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Abstract 

Mediation analysis is central to theory building and testing in organizational sciences. 

Scholars often use linear regression analysis based on normal-theory maximum likelihood 

estimators to test mediation. However, these estimators are very sensitive to deviations from 

normality assumptions, such as outliers, heavy tails, or skewness of the observed distribution. 

This sensitivity seriously threatens the empirical testing of theory about mediation 

mechanisms. To overcome this threat, we develop a robust mediation method that yields 

reliable results even when the data deviate from normality assumptions. We demonstrate the 

mechanics of our proposed method in an illustrative case, while simulation studies show that 

our method is both superior in estimating the effect size and more reliable in assessing its 

significance than the existing methods. Furthermore, we provide freely available software in 

R and SPSS to enhance its accessibility and adoption by empirical researchers. 

Keywords: Mediation analysis, robust statistics, linear regression, bootstrap. 
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A Robust Bootstrap Test for Mediation Analysis 

Organizational research scholars are often interested in developing a thorough 

understanding of the processes that produce an effect, and thereby investigate the 

mechanisms relating to how one phenomenon exerts its influence on another. This is called a 

mediation analysis (Kenny, 2008). Mediation, in its simplest form, explains how or by what 

means an independent variable (𝑋) affects a dependent variable (𝑌) through an intervening 

variable, called a mediator (𝑀) (Baron & Kenny, 1986). Several methods have been proposed 

for testing mediation (see MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002, for a 

review) where the most widely adopted technique is regression analysis (Wood, Goodman, 

Beckmann, & Cook, 2008)1. The statistical performance of these methods has been vastly 

tested via simulation studies (e.g., MacKinnon et al., 2002; MacKinnon, Lockwood, & 

Williams, 2004). The tests considered in those studies are based on normal-theory maximum 

likelihood estimators (MLEs). However, data in organizational research frequently show 

deviations from normality. Examples include many individual- and firm-level constructs: job 

anxiety (Mannor, Wowak, Bartkus, & Gomez-Mejia, 2016), counterproductive work 

behavior, workplace incivility, conflict (Penney & Spector, 2005), research & development 

intensity (Tatarynowicz, Stych, & Gulati, 2016), managerial network centrality (Tarakci, 

Ateş, Floyd, Ahn, & Wooldridge, 2018) or firm network centrality (Zhelyazkov & Gulati, 

2016), to name a few. 

Deviations from normality, such as outliers (i.e., data points that deviate markedly 

from others; Aguinis, Gottfredson, & Joo, 2013), heavy tails of the observed distribution (i.e., 

values farther from the mean occurring much more often than under the assumed normal 

distribution)2, or skewness (i.e., an asymmetric distribution of the observed values), pose a 

serious threat to the reliability and validity of mediation analysis. Outliers create bias in a 

normal-theory MLE due to their strong influence on the estimator (Cohen, Cohen, West, & 
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Aiken, 2003; Hunter & Schmidt, 2004). Skewness and heavy tails cause a normal-theory 

MLE to become biased and inefficient, as it maximizes the wrong likelihood. Moreover, 

deviations from normality are argued to have a particularly severe effect on mediation 

analysis, because the mediated effect itself is a multiplication of two regression coefficients 

(Zu & Yuan, 2010).  

Researchers often resort to nonlinear transformations (NLTs) to deal with non-

normality. Nevertheless, NLTs not only induce interpretation, validity, and generalization 

problems, but also prevent discovery of substantive information about variables and their 

distributions (Becker, Robertson, & Vandenberg, 2019). NLTs are criticized for fostering 

flawed hypothesis testing (i.e., the misalignment between the hypotheses and tests) (Becker et 

al., 2019), and for masking real relationships while revealing spurious ones (Cohen et al., 

2003). Similarly, scholars employ various outlier treatment techniques against non-normality. 

However, the common practices about outliers in organizations research are found to be 

vague, non-transparent, and even inconsistent in outlier definition, identification, and 

treatment (Aguinis et al., 2013). More importantly, the empirical literature suffers from the 

omission of proper reporting for NLTs and outlier treatment (Becker et al., 2019; Aguinis et 

al., 2013), where such negligence threatens the base of empirically built organization 

theories.  

Despite the importance of non-normal distributions and outliers, so far, no clear 

guidelines have been developed for mediation methods to deal with these issues properly. 

Existing literature often tackles these issues separately and does not address mediation 

analysis specifically (e.g., Aguinis et al., 2013; Aguinis, Hill, & Bailey, 2019; Becker et al., 

2019; Gibbert, Nair, Weiss, & Hoegl, 2020). For mediation analysis, Zu & Yuan (2010) focus 

on outliers and propose procedures based on data cleaning, while Yuan & MacKinnon (2014) 

propose a procedure based on median regression and study various non-normal error 
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distributions. However, both methods can result in considerable bias and unreliable 

significance tests (cf. our simulations). While both studies stress the need for robust 

mediation methods, they are not optimal from a robustness point of view. 

We introduce a novel procedure for mediation analysis, ROBMED, that is robust 

against deviations from normality including outliers, heavy tails, or skewness. ROBMED is 

an integrated set of procedures that builds upon the widely used bootstrap test for mediation 

(Bollen & Stine, 1990; Shrout & Bolger, 2002; MacKinnon et al., 2004; Preacher & Hayes, 

2004; Preacher & Hayes, 2008). ROBMED utilizes the robust MM-regression estimator 

(Yohai, 1987; Salibián-Barrera & Yohai, 2006) instead of the ordinary least-squares (OLS) 

estimator for regression, and runs bootstrap tests with the fast-and-robust bootstrap 

methodology (Salibián-Barrera & Zamar, 2002; Salibián-Barrera & Van Aelst, 2008). We 

illustrate the use of ROBMED in an empirical case where the data show deviations from 

normality and compare the results with state-of-the-art methods for mediation analysis. Our 

simulation studies, which cover a wide range of situations, suggest that ROBMED 

systematically outperforms other methods in estimating the true effect size and reliably 

assessing its significance. Furthermore, we discuss how ROBMED improves and integrates 

current best-practice recommendations for outliers and non-normality, and we provide 

researchers with freely available software for ROBMED in R and SPSS. As such, our novel 

method serves as a useful and accessible tool for scholars who engage in mediation analysis. 

Mediation Analysis 

The simple mediation model can be formulized by the following equations: 

 𝑀 = 𝑖! + 𝑎𝑋 + 𝑒!,	
𝑌 = 𝑖" + 𝑏𝑀 + 𝑐𝑋 + 𝑒",	
𝑌 = 𝑖# + 𝑐′𝑋 + 𝑒#, 

(1) 
 (2) 
 (3) 

where 𝑖!, 𝑖" and 𝑖# are intercepts, a, b, c, and  𝑐′ are weights, and 𝑒!, 𝑒" and 𝑒# denote random 

error terms. Mediation is found if the product of the estimates of the 𝑋 → 𝑀 path’s coefficient 
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and the 𝑀 → 𝑌 path’s coefficient (i.e., the estimate 𝑎𝑏/  of the indirect effect 𝑎𝑏) is 

significant.3 Estimating the coefficients in the mediation model is typically done via normal-

theory maximum likelihood procedures, with the most commonly used method being 

ordinary least-squares (OLS) regression (Wood et al., 2008). 

INSERT FIGURE 1 ABOUT HERE 

Deviations from model assumptions pose serious threats to mediation testing based on 

normal-theory MLE (i.e., OLS regression), which is illustrated in Figure 1. The plot on the 

top left contains 100 simulated observations that follow the model assumptions, whereas the 

plot on the top right uses the same data except for one single outlier being added (indicated 

with an arrow). With the introduction of the outlier, the indirect effect 𝑎𝑏/  almost disappears 

for OLS estimation. That is, the solid regression lines corresponding to Equation (2) are 

pulled nearly flat by the outlier and no longer represent the main part of the data. Note that 

we chose this particular example with an outlier for ease of illustration. Skewness and heavy 

tails can also distort the estimates and standard errors, but the effect is difficult to visually 

capture.  

