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Abstract

Many regression problems exhibit a natural grouping among predictor variables. Examples are groups of dummy
variables representing categorical variables, or present and lagged values of time series data. Since model selection
in such cases typically aims for selecting groups of variables rather than individual covariates, an extension of the
popular least angle regression (LARS) procedure to groupwise variable selection is considered. Data sets occurring
in applied statistics frequently contain outliers that do not follow the model or the majority of the data. Therefore
a modification of the groupwise LARS algorithm is introduced that reduces the influence of outlying data points.
Simulation studies and a real data example demonstrate the excellent performance of groupwise LARS and, when
outliers are present, its robustification.
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1. Introduction

In many applications of linear regression, there exists a natural grouping among the predictor variables. One
common example is regression with categorical variables, where each categorical variable is represented by a group
of dummy variables. Another example is regression with time series data, where typically not only the original series
are considered in the model, but also several lags of each series. Furthermore, time series models frequently contain
an autoregressive part, i.e., lags of the response are included as covariates. Such models are commonly referred to
as autoregressive models with exogenous inputs, or ARX models for short. Note that in both situations, groups of
covariates emerge from the measured variables.

With increasing availability of data sets containing a large number of variables, model selection continues to be a
topic of high importance in regression analysis. Linear models that include a large set of variables tend towards having
large variance, often resulting in poor prediction performance. Selecting only the important variables can therefore
improve prediction accuracy. Furthermore, traditional regression methods cannot be applied if the number of variables
is larger than the number of observations due to the rank deficiency of the design matrix.

Whenever the regression problem involves groups of covariates, variable selection methods should select these
groups rather than individual covariates. This ensures that all information of a selected measured variable enters
the model, which is in general not the case when selecting individual covariates (Yuan and Lin, 2006). In addition,
retaining the groupwise structure in submodels allows for better interpretation of the results.

Concerning notation, let n denote the number of observations and p the total number of covariates from m predictor
groups. Moreover, let y = (y1, . . . , yn)′ be the response variable, and X j an (n × p j) matrix corresponding to the j-th
predictor group, j = 1, . . . ,m, with

∑m
j=1 p j = p. The regression problem with grouped predictor variables can then

be written as

y =

m∑
j=1

X jβ j + ε, (1)
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where β j is a coefficient vector of size p j, j = 1, . . . ,m, and ε = (ε1, . . . , εn)′ are the random error terms. Our aim is
to find a subset J ⊆ {1, . . . ,m} of the important predictor groups such that only those are included in the regression
model, which is equivalent to setting the coefficient vectors β j with j < J in (1) to zero vectors.

In the traditional variable selection setting with all p j = 1, a considerable amount of research has been done. Pop-
ular methods are the least absolute shrinkage and selection operator (lasso; Tibshirani, 1996), least angle regression
(LARS; Efron et al., 2004), and the nonnegative garrote (Breiman, 1995). All three methods have been adjusted by
Yuan and Lin (2006) to handle grouped variables. Zhao et al. (2009) introduced a family of composite absolute penalty
functions for grouped and hierarchical variable selection via penalized regression. Furthermore, a groupwise version
of the lasso for logistic regression was developed by Meier et al. (2008). Breheny and Huang (2009) follow a different
philosophy and introduced a penalized regression framework for bi-level variable selection with grouped variables,
i.e., their method first selects the important groups of variables and then the important variables within those groups.
Nevertheless, none of these contributions consider the problem of outlying data points. While many robust methods
for model selection in the traditional setting are available (e.g. Ronchetti et al., 1997; Khan et al., 2007; McCann and
Welsch, 2007; Salibian-Barrera and Van Aelst, 2008; Khan et al., 2010; Alfons et al., 2011, 2013), almost no work has
been done on robust groupwise variable selection. Chen et al. (2010) apply a more robust version of the groupwise
lasso based on a convex combination of L1 and L2 loss functions. However, their procedure is only robust against
heavily-tailed errors, but not against leverage points, i.e., outliers in the predictor space.

This paper focuses on the LARS procedure, which produces a sequence of variables in the order of their pre-
dictive content. Khan et al. (2007) point out that only correlations are required for variable sequencing with LARS
and propose robustified versions of LARS, referred to as RLARS. While those authors express LARS in terms of
correlations, we propose to use an extension of LARS to grouped variables that is formulated in terms of R2 measures
from short regressions. Here the term short regressions refers to regressions that use only one of the predictor groups.
As the groupwise LARS approach is sensitive to outliers, we propose a robustification of the procedure such that the
influence of outliers is reduced. We focus on sequencing the groups of variables, i.e., obtaining a sequence of groups
in the order of their importance that can be further investigated for model selection and estimation.

The rest of the paper is organized as follows. Groupwise LARS is discussed in Section 2. Its robustification is then
introduced in Section 3. Simulation studies are performed in Section 4, and Section 5 contains a real data example.
Finally, Section 6 concludes. Proofs and technical details on the algorithms can be found in the appendix.

2. Groupwise least angle regression

First, we review the idea of least angle regression (LARS) in the traditional setting with non-grouped variables. It
proceeds in the following stepwise fashion (for details on the LARS algorithm, see Efron et al., 2004):

First step. Find the predictor with the highest correlation to the response and add it to the set of active predictors.

(k + 1)-th step. Move along the equiangular direction among all active predictors until a new predictor has equal
correlation with the current residual, and add that predictor to the active set. The key to the algorithm is that this step
size can easily be computed.

We generalize LARS by reformulating it in terms of R2 measures from short regressions. A short regression has
only the variables belonging to one single group as covariates, hence it has a limited number of regressors. This is
in contrast to the full regression, where all covariates are included. If p is large with respect to n, short regressions
can be carried out, while the full regression may not. Our approach is similar to the groupwise LARS algorithm of
Yuan and Lin (2006), but our algorithm allows for more groups to be sequenced. The key steps of the groupwise
LARS algorithm are discussed in the following. A complete schematic overview of the algorithm including technical
details is given in the appendix. Let z0 be the standardized response and X j, j = 1, . . . ,m, the groups of standardized
covariates such that all variables have zero mean and unit variance. Furthermore, let R2(z ∼ X) denote the R2 measure
of least squares regression of the vector z on the variables given by the columns of the matrix X, let A denote the
active set, i.e., the index set of the sequenced predictor groups, and let the complement Ac denote the inactive set, i.e.,
the index set of the not yet sequenced predictor groups.
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First step. Find the predictor group with the largest R2 measure

R2(z0 ∼ X j), j = 1, . . . ,m, (2)

and add its index to the active set A.

