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to obtain responsible factors describing quality of life in communities.
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1 Introduction

The research project ErfolgsVision (English: vision of success) is a joint co-
operation of the Austrian institutions SPES Academy (a regional developer),
STUDIA-Schlierbach (an applied social researcher) and the Department of
Statistics and Probability Theory at Vienna University of Technology. For
this project, data from screening processes carried out by SPES in 60 commu-
nities in Austria and Germany during the period of 2000 to 2006 were used.
In total, 18 748 questionnaires were collected, on average 312 per municipality.
The survey was subject to individual adaptations towards the needs of the
municipalities. It usually comprised about 250 questions, most of them multi-
ple choice. In this project, we were interested in comparing the communities,
therefore indicators referring to the questions were computed jointly from the
questionnaires of each community. These data were merged with statistics on
demography and economy. After removing observations with more than 50%
and variables with more than 20% of missing values, a data matrix with 43
(out of 60) observations and 153 (out of 250) variables resulted. Some of the
observations still included missing values (in one case for 20% of the variables),
thus kNN imputation (Troyanskaya et al 2001) was used to obtain a complete
data matrix.

Although the goal of the project was much broader, this paper is focused
on finding the factors controlling quality of life. Since an easy interpretation of
the results was a major objective, the number of explanatory variables should
be limited to about 5 to at most 10. Moreover, the analysis needed to be robust
against outliers and deviating data points because of possible inhomogeneities
within the data set.

Various methods for model selection have been proposed to date. Here
we are interested in robust approaches, as they are less sensitive to outliers in
the data. Such methods have gained increasing attention in the literature (e.g.,
Ronchetti and Staudte 1994; Ronchetti et al 1997; Wisnowski et al 2003; Müller
and Welsh 2005; Khan et al 2007a,b; McCann and Welsch 2007; Salibian-
Barrera and Van Aelst 2008; Choi and Kiefer 2010; Riani and Atkinson 2010;
Van Aelst et al 2010). However, robust variable selection is especially diffi-
cult if the number of observations is smaller than the number of variables.
In that case it is no longer possible to directly apply robust regression meth-
ods (Maronna et al 2006) in order to select the most significant variables.
On the other hand, various techniques for variable selection in high dimen-
sions have been introduced, which are based on the non-robust least squares
criterion (see, e.g., Hastie et al 2009; Varmuza and Filzmoser 2009). An ex-
ample is least angle regression (LARS; Efron et al 2004), which selects the
regressor variables in the order of their importance for predicting the response
variable. LARS has been robustified in Khan et al (2007b) by two different ap-
proaches: the plug-in method and the cleaning method. In the plug-in method,
the non-robust estimators mean, variance and correlation in classical LARS
are replaced by robust counterparts. The idea of the cleaning method, on the
other hand, is to shrink outliers and to apply classical LARS to the cleaned
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data. Both methods use the so-called winsorization technique to estimate the
correlations and shrink the outliers, respectively. Thus the influence of po-
tential outliers on computing the sequence of predictors is reduced. Since the
plug-in approach is computationally faster and more widely applicable, it is
the basis of our algorithm for robust variable selection. In the following, the
plug-in method will be referred to as RLARS. Khan et al (2007b) illustrated
that the sequence of predictors returned by RLARS can be stabilized with the
help of the bootstrap. The resulting procedure is called bootstrapped RLARS,
for short B-RLARS.

A reduced set of the B-RLARS sequence of candidate predictors is then
used for building a more refined regression model. For this purpose we sug-
gest to use MM-regression (Yohai 1987; Maronna et al 2006). MM-estimators
have many desirable properties. Most importantly, they combine a maximum
breakdown point of 0.5 with high efficiency. Salibian-Barrera and Zamar (2002)
further studied the distribution of MM-estimates using a robust bootstrap
method. We apply MM-regression to filter out the non-significant variables
at a certain significance level. Since in general the resulting number of the
resulting variables is still too high for a reasonable interpretation, all possible
subsets of size k are examined (see, e.g., Furnival and Wilson 1974; Miller 2002;
Gatu and Kontoghiorghes 2006), which is sometimes referred to as k-subset
regression. In our case, a robustified version of k-subset regression is applied
by using the weights obtained from MM-regression. Thus strong dependen-
cies among the regressor variables are eliminated and the smaller models are
highly interpretable, which is required in the context of social sciences. This
approach will therefore be called context-sensitive and can be considered a
trade-off between quality of the model and interpretability.

The rest of this paper is organized as follows. In Section 2, we will describe
the complete algorithm in more detail. Section 3 outlines how the procedure
can be applied to obtain a small set of explanatory variables determining
quality of life, and a simulation study is performed in Section 4. The final
Section 5 concludes.