Numerous methods have been proposed to test the significance of the indirect effect 

in the literature (see MacKinnon et al., 2004; Wood et al., 2008, for reviews). A 

comprehensive review of these methods is beyond the scope of this study, yet we note that 

the bootstrap—a computer-intensive resampling technique first introduced by Efron (1979)—

is found to be superior to other methods. Traditional tests for mediation often make incorrect 

assumptions, such as a normal distribution of the indirect effect. Since the bootstrap makes 

fewer assumptions, it is applicable in a wider variety of situations, especially when analytical 

formulas for the standard errors are not available. As such, the bootstrap provides generic 

ways to reliably construct confidence intervals for the indirect effect (MacKinnon, Fairchild, 

& Fritz, 2007; Preacher & Hayes, 2004; Preacher & Hayes, 2008).  
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While the bootstrap is a non-parametric technique and can therefore handle non-

normal distributions, it is sensitive to outliers. Outliers may be oversampled, which can 

corrupt the obtained bootstrap distribution of the estimator (Salibián-Barrera & Zamar, 2002). 

Thus, the size and significance of the indirect effect can be severely influenced and may lead 

to incorrect conclusions regarding the mediation relationships between the variables. 

Consequently, mediation analysis that is robust against both non-normal distributions and 

outliers requires not only a robust estimator of the mediation model, but also a robust 

bootstrap procedure. 

Treatment of Non-normality in the Empirical Literature 

In empirical research, two-step procedures are frequently used for the treatment of 

non-normality. For general deviations in the observed distributions, researchers first 

transform the data before applying traditional statistical methods (Becker et al., 2019). For 

outliers, researchers first identify and remove them from the data, then apply traditional 

methods to the cleaned data set (Aguinis et al., 2013). However, these two-step procedures 

have several drawbacks.  

Regarding transformations, Becker et al. (2019) report serious problems with NLT 

selection, reporting, interpretation, and justification: scholars usually adopt NLTs without (i) 

any justification of their use (more than 50% of the surveyed articles), (ii) reporting the 

effects on results (more than 95%), and (iii) alignment of hypotheses and tests in terms of the 

transformed variables (more than 90%). For instance, the log-transformation, the most 

commonly used NLT,4 changes the scale of a variable in a way that the relationship between 

the transformed variable and the dependent variables implies diminishing returns on the 

original scale of the variable (Becker et al., 2019). Such changes in the scale due to NLTs 

may also mask real relationships while revealing spurious ones (Cohen et al., 2003). Ideally, 

the use of NLTs should be motivated by theory rather than the observed distributions of 
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variables. For example, if a log-transformation of income is used as the dependent variable, 

then the theory should justify a relative change in income based on the independent variables, 

rather than a change in fixed amounts. Researchers sometimes apply NLTs that are designed 

to remove skewness (e.g., the log-transformation) with the intention to reduce the effect of 

outliers (Becker et al., 2019). However, when the main part of the data is already close to 

normal, this would introduce left-skewness, thus actually making the data less normal.  

Regarding outliers, the empirical use of outlier treatment techniques is documented to 

be ambiguous, inconsistent, and often dismissed in manuscripts (Aguinis et al., 2013). In 

addition, when statistical methods are applied to the cleaned data, the resulting standard 

errors do not include the additional uncertainty from the initial data-cleaning step. For 

instance, Chen & Bien (2019) show that OLS regression after outlier removal results in 

confidence intervals that are much too small. In some of their simulations, the coverage of the 

true parameter is as low as 75%, as opposed to the nominal coverage of 95%. Consequently, 

the p-values from significance tests are too small and could incorrectly suggest significant 

results. Furthermore, outlier removal can result in a loss of stability in borderline situations 

(e.g., an observation close to the threshold of an outlier detection rule), as it requires to fully 

include or fully exclude the observation. 

In practice, it is often unclear if deviating observations are produced by skewness or a 

heavy tail in the distribution, or whether they are outliers. Different treatment methods (NLTs 

or outlier removal) may lead to very different results and conclusions. Therefore, NLTs and 

outlier removal can also be abused as dangerous post-hoc practices to increase the chances of 

finding what the researcher wants to find (Becker et al., 2019; Cortina, 2002), which 

threatens the base of empirically tested theory (Bettis, 2012). 
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Robust Statistics 

Statistical methods are traditionally designed to be as efficient as possible under a 

certain model and assume that all data points strictly follow this model. However, the 

corresponding models typically make quite strong assumptions about the data, which are 

often violated in empirical settings. When this is the case, such methods can give unreliable 

results that may yield incorrect conclusions. The field of robust statistics aims to develop 

statistical methods that are less affected by model deviations and show good behavior in 

many situations. Robust methods therefore focus on the part of the data that is the most 

relevant for estimating the model parameters. In other words, robust methods exchange some 

statistical efficiency for wider applicability. This loss of efficiency is often small and can be 

seen as an insurance premium against failure under deviations from the model assumptions. 

Modern robust methods typically aim for a continuous downweighting of deviating 

observations with weights between 0 and 1 that measure the degree of deviation. Moreover, 

these methods simultaneously downweight deviating observations while estimating the 

model. This approach solves the issues with current treatment of non-normality, as discussed 

above. It is a unified approach for handling outliers and other deviations from normality 

(heavy tails and skewness), and continuous downweighting ensures stability of the results. 

The procedures for downweighting observations are extensively studied in the statistics 

literature and supported by statistical theory (e.g., Maronna, Martin, & Yohai, 2006), which 

improves research reproducibility compared to manual pre-processing of the data by the 

researcher. Finally, if there are no deviations from the model, observations receive a weight 

close to 1 such that the robust method yields similar results to the corresponding maximum 

likelihood method.5  
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In the following, we present a discussion on how various deviations from normality 

assumptions affect estimation, if and how downweighting deviating observations is a suitable 

treatment, and how downweighting aligns with current best-practice recommendations. 

Heavy tails, skewness, and their effect on estimation  

Heavy tails are observed when values farther from the mean occur much more often 

than under the assumed normal distribution, and skewness refers to an asymmetric 

distribution of the observed values. When the distribution is symmetric but has heavy tails, 

estimates of central tendencies are not much affected, yet their standard errors inflate. For 

instance, OLS estimates are still unbiased but very inefficient under heavy-tailed errors. This 

leads to large confidence intervals and a loss of power in significance tests. When the 

distribution is skewed, estimates become both inefficient and biased, hence significance tests 

may be less powerful (increased Type II error) and poorly calibrated (increased Type I error).  

Empirically, skewness does not manifest itself much in the central part of the data but 

in the tails (Raymakers & Rousseeuw, 2020). By definition, the same holds for heavy tails. 

Therefore, when one is interested in central tendencies such as regression coefficients, the 

main issue is that deviating observations due to skewness or heavy tails have disproportional 

influence on estimators that assume normality. A gradual downweighting of these influential 

observations decreases their disproportional influence, resulting in more reliable significance 

tests. In case of skewed distributions, a gradual downweighting of the longer tail may 

introduce bias, for instance when interpreting regression coefficients as changes in the mean 

of the dependent variable. Nevertheless, this bias is often small (cf. our simulations).  

In a regression setting, the gradual downweighting of deviations can be based on the 

residuals, leaving the observed variables untouched. This solves estimation issues due to non-

normality while still allowing for interpretation on the original scale of the variables—unlike 

NLTs, where the transformed model parameters are difficult to interpret (see also Becker et 
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al., 2019). In that regard, the robust approach of downweighting deviations is in line with the 

best-practice recommendation that researchers should consider other treatments instead of 

assuming NLTs are the best option (Becker et al., 2019). 