(k + 1)-th step. At the beginning of the (k + 1)-th step, k ≥ 1, the active set A contains the indices of the k first ranked
predictor groups X(1), . . . , X(k). Let the current response be denoted by zk−1, and let x̃(l) be the standardized vector of
fitted values of regressing zl−1 on X(l), l = 1, . . . , k. The idea of the (k + 1)-th step is to move along the equiangular
direction among the predictor groups until a new group with equal R2 enters the model. The equiangular vector uk is
defined as the standardized vector having equal correlation with all of the vectors x̃(1), . . . , x̃(k) and is easy to compute
(see, e.g., Khan et al., 2007). Let this correlation be denoted by

ak = cor(uk, x̃(1)) = . . . = cor(uk, x̃(k)). (3)

Then the response is updated by moving along the direction of the equiangular vector:

zk =
zk−1 − γkuk

σk
with σ2

k = var(zk−1 − γkuk). (4)

Note that we scale the response in each step to unit variance to simplify the calculations. The shrinking factor γk is
thereby chosen as the smallest positive solution such that it holds for a predictor group X j with j ∈ Ac that

R2(zk−1 − γkuk ∼ x̃(k)) = R2(zk−1 − γkuk ∼ X j). (5)

Condition (5) is a generalization of the equi-correlation condition of the LARS procedure developed by Efron et al.
(2004). In standard LARS, individual variables are added one by one. In this case, the R2 in (5) reduces to a squared
correlation between the response and the corresponding covariate, and the resulting equation is trivial to solve. In
groupwise LARS, a whole group of variables is added in each step, which makes solving (5) more complex. In the
appendix, we prove the following lemma.

Lemma 1. In the (k + 1)-th step of the groupwise LARS algorithm, for every k ≥ 1, the following statements hold.

(a) The current response zk−1 has equal and positive correlation with all x̃(1), . . . , x̃(k):

rk = cor(zk−1, x̃(1)) = . . . = cor(zk−1, x̃(k)) ≥ 0. (6)

(b) For every j ∈ Ac, it holds that R2(zk−1 ∼ X j) ≤ r2
k .

(c) For every j ∈ Ac, the solution γk to (5) verifies 0 ≤ γk ≤ rk/ak.

From the above lemma, equation (6), it follows that x̃(k) on the left hand side of (5) is an arbitrary choice and can be
replaced by any other x̃(l), l = 1, . . . , k. For a convenient way of solving the generalized equi-correlation condition (5),
let ẑ j

k−1 and û j
k denote the fitted values of least squares regression of zk−1 and uk, respectively, on X j for j ∈ Ac. In the

appendix, we show that solving equation (5) is equivalent to solving the following quadratic equation in γk:

(r2
k − r2

k, j) + 2(rk, jak, j − rkak)γk + (a2
k − τ

2
k, j)γ

2
k = 0, (7)

where

rk, j = cor(zk−1, ẑ j
k−1), (8)

ak, j = cor(uk, ẑ j
k−1), (9)

τk, j = cor(uk, û
j
k). (10)
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We know from Lemma 1 that the equivalent conditions (5) and (7) always have a positive solution for all j ∈ Ac. The
index corresponding to the smallest positive solution over all j ∈ Ac is added to the active set. With step size γk now
determined, the response can be updated as in (4) to conclude the (k + 1)-th step.

A potential problem with the procedure outlined above is that large predictor groups consume more degrees of
freedom. They therefore tend to have larger R2 and consequently tend to be selected by the generalized equiangular
condition (5). Inspired by Yuan and Lin (2006), groupwise LARS can easily be adjusted for unequal group sizes p j.
The first selected predictor group is obtained by maximizing

R2(z0 ∼ X j)/p j, j = 1, . . . ,m. (11)

and the equiangular condition is adjusted to

R2(zk−1 − γkuk ∼ x̃(k))/p(k) = R2(zk−1 − γkuk ∼ X j)/p j. (12)

Other scalings are possible as well, but the proposed scaling is chosen for reasons of interpretation. With this adjust-
ment, the procedure does not consider the total explained variance that a predictor group adds to the model, but the
explained variance per covariate in the group. Hence it avoids favoring groups with a large number of variables. For
the quadratic equation (7), the quantities rk, ak, rk, j, ak, j and τk, j change to

rk = cor(zk−1, x̃(1))/
√

p(1) = . . . = cor(zk−1, x̃(k))/
√

p(k) ≥ 0, (13)
ak = cor(uk, x̃(1))/

√
p(1) = . . . = cor(uk, x̃(k))/

√
p(k), (14)

rk, j = cor(zk−1, ẑ j
k−1)/

√
p j, (15)

ak, j = cor(uk, ẑ j
k−1)/

√
p j, (16)

τk, j = cor(uk, û
j
k)/
√

p j. (17)

With these adjustments, Lemma 1 and equation (7) still hold. The proofs follow exactly the same lines as the ones
given in the appendix for the unadjusted case. It is important to note that (14) implies a definition of the equiangular
vector uk such that the correlations are adjusted for the respective group sizes. The computation of uk with this
adjustment is described in the appendix.

Our procedure differs from the method proposed by Yuan and Lin (2006) in the construction of the equiangular
vector. We only use the standardized fitted values from short regressions once a predictor group enters the active set.
Yuan and Lin (2006), on the other hand, compute the equiangular vector between all covariates of the active groups.
The latter approach has the advantage that coefficient estimates can be accurately computed along the coefficient path,
leading to the least squares solution after the final step (if n > p). The advantage of our approach is that it can sequence
as many groups as there are observations, while the approach of Yuan and Lin (2006) is limited to as many individual
covariates as there are observations. Since our approach is focused on sequencing the candidate predictor groups,
model selection is achieved in a two-step procedure. First, a sequence of the predictor groups is obtained. Second,
submodels along the sequence are investigated. By adding the grouped variables one by one to a series of least squares
regression models, the final model can be determined via an optimality criterion such as the BIC (Schwarz, 1978), or
by estimating prediction performance via cross-validation. Such a two-step approach is also proposed by Khan et al.
(2007) in their robustification of the traditional LARS algorithm.

3. Robust groupwise least angle regression

Robust groupwise LARS combines ideas of the groupwise LARS algorithm from the previous section and the
robust LARS procedure by Khan et al. (2007) for the traditional variable selection setting. Khan et al. (2007) propose
two variants of robust LARS: plug-in robust LARS and data cleaning robust LARS. In the plug-in approach, the
classical building blocks of the algorithm (means, standard deviations and correlations) are replaced by robust coun-
terparts. The data cleaning approach, on the other hand, uses multivariate winsorization to clean the data first, after
which classical LARS is applied to the cleaned data. Plug-in robust LARS has the advantage that it can be applied to
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high-dimensional data and that computation time scales with the number of sequenced variables. Data cleaning LARS
requires more observations than variables and the data cleaning step dominates computation time. Nevertheless, the
numerical experiments of Khan et al. (2007) suggest that the data cleaning approach in some situations performs better
than the plug-in approach.

Unfortunately, such a plug-in approach leads to severe computational problems in the case of grouped variables.
Groupwise LARS relies heavily on the properties of the classical estimators to ensure that the quadratic equation (7)
always has a positive solution. When least squares regression and correlations are replaced by robust counterparts,
this cannot be guaranteed anymore. In the traditional case of selecting individual variables, only a linear equation
needs to be considered. Even though the theoretical properties leading to that equation do not hold anymore if the
classical estimators are replaced by robust counterparts, there is still always a solution. Hence plug-in robust LARS
in the traditional setting does not suffer from the same problem as in the groupwise setting.