2 Context-sensitive model selection

Let y = (y1, . . . , yn)t be the response variable and x1 = (x11, . . . , xn1)t, . . . ,
xp = (x1p, . . . , xnp)t the candidate predictors. Thus n denotes the number
of observations and p the number of candidate predictors. Furthermore, let
J = {1, . . . , p} be the set of indices referring to the candidate predictor vari-
ables. Our method aims to find a model for the response variable y that con-
tains a very low number of predictors, at most k � p, in order to achieve high
interpretability. Since the predictor variables should contain potentially new
information, an additional requirement is that strong dependencies among the
regressor variables should be avoided. These goals of easy-to-interpret mod-
els and low or only moderate dependencies between the predictors reflect the
context-sensitivity of our method.
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2.1 Description of the algorithm

For a start, the response variable y and the candidate predictors x1, . . . ,xp

are robustly centered and scaled using median and MAD, according to

y∗i =
yi −med(y1, . . . , yn)

MAD(y1, . . . , yn)
, i = 1, . . . , n (1)

x∗ij =
xij −med(x1j , . . . , xnj)

MAD(x1j , . . . , xnj)
, i = 1, . . . , n, j = 1, . . . , p. (2)

Hence all predictor variables x∗j = (x∗1j , . . . , x
∗
nj)

t, j = 1, . . . , p, are on an equal
scale. Our algorithm then proceeds in three steps. The first step seeks a drastic
reduction of the number of candidate predictors such that the following steps
become computationally feasible. For this purpose, B-RLARS (Khan et al
2007b) is applied to y∗ = (y∗1 , . . . , y

∗
n)t and x∗1, . . . ,x

∗
p to find a sequence

(x∗j )j∈J1
, J1 ⊂ J , of candidate predictors for y∗ with k < |J1| � p. Clearly, J1

contains the indices of the |J1| most important predictor variables returned by
B-LARS. In order to allow for an interpretation of the final model, |J1| should
be in the range of 10 to 20.

In the second step, the covariates x∗j , j ∈ J1, are entered as predictors for y∗

in MM-regression (Yohai 1987; Maronna et al 2006). We apply MM-regression
to filter out the non-significant variables. Let J2 ⊆ J1 be the set of indices
of the significant variables at a given significance level α. The choice of α
should not be too strict (we used α = 0.3) in order not to exclude important
variables. Note that this test is robust because it is based on robust estimates
of the standard errors (Croux et al 2008). The second step thus concludes
with fitting another MM-regression model to y∗, using only the significant
predictors x∗j , j ∈ J2. Thus we consider the regression model

y∗i = (x∗i )tβ + ei, i = 1, ..., n, (3)

where x∗i denotes the i-th observation of the predictor variables x∗j , j ∈ J2,
extended by 1 in the first component to account for the intercept. Further-
more, β is the vector of length |J2|+ 1 of the unknown regression coefficients,
and ei denotes the error terms, which are assumed to be i.i.d. random vari-
ables. MM-regression minimizes a function of the scaled residuals. Denoting
the residuals by ri(β) = y∗i − (x∗i )tβ, MM-regression solves the problem

β̂ = argmin
β

n∑
i=1

ρ

(
ri (β)

σ̂

)
, (4)

where ρ (r) is a bounded function, and σ̂ is a robust scale estimator of the
residuals, derived from a robust (but inefficient) S-estimator (for more details,
see Maronna et al 2006). Differentiating (4) with respect to β yields

n∑
i=1

ψ

(
ri (β)

σ̂

)
x∗i = 0 (5)
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where ψ = ρ′. Using the notation

wi =
ψ(ri(β)/σ̂)

ri(β)/σ̂
, i = 1, ..., n, (6)

allows (5) to be rewritten as

n∑
i=1

wiri (β)x∗i = 0. (7)

Equation (7) is a weighted version of the normal equations. Hence the esti-
mator can be considered a weighted least squares estimator with weights wi

from (6), which depend on the data. For an estimator to be robust, observa-
tions with large residuals should receive small weights. Thus the function ρ
was chosen as the bisquare function (see Maronna et al 2006), which ensures
that ψ(r) is decreasing towards zero for increasing |r|. The resulting weights

ŵi, i = 1, . . . , n, for the MM-regression estimator β̂ will be used in the third
step of the algorithm.

