i4xi111 x05. Hence, Equation (10) can be
written as

A� B ⇔ �i4xi141 xi125− 2 ¾ 00 (11)

In other words, the decision maker will prefer A over
B if (and only if) �i is convex. A similar analysis shows
that a decision maker with convex �i will prefer B over
C and C over A. Hence, convex �i entails the cycle ABC
(ABC stands for “A preferred to B, B preferred to C, and
C preferred to A”). Concave �i implies the cycle BCA.

We illustrate the advantage of our tailor-made approach
over a one-size-fits-all approach using a simple example.
Consider a decision maker who behaves according to regret
theory with mildly concave utility (a power function with
coefficient 0.80) and a mildly convex function Qi (a power
function with coefficient 1.05). Suppose that the mean util-
ity function in the population is linear. Then the best that
a one-size-fits-all approach can do is to select the stimuli
in the third part such that xj+1 −xj = x1 −x0, j = 11 0 0 0 14.
However, for these stimuli, the decision maker would not
exhibit cycles, whereas with our tailor-made stimuli, cycles
would be exhibited.

PRAM also predicts the cycle ABC. A= 41/31 xi1431/31
xi1431/31 xi125 gives a better outcome than B = 41/31 xi123

1/31 xi1531/31 xi135 in the first state (which has probability
1/3), and the utility difference is ui4xi145− ui4xi125 = 2/5.
B gives a better outcome than A in the second and in the
third state (with a joint probability of 2/3), and the utility
difference is ui4xi155− ui4xi145 = ui4xi135− ui4xi125 = 1/5.
According to Equations (2)–(4),

A�B ⇔ 442/55/41/555�i =2�i ¾42/35/41/35=20 (12)

It follows from Equation (12) that A � B if and only if
�i > 1. PRAM with �i > 1 also predicts that B � C =

41/31 xi1331/31 xi1331/31 xi145 (because ui4xi145−ui4xi135=

ui4xi115− ui4x05) and that C �A. Hence, unless �i = 1, in
which case the decision maker is indifferent between A,
B, and C, PRAM predicts the intransitive cycle ABC. This
prediction does not depend on the value of �i. The param-
eter �i drops out of Equation (12) because the probabilities
of the states in which the outcomes differ between the two
acts sum to 1, and 1�i = 1.6

4. Experiment
The previous section showed that violations of transitiv-
ity are closely connected with nonlinearity of the individ-
ual functions �i and with the individual parameters �i in
PRAM. The aim of our experiment was to explore whether
these relations could indeed be observed empirically.

4.1. Subjects

The subjects were 54 students (22 male) from Erasmus
University Rotterdam, aged between 18 and 33 years
(median age 21), with various academic backgrounds. They
were paid a E10 participation fee. In addition, each sub-
ject had a 10% chance to play out one of the choices for
real. After the experiment, subjects drew a ticket from a
nontransparent bag containing 10 tickets, one of which was
a winning ticket. If a subject drew the winning ticket, the
computer randomly selected the choice to be played for
real. The subject then played the preferred option in the
selected choice, with payoffs determined by another ran-
domly drawn number.

4.2. Procedures

The experiment was computer-run7 and administered in
sessions of two subjects with one experimenter present.
Sessions lasted 55 minutes on average. The subjects were
asked to make choices between pairs of acts. The indif-
ferences in the first two parts of our method were elicited
through a series of choices that “zoomed in” on subjects’
indifference values. This iteration procedure is explained in
the online companion (available as supplemental material
at http://dx.doi.org/10.1287/opre.2014.1329).

Figure 1 shows how choices were presented. Subjects
were asked to choose between two acts, A and B, by
clicking on their preferred option. They were then asked
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Figure 1. (Color online) Example of the computer
interface used in the experiment.

OPTION A

Event 1

32 Euro

20 Euro

11 Euro

16 Euro

A: 11
B: 16

A: 32
B: 20

p = 1/3
Event 2

1 – p = 2/3

OPTION B

to confirm their choice. If they confirmed, the next ques-
tion was displayed. If not, the choice was displayed again.
We recorded the choice that was confirmed.

Acts were presented both in a matrix format and as
pie charts, with the sizes of the pies corresponding to the
sizes of the probabilities of the events. We counterbalanced
across questions what was option A and what was option B.
We also varied across subjects in which event column (right
or left) the stimuli changed during the iteration process.
Hence, for half the subjects, the change occurred in the left
column; for the other half, it occurred in the right column.
Table 1 summarizes the questions asked in the first two
parts of our method.