Outliers and their effect on estimation 

An important concept in robust statistics is that of outliers. Hawkins (1980, p. 1) 

defines an outlier as “an observation which deviates so much from other observations as to 

arouse suspicions that it was generated by a different mechanism”.6 Aguinis et al. (2013) 

further distinguish between error outliers (deviating observations as a result of inaccuracies),  

interesting outliers (deviating points that contain potentially valuable or unexpected 

knowledge), and influential outliers (deviating observations whose presence alters the model 

fit or parameter estimates). 

Examples for error outliers are measurement or recording errors, or observations from 

a different population that is not of interest to the researcher. According to the best-practice 

recommendations of Aguinis et al. (2013), such outliers should be corrected if possible, or 

excluded from analysis. The latter is equivalent to assigning a weight of 0 for estimation. 

Examples for interesting outliers are a rare, extreme value that is part of the population of 

interest, or an observation from a subpopulation that is of interest to the researcher but that is 

otherwise not represented in the sample. Aguinis et al. (2013) strongly recommend studying 

those observations separately with appropriate qualitative or quantitative approaches.  

Crucially, the last two examples above are also examples for influential outliers in a 

regression setting.7 Consider a sample size of 𝑛 = 100 and an extreme error that corresponds 

to a 1-in-10000 event. In estimation, this observation would be treated as a 1-in-100 event 

rather than a 1-in-10000 event, meaning that its value has a disproportionate influence on the 

estimates. Regarding an observation from a subpopulation that is otherwise not represented in 

the sample, such heterogeneities in the population would need to be modeled explicitly, 
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which is not meaningful if the sample does not contain enough observations from the small 

subgroup. When using the same model for the entire sample, the researcher could end up with 

results that neither reflect the main part of the population nor the subgroup (cf. Figure 1). For 

influential outliers in regression, Aguinis et al. (2013) recommend reporting the results both 

with treatment (e.g., robust estimation) and without treatment (e.g., OLS).  

Modern robust methods allow to detect outliers by reporting observations with 

weights close to 0. The researcher should then further investigate the type of each detected 

outlier. For error and influential outliers, the robust method has already applied the correct 

treatment by downweighting them. Interesting outliers should be studied further in detail. For 

instance, an interesting outlier that turns out to be an extreme observation can be studied with 

statistical tools from extreme value theory (e.g., de Haan & Ferreira, 2006). If an interesting 

outlier is an observation from a subpopulation that is otherwise not represented in the sample, 

the researcher can study this observation qualitatively, collect more data to model the 

heterogeneities in the population, or design a follow-up study to analyze the small 

subpopulation. For a general roadmap on how to gain knowledge from outliers, we refer to 

Gibbert et al. (2020). 

Robust statistics and mediation analysis 

Despite the common presence of deviations from model assumptions and the 

sensitivity of mediation results to such deviations, we could only find two articles on robust 

mediation analysis. Zu & Yuan (2010) focus on outliers and propose to clean the data via 

winsorization, which is neither as robust nor as efficient as modern robust regression methods 

(cf. our simulations). Yuan & MacKinnon (2014) propose a bootstrap procedure that replaces 

OLS regression with median regression, and study non-normal error distributions and outliers 

in the errors. While median regression is robust in those settings, it is not robust even if a 

single outlier occurs in the explanatory variables (Koenker, 2005, p. 46). Yet outliers in the 
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explanatory variables are considered to be the most harmful type of outliers in regression due 

to their high leverage effect on the estimates (cf. Figure 1). 

Both studies pinpoint the need for robust methods for mediation analysis and propose 

valuable potential alternatives, but both suffer from the aforementioned disadvantages. In that 

sense, although these methods clearly are more robust than OLS-based procedures, they still 

need to be improved upon from a robustness point of view. 

ROBMED: Robust Mediation Analysis 

We propose a robust test for mediation, ROBMED, that builds on bootstrapping the 

indirect effect via linear regression. First, linear regression analysis is the most widely used 

mediation technique in empirical studies (Wood et al., 2008). Second, the bootstrap test is the 

state-of-the-art method for testing the indirect effect in mediation models, as its distribution is 

in general asymmetric.8 Accordingly, ROBMED constitutes a combination of two essential 

building blocks. 

The first building block is to use the robust MM-regression estimator (Yohai, 1987; 

Salibián-Barrera & Yohai, 2006) rather than the OLS estimator. Instead of the quadratic loss 

function of the OLS estimator, the MM-estimator uses a loss function that is quadratic for 

small residuals, but smoothly levels off for larger residuals. This ensures that the coefficient 

estimates are determined by the central part of the data and that the influence of deviations 

from normality is limited. The left panel in Figure 2 illustrates this loss function. The MM-

estimator can be seen as a weighted least-squares estimator with data dependent weights. A 

compelling feature of the estimator is that the weights that are assigned to the data points can 

take any value between 0 and 1, where a lower weight indicates a higher degree of deviation. 

An illustration of this weight function is given in the right panel in Figure 2. 

INSERT FIGURE 2 ABOUT HERE 
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The second building block is to adopt the fast-and-robust bootstrap (Salibián-Barrera 

& Zamar, 2002; Salibián-Barrera & Van Aelst, 2008) instead of the standard bootstrap. There 

are two issues with the standard bootstrap. The first issue is that it is not robust to outliers. It 

draws so-called bootstrap samples of the same size as the original sample via random 

sampling with replacement and estimates the model on each of those bootstrap samples. Even 

if a robust method can reliably estimate the model in the original sample, it may happen that 

outliers are oversampled in some bootstrap samples. If those bootstrap samples contain more 

outliers than the robust method can handle, bootstrap confidence intervals become unreliable. 

The second issue is that robust methods typically come with increased computational 

complexity. While this is less of an issue in most applications due to modern computing 

power, there can be a noticeable increase in computing time compared to traditional methods, 

in particular when combined with computer-intensive procedures such as the bootstrap. 

To solve the two issues, Salibián-Barrera & Zamar (2002) developed the fast-and-

robust bootstrap. Keep in mind that the MM-regression estimator can be seen as weighted 

least-squares estimator, where the weights are dependent on how much an observation is 

deviating from the rest. The essence of the fast-and-robust bootstrap is that on each bootstrap 

sample, first a weighted least-squares estimator is computed (using the robustness weights 

from the original sample) followed by a linear correction of the coefficients. The purpose of 

this correction is to account for the additional uncertainty of obtaining the robustness weights.  

The integration of the robust MM-regression estimator with the fast-and-robust 

bootstrap procedure allows us to construct a test for mediation analysis that follows the same 

principles as the widely used OLS bootstrap test. However, our proposed test is more reliable 

under deviations from the model assumptions such as outliers, heavy tails, and skewness. 

Technical derivations and a brief discussion of our software can be found in the appendix. 
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Revisiting Figure 1, the bottom plots depict the same mediation model estimated with 

ROBMED. Without the outlier (left), the estimated effects are nearly identical to those of 

OLS. When the outlier is included (right), the fitted regression lines remain virtually 

unchanged and all effects are accurately estimated, illustrating the merit of ROBMED. 

Illustrative Empirical Case 

In order to show the role of deviations from the model assumptions in mediation 

analysis and how ROBMED overcomes those challenges, we test an illustrative hypothesis. It 

is not our aim to build and test theory with this example, therefore we do not interpret the 

indirect effect or discuss its effect size. The data contain information on n = 89 randomly 

assigned 4-person teams of senior business administration students who played a business 

simulation game9 as part of their capstone strategy course at a Western European university. 

We investigate the following hypothesis: 

Illustrative Hypothesis: Task conflict (𝑀) mediates the relationship between team value 

diversity (𝑋) and team commitment (𝑌). 

More information on data collection, scales, and the underlying theory is presented in 

the Online Appendix 1. Tables 1 and 2 contain descriptive statistics and correlations for the 

studied variables. 