As a consequence, we focus on a data cleaning approach for robust groupwise LARS, by applying the algorithm
from Section 2 to a cleaned data set. While Khan et al. (2007) use multivariate winsorization to clean the data, this is
not practical for grouped variables. For instance, winsorization is problematic in the case of categorical data as it is
based on the assumption of a normal distribution.

To motivate our data cleaning method, keep in mind that the algorithm is formulated in terms of short regressions
of the current response zk−1 and the equiangular vector uk on predictor groups X j. In addition, the equiangular vector
uk is a linear combination of the vectors x̃(1), . . . , x̃(k), which are standardized fitted values from short regressions in the
steps carried out so far. Suppose that the data are cleaned such that the fitted values ẑ j

0 do not deviate too much from
the majority of the data for all j = 1, . . . ,m. Then due to the definition of zk the elements of the vectors ẑl

k for k > 0
behave like the majority of the data as well, and the influence of the outliers on the result remains by construction
limited in the further steps of the algorithm.

The aim of our data cleaning approach is to find a set of weights such that multiplying each observation with the
corresponding weight results in a data set that behaves like the majority of the data. We can leverage the fact that
certain robust regression methods can be interpreted as weighted least squares methods with data-dependent weights.
In the case of robust groupwise LARS, let z = (z1, . . . , zn)′ denote the robustly standardized response (e.g., using
median and median absolute deviation), and let X j denote the groups of robustly standardized predictor variables for
j = 1, . . . ,m. In addition, let x1 j, . . . , xn j denote the p j-dimensional observations of X j (i.e., the rows). For instance,
MM-regression (Yohai, 1987; Maronna et al., 2006) of z on X j then solves the problem

β̂ j = arg min
β j

n∑
i=1

ρ

( ri j(β j)

σ̂ j

)
, (18)

where ri j(β j) = zi − x′i jβ j denotes the residuals, ρ(.) is a bounded loss function, and σ̂ j is a robust scale estimate of
the residuals from a robust but inefficient S-estimator. If ρ is differentiable, its derivative ψ = ρ′ can be used to define
weights

ωi j =
ψ

(
ri j(β j)/σ̂ j

)
ri j(β j)/σ̂ j

, i = 1, . . . , n, (19)

such that weighted least squares regression of z on X j with weightsω j = (ω1 j, . . . , ωn j)′ yields the same results. Equiv-
alently, least squares regression with response z∗j = (√ω1 jz1, . . . ,

√
ωn jzn)′ and predictors X∗j = (√ω1 jx1, . . . ,

√
ωn jxn)′

can be performed.
Thus data cleaning weights √ω1 j, . . . ,

√
ωn j can be obtained by such robust regressions for each predictor group

X j. However, this would result in a different cleaned response z∗j for each cleaned predictor group X∗j . As a remedy, a
set of weights ω = (ω1, . . . , ωn)′ for the whole data set can be defined by

ωi = min
j∈{1,...,m}

√
ωi j, i = 1, . . . , n. (20)

The algorithm for groupwise LARS from Section 2 can then be applied to the cleaned data y∗ = (ω1z1, . . . , ωnzn)′

and X∗j = (ω1x1 j, . . . , ωnxn j)
′, j = 1, . . . ,m. The data are cleaned such that the fitted values from the initial short

regressions behave like the majority of the data, avoiding a strong influence of outliers by construction. Furthermore,
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since the weights are based on robust short regressions for each predictor group, the procedure can also be applied to
high-dimensional data.

Another strategy for cleaning the data is to obtain weights based on Mahalanobis distances of the multivariate set
of standardized residuals from the robust short regressions. Let V̂ denote a robust correlation matrix of the matrix
of standardized residuals S =

(
si j

)
1≤i≤n,1≤ j≤m

with si j = ri j(β j)/σ̂ j. Then a set of weights ω = (ω1, . . . , ωn)′ can be
obtained by

ωi = min


√

c

s′iV̂
−1si

, 1

 , i = 1, . . . , n, (21)

where si = (si1, . . . , sim)′. This weighting scheme generalizes the data cleaning robust LARS proposed by Khan et al.
(2007) in the traditional variable selection setting. Concerning the correlation matrix V̂ and the tuning constant c, the
proposals of Khan et al. (2007) are reasonable choices. That is, the elements of V̂ are computed pairwise via bivariate
winsorization, after which positive-definiteness is restored if necessary, and c is set to the 95% quantile of the χ2

m
distribution with m degrees of freedom. However, a drawback of this method is that the number of observations must
be larger than the number of predictor groups m, otherwise the robust correlation matrix V̂ cannot be inverted.

This restriction can be circumvented by using the Euclidean distance instead of the Mahalanobis distance, i.e., by
disregarding the correlations between the standardized residuals. Literature on other applications of high-dimensional
data analysis shows that imposing a diagonal covariance or correlation matrix can lead to good results (e.g. Dudoit
et al., 2001; Tibshirani et al., 2003; Witten et al., 2009). In this case, the data cleaning weights ω = (ω1, . . . , ωn)′ are
defined as

ωi = min
(√

c
s′isi

, 1
)
, i = 1, . . . , n. (22)

The tuning constant c can be chosen in the same way as the 95% quantile of the χ2
m distribution.

In the remainder of the paper, the abbreviation GrpLARS is sometimes used for groupwise LARS. The three
proposed methods for robust groupwise LARS are referred to as RGrpLARS-min (for taking the minimum weight
from robust short regressions), RGrpLARS-ED (for weights based on Euclidean distances) and RGrpLARS-MD (for
weights based on Mahalanobis distances).

4. Simulation studies

In this section, we assess the performance of our groupwise LARS procedures by means of simulation. The final
models are obtained by fitting least squares and MM-regression along the respective sequence of predictor groups,
and choosing the respective optimal model via BIC. Let Ak denote the set of the first k sequenced groups. Then the
BIC for the MM-regression model using the subset of predictor groups given by Ak can be written as

BIC(Ak) = log σ̂Ak + df(Ak)
log(n)

n
, (23)

where σ̂Ak denotes the corresponding residual scale estimate from the initial S-estimator, and df(Ak) are the degrees of
freedom of the model (i.e., the number of estimated coefficients). Furthermore, the loss function ρ for MM-regression
is chosen to be Tukey’s bisquare function tuned towards 95% efficiency.

We evaluate the performance of robust and classical groupwise LARS by comparing them to plug-in RLARS and
data cleaning RLARS (Khan et al., 2007), as well as classical LARS (Efron et al., 2004). As for robust groupwise
LARS, the final RLARS models are obtained by fitting MM-regression models along the respective sequences and
computing the BIC based on the corresponding residual scale estimate, except that variables are of course added
individually to the model. Classical LARS, on the other hand, computes the coefficient path leading to the least
squares solution of the full model. Submodels along each step of the coefficient path are evaluated via BIC. Note that
the degrees of freedom of a model in the LARS path are well approximated by the number of non zero coefficients
(see Efron et al., 2004).