Table 2 shows the triples used to test intransitivity in the
third part. Because the elements of the standard sequence
elicited in the first part differed between subjects, the
choices differed between subjects and were tailor-made to
produce intransitivities. For each triple, a convex �i predicts
the intransitive cycle ABC. Obviously, all special cases of
Equation (1) (regret, SSB, additive difference model) that
we discussed in §2 make the same prediction.

We used two sets of triples. In triples 1 to 7, the proba-
bilities of the different outcomes were all equal to 1/3. In
triples 8 to 14, the probabilities differed and were equal
to 1/5, 2/5, and 2/5. Figure 2 shows the presentation of
the choices in the third part of the experiment. Triples 1,
2, 3, 6, 8, and 9 also tested PRAM. The other triples had
three unequal utility differences, and Loomes (2010) did
not explain how to analyze such cases under PRAM.

Previous studies have observed event-splitting effects
(also called coalescing), which occur when the same out-
come is received under two different states of the world
(Humphrey 1995, Starmer and Sugden 1993). An event
with a given probability typically receives more weight
when it is split into two subevents than when it is presented
as a single event. To prevent event-splitting effects from
confounding the results, acts always had the same num-
ber of states, and subevents were not combined or split.
Humphrey (2001) found that event-splitting effects were
mainly caused by a preference for more positive outcomes
and an aversion to the outcome zero. In our triples, the
number of positive outcomes was always the same, and we
avoided the outcome zero and used x0 = E20 instead.

Prior to the actual experiment, subjects answered two
training questions. After these questions, we elicited the
outcome t that led to indifference between 41/31 t32/31115
and 41/314032/31165. These answers were not used in the
final analyses and only served to monitor for confusion
about the experimental instructions.8

Each experimental session began by eliciting the ele-
ments of the standard sequence, which were used as inputs
in the other two parts. The order of the second and the
third part was counterbalanced. The measurement of the
standard sequence had to be performed in a fixed order, but
the order of the choices in the other parts was random.

Thus far, to ease presentation, we have presented our
method in a deterministic context. We now explain how
we assessed the effect of response errors, i.e., the possible
deviation of choices from preferences. We combined three
approaches to assess the effect of response errors. First, we
repeated certain choices during the experiment. Second, we
incorporated the possibility of various types of response
errors into our statistical analysis. Third, we ran a simu-
lation study with several error specifications to study the
robustness of our results and the power of our tests.

4.3. Repeated Choices

To test for response error, 13 choices were repeated in total.
After the first part, we repeated the third choice of the iter-
ation procedure for two randomly selected questions. After
the second part, we repeated the third choice of the itera-
tion procedure for each of zi12/5, zi13/5, and zi13/4. Subjects
were generally close to indifference in the third choice,
and response errors were therefore more likely. We also
repeated eight randomly selected choices from the third
part.

We finally repeated the entire elicitations of xi11, the first
element of the standard sequence, and zi11/4. These repeti-
tions gave insight into the imprecision of the elicited indif-
ference values. A difference between the two elicited values
of xi11 might also signal strategic responding, a potential
limitation of the trade-off method. In the trade-off method,
answers are used as inputs in later questions. By overstat-
ing their answers, subjects could increase the attractiveness
of later questions. Because we used a choice-based elicita-
tion procedure and forced choices, subjects did not actually
see their elicited indifference values and were less likely
to detect the chained nature of the experiment. Even if
they did, subjects could not be aware of chaining in the
first question, the original elicitation of xi11, because this
question did not use previous responses. If the subjects
answered strategically in the remaining questions and over-
stated their indifference values, the repeated measurement
of xi11, which could be affected by strategic responding,
should exceed the original measurement, which could not
be affected by strategic responding.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

11
5.

11
5.

82
] 

on
 2

3 
O

ct
ob

er
 2

01
5,

 a
t 0

6:
47

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Baillon, Bleichrodt, and Cillo: A Tailor-Made Test of Intransitive Choice
Operations Research 63(1), pp. 198–211, © 2015 INFORMS 203

Table 1. Summary of the first two parts of our measurement procedure.

Elicited value Indifference

First part: Measurement of the standard sequence xi1 j , j = 11 0 0 0 15 41/31 xi1 j32/31115∼ 41/31 xi1 j−132/31165
Second part: Measurement of �i and �i zi1 p, p = 1/412/513/513/4 4p1xi1431 −p1205∼ 4p1xi1331 −p1 zi1 p5

Table 2. The fourteen choice triples used to test intransitivity.