INSERT TABLES 1, 2 AND 3 ABOUT HERE 

We focus on a comparison between ROBMED and the OLS bootstrap, but we also 

apply other state-of-the-art methods for mediation testing. Table 3 gives an overview of these 

methods and the abbreviations we use to refer to them.10 All bootstrap tests report a bias-

corrected and accelerated percentile-based confidence interval (Davison & Hinkley, 1997) for 

the indirect effect. Table 4 reports results on all coefficients in the mediation analyses. The 

estimate of the indirect effect 𝑎𝑏 is nearly twice as large in magnitude for ROBMED 

compared to the OLS bootstrap. In addition, the 95% confidence interval of ROBMED is 
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strictly negative but that of the OLS bootstrap contains 0. For further insight, we estimate the 

p-value for the indirect effect as the smallest significance level 𝛼 where the (1 − 𝛼) ∙ 100% 

confidence interval obtained from the bootstrapped distribution does not contain 0. We 

observe that ROBMED finds evidence against the null hypothesis of no mediation (p-value =

0.027), whereas the OLS bootstrap finds no evidence (p-value = 0.158). Other than the 

indirect effect, the main difference between the two methods is in the estimation of the 𝑎 

path, which is clearly not significant for the OLS bootstrap (p-value = 0.209) but highly 

significant for ROBMED (p-value = 0.003). Hence, we take a closer look at the relationship 

between the independent variable and the hypothesized mediator. 

INSERT TABLE 4 AND FIGURE 3 ABOUT HERE 

Figure 3 shows a scatter plot of task conflict (𝑀) against value diversity (𝑋) together 

with tolerance ellipses. The shape of such a tolerance ellipse is defined by the covariance 

matrix, and its size is determined such that a certain proportion of the data points is expected 

to lie within the ellipse under the assumption of a normal distribution (here 97.5%). The plot 

contains a tolerance ellipse based on the sample covariance matrix, which is closely linked to 

OLS regression11, as well as a robust tolerance ellipse based on the weighted covariance 

matrix using the weights from the robust regression of 𝑀 on 𝑋12. The plot reveals that there 

are a small number of influential observations, but it is not so clear whether these 

observations are true outliers or the result of a heavy upper tail in task conflict. Only the three 

most far away points receive a weight of exactly 0, with two more points being assigned a 

weight < 0.01. The points close to the border of the robust tolerance ellipse are only partly 

downweighted and receive a weight in between 0 and 1. Overall, the robust tolerance ellipse 

better fits the main bulk of the data, as there is much more empty space in the nonrobust 

tolerance ellipse. The influence of the far away points is also visible in the OLS regression 

line, which is tilted to become more horizontal.  
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INSERT FIGURE 4 ABOUT HERE 

To further investigate the deviations from normality, Figure 4 shows a diagnostic plot 

of the robust regression weights. For varying threshold on the horizontal axis, the vertical 

axis displays how many observations in each tail of the residual distribution have a weight 

below this threshold. For comparison, a reference line is drawn for the expected percentages 

under normal errors. Clearly, there are more downweighted observations with positive 

residuals than expected and fewer with negative residuals, confirming skewness with a heavy 

upper tail.  

Based on the two plots, ROBMED better captures the main trend in the data and can 

be considered more reliable than the OLS bootstrap. The SNT bootstrap, which explicitly 

models skewness in the errors, yields similar results to ROBMED. Other methods give 

somewhat different results: the Box-Cox bootstrap and the winsorized bootstrap come to the 

opposite conclusions regarding weak or strong significance of the coefficients 𝑎 and 𝑏, with 

the winsorized bootstrap also reporting only a weakly significant indirect effect 𝑎𝑏. With the 

median bootstrap, neither the coefficient 𝑏 nor the indirect effect 𝑎𝑏 is found to be 

significant. In order to decide which of these methods can be considered the most reliable and 

should be adopted as the current best practice in mediation analysis, we conduct simulation 

studies in the next section. 

Simulations  

We simulate 𝑛 = 100 observations according to the models 𝑀 = 𝑎𝑋 + 𝜎!𝑒! and 𝑌 =

𝑏𝑀 + 𝑐𝑋 + 𝜎"𝑒". First, the explanatory variable 𝑋 is generated from a standard normal 

distribution. We set 𝑎 = 𝑐 = 0.4, but we vary the value of 𝑏 to investigate two different 

situations: one with mediation (𝑏 = 0.4, true indirect effect 𝑎𝑏 = 0.16), and one where 

mediation does not exist (𝑏 = 0,	indirect effect 𝑎𝑏 = 0). Moreover, we consider four settings 

regarding the error distributions and outliers, as described in Table 5. The parameters 𝜎! and 
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𝜎" are chosen such that 𝑀 and 𝑌 have variance 1 in the setting with normally distributed 

errors. We apply the same methods as for the empirical case, except that the Box-Cox 

bootstrap uses a generalization of the Box-Cox transformation that allows for negative values 

(Hawkins & Weisberg, 2017). We perform two-sided tests with null hypothesis 𝐻$: 𝑎𝑏 = 0 

against the alternative 𝐻%: 𝑎𝑏 ≠ 0. The whole process is repeated 𝐾 = 1000 times. 

INSERT TABLE 5 ABOUT HERE 

Simulations with mediation 

Figure 5 shows the average estimates of the indirect effect (top row), as well as a 

measure of realized power of the tests on the indirect effect (bottom row). This measure of 

realized power is taken as the rate of how often the methods reject the null hypothesis and the 

corresponding estimate of the indirect effect has the correct sign.13 The columns of the figure 

correspond to the four investigated settings for error distributions and outliers. 

INSERT FIGURE 5 ABOUT HERE 

For normal error terms, all methods estimate the indirect effect very accurately. In 

addition, all tests show a realized power close to 100%, except for the median bootstrap with 

a realized power slightly below 90%. In the presence of outliers, ROBMED is the only 

method that still gives accurate estimates of the indirect effect. The OLS-based methods are 

the most affected by the outliers, but the median bootstrap, the winsorized bootstrap, and the 

SNT bootstrap also show a considerable bias. The results from estimation clearly carry over 

to the realized power of the tests, with ROBMED remaining close to 100%. The winsorized 

bootstrap is the only method not too far behind with a realized power slightly below 90%, 

despite its bias in effect size. While the median bootstrap and the SNT bootstrap have realized 

power of about 60–65%, the remaining tests perform poorly. 

For skew-normal error terms, all methods are very accurate in estimating the indirect 

effect and have realized power close to 100%. Clearly, the SNT bootstrap has the smallest 
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variance in the estimates of the indirect effect. There are again more differences among the 

methods for t-distributed errors. ROBMED, the SNT bootstrap, the winsorized bootstrap, and 

the median bootstrap all estimate the indirect effect accurately and have high realized power 

of about 80–85%. The realized power of the Box-Cox bootstrap is also close to 80%. As 

expected, OLS Sobel and the OLS bootstrap still yield accurate estimates of the indirect 

effect, but perform rather poorly in terms of power. 

Simulations with no mediation 

The top row of Figure 6 again shows box plots of the estimates of the indirect effect, 

while the bottom row displays the rejection rate of the tests. Since the tests are performed 

with nominal size 𝛼 = 0.05, the rejection rate should be as close as possible to this value. It 

can be seen as the realized size of the test. 

INSERT FIGURE 6 ABOUT HERE 

Under normal error terms, all methods again yield very accurate estimates of the 

indirect effect, and the rejection rates of all bootstrap tests are close to the nominal size. As 

expected, the OLS Sobel test has a slightly lower rejection rate than the bootstrap tests. When 

outliers are introduced, ROBMED again yields the most accurate estimates of the indirect 

effect, and its rejection rate is the closest to the nominal size. All other methods suffer from 

considerable bias, in particular the OLS-based methods. The median bootstrap is the only 

other method that is not too far off the nominal size with a rejection rate of 12%, whereas all 

other tests have too large rejection rates in the range of 20-35%. 