The third step is based on k-subset regression (see, e.g., Furnival and Wil-
son 1974; Miller 2002; Gatu and Kontoghiorghes 2006). Thus we want to find
the best subset of maximum size k of the predictor variables that optimizes
a criterion such as Mallows’ Cp (Mallows 1973) or the BIC (Schwarz 1978).
Although k-subset regression is not feasible even for moderate numbers of
predictors, our method does not suffer from this problem since the number of
predictors has been drastically reduced with B-RLARS in the first step and
MM-regression in the second step. Another problem with k-subset regression
is that it is not robust. However, a simple robustification is to use the weights
computed in the second step during MM-regression, i.e., to enter the procedure
with the response variable ỹ = (ŵ1y

∗
1 , . . . , ŵny

∗
n)t and the candidate predictors

x̃j = (ŵ1x
∗
1j , . . . , ŵnx

∗
nj)

t, j ∈ J2. Since the data are robustly standardized,
multiplying the observations with the weights results in shrinking the outliers
towards the main body of the data. This robustified version of k-subset re-
gression yields the optimal subset {x∗j : j ∈ J3} with J3 ⊆ J2, |J3| ≤ k, of the
set of candidate predictors {x∗j : j ∈ J2}.

Instead of using the weights computed in the second step, other robust
versions of k-subset regression might be considered. One example is fitting
MM-regression models to all possible subsets of maximum size k and using
m-fold cross-validation to estimate a robust prediction loss function, e.g., the
root trimmed mean squared error of prediction (RTMSEP), for choosing the
optimal submodel. In m-fold cross validation, the data are split randomly in
m blocks of approximately equal size. Each block is left out once for fitting the
model, and the left-out block is used as test data. Thus a prediction is obtained
for each observation. Let b(i) be the block to which observation i = 1, . . . , n

belongs, then the prediction for yi is denoted by ŷ
−b(i)
i . For a trimming factor
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0 ≤ γ < 0.5, the RTMSEP is defined as

RTMSEP =

√√√√ 1

N

N∑
i=1

r2(i) (8)

where ri = yi − ŷ−b(i)i , i = 1, . . . , n, are the residuals using the predictions
from cross-validation, r2(1) ≤ . . . ≤ r2(n) are the sorted squared residuals, and

N = n − bnγc (here bac denotes the integer part of a). Whereas such proce-
dures are certainly more robust than the simple weighted approach, they are
computationally expensive even for small problems. On the other hand, using
the weights computed in the second step of the procedure results in a cleaned
data set, thus reducing the influence of atypical observations in both fitting
the submodels and computing classical criteria for deciding on the best sub-
model. Even though the weights might not be optimal for each submodel, this
approach is a reasonable compromise between computational complexity and
robustness. It is fast for small problems and worked very well in our studies
(see the example in Section 3).

2.2 Summary of the algorithm

The response variable and all candidate predictor variables are robustly cen-
tered and scaled using median and MAD. The resulting response variable
is denoted by y∗ = (y∗1 , . . . , y

∗
n)t, and the resulting candidate predictors by

x∗1 = (x∗11, . . . , x
∗
n1)t, . . . ,x∗p = (x∗1p, . . . , x

∗
np)t. Let J = {1, . . . , p} be the set of

indices for the candidate predictors, and k � p the desired maximum number
of predictors for the model. Then the algorithm can be summarized as follows:

1. Perform B-RLARS on y∗ and x∗1, . . . ,x
∗
p to compute a sequence (x∗j )j∈J1 ,

J1 ⊂ J , of candidate predictors with k < |J1| � p.
2. Use x∗j , j ∈ J1, as predictors for y∗ in MM-regression. Let J2 ⊆ J1 be the

set of indices of the significant variables at a given significance level α. Fit
another MM-regression model to y∗ with only the significant predictors x∗j ,
j ∈ J2, and let ŵ1, . . . , ŵn denote the resulting weights for the observations.

3. Apply k-subset regression with the response variable ỹ = (ŵ1y
∗
1 , . . . , ŵny

∗
n)t

and the candidate predictors x̃j = (ŵ1x
∗
1j , . . . , ŵnx

∗
nj)

t, j ∈ J2. This robus-
tified version of k-subset regression yields the optimal subset {x∗j : j ∈ J3}
with J3 ⊆ J2, |J3| ≤ k, of the set of candidate predictors {x∗j : j ∈ J2}.

A more visual summary of the algorithm is given by the following diagram:

B-RLARS MM-regression k-subset regression
J −→ J1 −→ J2 −→ J3
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2.3 Diagnostics

The elimination of high dependencies among the predictor variables is a major
demand for our context-sensitive method. In the social sciences, such a model
has potential for an interesting interpretation. Correlated predictor variables,
on the other hand, are likely to describe more or less the same factors, which
are just expressed with different variables in the data set. The resulting model
will not be as interesting with respect to interpretation, even if it has a high
prediction ability of the response variable. Hence a graphical tool to check
whether the procedure succeeded in fulfilling this demand would be useful. A
dendrogram (e.g., Everitt and Dunn 2001) based on robust correlations seems
suitable for this purpose.