Triple Act A Act B Act C

1 41/31 xi1231/31 xi1231/31 xi125 41/31 x031/31 xi1331/31 xi135 41/31 xi1131/31 xi1131/31 xi145
2 41/31 xi1331/31 xi1331/31 xi125 41/31 xi1131/31 xi1431/31 xi135 41/31 xi1231/31 xi1231/31 xi145
3 41/31 xi1431/31 xi1431/31 xi125 41/31 xi1231/31 xi1531/31 xi135 41/31 xi1331/31 xi1331/31 xi145
4 41/31 xi1431/31 xi1331/31 xi125 41/31 xi1131/31 xi1531/31 xi135 41/31 xi1231/31 xi1231/31 xi155
5 41/31 xi1531/31 xi1131/31 xi125 41/31 xi1231/31 xi1331/31 xi135 41/31 xi1331/31 x031/31 xi155
6 41/31 xi1431/31 xi1231/31 xi115 41/31 x031/31 xi1431/31 xi135 41/31 xi1231/31 x031/31 xi155
7 41/31 xi1431/31 xi1231/31 xi115 41/31 x031/31 xi1531/31 xi125 41/31 xi1131/31 xi1131/31 xi155
8 41/51 x032/51 xi1132/51 xi155 41/51 xi1232/51 xi1332/51 xi125 41/51 xi1432/51 x032/51 xi145
9 41/51 x032/51 xi1332/51 xi135 41/51 xi1232/51 xi1532/51 x05 41/51 xi1432/51 xi1232/51 xi125
10 41/51 xi1132/51 xi1232/51 xi145 41/51 xi1332/51 xi1532/51 x05 41/51 xi1532/51 xi1132/51 xi135
11 41/51 xi1132/51 xi1232/51 xi145 41/51 xi1332/51 xi1532/51 x05 41/51 xi1432/51 xi1132/51 xi135
12 41/51 xi1132/51 xi1232/51 xi145 41/51 xi1332/51 xi1532/51 x05 41/51 xi1532/51 xi1232/51 xi125
13 41/51 x032/51 xi1232/51 xi145 41/51 xi1232/51 xi1532/51 x05 41/51 xi1432/51 xi1232/51 xi125
14 41/51 x032/51 x032/51 xi155 41/51 xi1232/51 xi1432/51 x05 41/51 xi1432/51 x032/51 xi135

Figure 2. (Color online) Example of a choice question in the third part of the experiment.

Event 1

20 Euro

p = 2/5

48 Euro

Event 2

38 Euro

p = 1/5

61 Euro

A: 20
B: 48

A: 38
B: 61

A: 61
B: 20

Event 3

61 Euro

p = 2/5

20 Euro

OPTION A

OPTION B

4.4. Analysis of Errors

Testing axioms of measurement theory, such as transitivity,
requires accounting for the inherently unreliable nature of
choice behavior. As has been noted by Duncan Luce (Luce
1995, 1997), this process involves two steps: (1) to recast a
deterministic model, such as Equation (1) and PRAM, as a
probabilistic model and (2) to use the appropriate statistical
methodology for testing that probabilistic model.

We used two types of probabilistic models. Most of our
analyses were based on random utility models, in which
the decision maker has a fixed deterministic strength of
preference, and the probability of selecting one act over
another is a function of this strength of preference. This
class is also referred to as Fechnerian error models. We also
used a tremble model, in which the decision maker has
a fixed preference relation but makes occasional errors

(or trembles) when choosing between acts. Empirical evi-
dence suggests that the random utility model describes pref-
erences better (Loomes et al. 2002, Loomes and Sugden
1995), but we included the tremble model to test the robust-
ness of our findings.

To make the third part probabilistic, we first analyzed
the aggregate data assuming that all individuals have the
same fixed preferences but make errors. Regenwetter et al.
(2010) have shown that statistical testing of hypotheses
under this model is complex because we may face an
order-constrained inference problem where the likelihood
ratio statistic does not have an asymptotic �2 distribution.
Davis-Stober (2009) derived the appropriate tests for these
cases (which use weighted �2 distributions). We used the
Qtest package (Regenwetter et al. 2014) to implement
these tests.9 Qtest requires at least 20 observations per
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choice pair, and we therefore pooled the data for this anal-
ysis. This pooling causes no problems if a theory makes a
precise prediction as in the case of Equation (1) with con-
vex �i and PRAM. We allowed error rates up to 50%, i.e.,
subjects could mistakenly choose the wrong prospect up
to 50% of the time. That is, the preferred prospect should
be the modal choice up to sampling variability. Both the
random utility and the tremble model make this prediction.