As in the setting with mediation, all methods perform very well for skew-normal error 

terms. The most notable result is again that the SNT bootstrap has much lower variance in the 

estimates of the indirect effect. For t-distributed errors, all methods perform (reasonably) 

well, too. The main difference is in the variance of the estimates of the indirect effect, with 

the SNT bootstrap, the median bootstrap and ROBMED showing the smallest variances. 
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Additional simulations and concluding discussion 

We extended our simulation design with a wide range of sample sizes, effect sizes, 

outlier configurations, and error distributions with various levels of skewness and kurtosis. 

The results presented here are a representative selection, while all results from our extensive 

simulations with 700 different parameter settings can be found in the Online Appendix 2.14 

Overall, ROBMED clearly outperforms the other methods. It is the only method that remains 

accurate in estimating the indirect effect and powerful in hypothesis testing across all 

investigated deviations from normality. In addition, only ROBMED effectively protects 

against false mediation discoveries (inflated Type I errors) in the presence of outliers. 

Practical Guidelines for Using ROBMED 

ROBMED is robust to deviations from normality, which makes it a useful tool to 

detect such deviations in the first place. We recommend researchers to estimate their 

hypothesized model with ROBMED, and to investigate the diagnostic plot of the weights 

from the robust regressions (cf. Figure 4). Depending on detected deviations from normality, 

we recommend taking the actions discussed below. A detailed flowchart for our practical 

guidelines regarding the use of ROBMED is given in Figure 7. 

1. Heavy tails and skewness:  

a. If the diagnostic plot reveals more downweighted observations than expected, 

but roughly the same amounts in both tails, the distribution is symmetric but 

with heavy tails. We recommend reporting the results of ROBMED, since 

ROBMED outperformed the other methods in our simulations. The winsorized 

bootstrap (Zu & Yuan, 2010) could be used as an additional robustness check. 

b. If the diagnostic plot shows that observations in one tail are downweighted 

more heavily than those in the other tail, the distribution is skewed. We advise 
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verifying the findings of ROBMED by following the recommendations of 

Becker et al. (2019) as a robustness check.  

2. Outliers: Observations that receive a weight of (close to) 0 are potential outliers, and 

researchers should follow Aguinis et al. (2013) to identify the type of outliers.  

a. Error outliers: ROBMED already applies the correct outlier treatment 

following Aguinis et al. (2013) by excluding them, and we recommend 

reporting the results of ROBMED. As a robustness check, researchers could 

apply the OLS bootstrap with the error outliers excluded. 

b. Interesting outliers: Researchers should follow the protocols of Aguinis et al. 

(2013) and study them with appropriate techniques. We further recommend 

following the suggestions of Gibbert et al. (2020) to possibly build new theory 

from interesting outliers, and adjusting the model accordingly.  

c. Influential outliers: Robust estimation is a valid form of outlier treatment in 

line with Aguinis et al.’s (2013) suggestions. Their best-practice advice is to 

report both the results with outlier treatment (we recommend ROBMED) and 

without outlier treatment (we recommend the OLS bootstrap).  

3. No deviations: If the diagnostic plot indicates that the percentages of downweighted 

observations are close to what is expected, and no observations receive a weight close 

to 0, no deviations from normality are detected. We recommend reporting the results 

of the OLS bootstrap, together with those of ROBMED as a robustness check. 

Finally, we strongly recommend against the automatic treatment of outliers as harmful data 

points. Outliers may help clarifying inconsistencies in emerging theories, provide chances to 

integrate theoretical predictions with real-life observations (Lieberson, 1992), and may reveal 

essential contingency factors and boundary conditions to theories (Gerring, 2007). We refer 

readers to the established body of knowledge on outlier identification and treatment (Aguinis 
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et al., 2013; Lewin, 1992; Nair & Gibbert, 2016; Pearce, 2002) and theory building by using 

outliers (Gibbert et al., 2020; for empirical examples, also see Hitt, Harrison, Ireland, & Best, 

1998; Pisano, 1994; Gittell, 2001). 

Discussion and Conclusion 

Existing methods for mediation analysis are sensitive to non-normality. The proposed 

procedure ROBMED integrates the robust MM-estimator (Yohai, 1987) and the fast-and-

robust bootstrap (Saltbtán-Barrera & Zamar, 2002) tn a medtatton setttng to overcome the 

wtdespread problem of devtattons from normaltty assumpttons. Indeed, ROBMED is shown 

to be more reliable than established methods for testing mediation under a variety of 

deviations. The key technical property that gives ROBMED its edge is that it continuously 

downweights deviating data points. Not only does this result in robust estimates, but also in a 

stable procedure, as it does not require different approaches for different deviations from 

normality, or any decision to fully include or exclude a data point. Instead, the weights 

indicate the degree of deviation of an observation. Downweighting observations based on the 

residuals avoids transformations of the variables that are not supported by theory, ensuring 

interpretability of the coefficients and correct alignment of the analysis with the hypotheses. 

We stress that ROBMED should not be viewed as a tool that absolves researchers 

from verifying model assumptions or checking for outliers. Instead, researchers should view 

ROBMED as a tool that allows to reliably estimate the model while simultaneously detecting 

outliers and deviations from the model assumptions. It is crucial to follow up on any detected 

deviations. This last step must not be skipped, and findings should be transparently described. 

As such, ROBMED plays an integral part in ensuring robust findings in empirical research—

and therefore reproducibility. 

While ROBMED is designed to handle deviations from normality, one cannot expect 

ROBMED to work under all possible distributions. Deviations from normality are often 
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characterized by skewness (a measure of asymmetry) and kurtosis (a measure of tail-

heaviness). ROBMED can effectively compensate for various levels of skewness and 

kurtosis, but it is not suitable for extremely heavy tails (e.g., tails that should be modeled with 

extreme value distributions) or extreme skewness (e.g., if not even a log-transformation 

would suffice to remove right-skewness). Furthermore, as mediation analysis is concerned 

with the central tendencies in a population, namely the coefficients in Equations (1)–(3), 

ROBMED is not suitable if extreme values are of primary interest. However, it does report 

deviating observations that, if appropriate, should be further analyzed with statistical tools 

from extreme value theory (e.g., de Haan & Ferreira, 2006). It is also not intended for 

dynamic time series analysis, where it is often of interest to study how extreme shocks travel 

through systems over time. 

While we focus on the simple regression model in this paper, our robust approach can 

be used for any other mediation model that can be estimated via linear regressions, such as 

models including multiple mediators.15 Furthermore, ROBMED can easily be extended to 

cover moderated mediation or mediated moderation models (see, e.g., Muller, Judd, & 

Yzerbyt, 2005, for an overview). Granting all this, ROBMED currently focuses on mediation 

models with continuous dependent variables and mediators. Developing robust methods for 

mediation models with binary, nominal, ordinal or count variables (e.g., Huang, Sivaganesan, 

Succop, & Goodman, 2004; VanderWeele & Vansteelandt, 2010; Preacher, 2015) is a fruitful 

venue for further research.  

On a final note, our R implementation for ROBMED and the R extension bundle for 

SPSS are freely available from https://cran.r-project.org/package=robmed and 

https://github.com/aalfons/ROBMED-RSPSS, respectively, making ROBMED easily 

accessible to empirical researchers. Users can run our code by following simple steps in the 
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accompanying documentation and code examples. Given its technical strengths and 

practicality, we strongly encourage scholars to adopt ROBMED to test mediation. 
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Tables 

Table 1 

Descriptive statistics of the variables used in the illustrative empirical case. 

Variable Mean 
Standard 
deviation Median 

Median 
absolute 
deviation Minimum Maximum 

Task conflict 1.761 0.392 1.688 0.371 1.125 2.938 
Team 
commitment 3.822 0.448 3.875 0.371 2.125 4.688 

Value 
diversity 1.676 0.344 1.587 0.366 1.105 2.548 

The median is a more robust measure of centrality than the mean, and the median absolute 

deviation is a more robust measure of dispersion than the standard deviation (e.g., Maronna et 

al., 2006). 