The simulations are performed in R (R Development Core Team, 2014) with package simFrame (Alfons et al.,
2010; Alfons, 2014b), which is a general framework for simulation studies in statistics. Moreover, robust and classical
groupwise LARS, as well as robust LARS, are implemented in the R package robustHD (Alfons, 2014a), while
classical LARS is available in package lars (Hastie and Efron, 2013).
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4.1. Data configurations

Two data configurations are investigated in the simulation study. The first configuration corresponds to a model
with numerical and categorical predictors, the second to a time series model. For each data configuration, we perform
R = 1000 simulation runs.

4.1.1. Numerical and categorical data
First we generate latent variables f 1, . . . , f 20 and w independently from a standard normal distribution N(0, 1).

Then we define predictors x j = ( f j +w)/
√

2, j = 1, . . . , 20. Finally, the last 10 variables x11, . . . , x20 are trichotomized
as −1, 1 or 0 if they are smaller than Φ−1( 1

3 ), larger than Φ−1( 2
3 ) or in between. There are 10 groups containing the

linear and quadratic terms of the numerical predictors, as well as 10 groups of two dummy variables representing the
categorical predictors, resulting in a total of 40 individual candidate predictor variables. We generate the response y
from the model

y = x3 + x2
3 +

2
3

x6 − x2
6 + 2I(x11 = −1) + I(x11 = 1) + σε, (24)

where I(.) is the indicator function, ε ∼ N(0, 1) and σ = 2. The number of relevant groups of variables is thus equal
to three. The number of observations is set to n = 100. This data configuration is similar to model IV from Yuan and
Lin (2006).

We consider the following contamination scenarios:

1. No contamination.

2. Vertical outliers: 10% of the error terms ε are generated from a normal distribution N(20, 1) instead of N(0, 1).

3. Independent normal leverage points: 10% of the observations are generated as follows. Outliers in the numerical
predictors x1, . . . , x10 are drawn from independent normal distributions N(µ, σ2) with µ = 3 and σ = 0.01.
Denoting such a leverage point by x̃i = (x̃i,1, . . . , x̃i,10, xi,11, . . . , xi,20)′, we generate the value of the response as

ỹi = −0.5
[∑10

j=1(x̃i j + x̃2
i j) +

∑20
j=11(I(xi j = −1) + I(xi j = 1))

]
. (25)

Thus the model for the leverage points is very different from the true regression model (24).

4. Multivariate normal leverage points: 10% of the observations are generated as follows. Outliers in the nu-
merical predictors x1, . . . , x10 are drawn from a multivariate normal distribution N(µ,Σ) with µ = (1, . . . , 1)′

and an ill-conditioned covariance matrix Σ. Starting with a positive-definite matrix Σ0 = (0.5|i− j|)1≤i, j≤p, we
first compute the Eigendecomposition Σ0 = ΓΛ0Γ

′, and then construct the ill-conditioned covariance matrix as
Σ = ΓΛΓ′ with Λ = diag(100, 0.01, . . . , 0.01). Finally, we generate the values of the response as in (25).

We considered alternative contamination scenarios as well. As such, we generated large outliers in predictors not
contributing to the regression model. This creates good leverage points, and the predictor will not enter the active set
in the early steps, as it should be. This type of contamination is pretty harmless, even for the non-robust methods.
Furthermore, we generated outliers in such a way that they were not detected in the short regressions, but still appeared
as vertical outliers in the full model. The RGrpLARS method can still handle this type of outliers to a certain extent,
and performs better than the other methods. The reason is that this type of outliers does not distort the sequencing of
the predictors too much, and the MM-estimator applied on the selected groups is restoring the robustness.

4.1.2. Time series
In the time series case, we generate the data from an ARX(2,2) model

yt+1 = α + β0,0yt + β0,1yt−1 +

m∑
j=1

β j,0xt, j +

m∑
j=1

β j,1xt−1, j + εt+1 (26)

with i.i.d. standard normal error terms εt+1. The length of time series is set to T = 100 and the number of exogenous
predictors xt, j is set to m = 150, resulting in three times as many individual covariates than observations. Moreover,
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the regression coefficients are given by β0,0 = 0.4, β0,1 = 0.2, β1,0 = β3,0 = 1, β1,1 = β3,1 = 0.5, β2,0 = β4,0 = −1,
β2,1 = β4,1 = −0.5, as well as β j,0 = β j,1 = 0 for j = 5, . . . ,m. In order to generate serial correlations and cross-
correlations among the exogenous candidate predictors xt, j, they are generated from latent dynamic factors. To be
more specific, we generate the latent dynamic factor f t with l = 2 components by a VAR(1) model with common
scalar autoregressive parameter θ as

f t = θ f t−1 + ut, (27)

where ut is i.i.d. l-dimensional standard normal. Furthermore, the choice of θ = 0.8 results in strong serial correlations.
Then we obtain the exogenous candidate predictors xt, j from

xt, j = f ′tλ j,0 + f ′t−1λ j,1 + εt, j, j = 1, . . . ,m. (28)

To generate cross-correlations between the predictor series, the elements of the l-dimensional factor loadings λ j,0 and
λ j,1 are drawn from a uniform distribution U(0, 0.5).

Concerning contamination, we consider both additive outliers and innovation outliers:

1. No contamination.

2. Innovation outliers: 5% of the error terms εt+1 are generated from a normal distribution N(0, σ2) with σ = 30
instead of N(0, 1).

3. Additive outliers: 5% of the responses yt+1 are replaced by values drawn from a normal distribution N(0, σ2)
with σ = 30.

Note that an innovation outlier in the response is only problematic at the time point of its occurrence. In the consecutive
two observations, it is used in the respective lagged predictor to construct the values of the response, therefore having
a good leverage effect. An additive outlier in the response, on the other hand, also appears as a bad leverage point in
the following two observations due to the autoregressive part of the series.

4.2. Performance measures

First, we evaluate the performance of the methods with respect to sequencing by recall curves, which plot the num-
ber of target variables among the first k sequenced variables, with k ranging from 1 to the total number of sequenced
variables. A target variable has a non-zero coefficient in the regression function. The steeper the curve approaches the
total number of target variables, the better. For comparison, we include recall curves for the oracle estimator, which
sequences all target variables before any other variables.

Second, we investigate the prediction performance of the final models since the aim of variable selection is to
improve prediction accuracy. For the numerical and categorical data, the estimators are evaluated by the root mean
squared prediction error (RMSPE). In each simulation run, we generate n additional observations as test data for this
purpose. Then the RMSPE is given by

RMSPE(β̂) =

√√
1
n

n∑
i=1

(
yr

i − xr
i
′β̂

)2
, (29)

where yr
i and xr

i , i = 1, . . . , n, denote the observations of the response and predictors in the test data from the r-th
simulation run. Finally, we report the average RMSPE over all R simulation runs. For the time series data, we
evaluate the out-of-sample predictions via the root mean squared forecast error (RMSFE) at horizon h

RMSFEh =

√√√
1
R

R∑
r=1

(
yr

T+h − ŷr
T+h

)2
, (30)

where R denotes the number of simulation runs, yr
T+h is the realized out-of-sample observation at horizon h in the

r-th simulation run, and ŷr
T+h is the corresponding h-step-ahead forecast. For both data configurations, we compute
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Figure 1: Recall curves for the numerical and categorical data: no contamination (top left), vertical outliers (top right), independent normal leverage
points (bottom left) and multivariate normal leverage points (bottom right). The contamination level ε = 0.1 is used in the latter three plots.

the respective prediction performance measure for the oracle estimator, which uses the true coefficient values β, as a
benchmark for the evaluated methods.