Since the number of candidate predictors is in general too large for an
informative plot, only the variables xj , j ∈ J1, from the initial B-RLARS se-
quence will be used. The correlation matrix of this reduced set of candidate
predictors can be estimated with a high-breakdown estimator such as the min-
imum covariance determinant (MCD; Rousseeuw and Van Driessen 1999) or
the orthogonalized Gnanadesikan-Kettenring estimator (OGK; Maronna and
Zamar 2002). Note that the correlations used here do not need not come from
an affine equivariant or orthogonal equivariant method, the Spearmann or
Kendall correlation could also be used (for their robustness properties, see
Croux and Dehon 2010). Let R = (rij)i,j∈J1 denote such a robust estimate of
the correlation matrix. Then the dissimilarity matrix D = (dij)i,j∈J1 given by

dij = 1− |rij |, i, j ∈ J1, (9)

is used for clustering the variables. Complete linkage clustering (e.g., Everitt
and Dunn 2001) is well suited for our purposes, as the dissimilarity measure is
based on robust correlations. In this method, the dissimilarity of two clusters
A and B is defined as

d(A,B) = max
xi∈A,xj∈B

dij . (10)

Using (9), this can be written as

d(A,B) = 1− min
xi∈A,xj∈B

|rij |. (11)

In each step, the two clusters with minimum dissimilarity are merged. Thus
complete linkage clustering in our case yields that variables with low corre-
lations will not belong to the same cluster if an appropriate cut-off point is
chosen. Hence the resulting dendrogram is a convenient way of exploring the
robust correlation structures among the candidate predictor variables. If the
selected variables belong to different clusters, then the procedure performed
well in the context-sensitive sense. Such a dendrogram may also reveal po-
tential problems due to strong correlations among all predictor variables. In
this case, it would probably be difficult to decide on which variables should be
eliminated for a highly interpretable model.
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Table 1 Explanation of important variables.

Variable Explanation

qualityLife quality of life
agriculture state of local agriculture
beauty beauty of the community
contrFarmers contribution of local farmers to quality of life
futureComm future development of the community
impOrganic importance of organic products
impTrad importance of traditional festivities
interesting interestingness of the community
medCare state of medical care
merchAssort assortment of local merchants
merchComm contribution of local merchants to the development of the community
parish state of local parish
percAdolesc percentage of adolescents
publicServ state of public services
eduProTraining educational and professional training opportunities
view state of the community’s view

2.4 Implementation

An implementation of our algorithm in the statistical environment R (R De-
velopment Core Team 2010) and detailed documentation can be downloaded
from http://www.statistik.tuwien.ac.at/public/filz/programs.html.
The required R code for B-RLARS by Khan et al (2007b) can be obtained from
http://users.ugent.be/~svaelst/software/RLARS.html. In addition, the
R packages robustbase (Rousseeuw et al 2009) and leaps (Lumley and Miller
2009), which are available on CRAN (the Comprehensive R Archive Network,
http://cran.r-project.org), need to be installed.

3 Example: driving factors behind quality of life

In this section, we will attempt to find the driving factors behind quality of life
in communities, using the data collected by SPES (see Section 1 for a general
description of the data). Table 1 contains explanations for the most important
variables. In order to ensure an easy-to-interpret model, the response variable
qualityLife should be explained by at most 10 predictors. Note that some
variables, which are too discontinuous or clearly redundant in the context
of quality of life, are removed from the data set, resulting in 138 remaining
candidate predictors. Hence all variables are continuous, which is important
for applying the developed robust method.

Furthermore, we will compare our robust context-sensitive method, in the
following referred to as RCS, with B-RLARS.
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3.1 Results

RCS is carried out with parameter settings as described in the following. As
mentioned above, the maximum number of variables in the final model is set
to k = 10. In the initial B-RLARS step, 15 variables are sequenced with 50
bootstrap repetitions. These candidate predictors are then filtered at signifi-
cance level α = 0.3 in MM-regression. This unusually high significance level
will prevent the exclusion of potentially important variables. For deciding on
the optimal submodel in the robustified version of k-subset regression, the
BIC is used as criterion. With these parameters, RCS returns the following
six predictors: agriculture, medCare, merchAssort, eduProTraining, beauty and
parish (see Table 1).