 

Table 2 

Correlation table of the variables used in the illustrative empirical case. 

 Task conflict Team commitment Value diversity 
Task conflict 1.000 -0.297 0.268 

Team commitment  1.000 -0.024 
Value diversity   1.000 

The reported correlations are Spearman’s rank correlations, transformed to be consistent with 

the Pearson correlation coefficient (Croux & Dehon, 2010). Those provide more robust 

estimates than the sample Pearson correlation. 
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Table 3 

Methods included in the illustrative empirical case and the simulation study, as well as the 

abbreviations used to refer to them. 

Abbreviation Description 

OLS bootstrap The bootstrap test following OLS estimation (Bollen & Stine, 
1990; Shrout & Bolger, 2002; MacKinnon et al., 2004; Preacher & 
Hayes, 2004; Preacher & Hayes, 2008). 

OLS Sobel The Sobel test following OLS estimation (Sobel, 1982), which 
assumes a normal distribution of the indirect effect. The indirect 
effect 𝑎𝑏/  is divided by (a first-order approximation of) the 
standard error of the indirect effect 𝑠%&'  to obtain a test statistic for 
which the p-value is computed with the standard normal 
distribution. In the literature, the Sobel test has been criticized for 
the assumption of a normal distribution of 𝑎𝑏/ , as the product of 
two normally distributed random variables – the coefficients 𝑎I and 
𝑏J – is not normally distributed (MacKinnon et al., 2002). 

Box-Cox bootstrap We first apply a Box-Cox transformation (Box & Cox, 1964) to 
each variable, then perform the OLS bootstrap test. Note that due 
to the transformations, the estimates are not comparable to those of 
the other methods. 

SNT bootstrap We perform regression with normal, skew-normal, t, or skew-t 
error distributions (Azzalini & Arellano-Valle, 2013) within the 
bootstrap procedure and select the best fitting error distribution via 
the Bayesian information criterion (BIC) (Schwarz, 1978). Note 
that a similar test was proposed by Asparouhov & Muthén (2016) 
using structural equation modeling. 

Winsorized bootstrap Zu & Yuan’s (2010) bootstrap test following winsorization of the 
data. 

Median bootstrap Yuan & MacKinnon’s (2014) bootstrap test using median 
regression. 

ROBMED Our proposed test using MM-estimation (Yohai, 1987) and the 
fast-and-robust bootstrap (Saltbtán-Barrera & Zamar, 2002). 
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Table 4 

Results from the illustrative empirical case: comparison of ROBMED to various methods. 

 OLS bootstrap OLS Sobel 

Direct Effects Estimate Std. Error z-Statistic p-Value Estimate Std. Error t-Statistic p-Value 

X→M (a path) 0.159  0.127 1.255 0.209  0.155  0.121 1.283 0.203  

(X),M→Y (b path) -0.370  0.160 -2.312 0.021 * -0.364  0.118 -3.090 0.003 ** 
X,(M)→Y (c path) -0.016  0.145 -0.113 0.910  -0.021  0.134 -0.156 0.877  

X→Y (c' path) -0.076  0.159 -0.480 0.631  -0.077  0.139 -0.555 0.580  

Indirect Effect Estimate 95% Confidence Interval p-Value Estimate Std. Error t-Statistic p-Value 

ab -0.060 (-0.208, 0.025) 0.158  -0.057  0.048 -1.185 0.236  

 
 Box-Cox bootstrap SNT bootstrap 

Direct Effects Estimate Std. Error z-Statistic p-Value Estimate Std. Error z-Statistic p-Value 

X→M (a path) 0.175  0.092 1.898 0.058 . 0.254  0.111 2.293 0.022 * 

(X),M→Y (b path) -10.951  4.253 -2.575 0.010 * -0.325  0.174 -1.874 0.061 . 
X,(M)→Y (c path) 0.964  3.119 0.309 0.757  0.018  0.159 0.115 0.908  

X→Y (c' path) -0.923  3.368 -0.274 0.784  0.001  0.167 0.005 0.996  

Indirect Effect Estimate 95% Confidence Interval p-Value Estimate 95% Confidence Interval p-Value 

ab -1.886 (-5.162, -0.055) 0.044 * -0.082 (-0.243, -0.002) 0.042 * 

 
 Winsorized bootstrap Median bootstrap 

Direct Effects Estimate Std. Error z-Statistic p-Value Estimate Std. Error z-Statistic p-Value 

X→M (a path) 0.197  0.111 1.772 0.076 . 0.290  0.135 2.144 0.032 * 

(X),M→Y (b path) -0.392  0.123 -3.185 0.001 ** -0.326   0.209 -1.563 0.118  
X,(M)→Y (c path) 0.013  0.137 0.093 0.926  0.053  0.211 0.252 0.801  

X→Y (c' path) -0.063  0.148 -0.426 0.670  -0.041  0.214 -0.191 0.848  

Indirect Effect Estimate 95% Confidence Interval p-Value Estimate 95% Confidence Interval p-Value 

ab -0.076 (-0.198, 0.001)  0.052 . -0.094 (-0.285, 0.010)  0.107   

 
 ROBMED 

Direct Effects Estimate Std. Error z-Statistic p-Value 

X→M (a path) 0.321  0.107 2.998 0.003 ** 

(X),M→Y (b path) -0.344  0.178 -1.934 0.053 . 
X,(M)→Y (c path) 0.065  0.186 0.350 0.726  

X→Y (c' path) -0.045  0.187 -0.241 0.810  

Indirect Effect Estimate 95% Confidence Interval p-Value 

ab -0.110 (-0.294, -0.010) 0.027 * 

Variables are value diversity (𝑋), task conflict (𝑀), and team commitment (𝑌). Sample size = 

89, Number of bootstrap samples = 5000, significance levels: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, 

‘.’ 0.1. 
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Table 5 

Settings regarding the error distributions and outliers in the simulations. 

Setting Details 

Normal The error terms 𝑒! and 𝑒" follow a standard normal distribution; 
no outliers. 

Outliers The error terms 𝑒! and 𝑒" follow a standard normal distribution. 
With probability 0.02, observations are turned into outliers by 
setting 𝑀(

∗ = 𝑀(/10 − 3 and 𝑌(∗ = 𝑌(/10 + 3. 
Skewness The error terms 𝑒! and 𝑒" follow a skew-normal distribution with 

skewness equal to 0.995 as an example of a skewed distribution; 
no outliers. Note that a skewness of 0.995 is the maximum 
skewness that the skew-normal distribution can exhibit. 

Heavy tails The error terms 𝑒! and 𝑒" follow a t distribution with 2 degrees of 
freedom as an example of a distribution with heavy tails; no 
outliers. 
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Figures 

 

Note: The mediator 𝑀 is depicted on the horizontal axis and the dependent variable 𝑌 on the vertical axis. The 
independent variable 𝑋 is assumed to be dichotomous for simplicity in visual representation, i.e., the regression 
models in Equations (1)–(3) then correspond to two parallel fitted lines. Light green lines correspond to fitted 
regression lines for 𝑋 = 0 (light green points), while dark blue lines correspond to fitted regression lines for 
𝑋 = 1 (dark blue points). The distance between the horizontal dashed regression lines represents the total effect 
𝑐̂′ of 𝑋 on 𝑌, and the distance between the vertical dash-dotted regression lines represents the effect 𝑎+ of 𝑋 on 
𝑀. The remaining solid regression lines describe the relation of 𝑀 to 𝑌 within the groups of 𝑋. A change in M 
of 𝑎+ units (due to a change in 𝑋 from 0 to 1) leads to an indirect change in 𝑌 of 𝑎𝑏-  units (i.e., the indirect effect). 
The figure also illustrates that the product of coefficients 𝑎𝑏-  is equal to the difference in coefficients 𝑐̂′ − 𝑐̂ 
(MacKinnon et al., 2007). 
 