To capture individual heterogeneity, we computed for
each individual the curvature of the �i function and the
PRAM parameter �i using the data collected in parts 1
and 2 of the experiment. We used two measures of the cur-
vature of a subject’s �i function. First, we computed for
each subject the area under the (normalized) �i-function
minus the area under the diagonal. If �i is convex (con-
cave), then this area is negative (positive). We also esti-
mated each subject’s �i-function by a power function using
nonlinear least squares. Convex (concave) utility corre-
sponds with a power coefficient greater (less) than 1.
We measured �i using nonlinear least squares. We then
used these measures of �i and �i to predict the number
of cycles (using Poisson regressions) and the individual
choices (using random probit models) in the third part.

Poisson regressions are particularly suitable for analyz-
ing count data, as in our case where we count the number
of cycles for each subject (Kleiber and Zeileis 2008). Pois-
son regressions are Fechnerian models where more convex
�i and higher �i should lead to more ABC cycles. Because
there were more subjects who displayed no cycles than
the Poisson distribution permits, we used the zero-inflated
Poisson regression, which is a mixture of a Poisson count
component and an additional point mass at zero.10

We finally analyzed the individual choices. Equation (1)
predicts that the likelihood that a subject chooses A over B,
B over C, and C over A in the third part increases with the
convexity of �i. The same prediction holds for PRAM if �i

increases. We tested these predictions using random-effect
probit analysis, which is also a Fechnerian type of analysis,
where the probability of choosing in line with Equation (1)
or PRAM is a function of the intensity of preference. The
error terms in the probit analyses were subject-dependent to
reflect that some subjects make larger errors than others.11

4.5. Simulation Study

The above analyses assume that the standard sequences and
the zi1 p were measured without error. To account for error
in all three parts, we used a simulation study. We assumed
the subjects to be regret maximizers with ui and Qi power
functions.12 The power coefficients were drawn from beta
distributions with means mu and mQ, standard deviations
sU and sQ, minimum values 0 and maximum values 5.13 We
implemented both a random utility and a tremble model.
In the random utility model, each subject had an individual
distribution of Fechner errors. This distribution was normal
with mean zero and subject-specific standard deviation. The

subject-specific standard deviation was drawn from a uni-
form distribution on [0, sdmax]. In the tremble model, each
subject had an individual tremble pi drawn from a uniform
distribution on [0, pmax].

We started the simulation by selecting a set of values for
mu, mQ, su, sQ, sdmax, pmax, and a specific error model.
We then used exactly the same elicitation method as in the
experiment. From the simulated elements of the standard
sequence, we could estimate utility and compare it to the
true (selected) value. From the simulated values of zi1 p, we
could estimate Qi and compare it to the true value. We
then computed the number of cycles in the third part and
performed random effects probit analyses to test whether
the choices in the third part were significantly predicted by
the convexity of �i, which gave us an impression of the
power of our method and its robustness to errors.

We selected 24 sets of parameter estimates with errors
ranging from small to very large (for details, see the
appendix). For each set of parameters, we simulated 100
experiments with 50 subjects each. Hence, we simulated
120,000 subjects in total. For the mean power utility coef-
ficient, we selected 0.80 and 0.90, corresponding to mild
concavity, which is usually observed in studies using the
trade-off method to measure utility. For the standard devi-
ation of the power coefficient, we selected 0.10 and 0.50.
Most empirical studies found a standard deviation close to
0.10, but we also wanted to explore the impact of using a
larger value. For Qi, we selected power coefficients 1.20
and 2, corresponding to mild and stronger convexity, and
standard deviations of 0.20 and 1.00. We selected larger
standard deviations than for utility because Bleichrodt et al.
(2010) found more volatility for Q than for utility.

5. Results

5.1. Repeated Choices

We repeated 13 choice questions and used them to compute
replication rates, i.e., the rate of identical choices between
the original and the repeated choices. The replication rates
were 79.6% in the first part, 72.7% in the second part, and
73% in the third part. These rates are comparable to the
values observed in previous research (Stott 2006). There
was no difference between the two measurements of xi11

and zi11/4 (paired t-test, p = 0042 for xi11 and p = 0052 for
zi11/4). The absence of a difference between the two mea-
surements of xi11 indicates that the measurements using the
trade-off method were not affected by strategic responding.