In addition to the simple weighted k-subset regression in the third step
of RCS, we also apply a more sophisticated robust version for comparison.
In this version, we fit MM-regression models to the subsets and use fivefold
cross-validation to estimate the root trimmed mean squared error of predic-
tion (RTMSEP) with 20% trimming, see (8). Fivefold cross-validation seems
to be a reasonable choice given the number of observations in the data set.
Furthermore, the choice of the trimming proportion is based on the weights re-
turned by the MM-regression in the second step, which indicate some outliers.
With a lower value, these outliers may still influence the RTMSEP, whereas a
higher value may result in some bias. The submodel with the lowest RTMSEP
is then chosen as the optimal submodel. While this procedure yields the same
six variables as the simple weighted approach, it is computationally much more
expensive.

In order to compare RCS with B-RLARS, we start with the B-RLARS
sequence of length 15 that we computed in the first step of RCS. Then we
proceed as in the examples in Section 6 of Khan et al (2007b) to obtain the
final B-RLARS model. There it is suggested to start with the first variable and
to increase the number of variables along the sequence, while fitting a robust
regression model in each step. For each model, the robust R2 measure

R2
rob = 1−

(
med(|y1 − ŷ1|, . . . , |yn − ŷn|)

MAD(y1, . . . , yn)

)2

, (12)

is computed, where yi, i = 1, . . . , n, are the observed values of the response
variable and ŷi, i = 1, . . . , n, are the fitted values (see Rousseeuw and Leroy
1987). Finally, these robust R2 values are plotted against the model size to
obtain a learning curve (c.f. Croux et al 2003). Note that the robust R2

is not always monotonically increasing with the number of variables since
algorithms for robust regression yield only approximate solutions. Keeping
in mind that the number of predictors should be at most 10, the learning
curve in Figure 1 (left) suggests using the first 8 variables of the sequence:
contrFarmers, agriculture, medCare, merchComm, impOrganic, merchAssort,
percAdolesc and interesting (see Table 1). These variables are further exam-
ined by fitting MM-regression models to all possible subsets. Deciding on the
best subset is done by minimizing the RTMSEP with 20% trimming, which is
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Table 2 MM-regression results for the RCS model for quality of life.

Estimate Standard error t-Value p-Value

(Intercept) -2.302 11.227 -0.205 0.839
agriculture 0.251 0.053 4.713 3.6 · 10−5

medCare 0.076 0.023 3.228 0.003
merchAssort 0.177 0.064 2.751 0.009
eduProTraining 0.117 0.026 4.450 8.0 · 10−5

beauty 0.292 0.113 2.588 0.014
parish 0.216 0.035 6.226 3.5 · 10−7

Robust residual standard error: 1.705

Table 3 MM-regression results for the B-RLARS model for quality of life.

Estimate Standard error t-Value p-Value

(Intercept) 8.795 7.079 1.242 0.221
agriculture 0.337 0.064 5.278 5.2 · 10−6

merchAssort 0.277 0.065 4.297 1.1 ·10−4

interesting 0.409 0.082 5.009 1.2 · 10−5

Robust residual standard error: 2.419

estimated using fivefold cross-validation. The final model resulting from this
procedure contains the predictors agriculture, merchAssort and interesting.

Tables 2 and 3 show the results of MM-regression with the predictor vari-
ables selected by RCS and B-RLARS, respectively. In both models, the in-
cluded variables are highly significant. Containing only three predictor vari-
ables, the B-RLARS model is on the one hand somewhat simpler than the RCS
model, which consists of six predictors. Two of the three variables selected by
B-RLARS are also selected by RCS (agriculture and merchAssort). On the
other hand, the robust residual standard error indicates that the B-RLARS
model might be too simple. The RCS model is a better fit due to the much
lower robust residual standard error.

However, in order to decide on which model is preferable, it is necessary to
estimate the prediction quality of the models. For this purpose, repeated five-
fold cross-validation with 1,000 repetitions is applied. In each repetition, the
RTMSEP with 20% trimming is estimated. Figure 1 (right) displays the result-
ing density curves for the RCS model, the final B-RLARS model (B-RLARS-3)
and the B-RLARS model with the first 8 variables as suggested by the learn-
ing curve (B-RLARS-8). It is clearly visible from this plot that the average
RTMSEP is significantly smaller for RCS than for the other two models.
Even though the variance of the RTMSEP is slightly larger for RCS than
for B-RLARS-3, it is comparable for the two methods. Thus the RCS model
performs much better than the two B-RLARS models, while the B-RLARS-8
model clearly leads to the worst prediction performance.
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Fig. 1 Learning curve for the B-RLARS sequence (left). Densities of the RTMSEP for the
RCS model, the final B-RLARS model (B-RLARS-3) and the B-RLARS model with the
first 8 variables as suggested by the learning curve (B-RLARS-8), estimated with repeated
fivefold cross-validation (right).