Concerning variable selection, we evaluate the obtained models by the false positive rate (FPR) and the false
negative rate (FNR). A false positive is a coefficient that is zero in the true model, but is estimated as nonzero.
Analogously, a false negative is a coefficient that is nonzero in the true model, but is estimated as zero. In mathematical
terms, the FPR and FNR are defined as

FPR(β̂) =
|{ j ∈ {1, . . . , p} : β̂ j , 0 ∧ β j = 0}|
|{ j ∈ {1, . . . , p} : β j = 0}|

, (31)

FNR(β̂) =
|{ j ∈ {1, . . . , p} : β̂ j = 0 ∧ β j , 0}|
|{ j ∈ {1, . . . , p} : β j , 0}|

. (32)

Both FPR and FNR are averaged over all simulation runs, and should be as small as possible for reliable model
selection.

4.3. Simulation results
In this section, the simulation results for the different data configurations and contamination settings are discussed

in detail.

4.3.1. Numerical and categorical data
Figure 1 (top left) shows the recall curves for the case without contamination. All groupwise variable selection

methods perform almost as well as the oracle with respect to sequencing the important predictor variables. Differences
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Table 1: Results for the numerical and categorical data from 1000 simulation runs. Methods are evaluated by the false positive rate (FPR), the false
negative rate (FNR) and the root mean squared prediction error (RMSPE).

Independent normal Multivariate normal
No contamination Vertical outliers leverage points leverage points

Method FPR FNR RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR RMSPE

RGrpLARS-min 0.08 0.13 2.25 0.04 0.18 2.25 0.04 0.18 2.24 0.05 0.16 2.27
RGrpLARS-ED 0.09 0.13 2.26 0.04 0.18 2.25 0.04 0.20 2.25 0.05 0.16 2.27
RGrpLARS-MD 0.08 0.11 2.24 0.04 0.20 2.26 0.07 0.44 2.63 0.06 0.22 2.37
GrpLARS 0.02 0.08 2.14 0.02 0.95 5.50 0.21 0.67 7.62 0.19 0.64 5.76
Plug-in RLARS 0.13 0.27 2.36 0.08 0.40 2.46 0.12 0.50 2.59 0.11 0.40 2.54
Cleaning RLARS 0.12 0.26 2.34 0.08 0.59 2.65 0.06 0.85 3.06 0.13 0.61 2.83
LARS 0.11 0.25 2.31 0.01 0.98 5.04 0.33 0.66 6.57 0.37 0.61 5.14
Oracle 2.00 2.00 1.99 2.00

among the curves for the methods that select individual variables are small as well, but those methods clearly perform
worse than the groupwise methods. When vertical outliers are introduced (Figure 1, top right), the three approaches
for RGrpLARS do not lose much of their sequencing power. They outperform RLARS, where the plug-in approach
in turn performs much better than the cleaning approach. As expected, GrpLARS and LARS are highly influenced by
the outliers and give the worst results. In the presence of leverage points (Figure 1, bottom row), RGrpLARS-min and
RGrpLARS-ED remain close to the oracle, but RGrpLARS-MD no longer performs so well in the case of independent
normal leverage points. Also the difference between plug-in RLARS and cleaning RLARS is considerably larger than
in the case with vertical outliers.

The results on FPR, FNR and RMSPE are shown in Table 1. Without contamination, the robust methods in general
exhibit slightly higher FPR and RMSPE than their classical counterparts. Clearly, GrpLARS performs best with
respect to all three measures. The different weighting methods for RGrpLARS yield very similar results and perform
well. Differences between LARS and RLARS are small, but in particular the FNR is larger than for the groupwise
methods. With vertical outliers, RGrpLARS now outperforms the other methods. The different weighting methods
thereby again give very similar results. RLARS also yields good prediction performance, but suffers from a large FNR.
LARS and GrpLARS even exhibit an FNR close to 1, resulting in poor prediction performance. In the two settings
with leverage points, the performance of RGrpLARS-min and RGrpLARS-ED is virtually unchanged and remains the
best. For independent normal leverage points, FNR and RMSPE of RGrpLARS-MD increase considerably. Plug-in
RLARS in this case performs similar to RGrpLARS-MD, but somewhat worse for multivariate normal leverage points.
In both cases, plug-in RLARS gives better results than cleaning RLARS. LARS and GrpLARS yield lower FNR but
higher FPR than in the case with vertical outliers, in total further increasing their RMSPE.

To summarize, RGrpLARS outperforms its competitors, with RGrpLARS-min and RGrpLARS-ED being prefer-
able as they remain stable also in the case of leverage points.

4.3.2. Time series
For the time series data, keep in mind that the number of predictor groups exceeds the number of observations,

hence RGrpLARS-MD and cleaning RLARS cannot be applied.
Recall curves for the data without contamination are displayed in Figure 2 (left). While the groupwise methods

perform very well, LARS and RLARS fail to sequence all target variables. Note also that the curves of LARS and
RLARS are shorter than the ones of their groupwise counterparts. The reason is that the number of steps is limited by
the number of observations in the high-dimensional case, and the groupwise methods in each step add a whole group
of variables to the sequence. In the setting with innovation outliers (Figure 2, center), RGrpLARS stays rather close
to the oracle. Surprisingly, RLARS barely outperforms GrpLARS and LARS. The situation is similar for additive
outliers (Figure 2, right), except that the sequencing power is now somewhat lower for RGrpLARS-ED than for
RGrpLARS-min. Furthermore, RLARS performs better than in the case of innovation outliers.
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Figure 2: Recall curves for the time series data: no contamination (left), innovation outliers (center) and additive outliers (right). Contamination
level ε = 0.05 is used in the latter two plots.

Table 2: Results for the time series data from 1000 simulation runs. Methods are evaluated by the average false positive rate (FPR), the average
false negative rate (FNR) and the root mean squared forecast error (RMSFE).