5.2. First Part: Measurement of the
Standard Sequence

For two subjects, the repeated measurement of xi11 was
lower than the original measurement by more than three
times the standard deviation (22 instead of 76 for one sub-
ject and 27 instead of 58.5 for the other). Their responses
most likely reflected confusion, and therefore we excluded
them from the remaining analyses.14
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Figure 3. (Color online) Utility based on the mean
data.
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The horizontal axis of Figure 3 shows the mean val-
ues of the elements of the standard sequence. The medians
were similar. The difference between successive elements
increases slightly, but the null hypothesis that it is constant
could only be rejected at the 10% level (repeated measures
ANOVA, p = 0008).

Under regret theory, Tversky’s additive difference model,
and PRAM, the elements of the standard sequence deter-
mine the utility function. Figure 3 shows the utility function
using the mean data. The dotted line indicates linear utility.
Utility was close to linear, which agrees, of course, with
the finding that the differences between successive elements
of the standard sequence were small. We also estimated
utility assuming that it belongs to the power family. The
estimated power coefficient using the pooled data was 0.87
(se = 0004).

At the individual level, utility was also close to linear.
The mean of the individual power coefficients was 0.97,
which did not differ from 1 (t-test, p = 0070). There were
16 subjects whose fitted power coefficient was significantly
less than 1 (at the 5% level), corresponding to concave
utility, and 14 subjects for whom it significantly exceeded
1, corresponding to convex utility (binomial test, p = 0.86).
For the remaining 22 subjects, the estimated utility function
did not differ from linearity.

5.3. Second Part: Measurement of �i and �i

For two subjects, the original measurement of zi11/4 ex-
ceeded the repeated measurement by more than three times
the standard deviation. Their responses most likely reflected
confusion, and therefore we excluded these subjects.

Figure 4 shows that the estimated � function based on
the mean data was convex. The estimated power coefficient
using the pooled data was 1.67 (standard error = 0023),
which differed significantly from 1 (t-test, p < 0001).

Figure 4. (Color online) The function � based on the
mean data.
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Most individual functions �i were also convex. Based on
the area under the individual �i-functions, 35 subjects had
a convex �i, and 15 subjects had a concave �i. The mean
of the individual power coefficients in the estimation of �i

at the subject level was 1.37. The mean of the individual
estimates of �i in the PRAM model was 1.57. Under regret
theory, our findings are similar to the findings of Bleichrodt
et al. (2010).

5.4. Third Part: Triples to Test Intransitivity

Table 3 shows the response patterns for the 14 triples
used to test intransitivity. The two intransitive patterns are
shaded, and the final row shows the total proportion of
cycles for each of the 14 triples. Intransitive cycles were
rare. The proportion of cycles is comparable to Birnbaum
and Schmidt (2008) and Loomes (2010) and lower than in
Loomes et al. (1991) and Starmer and Sugden (1998), who
observed intransitivity rates of approximately 20%. The lat-
ter two studies also found that the cycle ABC, which is
predicted by Equation (1) with convex � and by PRAM,
was more common than the opposite cycle BCA. We did
not observe this asymmetry.

The Qtest analysis indicated that the dearth of intransi-
tive cycles was not due to response errors. We could reject
the null hypothesis that ABC cycles, which are predicted
by Equation (1) with convex �i, were the modal choice
(p < 00001). We could also reject the null hypotheses that
BCA cycles were the modal choice (p < 00001) and that
PRAM was the modal choice (p < 00001).

According to Equation (1), ABC cycles should increase
with the convexity of �i and with �i because they imply that
the strength of preference of A over B, of B over C, and
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Table 3. The proportions of subjects displaying each of the eight possible response patterns in the triples to test
intransitivity.

