
A comparison of robust methods for
Pareto tail modeling in the case of
Laeken indicators

Andreas Alfons1, Matthias Templ1,2, Peter Filzmoser1, and Josef Holzer1,3

This is a corrected reprint of a paper published in Combining Soft Computing
and Statistical Methods in Data Analysis, volume 77 of Advances in Intelligent
and Soft Computing.

Abstract The Laeken indicators are a set of indicators for measuring poverty
and social cohesion in Europe. However, some of these indicators are highly
influenced by outliers in the upper tail of the income distribution. This paper
investigates the use of robust Pareto tail modeling to reduce the influence of
outlying observations. In a simulation study, different methods are evaluated
with respect to their effect on the quintile share ratio and the Gini coefficient.

1 Introduction

As a monitoring system for policy analysis purposes, the European Union in-
troduced a set of indicators, called the Laeken indicators, to measure risk-of-
poverty and social cohesion in Europe. The basis for most of these indicators
is the EU-SILC (European Union Statistics on Income and Living Condi-
tions) survey, which is an annual panel survey conducted in EU member
states and other European countries. Most notably for this paper, EU-SILC
data contain information on the income of the sampled households. Each
person of a household is thereby assigned the same equivalized disposable in-
come [9]. The subset of Laeken indicators based on EU-SILC is computed
from this equivalized income, taking into account the sample weights.

In general the upper tail of an income distribution behaves differently than
the rest of the data and may be modeled with a Pareto distribution. Moreover,
EU-SILC data typically contain some extreme outliers that not only have a
strong influence on some of the Laeken indicators, but also on fitting the
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Pareto distribution to the tail. Modeling the tail in a robust manner should
therefore improve the estimates of the affected indicators.

The rest of the paper is organized as follows. Section 2 gives a brief de-
scription of selected Laeken indicators, while Section 3 discusses Pareto tail
modeling. A simulation study is performed in Section 4 and Section 5 con-
cludes.

2 Selected Laeken indicators

This paper investigates the influence of promising robust methods for Pareto
tail modeling on the quintile share ratio and the Gini coefficient. Both indi-
cators are measures of inequality and are highly influenced by outliers in the
upper tail. Strictly following the Eurostat definitions [9], the indicators are
implemented in the R package laeken [2].

For the following definitions, let x := (x1, . . . , xn)′ be the equivalized dis-
posable income with x1 ≤ . . . ≤ xn and let w := (wi, . . . , wn)′ be the corre-
sponding personal sample weights, where n denotes the number of observa-
tions.

2.1 Quintile share ratio

The income quintile share ratio is defined as the ratio of the sum of equival-
ized disposable income received by the 20% of the population with the highest
equivalized disposable income to that received by the 20% of the population
with the lowest equivalized disposable income [9]. Let q0.2 and q0.8 denote
the weighted 20% and 80% quantiles of x with weights w, respectively. With
I≤q0.2 := {i ∈ {1, . . . , n} : xi ≤ q0.2} and I>q0.8 := {i ∈ {1, . . . , n} : xi > q0.8},
the quintile share ratio is estimated by

QSR :=

∑
i∈I>q0.8

wixi∑
i∈I≤q0.2

wixi
. (1)

2.2 Gini coefficient

The Gini coefficient is defined as the relationship of cumulative shares of the
population arranged according to the level of equivalized disposable income,
to the cumulative share of the equivalized total disposable income received
by them [9]. In mathematical terms, the Gini coefficient is estimated by
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Gini := 100

2
∑n
i=1

(
wixi

∑i
j=1 wj

)
−
∑n
i=1 w

2
i xi

(
∑n
i=1 wi)

∑n
i=1 (wixi)

− 1

 . (2)

3 Pareto tail modeling

The Pareto distribution is defined in terms of its cumulative distribution
function

Fθ(x) = 1−
(
x

x0

)−θ
, x ≥ x0, (3)

where x0 > 0 is the scale parameter and θ > 0 is the shape parameter [12].
Furthermore, the density is given by

fθ(x) =
θxθ0
xθ+1

, x ≥ x0. (4)

In Pareto tail modeling, the cumulative distribution function on the whole
range of x is modeled as

F (x) =

{
G(x), if x ≤ x0,
G(x0) + (1−G(x0))Fθ(x), if x > x0,

(5)

where G is an unknown distribution function [8].
Let n be the number of observations and let x = (x1, . . . , xn)′ denote the

observed values with x1 ≤ . . . ≤ xn. In addition, let k be the number of
observations to be used for tail modeling. In this scenario, the threshold x0
is estimated by

x̂0 := xn−k. (6)

On the other hand, if an estimate x̂0 for the scale parameter of the Pareto
distribution has been obtained, k is given by the number of observations
larger than x̂0. Thus estimating x0 and k directly corresponds with each
other. Various methods for the estimation of x0 or k have been proposed
[5, 6, 8, 17]. However, this paper is focused on evaluating robust methods
for estimating the shape parameter θ (with respect to their influence on the
selected Laeken indicators) once the threshold is fixed.

3.1 Hill estimator

The maximum likelihood estimator for the shape parameter of the Pareto
distribution was introduced by [10] and is referred to as the Hill estimator.
It is given by
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θ̂ =
k∑k

i=1 log xn−k+i − k log xn−k
. (7)

Note that the Hill estimator is non-robust, therefore it is included for bench-
marking purposes.