No contamination Innovation outliers Additive outliers
Method FPR FNR RMSFE FPR FNR RMSFE FPR FNR RMSFE

RGrpLARS-min 0.04 0.03 1.38 0.04 0.05 1.38 0.04 0.09 1.51
RGrpLARS-ED 0.05 0.03 1.39 0.05 0.06 1.45 0.05 0.24 1.97
GrpLARS 0.02 0.01 1.23 0.01 0.73 3.92 0.01 0.88 4.48
Plug-in RLARS 0.05 0.37 1.55 0.03 0.51 1.64 0.03 0.41 1.57
LARS 0.03 0.38 1.49 0.01 0.82 3.47 0.00 0.94 4.06
Oracle 1.03 1.04 0.98

Table 2 contains the results on FPR, FNR and RMSFE. When there is no contamination, GrpLARS yields the
best forecast performance, with RGrpLARS being in second place. In addition, FPR and FNR are close to 0 for the
groupwise methods. LARS and RLARS, on the other hand, have somewhat higher RMSFE than their groupwise
counterparts due to a considerably higher FNR. When innovation outliers are introduced, the results for RGrpLARS
barely change. RGrpLARS now outperforms the other methods, followed by RLARS. LARS and GrpLARS exhibit a
very high FNR, yielding poor forecast performance. With additive outliers, RGrpLARS is still the best with respect to
all three performance measures, although the RMSFE slightly increased. Also RLARS remains stable and performs
well. For LARS and GrpLARS, there is a further increase in FNR (which is now close to 1) and RMSFE.

Again, RGrpLARS clearly outperforms the other methods. RGrpLARS-min thereby shows somewhat higher
sequencing power than RGrpLARS-ED in the presence of additive outliers.

5. Real data example

As real data example, we use information on cars that we scraped from the website of the popular BBC television
show Top Gear (http://www.topgear.com/uk/). The data set is included in the R package robustHD (Alfons,
2014a) and contains n = 242 complete observations on m = 29 numerical and categorical variables. There are 4
categorical variables with two possible outcomes, and 12 categorical variables having three levels. A description of

11



Table 3: Description of the Top Gear car data.

Variable Description Possible outcomes

MPG Fuel consumption (in miles per gallon)
Fuel Type of fuel Diesel Petrol
Price List price (in UK pounds)
Cylinders Number of cylinders in the engine
Displacement Displacement of the engine (in cc)
DriveWheel Type of drive wheel 4WD Front Rear
BHP Power of the engine (in bhp)
Torque Torque of the engine (in lb/ft)
Acceleration Time from 0 to 62 mph (in seconds)
TopSpeed Top speed (in mph)
Weight Curb weight (in kg)
Length Length (in mm)
Width Width (in mm)
Height Height (in mm)
AdaptiveHeadlights Whether the car has adaptive headlights no optional standard
AdjustableSteering Whether the car has adjustable steering no standard
AlarmSystem Whether the car has an alarm system no/optional standard
Automatic Whether the car has an automatic transmission no optional standard
Bluetooth Whether the car has bluetooth no optional standard
ClimateControl Whether the car has climate control no optional standard
CruiseControl Whether the car has cruise control no optional standard
ElectricSeats Whether the car has electric seats no optional standard
Leather Whether the car has a leather interior no optional standard
ParkingSensors Whether the car has parking sensors no optional standard
PowerSteering Whether the car has power steering no standard
SatNav Whether the car has a satellite navigation system no optional standard
ESP Whether the car has ESP no optional standard
Verdict Review score
Origin Origin of the car maker Asia Europe USA

the variables is provided in Table 3. We use variable MPG (fuel consumption) as the response and the remaining
variables as predictors. The resulting design matrix consists of 12 numerical variables, 4 individual dummy variables,
and 12 groups of two dummy variables each, giving a total of 40 individual covariates. Note that we log-transform
the variable Price (list price) to remove skewness.

We apply the same methods as in the simulations and use the same strategies to select the final models. In Table 4,
the selected predictors for each method are listed in the order that they are sequenced. The three approaches for
RGrpLARS yield very similar sequences, with RGrpLARS-Min and RGrpLARS-ED even producing the same final
model. RGrpLARS-MD only differs in that it does not include variable Width. All selected variables seem reasonable
in the context of fuel consumption, making interpretation easy. The GrpLARS model, on the other hand, is rather
small and omits some variables that seem important in the context (e.g., BHP, Weight, Acceleration). Thus GrpLARS
may be influenced by outliers in the data. The model selected by Plug-in RLARS appears to make more sense, but
keeps only one dummy variable for the predictor group DriveWheel. Furthermore, cleaning RLARS and LARS both
include many variables that seem difficult to interpret and are therefore not further discussed.

Concerning outlier detection, Figure 3 (left) shows a regression diagnostic plot (Rousseeuw and van Zomeren,
1990) of the final model obtained via RGrpLARS-min. It reveals three clear outliers: BMW i3 (observation 40),
Chevrolet Volt (observation 53) and Vauxhall Ampera (observation 216). All three are electric cars with an additional
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Table 4: Top Gear car data: predictors in the final models for the response variable MPG (fuel consumption), in the order that they are sequenced.
For the groupwise methods, we report the selected predictor groups by the names of the underlying original variables. For the methods selecting
individual covariates, we use the indicator function notation I(.) to report dummy variables.

Methods Predictors in the final model

RGrpLARS-min BHP, Displacement, Acceleration, Fuel, Weight, DriveWheel, Width, Height, TopSpeed
RGrpLARS-ED BHP, Displacement, Acceleration, Weight, Fuel, DriveWheel, Width, Height, TopSpeed
RGrpLARS-MD BHP, Displacement, Fuel, Weight, DriveWheel, Acceleration, TopSpeed, Height
GrpLARS Displacement, TopSpeed, Verdict, Automatic, Height

Plug-in RLARS BHP, I(DriveWheel = Front), Acceleration, Displacement, I(Fuel = Petrol), Weight,
Width, TopSpeed, I(AdustableS teering = standard), Height

Cleaning RLARS BHP, Displacement, I(DriveWheel = Front), I(Fuel = Petrol), Weight, Height, TopSpeed,
I(Bluetooth = standard), I(CruiseControl = optional), I(Automatic = optional),
I(Origin = Europe), I(Automatic = standard), Verdict, Width

LARS Displacement, TopSpeed, I(Automatic = standard), Verdict, I(ParkingS ensors = optional),
Height, I(Leather = optional), I(Bluetooth = standard)
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Figure 3: Top Gear car data: regression diagnostic plot for the final RGrpLARS-min model (left), and root trimmed mean squared prediction error
with 5% trimming estimated via repeated five-fold cross-validation with 100 repetitions (right).

petrol-powered range extender engine. Those three car models are also flagged as outliers by the other robust methods.
In Figure 3 (right) and Table 5, we evaluate the prediction performance of the different methods via repeated

five fold cross-validation with 100 replications. We use the root trimmed mean squared prediction error (RTMSPE)
as prediction loss, that is, the root mean squared prediction error where a certain percentage of the largest squared
prediction errors are dropped. The RTMSPE is an intuitively appealing robust measure of prediction loss, as it allows
to identify the models that can be expected to best predict a given percentage of future data. Even though only three
clear outliers were detected among the n = 242 observations (about 1.2%), we use the RTMSPE with 5% trimming
to be on the conservative side. Hence we identify the models that best predict 95% of future data. Clearly, all
robust methods perform comparably well, whereas LARS and groupwise LARS result in poor prediction performance.
Interestingly, groupwise LARS is much more affected by the outliers than LARS. Other trimming proportions (e.g.,
2% or 10%) give a similar picture.
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Table 5: Top Gear car data: root trimmed mean squared prediction error with 5% trimming estimated via repeated five-fold cross-validation with
100 repetitions. The results from the 100 repetitions are summarized by median, interquartile range (IQR), mean and standard deviation (SD).