Figure 1. The effect of a single outlier on mediation analysis. 
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ĉĉ'
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Figure 2. Loss function (left) and assigned weights (right) for OLS regression and the robust 

MM-regression estimator. 

 

 

Figure 3. Scatter plot of value diversity and task conflict with tolerance ellipses. 
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Figure 4. Diagnostic plot of weights from robust regression of task conflict on value 

diversity. The horizontal axis contains different weight thresholds, and the vertical axis 

displays the percentage of observations that have a weight below this threshold. A black 

reference line indicates the expected percentages under normally distributed errors. 

Observations with negative and positive residuals are shown separately to make it possible to 

distinguish between symmetric and asymmetric deviations from normality. 
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Figure 5. Results from 1000 simulation runs for the simulation setting with mediation (𝑎 =

0.4, 𝑏 = 0.4). The top row contains box plots of the estimates of the indirect effect and 

includes a horizontal reference line for the true indirect effect 𝑎𝑏	 = 	0.16. Points outside the 

whiskers are not displayed for better readability. The bottom row displays the rate of how 

often the methods reject the null hypothesis and the corresponding estimate of ab has the 

correct sign (a measure of realized power of the tests in the presence of outliers; the higher 

this rate the better). The columns correspond to the four investigated settings for error 

distributions and outliers. 
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Figure 6. Results from 1000 simulation runs for the simulation setting with no mediation 

(𝑎 = 0.4, 𝑏 = 0). The top row contains box plots of the estimates of the indirect effect and 

includes a horizontal reference line for the true indirect effect 𝑎𝑏	 = 	0. Points outside the 

whiskers are not displayed for better readability. The bottom row displays the rejection rate of 

the corresponding tests (i.e., the realized size), and a horizontal line is drawn for the nominal 

size 𝛼 = 0.05 (the closer to this line the better). The columns correspond to the four 

investigated settings for error distributions and outliers. 
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Figure 7. Flowchart of practical guidelines for using ROBMED. 
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Appendix 

Technical details 

MM-regression estimator. Consider the linear regression model 

𝑦 = 𝒙*𝜷 + 𝑒, 

where 𝒙 is a (𝑝 + 1)-dimensional random vector with the first component fixed at 1 to 

account for an intercept, and a normally distributed error term 𝑒 ∼ 𝑁(0, 𝜎"). With 

observations (𝑦( , 𝒙(*)* , 𝑖 = 1,… , 𝑛, the MM-estimate (Yohai, 1987) of the regression 

coefficients is defined as 

𝜷S+ = argmin
,

Z𝜌\
𝑟((𝜷)
𝜎I+

^
+

(-!

, 

where 𝜌 is a loss function, 𝑟((𝜷) = 𝑦( − ∑ 𝒙(*𝜷+
(-! , 𝑖 = 1,… , 𝑛, denotes the residuals, and 𝜎I+ 

is the residual scale estimate from a highly robust but inefficient initial robust regression 

estimator. Typically, 𝜎I+ comes from an S-estimator of regression (Rousseeuw & Yohai, 1984; 

Salibián-Barrera & Yohai, 2006), and we use Tukey’s bisquare loss function given by 

𝜌(𝑥) =

⎩
⎨

⎧ 𝑥
.

6𝑐/ −
𝑥/

2𝑐" +
𝑥"

2 , 				if	|𝑥| ≤ 𝑐,

𝑐"

6
, 				if	|𝑥| > 𝑐.

 

This loss function behaves like a quadratic loss for small values of the scaled residuals, but 

flattens out and becomes constant for larger squared residuals, depending on the tuning 

constant 𝑐 (see Figure 2, left). By taking the derivative with respect to 𝜷 and equating to 0, 

the MM-estimator is the solution of 

 Z𝜌′\
𝑟((𝜷)
𝜎I+

^ 𝒙(

+

(-!

= 𝟎. 

 
(4) 

With 

 𝑤( =
𝜌′(𝑟((𝜷)/𝜎I+)
𝑟((𝜷)/𝜎I+

, 	 	 𝑖 = 1,… , 𝑛, (5) 
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the system of equations in (4) can be rewritten as 

 Z𝑤(𝑟((𝜷)𝒙(

+

(-!

= 𝟎, 

 
(6) 

which is a weighted version of the normal equations. Hence, the MM-estimator can be 

viewed as a weighted least-squares estimator with data-driven weights. Due to their definition 

in (5), those weights lie between 0 and 1 and indicate to what extent an observation is 

deviating. That is, observations with small residuals will receive a weight close to 1, while 

observations with large enough residuals will receive weight 0. An illustration of this 

continuous downweighting based on Tukey’s bisquare loss can be found in the right panel in 

Figure 2. Then the solution of the system of equations in (6) can be written as 

𝜷S+ = jZ𝑤(𝒙𝒊𝒙(*
+

(-!

k
1!

Z𝑤(𝒙(

+

(-!

𝑦( . 

Yohai (1987) proved that the MM-estimator 𝜷S+ inherits its robustness from the initial 

residual scale estimate 𝜎I+, and that the efficiency of the estimator can be tuned with the 

constant 𝑐 of Tukey’s bisquare loss function. In this way, high robustness and high efficiency 

can be achieved at the same time. Large values of 𝑐 will increase efficiency, yet even though 

bias due to model deviations can increase to some extent, such a bias will remain bounded 

and cannot become arbitrarily large. Throughout the paper, we use 𝑐 = 3.443689, which 

results in 85% efficiency compared to the OLS estimator (at the model with normally 

distributed errors). 

Fast-and-robust bootstrap. While we present a brief technical overview of the fast 

and robust bootstrap, we refer to Salibián-Barrera & Zamar (2002) and Salibián-Barrera & 

Van Aelst (2008) for complete derivations. For a bootstrap sample l𝑦(∗, 𝒙(∗
*m

*
, 𝑖 = 1,… , 𝑛, we 

can compute 
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𝜷S+∗ = jZ𝑤(∗𝒙(∗𝒙(∗
*

+

(-!

k
1!

Z𝑤(∗𝒙(∗
+

(-!

𝑦(∗, 

where 𝑤(∗ = 𝜌2(𝑟(∗/𝜎I+)/(𝑟(∗/𝜎I+) and 𝑟(∗ = 𝑦(∗ − 𝒙(∗
*𝜷S+ for 𝑖 = 1,… , 𝑛. Here it is important to 

note that the MM-estimates 𝜷S+ and 𝜎I+ are only computed once on the original sample, they 

are not recalculated on each bootstrap sample. Hence, only a weighted least-squares fit on 

each bootstrap sample is necessary to obtain 𝜷S+∗ . The robustness weights 𝑤(∗ are inherited 

from the original sample, hence oversampling of outliers in certain bootstrap samples is not 

an issue. However, there is a loss of variability by not recomputing the robustness weights on 

the bootstrap samples. To overcome this loss of variability, a linear correction of the 

coefficients is applied. With the correction matrix 

𝑲+ = jZ𝜌22(𝑟(/𝜎I+)𝒙(𝒙(*
+

(-!

k
1!

Z𝑤(𝒙(𝒙(*
+

(-!

 

(which only needs to be computed once on the original sample), the fast-and-robust bootstrap 

replicates are given by 

𝜷S+3∗ = 𝜷S+ +𝑲+l𝜷S+∗ − 𝜷S+m. 

As the MM-estimator 𝜷S is consistent for 𝜷 (Yohai, 1987), √𝑛l𝜷S+3∗ − 𝜷S+m has the same 

asymptotic distribution as √𝑛l𝜷S+ − 𝜷m (Salibián-Barrera & Zamar, 2002; Salibián-Barrera & 

Van Aelst, 2008).  