Triple

Pattern 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%) 11 (%) 12 (%) 13 (%) 14 (%)

ABC 4 4 6 2 4 0 0 6 4 2 6 6 2 10
ABA 26 24 14 10 14 26 22 8 14 20 10 2 6 12
ACC 8 14 12 18 4 6 12 4 36 14 26 30 36 4
ACA 24 30 22 24 8 20 30 8 20 24 30 24 18 6
BBC 10 4 12 12 18 12 4 18 10 12 2 10 6 26
BBA 18 10 18 18 32 14 10 28 6 12 8 14 8 10
BCC 8 8 12 10 8 14 12 20 8 10 4 12 16 30
BCA 2 6 4 6 12 8 10 8 2 6 14 2 8 2
ABC + BCA 6 10 10 8 16 8 10 14 6 8 20 8 10 12

Notes. The light shaded patterns are the intransitive patterns. The pattern ABC is predicted by Equation (1) with � convex and by PRAM. The
final row shows for each triple the total proportion of subjects who cycled.

of C over A increases. We found no effect of the convex-
ity of �i. In the Poisson regressions, the coefficient of the
area measure of convexity on the number of ABC cycles
even had the wrong (negative) sign (t-test, p = 0004). There
was also no evidence that BCA cycles increased with the
concavity of �i (t-test, p = 0079). However, we did find
evidence that the number of ABC cycles increased with the
value of �i, as predicted by PRAM (t-test, p = 0001).

Table 3 presents the results of all subjects, including sub-
jects for whom no intransitivities were predicted, because
�i did not deviate from linearity or �i did not differ from 1.
Tversky (1969) already observed that only a minority of
subjects displayed intransitive choice behavior. Intransitive
cycles remained rare when we restricted attention to the
subjects who were most likely to display intransitive choice
behavior (subjects for whom �i was significantly different
from linearity based on their estimated power coefficients
and subjects for whom �i was significantly larger than 1).
None of these subjects displayed more than three intransi-
tive cycles. However, the probability of ABC cycles now
increased with the convexity of �i (t-test, p = 0005) and the
probability of BCA cycles with the concavity of �i (t-test,
p < 0001), as predicted by Equation (1). As before, and in
agreement with PRAM, the number of intransitive cycles
increased with the value of �i (t-test, p < 0001).

In the random effects probit analyses, the convexity of
�i had no effect on the probability of choosing accord-
ing to the predictions of Equation (1) with convex �. The
probability of choosing according to PRAM also did not
increase with the value of �i. These conclusions remained
true when we restricted attention to those subjects who had
significantly convex �i and significantly positive �i.

5.5. Simulation Study

The appendix shows the results from the simulation analy-
sis. The picture that emerges is as follows. First, regardless
of the error specification (random utility or tremble) and
the parameters chosen, the number of predicted cycles is

much higher than what we observed in Table 3. The pro-
portion of cycles always exceeds 25% and for the more
realistic scenarios is approximately 50%. Second, in nearly
all specifications, the proportion of ABC cycles is much
higher than the proportion of BCA cycles, contrary to what
we observed in Table 3. Third, the power of detecting a sig-
nificant effect of the convexity of � in the random effects
probit analyses is very high. In the random utility model,
it is close to 100%, and in the tremble model, it is typi-
cally above 80%. The simulations showed that a random
utility model reflected the repeated choices and measure-
ments better than a tremble model did (see the appendix).
We conclude that the lack of support for Equation (1) and
PRAM in our experiment is not due to low power.

6. Prospect Theory
Expected utility rules out both interactions between acts
(through transitivity) and interactions within acts (through
Savage’s sure thing principle). A key property of intran-
sitive models is that they allow interactions between acts.
Our data indicated that expected utility did not hold: the
observed convexity of � is inconsistent with expected util-
ity. However, we observed little evidence of intransitive
cycles and hence of interactions between acts. This result
raises the question of whether deviations from expected
utility are better explained through interactions within acts.
In this section, we briefly study this question.

We assume prospect theory, the main descriptive theory
of decision under uncertainty that allows for interactions
within acts (Tversky and Kahneman 1992). In prospect the-
ory, preferences are defined over gains and losses relative
to a reference point. As our experiment used only gains,
we will describe prospect theory for gains, in which case
it coincides with rank-dependent utility (Quiggin 1981,
1982). We assume without loss of generality that all acts
4p11 x13 0 0 0 3 pn1 xn5 are rank-ordered; i.e., x1 ¾ · · · ¾ xn.
Prospect theory evaluates acts 4p11 x13 0 0 0 3 pn1 xn5 as
n
∑

j=1

�ju4xj50 (13)
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Figure 5. (Color online) The probability weighting
function based on the mean data.
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The decision weights �j are defined as w4
∑j

i=1 pi5 −

w4
∑j−1

i=1 pi5 with w a nondecreasing probability weight-
ing function that satisfies w405 = 0 and w415 = 1. Equa-
tion (13) shows that under prospect theory, the evaluation
of an act does not depend on the other acts in the choice
set. Hence, prospect theory excludes between-act interac-
tions. Because the weight given to the utility of an outcome
depends on its rank, prospect theory includes within-act
interactions.