Median IQR Mean SD

RGrpLARS-min 6.71 0.18 6.72 0.15
RGrpLARS-ED 6.74 0.18 6.76 0.15

RGrpLARS-MD 6.72 0.22 6.74 0.17
GrpLARS 12.63 0.88 12.72 0.69

Plug-in RLARS 6.64 0.18 6.65 0.14
Cleaning RLARS 6.66 0.17 6.66 0.12

LARS 9.43 0.31 9.48 0.26

Table 6: Top Gear car data without the three clear outliers: predictors in the final models for the response variable MPG (fuel consumption), in
the order that they are sequenced. For the groupwise methods, we report the selected predictor groups by the names of the underlying original
variables. For the methods selecting individual covariates, we use the indicator function notation I(.) to report dummy variables.

Methods Predictors in the final model

RGrpLARS-min BHP, Displacement, Acceleration, Fuel, Weight, DriveWheel, Width, Height, TopSpeed
RGrpLARS-ED BHP, Displacement, Acceleration, Weight, Fuel, DriveWheel, Width, Height, TopSpeed
RGrpLARS-MD BHP, Displacement, Fuel, Acceleration, Weight, DriveWheel, Width, Height, TopSpeed
GrpLARS BHP, Displacement, Acceleration, Fuel, Weight, DriveWheel, Width, Height,

AdjustableSteering, TopSpeed

Plug-in RLARS BHP, I(DriveWheel = Front), Acceleration, Displacement, Cylinders, I(Fuel = Petrol),
Width, Weight, I(AdustableS teering = standard), I(Bluetooth = standard),
I(AdaptiveHeadlights = standard), TopSpeed, Height

Cleaning RLARS BHP, Displacement, I(DriveWheel = Front), I(Fuel = Petrol), Weight, Width, Height,
I(Bluetooth = standard), Acceleration, TopSpeed

LARS BHP, Displacement, I(DriveWheel = Front), Acceleration, I(Fuel = Petrol), Weight,
Width, I(Bluetooth = standard), Height, TopSpeed

For comparison, we apply the methods again to the data without the three clear outliers. The results are shown
in Table 6. RGrpLARS-min and RGrpLARS-ED yield the same model as before. RGrpLARS-MD now results in
the same model as the other two RGrpLARS approaches, although the order of the predictors is different. GrpLARS
mostly agrees with RGrpLARS, but also includes the variable AdjustableSteering. The models obtained by LARS
and RLARS are still difficult to interpret, in particular the the plug-in RLARS model. Cleaning RLARS now yields
the same model as LARS except for the order of the covariates.

6. Conclusions

When regression problems exhibit a natural grouping among predictor variables, model selection typically aims at
selecting whole predictor groups rather than individual covariates for better interpretation of the resulting models. This
paper discusses an algorithm for groupwise least angle regression together with a robust extension based on different
data cleaning strategies. The flexibility and the excellent performance of the proposed method are demonstrated by
simulation studies for numerical and categorical predictor groups, as well as for an autoregressive time series model
with exogenous inputs. A real data example regarding fuel consumption of cars provides further indication that our
procedure works well in practice.

We propose three approaches for cleaning the data: (a) taking the minimum weight from robust short regressions
of the response on each predictor group, (b) computing weights based on Euclidean distances of the multivariate
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set of standardized residuals from such robust short regressions, or (c) computing weights based on Mahalanobis
distances of those standardized residuals. Besides being applicable when the number of predictor groups is larger
than the number of observations, the first two approaches led to better results in our numerical experiments and are
therefore recommended. While we only showed the results for moderate contamination levels in this paper, further
experiments indicate that robust groupwise LARS can withstand much higher contamination levels in many situations.
Nevertheless, it should be noted that the performance decreases as the contamination level approaches the breakdown
point of the robust regression estimator used.

The proposed procedures are implemented in the R package robustHD, which is freely available on CRAN (the
Comprehensive R Archive Network, http://www.CRAN.R-project.org). Since the sequencing step is fully im-
plemented in C++, groupwise LARS and its robust modifications are very fast to compute.

Appendix A. Proofs

Proof of Lemma 1. The three statements of Lemma 1 are proven by induction. We know that

r1 = cor(z0, x̃(1)) = cor(z0, ẑ(1)
0 ) ≥ 0,

with ẑ(1)
0 the fitted value of the least squares regression of z0 on X1. Therefore (a) holds for k = 1. Since the first index

in the active set A by construction yields the largest R2(z0 ∼ X j) and R2(z0 ∼ X(1)) = R2(z0 ∼ x̃(1)) = r2
1, (b) holds for

k = 1. Condition (c) for k = 1 reduces to 0 ≤ γ1 ≤ r1, as the equiangular vector u1 = x̃(1) implies a1 = 1. For γ = 0,
we have R2(z0 ∼ x̃(1)) = R2(z0 ∼ X(1)) ≥ R2(z0 ∼ X j) by construction of the first index in the active set A. For γ = r1,
on the other hand, we have R2(z0 − r1 x̃(1) ∼ x̃(1)) = R2(z0 − ẑ(1)

0 ∼ X(1)) = 0 ≤ R2(z0 − r1 x̃(1) ∼ X j), since z0 − ẑ(1)
0

contains the residuals from least squares regression of z0 on X(1). Hence there must exist a γ1 between 0 and r1 for
which the generalized equi-correlation condition (5) holds, from which it follows that (c) holds for k = 1.

Suppose now that the three statements of Lemma 1 hold for k − 1. We prove that then they also hold for k.
Concerning (a), we have for every l = 1, . . . , k − 1

cor(zk−1, x̃(l)) = cov(zk−1, x̃(l)) = cov
(

zk−2 − γk−1uk−1

σk−1
, x̃(l)

)
=

cor(zk−2, x̃(l)) − γk−1 cor(uk−1, x̃(l))
σk−1

=
rk−1 − γk−1ak−1

σk−1
≥ 0, (A.1)

which does not depend on l. Here we used (a) for k − 1 and (3), as well as the fact that zk−1 and x̃(l) are standardized.
The last inequality holds since (c) holds for k − 1. Furthermore, using (5) for k − 1 yields

R2(zk−1 ∼ x̃(k−1)) = R2(zk−1 ∼ X(k)),

or, equivalently,
cor2(zk−1, x̃(k−1)) = cor2(zk−1, x̃(k)).