3.2 Weighted maximum likelihood (WML) estimator

The weighted maximum likelihood (WML) estimator [7, 8] falls into the class

of M-estimators and is given by the solution θ̂ of

k∑
i=1

Ψ(xn−k+i, θ) = 0 (8)

with

Ψ(x, θ) := w(x, θ)
∂

∂θ
log f(x, θ) = w(x, θ)

(
1

θ
− log

x

x0

)
, (9)

where w(x, θ) is a weight function with values in [0, 1]. In this paper, a Huber
type weight function is used, as proposed in [8]. Let the logarithms of the
relative excesses be denoted by

yi := log

(
xn−k+i
xn−k

)
, i = 1, . . . , k. (10)

In the Pareto model, these can be predicted by

ŷi := −1

θ
log

(
k + 1− i
k + 1

)
, i = 1, . . . , k. (11)

The variance of yi is given by

σ 2
i :=

i∑
j=1

1

θ2(k − i+ j)2
, i = 1, . . . , k. (12)

Using the standardized residuals

ri :=
yi − ŷi
σi

, (13)

the Huber type weight function with tuning constant c is defined as

w(xn−k+i, θ) :=

{
1, if |ri| ≤ c,
c
|ri| , if |ri| > c.

(14)
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For this choice of weight function, the bias of θ̂ is approximated by

B̂(θ̂) = −
∑k
i=1

(
wi

∂
∂θ log fi

)
|θ̂
(
Fθ̂(xn−k+i)− Fθ̂(xn−k+i−1)

)∑k
i=1

(
∂
∂θwi

∂
∂θ log fi + wi

∂2

∂θ2 log fi
)
|θ̂
(
Fθ̂(xn−k+i)− Fθ̂(xn−k+i−1)

) ,
(15)

where wi := w(xn−k+i, θ) and fi := f(xn−k+i, θ). This term is used to obtain
a bias-corrected estimator

θ̃ := θ̂ − B̂(θ̂). (16)

For details and proofs of the above statements, the reader is referred to [7, 8].

3.3 Partial density component (PDC) estimator

For the partial density component (PDC) estimator [16], the Pareto distri-
bution is modeled in terms of the relative excesses

yi :=
xn−k+i
xn−k

, i = 1, . . . , k. (17)

The density function of the Pareto distribution for the relative excesses is
approximated by

fθ(y) = θy−(1+θ). (18)

The PDC estimator is then given by

θ̂ = arg min
θ

[
w2

∫
f2θ (y)dy − 2w

k

k∑
i=1

fθ(yi)

]
, (19)

i.e., by minimizing the integrated squared error criterion [15] using an incom-
plete density mixture model wfθ. The parameter w can be interpreted as a
measure of the uncontaminated part of the sample and is estimated by

ŵ =
1
k

∑k
i=1 fθ̂(yi)∫
f2
θ̂

(y)dy
. (20)

See [16] and references therein for more information on the PDC estimator.

4 Simulation study

Various robust methods for the estimation of poverty and inequality indi-
cators, mostly non-parametric, have been investigated in [17], but neither
the WML nor the PDC estimator for Pareto tail modeling are considered
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there. Preliminary results with income generated from theoretical distribu-
tions [11] are an indication that both estimators are promising in the context
of Laeken indicators. This is further investigated in this section. However,
variance estimation is not yet considered in this paper.

The simulations are carried out in R [14] using the package simFrame [1, 4],
which is a general framework for statistical simulation studies. A synthetic
data set consisting of 35 041 households and 81 814 individuals is used as
population data in the simulation study. This data set has been generated
with the R package simPopulation [3, 13] based on Austrian EU-SILC survey
data from 2006 and is about 1% of the size of the real Austrian population. A
thorough investigation in a close-to-reality environment using real-life sized
synthetic Austrian population data is future work.

From the synthetic data, 500 samples are drawn using simple random
sampling. Each sample consists of 6 000 households, which is roughly the
sample size used in the real-life survey. With these samples, two scenarios are
investigated. In the first scenario, no contamination is added. In the second,
the equivalized disposable income of 0.25% of the households is contaminated.
The contamination is thereby drawn from a normal distribution with mean
µ = 1 000 000 and standard deviation σ = 10 000. Note that the cluster effect
is considered, i.e., all persons in a contaminated household receive the same
income. The threshold for Pareto tail modeling is in both cases set to k = 275
based on graphical exploration of the original EU-SILC sample with a Pareto
quantile plot [5]. Furthermore, the tuning constant c = 2.5 is used for the
bias-corrected WML estimator due to favorable robustness properties [11].
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Fig. 1 Simulation results for the quintile share ratio (left) and the Gini coefficient (right)

without contamination.

Figure 1 shows the results of the simulations without contamination for the
quintile share ratio (left) and the Gini coefficient (right). The three methods
for tail modeling as well as the standard estimation method without tail
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modeling behave very similarly and are very close to the true values, which
are represented by the grey lines. This is also an indication that the choice
of k is suitable.
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Fig. 2 Simulation results for the quintile share ratio (left) and the Gini coefficient (right)

with 0.25% contamination.

Figure 2 shows the results of the simulations with 0.25% contamination
for the quintile share ratio (left) and the Gini coefficient (right). Even such a
small amount of contamination completely corrupts the standard estimation
of these inequality indicators. Fitting the Pareto distribution with the Hill
estimator is still highly influenced by the outliers. The best results are ob-
tained with the PDC estimator, while the WML estimator shows a slightly
larger bias.

5 Conclusions and outlook

The quintile share ratio and the Gini coefficient, which are inequality indica-
tors belonging to the set of Laeken indicators, are highly influenced by out-
liers. A simulation study for the case of simple random sampling showed that
robust Pareto tail modeling can be used to reduce the influence of the out-
lying observations. The partial density component (PDC) estimator thereby
performed best.

The simulation study in this paper is limited to simple random sampling
because the estimators for Pareto tail modeling do not account for sample
weights. Future work is to modify the estimators such that sample weights
are taken into account, to investigate variance estimation, and to perform
simulations using real-life sized synthetic population data.
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