One of the main requirements concerning context-sensitivity was that the
resulting model should be simple. Nevertheless, while succeeding in finding a
few important predictor variables, the B-RLARS model turns out to be too
simple. By only moving along the computed sequence of candidate predic-
tors for finding the optimal size of the model, variables such as medCare and
eduProTraining were completely neglected, even though they are clearly very
important in the context of quality of life. Since RCS manages to include these
variables in the selected model, the key step for context-sensitivity in the RCS
procedure may be selecting the variables of the initial B-RLARS sequence at
a certain significance level in MM-regression.

Another main requirement was that the dependencies among the selected
variables should be rather low. Therefore, a dendrogram is constructed accord-
ing to Section 2.3 and shown in Figure 2. It includes the 15 most important
candidate predictors for quality of life, which were sequenced with B-RLARS
in the first step of our context-sensitive procedure. The robust correlations
for the dendrogram were computed with the reweighted MCD. The trimming
parameter for the size of the subsets was thereby set to 75%. Furthermore,
the finite sample correction factor and the asymptotic consistency factor were
used. The dendrogram shows that RCS was able to fulfill this demand of low
variable dependencies. In addition, every group in the dendrogram is repre-
sented in the RCS model, but not in the B-RLARS model.

The results seem to be significant in terms of theoretical concepts for qual-
ity of life assessments. Our selection procedure definitely moves beyond pro-
ducing inconsistent lists of indicators, it creates a set of meaningful empirical
measures. In quality of life research (e.g., Diener et al 1999), individualistic
and subjective indicators prevail, but recent concepts combine them with fea-
tures of the external world. The model of Renwick et al (1994), followed by
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Fig. 2 Dendrogram (based on robust correlations) of the initial B-RLARS sequence of
candidate predictors for quality of life.

Tichbon and Newton (2002), allows subjective states (being—e.g., health, nu-
trition, beliefs, values), as well as objective states (belonging—e.g., services,
activities, leisure) and development (becoming—e.g., acquisition of skills and
knowledge). Meaningful variables of all three types are included in the empir-
ical results presented in this article (with some of the variables loading on dif-
ferent types): medCare and merchAssort are being-indicators, agriculture and
beauty are belonging-indicators, while parish, interesting and eduProTraining
signify development (becoming). The studies of this project are insofar unique,
as they combine internal and external world features on a solid data base with
appropriate analysis techniques. We recommend to incorporate the results into
the design of agricultural policies. Municipalities often underestimate the role
of the “lagging-behind” sector agriculture, whereas our analysis shows that
the state of local agriculture constitutes a significant share of quality of life.
On a world-wide level, producing quality of life as an external effect within the
proximity may cause agriculture to be be respected and handled differently
from a mere producer of tradable commodities (Baaske et al 2009).

3.2 CPU times

The computation times presented in this section are average times over 50 runs,
carried out on a machine with an Intel R© CoreTM2 Quad 2.66GHz processor
and 8GB main memory. Keep in mind that the computations were carried out
with R (and thus only one of the four available processors was effectively used),
and that the data set consists of 43 observations and 138 candidate predictor
variables. With the parameter settings as described in the beginning of Sec-
tion 3.1, RCS completed after 20.61 seconds. The running time was thereby
dominated by computing the initial B-RLARS sequence, which took 20.54 sec-
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onds. This example indicates that RCS is still feasible whenever computing
the initial B-RLARS sequence is feasible.

For finding the final B-RLARS model, the learning curve had to be in-
spected graphically to find the optimal number of predictors. Afterwards, all
subsets of the reduced sequence were examined using MM-regression and five-
fold cross-validation, which was very time-consuming for such a small problem.
Since RCS uses the simple weighted version of robust k-subset regression and
does not require manual interaction, obtaining the RCS model was much faster
than obtaining the final B-RLARS model.

4 Simulations

For further investigation of the proposed RCS procedure, simulations are car-
ried out using a simulation setting similar to that from Khan et al (2007b).
With k latent independent standard normal variables l1, . . . , lk and an inde-
pendent standard normal variable e, a linear model is constructed as

y := l1 + . . .+ lk + σe, (13)

where σ is chosen so that the signal-to-noise ratio is 5, i.e.,√
var(l1 + . . .+ lk)/var(σe) =

√
k/σ = 5. (14)