Wakker and Deneffe (1996) showed that the trade-off
method can measure the utility function in rank-dependent
utility. Consequently, the first part of our measurement pro-
cedure measures u in Equation (13), and Figure 3 illus-
trates what the mean utility function looks like. In §5, we
found that if we assume power utility, the pooled estimate
of the power coefficient was equal to 0.87, which is approx-
imately the same as the estimate obtained by Tversky and
Kahneman (1992).

From the indifference 4p1xi1431 − p1x05 ∼ 4p1xi1331 −

p1 zi1 p5, elicited in the second part, we obtain under
prospect theory

wi4p5=
ui4zi1 p5

ui4xi145− ui4xi135+ ui4zi1 p5
0 (14)

The utility of zi1 p was generally unknown but could be
estimated through interpolation from the individual utility
function measured in the first part. This estimation gave
the probability weights for p = 1/4, p = 2/5, p = 3/5,
and p = 3/4. Figure 5 illustrates the probability weight-
ing function based on the mean data. The diagonal shows
expected utility, in which probability weighting is linear.
The elicited probability weighting function was inverse
S-shaped, overweighting small probabilities and under-
weighting larger probabilities, which is consistent with

earlier findings (Abdellaoui 2000, Bleichrodt and Pinto
2000, Gonzalez and Wu 1999). The pooled estimate of the
probability weighting parameter using the family proposed
by Tversky and Kahneman (1992)15 was 0.57, which is
close to the value of 0.61 obtained by Tversky and Kahne-
man (1992). The mean of the individual probability weight-
ing parameters was 0.72 (st. error = 0005).

To assess the predictive power of prospect theory, we
used for each subject the utilities and probability weights
obtained in the first two parts to predict the individual’s
choices in the third part. We estimated the weights of prob-
abilities 1/5, 1/3, 2/3, and 4/5 used in the triples of the third
part by fitting for each subject the one-parameter probabil-
ity weighting function proposed by Tversky and Kahneman
(1992). We could then estimate for each subject the prob-
ability weights based on the subject’s obtained probability
weighting parameter estimate.16

All but five of our subjects had an inverse S-shaped prob-
ability weighting function. Prospect theory with an inverse
S-shaped probability weighting function made a clear pre-
diction in nine of the triples in the third part. We analyzed
these unambiguous triples using Qtest and could reject
the null hypothesis that the choices predicted by prospect
theory were the modal choices (p < 0001). In most triples,
prospect theory predicted the choices well, but in some
it was clearly off. This result may be because the aggre-
gate analysis does not account for strength of preference.
Indeed, the random effects probit analyses showed that the
difference in prospect theory value had a strong and signifi-
cant effect in predicting the choices in the third part (t-test,
p < 0001). By contrast, in §5 we concluded that neither
the convexity of �i nor the PRAM parameter �i predicted
choices.

7. Concluding Remarks
Intransitive choices were thin on the ground. This conclu-
sion is consistent with Birnbaum and Schmidt (2008) and
Regenwetter et al. (2011a) even though we used tests that
were specifically designed to uncover violations of transi-
tivity. The intransitive theories that we tested did not predict
choices. These theories include regret theory and PRAM,
a rich model of intransitive choice that was recently pro-
posed by Loomes (2010) and that extends the similarity
models of Rubinstein (1988), Leland (1994, 1998), and
Mellers and Biagini (1994) by permitting continuous simi-
larity judgments. The lack of support for PRAM is consis-
tent with a recent paper by Guo and Regenwetter (2014).
We explored several strategies for modeling the stochastic
nature of choice, including a simulation exercise, but the
evidence against the intransitive models was robust.

One explanation for the lack of support for the intransi-
tive models might be that we used two-outcome acts in the
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measurement of the intransitive models but three-outcome
acts in the tests of intransitivity. Theoretically this differ-
ence should not matter, but increasing the number of out-
comes complicates the experimental tasks. The more com-
plex a task, the more likely subjects are to resort to simple
heuristics (Payne 1976, Swait and Adamowicz 2001).