For the mediation model, we propose to use the MM-estimator of regression and the 

fast-and-robust bootstrap methodology to estimate Equations (1) and (2). In this way, we get 

consistent estimates of the respective regression coefficients, as well as the indirect effect 𝑎𝑏, 

and we obtain accurate confidence intervals. 
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Software for ROBMED 

To facilitate the use of our methodology, we provide scholars with freely available 

software. For the open-source statistical computing environment R (R Core Team, 2020), our 

add-on package robmed can be obtained from https://cran.r-project.org/package=robmed 

(including the user manual, examples and sample datasets). In addition to ROBMED, our R 

package also contains code for the OLS bootstrap test, Zu & Yuan's (2010) winsorized 

bootstrap test, Yuan & MacKinnon’s (2014) bootstrap test based on median regression, and a 

bootstrap test based on Azzalini & Arellano-Valle’s (2013) regression estimator with normal, 

skew-normal, t, or skew-t error distributions. An R extension bundle for SPSS (IBM Corp., 

2019), which allows to use our R code for ROBMED from within SPSS, is available from 

https://github.com/aalfons/ROBMED-RSPSS (including instructions on how to install and 

how to use the extension bundle). 

For reporting mediation results, we suggest to stay completely within the bootstrap 

framework. We advocate to use the means of the bootstrap replicates as point estimates for all 

effects (although our software reports the estimates obtained on the full sample as well). 

Consequently, to test significance of the effects other than the indirect effect, we propose 

normal-approximation bootstrap z-tests (using the mean and standard deviation over the 

bootstrap replicates). Nevertheless, our software can also report t-tests for the robust 

coefficient estimates obtained from the full sample. The significance of the indirect effect is 

assessed via a bias corrected and accelerated percentile-based confidence interval (Davison & 

Hinkley, 1997) to account for the asymmetry of its distribution. 

In addition to the coefficient estimates and corresponding significance tests, the 

software reports potential outliers, as well as model summaries for Equations (1) and (2) that 

are the robust counterparts of the usual OLS model summaries. Specifically, we provide a 

robust estimate of the residual standard error (Yohai, 1987), robust estimates of the 𝑅" and 
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adjusted 𝑅" (Renaud & Victoria-Feser, 2010), as well as a robust F-test (Hampel, Ronchetti, 

Rousseeuw, & Stahel, 1986). Note that this robust F-test is an asymptotic test for 𝑛 → ∞. 

Moreover, our diagnostic plot (cf. Figure 4) allows to easily detect deviations from normality 

such as skewness and heavy tails.  

All computations in this article have been performed using R version 3.6.3 and our 

package robmed. For reproducibility, our code for the illustrative empirical case and all our 

simulations is available at https://github.com/aalfons/ROBMED-Reproducibility. 
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1 Wood et al. (2008) reported 63% of studies using OLS regression. We conducted a 

review of articles that empirically test mediation published in Academy of Management 

Journal, Strategic Management Journal, Journal of Applied Psychology, Organization 

Science, and Administrative Science Quarterly in 2019, which confirmed that OLS is still the 

most frequently used method for testing mediation (i.e., in 42 out of 86 studies). The review 

can be accessed in Online Appendix 3 at http://orm.sagepub.com. 

2 There are several definitions of the term heavy-tailed distribution in the statistical 

literature. Our use of the term implies that the mean of the distribution still exists, but that the 

tails of the probability density function are thicker than those of the normal distribution. We 

acknowledge that this colloquial sense of heavy tails is more inclusive and does not adhere to 

the strict technical definitions of the term, which are mostly used in extreme value theory.  

3 This approach, called product of coefficients, is in many cases equivalent to the 

difference in coefficients approach that tests the significance of 𝑐̂′ − 𝑐̂, where 𝑐′ is the total 

effect of 𝑋 on 𝑌 (i.e., not controlling for 𝑀). MacKinnon, Warsi, & Dwyer (1995) show that 

𝑎𝑏 = 𝑐′ − 𝑐 for the mediation model according to Equations (1)–(3), and the same holds for 

the estimates of ordinary least-squares estimation. This identity, however, does not hold for 

multi-level models, logistic and probit regression models, and survival models (MacKinnon, 

Fairchild, & Fritz, 2007), which are beyond the scope of our study. We acknowledge that our 

proposed method can easily be adjusted to bootstrap 𝑐̂′ − 𝑐̂ without major change. 

4 Becker et al.’s (2019) review reports that log-transformations comprise 88% of the 

NLTs they observed in their random sample of 324 articles from 6 top management journals 

from 2012 to 2017.  

5 More information on the aims of robust statistics is given in an essay by 

Morgenthaler (2007) and in a more technical overview by Avella-Medina & Ronchetti 
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(2015). The interested reader can find detailed technical descriptions of commonly used 

robust statistical methods in Maronna et al. (2006). 

6 Note that this definition implies that based on the observed data alone, the data 

analyst typically cannot be certain whether an observation is an outlier or how an outlier was 

generated. This requires further investigation of the data collection procedure that goes 

beyond a quantitative analysis of the observations. 

7 Error outliers and interesting outliers are of a conceptual nature and model-agnostic, 

while influential outliers are model-specific. In their original definitions, Aguinis et al. (2013) 

explicitly exclude error outliers and interesting outliers from being influential outliers. We 

take a divergent standpoint that the former two types can be influential outliers as well, as 

underlined by our two examples. Recognizing that error outliers and interesting outliers can 

be highly influential for traditional statistical methods is important for understanding that 

such methods are not suitable for outlier detection (see also Chapter 4.3 of Maronna et al., 

2006; or Rousseeuw & Hubert, 2018, for a recent overview). 

8 In our earlier mentioned review of recently published articles that empirically test 

mediation, 72 of 86 articles used some form of a bootstrap test, see the Online Appendix 3 at 

http://orm.sagepub.com . 

9 Other researchers on team processes have published findings based on data from this 

game as well (e.g., Mathieu & Rapp, 2009; Boies, Lvina, & Martens, 2010). 

10 We did not include Baron & Kenny’s (1986) causal steps approach, because despite 

being conceptually appealing, it has been severely criticized for its shortcomings including 

increased Type I error (Holmbeck, 2002), and low statistical power (MacKinnon et al., 2002). 

11 For the regression model 𝑀 = 𝑖! + 𝑎𝑋 + 𝑒!, it holds that 𝑎 = 𝜎45/𝜎5" and 𝑖! =

𝜇4 − 𝑎𝜇5, where 𝜇4 and 𝜇5 denote the means of 𝑀 and 𝑋, 𝜎45 is the covariance of 𝑀 and 
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𝑋, and 𝜎5" is the variance of 𝑋. The same relationship holds for the OLS estimates 𝚤̂!	and	𝑎I, 

the sample covariance 𝜎I45 and the sample variance 𝜎I5. 

12 To obtain the robust tolerance ellipse, the weighted sample covariance matrix with 

robustness weights from the MM-estimator of regression is corrected for consistency under 

the model assumptions. This correction is necessary because the MM-estimator also partly 

downweights observations in a mediation model with normally distributed error terms. 

Consequently, the size of the tolerance ellipse would be underestimated without the 

correction. 

13 Note that evaluating the methods by the rejection rate from the two-sided tests 

alone does not provide a meaningful comparison in these simulation settings, as deviations 

from normality can push the estimated indirect effect from a positive one towards a negative 

one. This incorrectly estimated negative indirect effect can be large enough in magnitude to 

reject the null hypothesis of a two-sided test. However, while the sign of the estimated effect 

is negative, the sign of the true effect is positive, which would result in an incorrect 

interpretation of the indirect effect. By taking into account the sign of the estimated indirect 

effect as well, we obtain a better measure of realized power of the tests. 

14 We also ran simulations with various extensions of the design of Zu & Yuan (2010), 

and with the design of Yuan & MacKinnon (2014). The Online Appendix 2 can be accessed at 

http://orm.sagepub.com. 

15 In fact, models including multiple mediators and/or control variables are already 

implemented in our software. Additional models will be added in the future. 