Using independent standard normal variables e1, . . . , ep, a set of p candidate
predictors is then constructed as

x1 := l1 + τe1,
x2 := l1 + τe2,
x3 := l1 + τe3,

...
x3k−2 := lk + τe3k−2,
x3k−1 := lk + τe3k−1,
x3k := lk + τe3k,

x3k+1 := l1 + δe3k+1,
x3k+2 := l1 + δe3k+2,

...
x5k−1 := lk + δe5k−1,
x5k := lk + δe5k,

xi := ei, i = 5k + 1, . . . , p,

(15)

where τ = 0.2 and δ = 5 so that x1, . . . , x3k form k groups of low-noise
perturbations of the latent variables, x3k+1, . . . , x5k are noise covariates that
are correlated with the latent variables, and x5k+1, . . . , xp are independent
noise covariates.
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Regarding contamination, the following scenarios are investigated (similar
to a subset of the scenarios investigated in Khan et al 2007b), where ε denotes
the fraction of outliers in the data:

1. No contamination.
2. Contamination in y given by e ∼ (1− ε)N(0, 1) + εN(0, 1)/U(0, 1).
3. Same as 2., but contaminated observations contain outliers in x1, . . . , xp

coming from N(5, 1).

Note that in the last scenario, the contamination is not more extreme because
the outliers in the data for which the proposed method has been designed (see
Section 1) are moderate as well.

In the simulation experiments in Khan et al (2007b), B-RLARS is com-
pared to other methods using recall curves, i.e., the average numbers of tar-
get variables included in the first m sequenced variables are plotted, with m
varying within a certain range. However, our procedure does not produce a
sequence of predictor variables, instead it is designed to obtain a final model
from an initial sequence of candidate predictors. Hence a comparison with
B-RLARS using recall curves is not meaningful.

Moreover, one requirement for our procedure is that strong correlations
between variables should be avoided. For each latent variable, a group of
low-noise perturbations is thus defined in (15). Variables in the same group
are highly correlated, while the correlations between variables from different
groups are low. The procedure is successful in the context-sensitive sense if the
final model contains exactly one predictor variable from each of these groups.
Nevertheless, the success of the procedure of course also depends on the initial
B-RLARS sequence. If no variables of one group exist in the initial sequence,
the final model cannot contain a variable of this group either.

In the simulations, k = 5 latent variables are used to construct the linear
model for the response as in (13) and p = 100 candidate predictors as in (15).
Concerning the number of observations, two situations are investigated: n = 50
(n < p, high-dimensional data) and n = 150 (n > p). In both cases, the
contamination level is set to ε = 0.1. The number of predictors in the final RCS
model is limited to the number of latent variables k = 5. For the remaining
parameters of RCS, the same settings as in the example from Section 3 are
used, i.e., 15 variables are sequenced in the initial B-RLARS step with 50
bootstrap repetitions, the significance level for MM-regression in the second
step is set to α = 0.3, and the BIC used as criterion for k-subset regression in
the third step. In addition, the simulations are performed with the R package
simFrame (Alfons et al 2009; Alfons 2010), which is a general framework for
statistical simulation.

The results from 100 simulation runs are presented in Table 4. Averages
of certain quantities of interest are thereby computed. The final RCS model is
evaluated by the number of groups of low-noise perturbations that are rep-
resented by exactly one variable (#target), the number of noise variables
(#noise), and the total number of variables (#total). Ideally, the final model
would consist of k = 5 target predictors—exactly one from each group and
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Table 4 Average results from 100 simulation runs with contamination level ε = 0.1. For
RCS, the number of target groups represented by exactly one variable (#target), the number
of noise variables (#noise), and the total number of variables (#total) are shown. For the first
k variables of B-RLARS, the number of target groups represented by exactly one variable
(#target) and the number of noise variables (#noise) are displayed. The full B-RLARS
sequence is evaluated using the number of represented groups (#groups) and the number of
noise variables (#noise).

RCS First k of B-RLARS B-RLARS

n Scenario #target #noise #total #target #noise #groups #noise

1 4.84 0.06 4.90 3.91 0.43 4.99 5.25
50 2 4.79 0.09 4.88 3.82 0.52 5 5.58

3 4.28 0.68 4.96 3.48 1.02 4.82 7.47

1 5 0 5 3.86 0 5 1.19
150 2 5 0 5 4.12 0.02 5 1.81

3 4.89 0.11 5 3.91 0.49 5 4.84

no noise variables. Since the success of the procedure depends on the initial
B-RLARS step, the initial sequence from this step is evaluated as well. As dis-
cussed in the example in Section 3, the first part of the sequence may not con-
tain some important predictors. In order to further investigate this issue, the
number of groups that are represented by exactly one variable (#target) and
the number of noise variables (#noise) are computed for the first k variables
in the initial B-RLARS sequence as well. In the complete B-RLARS sequence,
as many of the low-noise perturbations as possible should be included. It is es-
sential that all groups occur in the sequence so that it is possible to extract one
variable for each group in the remaining steps of the procedure. Therefore, the
initial B-RLARS sequence is evaluated using the number of represented groups
(#groups) and the number of noise variables (#noise). The initial B-RLARS
step performs well in this setting if all variables from the groups of low-noise
perturbations and no additional noise variables are sequenced.