Prospect theory explained our data better than the intran-
sitive models, even though the Qtest analysis showed that
its fit was not perfect. Perhaps this less than perfect fit
could be expected given that our study was not specifi-
cally designed to measure prospect theory. The better per-
formance of prospect theory suggests another explanation
for the lack of support for the intransitive models, namely
that they do not describe preferences well. Concepts such
as regret and similarity are intuitive, and evidence from
neuroscience suggests that they play a fundamental role
in regulating choice behavior (Camille et al. 2004). How-
ever, the general intransitive model and PRAM may not
be the appropriate way to model this intuition. In partic-
ular, by assuming separability across events, they rule out
all within-act interactions. Our data suggest that accounting
for the violations of expected utility requires abandoning
event separability. Allowing for between-act interactions
while retaining event separability is not a viable modeling
strategy.

This conclusion does not imply that between-act inter-
actions play no role in decision making under uncertainty.
We found little support for the between-act interactions
modeled by the intransitive models, but there may be other
ways in which between-act interactions affect choices. For
example, they may shape reference points, a key ingredi-
ent of prospect theory. Prospect theory does not predict
how reference points are formed. One possibility is that
they are determined by a comparison between the acts
under consideration. Evidence for such between-act inter-
action was obtained by Bleichrodt et al. (2001), Hershey
and Schoemaker (1985), and van Osch et al. (2006). To
explore this possibility further and to develop formal mod-
els capturing such between-act interactions is an important
topic for future research.
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Endnotes

1. Other studies that make this point include Iverson and
Falmagne (1985), Sopher and Gigliotti (1993), Luce (2000),
Birnbaum and Gutierrez (2007), Birnbaum and Schmidt (2008),
Birnbaum (2010), and Birnbaum and Schmidt (2010). In contrast,
Myung et al. (2005), who reanalyzed Tversky’s (1969) data using
a sophisticated Bayesian approach, concluded that the violations
of transitivity were real. However, the set of models they consid-
ered was restricted, and their main purpose was to show the ability
of the Bayesian approach to select among nonnested models.
2. There are intransitive models that do not belong to these
two classes, e.g., models based on a lexicographic ordering
(Brandstätter et al. 2006, Tversky 1969). These models are not
the topic of our research. Birnbaum (2010) and Regenwetter et al.
(2011b) tested these models and found them to be inconsistent
with their data.
3. González-Vallejo’s (2002) proportional difference (PD) model
is also based on the concept of similarity. It embeds a determinis-
tic similarity core in a stochastic framework. In the online supple-
ment, we show that our data are inconsistent with the PD model.
4. Loomes (2010) used the letter c to denote this function. For
consistency with the rest of the paper, we use the letter u.
5. Strictly speaking, we measured �i4·1 x05. For notational con-
venience, we will write �i.
6. The parameter �i could be measured by adding one question.
We could ask, for instance, for the value of zi that led to indiffer-
ence between (p11 xi143p21 x03p31 x05 and 4p11 xi133p21 zi3p31 x05,
which implies 41/45ui4zi555

�i = 4p2/p15
4p1+p25

�i . The parame-
ter �i can immediately be solved from this equation.
7. The experiment can be found at http://regret.unibocconi.it/.
8. The mean response was E53.50 (median E50), and all sub-
jects reported a value of t exceeding E40, suggesting that they
understood the task.
9. We also analyzed the data under Birnbaum’s true and
error model, which makes different independence assumptions
(Birnbaum 2011, Regenwetter et al. 2011b). The conclusions were
similar.
10. To test for robustness, we also estimated a hurdle model,
which is a two-part model where the first part is a binary model
that answers the question “does a subject display any cycles at
all?” and the second part is a count part that answers the question
“if a subject displays cycles, how many?” The hurdle model led
to the same conclusions.
11. Therefore, the number of parameters was four, leaving 2,096
degrees of freedom. We also estimated a model with both subject-
and choice-dependent errors to reflect that errors were more likely
in some choices than in others (leaving 2,054 degrees of freedom).
This model led to the same conclusions.
12. We could not use �i in the simulations. In part two of the
experiment, we measured �i4·1 x05 and could assess the convexity
of �i in its first variable. However, for the simulation exercise, we
needed to know the entire function �i.
13. Permitting larger maximum values would be even more favor-
able for our approach because it would increase the number of
predicted ABC cycles.
14. Retaining them did not affect the conclusions.
15. w4p5= p�/4p� +41−p5�51/� . For 0027 <� < 1, w is inverse
S-shaped.
16. We also estimated the weights based on linear interpolation.
The results were similar.
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