Since x̃(k) are the standardized fitted values from least squares regression of zk−1 on X(k), we also have cor(zk−1, x̃(k−1)) =

cor(zk−1, x̃(k)) ≥ 0. We conclude that (a) holds for k.
To prove (b) for k, suppose that there exists a j ∈ Ac such that

r2
k = R2(zk−1 ∼ x̃(1)) = . . . = R2(zk−1 ∼ x̃(k)) < R2(zk−1 ∼ X j). (A.2)

We use the shortened notation f0(γ) = R2(zk−2 − γuk−1 ∼ x̃(k−1)) for the left hand side of (5) for k − 1, and f j(γ) =

R2(zk−2 − γuk−1 ∼ X j) for the right hand side of (5) for k − 1. By definition, γk−1 is smaller than any positive solution
of f0(γ) = f j(γ). Since (b) holds for k − 1, we have f0(0) ≥ f j(0). But (A.2) implies

f0(γk−1) = R2(zk−1 ∼ x̃(k−1)) < R2(zk−1 ∼ X j) = f j(γk−1).

Hence there must exist a positive γ̃ < γk−1 for which f0(γ̃) = f j(γ̃). This contradicts the definition of γk−1, thus (A.2)
cannot hold, which proves (b) for k.
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Finally, we show that (c) holds for k. It is sufficient to show that there always exists a solution γk of (5) with
0 ≤ γk ≤ rk/ak. For γ = 0, we have r2

k = R2(zk−1 ∼ x̃(k)) ≥ R2(zk−1 ∼ X j) since we have already proven (b) for k − 1.
For γ = rk/ak, on the other hand, similar calculations as in (A.1) yield

R2(zk−1 − γuk ∼ x̃(k)) = cor2(zk−1 − γuk, x̃(k)) =
(rk − γak)2

σ2
k

= 0 ≤ R2(zk−1 − γuk ∼ X j).

Hence there must exist a solution γk to (5) between 0 and rk/ak.

Proof of Equation (7). The left hand side of (5) can be rewritten as

R2(zk−1 − γuk ∼ x̃(k)) = cor2(zk−1 − γuk, x̃(k)) =
(cov(zk−1, x̃(k)) − γ cov(uk, x̃(k)))2

var(zk−1 − γuk)
=

(rk − γak)2

var(zk−1 − γuk)
.

Here we used (3), (6) and the fact that x̃(k) is standardized. The right hand side of (5) can be rewritten as

R2(zk−1 − γuk ∼ X j) = 1 −
(zk−1 − γuk)′(I − H j)(zk−1 − γuk)

(zk−1 − γuk)′(zk−1 − γuk)
=

(zk−1 − γuk)′H j(zk−1 − γuk)
(n − 1) var(zk−1 − γuk)

,

where H j = X j(X′jX j)
−1X′j is the projection matrix on the space spanned by X j and j ∈ Ac. Hence condition (5) is

equivalent to

(rk − γak)2

var(zk−1 − γuk)
=

(zk−1 − γuk)′H j(zk−1 − γuk)
(n − 1) var(zk−1 − γuk)

(rk − γak)2 =
(zk−1 − γuk)′H j(zk−1 − γuk)

n − 1

r2
k − 2akrkγ + a2

kγ
2 =

z′k−1H j zk−1

n − 1
− 2

u′k H j zk−1

n − 1
γ +

u′k H juk

n − 1
γ2.

After rearranging the terms and using

z′k−1H j zk−1

n − 1
=

z′k−1H′jH j zk−1

n − 1
=

(
ẑ j

k−1

)′
ẑ j

k−1

n − 1
= var( ẑ j

k−1) = r2
k, j

u′k H j zk−1

n − 1
=

u′k ẑ j
k−1

n − 1
= cov(uk, ẑ j

k−1) =

√
var( ẑ j

k−1) cor(uk, ẑ j
k−1) = rk, jak, j,

u′k H juk

n − 1
=

u′k H′jH juk

n − 1
=

(
û j

k

)′
û j

k

n − 1
= var(û j

k) = τ2
k, j,

the quadratic equation (7) follows.

Appendix B. Algorithms

In Algorithm 1, the groupwise LARS algorithm is presented in detail. Note that faster computation of rk, rk, j and
σk with iterative formulas is possible such that the current response zk−1 is no longer explicitly required in Step 3.
However, these minor improvements are of a technical nature and are not further discussed. The robust groupwise
LARS algorithm is then obtained performing the data cleaning step from Algorithm 2 before entering Algorithm 1
with the cleaned data.
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Algorithm 1 Groupwise least angle regression

1. Initialization
X j ← matrix of standardized variables of predictor group j = 1, . . . ,m
z0 ← standardized response

2. Find first predictor group
ẑ j

0 ← fitted values of least squares regression z0 ∼ X j, j = 1, . . . ,m

(1)← arg max j∈{1,...,m} R2
j/p j with R2

j = R2(z0 ∼ X j) = cor2(z0, ẑ j
0)

A = {(1)}

3. Sequence remaining predictor groups
for k = 1, . . . ,min(m, n − 1) − 1 do

x̃(k) ← standardized ẑ(k)
k−1

rk ← cor(zk−1, x̃(k))/
√p(k)

RA ← correlation matrix of X̃A = (x̃(1), . . . , x̃(k))
qk ← (√p(1), . . . ,

√p(k))′

ak ←
(
q′k R−1

A qk

)−1/2

wk ← ak R−1
A qk

uk ← X̃Awk

for all j ∈ Ac do
rk, j ← cor(zk−1, ẑ j

k−1)/√p j

ak, j ← cor(uk, ẑ j
k−1)/√p j

û j
k ← fitted values of least squares regression uk ∼ X j

τk, j ← cor(uk, û
j
k)/√p j

γ j ← smallest positive solution of quadratic equation (7)
end for
(k + 1)← arg min j∈Ac γ j
γk ← γ(k+1)
zk ← (zk−1 − γkuk)/σk with σ2

k = var(zk−1 − γkuk)
for all j ∈ Ac do

ẑ j
k ← ( ẑ j

k−1 − γkû j
k)/σk

end for
A← A ∪ {(k + 1)}

end for

4. Evaluate submodels along the obtained sequence
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Algorithm 2 Initial data cleaning step for robust groupwise least angle regression

X∗j ← matrix of robustly standardized variables of predictor group j = 1, . . . ,m
z∗ ← robustly standardized response
select one of the following:

a. Minimum weight from robust short regressions
obtain weights ωi j, i = 1, . . . , n, from robust regression z∗ ∼ X∗j , j = 1, . . . ,m
define weights ωi ← min j∈{1,...,m}

√
ωi j, i = 1, . . . , n

b. Weights based on Euclidean distances
S← standardized residuals from robust regressions z∗ ∼ X∗j , j = 1, . . . ,m

compute weights ωi ← min
( √

c/(s′isi), 1
)
, i = 1, . . . , n

c. Weights based on Mahalanobis distances
S← standardized residuals from robust regressions z∗ ∼ X∗j , j = 1, . . . ,m
V̂ ← robust correlation matrix of S
compute weights ωi ← min

(√
c/(s′iV̂

−1si), 1
)
, i = 1, . . . , n

end select
obtain the cleaned predictor groups X∗j ←

(
ω1x∗1 j, . . . , ωnx∗n j

)′
, j = 1, . . . ,m

obtain the cleaned response y∗ ←
(
ω1z∗1, . . . , ωnz∗n,

)
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