The simulation results from Table 4 indicate that the RCS procedure per-
forms very well. In particular in the case of n > p, the results are excellent.
Only in some instances for the scenario with contamination in the candidate
predictors, the final model does not contain exactly one variable from each
group of low-noise perturbations. In these instances, the final model also con-
tains one noise variable, which may be due to the considerably higher number
of noise variables in the initial B-RLARS sequence compared to the other sce-
narios. In the case of n < p (low sample size, high-dimensional data), variable
selection is much more difficult, which is also reflected in the simulation re-
sults. For all scenarios, the number of noise variables in the initial B-RLARS
sequence is much higher than in the case of n > p. The RCS procedure still
gives excellent results if the data are not contaminated or if contamination is
only present in the response. Merely in some cases, the final model consists
of less than k = 5 predictors or contains a noise variable. But even if the
candidate predictors are contaminated as well, the results are very reasonable
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considering that on average about half of the variables in the initial B-RLARS
sequence are noise variables.

Furthermore, the results from the simulations show that the first parts of
the B-RLARS sequence may not contain some important variables for data
of a certain structure. In all investigated scenarios, the first k variables in the
initial B-RLARS sequence often contain more than one variable from the same
group of low-noise perturbations, and in some scenarios even noise variables
frequently occur.

5 Conclusions and discussion

Motivated by a practical application, we developed a strategy for finding a
linear regression model that includes only a necessary minimum of key predic-
tor variables to describe the response. The number of explanatory variables
thereby was supposed to be smaller than a given boundary, each of them should
contain potentially new information, and the resulting model should be highly
interpretable. Moreover, the variable selection procedure needed to be robust
with respect to possible data inhomogeneities and outliers. The difficulty with
these requirements was that the underlying data set is high-dimensional, with
much more variables than observations.

Several methods for model selection in high dimensions are available to
date, but only a few proposals for robust model selection have been made
due to the much higher request of computation time. Our algorithm is based
on bootstrapped robust least angle regression (B-RLARS; Khan et al 2007b),
which we apply to find an initial sequence of explanatory variables. In addition
to being robust to atypical observations, B-RLARS yields a stable sequence
of predictors because of the bootstrap procedure, it is fast to compute, and R
code (R Development Core Team 2010) is freely available. Different strategies
for further reducing the initial sequence of predictor variables are possible.
Since our aim is to extract a small set of highly informative explanatory vari-
ables, filtering out the non-significant variables with MM-regression (Yohai
1987; Maronna et al 2006) seems a suitable approach. MM-regression is used
because it is both highly efficient and highly robust. Then all subsets of a
given maximum size k of the set of significant variables can be examined to
find the optimal regression model. However, using robust regression and re-
sampling methods for this purpose is computationally expensive. Therefore,
we suggest using k-subset regression based on least squares (e.g., Furnival and
Wilson 1974; Miller 2002; Gatu and Kontoghiorghes 2006), which is robusti-
fied by using the weights obtained from another MM-regression model with
only the significant explanatory variables. This is a simplification because the
weights obtained from MM-regression on the significant variables might not
be appropriate for a subset of these variables. For this reason, an alterna-
tive procedure based on the root trimmed mean squared error of prediction
(RTMSEP) has been proposed as well, which nevertheless is computationally
much more demanding. Note that also other procedures for robust variable
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selection are possible, such as the forward search strategy (see Atkinson and
Riani 2002).

In the example of extracting a small set of explanatory variables for quality
of life, the suggested strategy succeeded in finding an easy-to-interpret model
containing only predictors with potentially new information. The latter was
confirmed by a cluster analysis based on robust correlations (see Figure 2).
Moreover, the resulting model is an excellent fit and performs well with re-
spect to prediction. Simulation results were presented as further indication of
the excellent performance of the proposed procedure. Last but not least, our
procedure also gave meaningful answers to other questions and hypotheses
related to the project.

A principal question is whether robust methods are really required for
a data set at hand. Usually, inspecting high-dimensional data for possible
inhomogeneities or outliers is difficult. For our data set, we used the outlier
detection method by Filzmoser et al (2008), which identified some clearly
outlying observations. In the example for quality of life, the weights obtained
by MM-regression with the reduced set of predictor variables indicated that
outliers still exist in the much lower-dimensional subset of the data. In any
case, even if only minor contamination is present, robust model selection can
yield more stable results, as it is less sensitive to small changes in the (high-
dimensional) data.
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