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Sparse model estimation is a topic of high importance in mod-
ern data analysis due to the increasing availability of data sets with
a large number of variables. Another common problem in applied
statistics is the presence of outliers in the data. This paper combines
robust regression and sparse model estimation. A robust and sparse
estimator is introduced by adding an L1 penalty on the coefficient
estimates to the well-known least trimmed squares (LTS) estimator.
The breakdown point of this sparse LTS estimator is derived, and a
fast algorithm for its computation is proposed. In addition, the sparse
LTS is applied to protein and gene expression data of the NCI-60 can-
cer cell panel. Both a simulation study and the real data application
show that the sparse LTS has better prediction performance than its
competitors in the presence of leverage points.

1. Introduction. In applied data analysis, there is an increasing avail-
ability of data sets containing a large number of variables. Linear models
that include the full set of explanatory variables often have poor prediction
performance as they tend to have large variance. Furthermore, large models
are in general difficult to interpret. In many cases, the number of variables
is even larger than the number of observations. Traditional methods such
as least squares can then no longer be applied due to the rank deficiency of
the design matrix. For instance, gene expression or fMRI studies typically
contain tens of thousands of variables for only a small number of observa-
tions. In this paper, we present an application to the cancer cell panel of
the National Cancer Institute, in which the data consists of 59 observations
and 22 283 predictors.

To improve prediction accuracy and as a remedy to computational prob-
lems with high-dimensional data, a penalty term on the regression coeffi-
cients can be added to the objective function. This approach shrinks the
coefficients and reduces variance at the price of increased bias. Tibshirani
(1996) introduced the least absolute shrinkage and selection operator (lasso),
in which the penalty function is the L1 norm. Let y = (y1, . . . , yn)′ be the
response and X = (xij)1≤i≤n,1≤j≤p the matrix of predictor variables, where
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2 A. ALFONS, C. CROUX AND S. GELPER

n denotes the number of observations and p the number of variables. In ad-
dition, let x1, . . . ,xn be the p-dimensional observations, i.e., the rows of X.
We assume a standard regression model

(1.1) yi = x′iβ + εi,

where the regression parameter is β = (β1, . . . , βp)′, and the error terms εi
have zero expected value. With a penalty parameter λ, the lasso estimate of
β is

(1.2) β̂lasso = argmin
β

n∑
i=1

(yi − x′iβ)2 + nλ
p∑
j=1

|βj |.

The lasso is frequently used in practice since the L1 penalty allows to shrink
some coefficients to exactly zero, i.e., to produce sparse model estimates that
are highly interpretable. In addition, a fast algorithm for computing the lasso
is available through the framework of least angle regression (LARS; Efron
et al., 2004). Other algorithms are available as well (e.g. Wu and Lange,
2008). Due to the popularity of the lasso, its theoretical properties are well
studied in the literature (e.g., Knight and Fu, 2000; Zhao and Yu, 2006; Zou,
Hastie and Tibshirani, 2007), and several modifications have been proposed
(e.g. Zou, 2006; Yuan and Lin, 2006; Gertheiss and Tutz, 2010; Radchenko
and James, 2011; Wang et al., 2011). However, the lasso is not robust to
outliers. In this paper we formally show that the breakdown point of the lasso
is 1/n, i.e., only one single outlier can make the lasso estimate completely
unreliable. Therefore robust alternatives are needed.

Outliers are observations that deviate from the model assumptions and are
a common problem in the practice of data analysis. For example, for many of
the 22 283 predictors in the NCI data set used in Section 7, (log-transformed)
responses on the 59 cell lines showed outliers. Robust alternatives to the
least squares regression estimator are well known and studied; see Maronna,
Martin and Yohai (2006) for an overview. In this paper, we focus on the least
trimmed squares (LTS) estimator introduced by Rousseeuw (1984). This
estimator has a simple definition, is quite fast to compute, and is probably
the most popular robust regression estimator. Denote the vector of squared
residuals by r2(β) = (r2

1, . . . , r
2
n)′ with r2

i = (yi − x′iβ)2, i = 1, . . . , n. Then
the LTS estimator is defined as

(1.3) β̂LTS = argmin
β

h∑
i=1

(
r2(β)

)
i:n
,
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SPARSE LEAST TRIMMED SQUARES REGRESSION 3

where (r2(β))1:n ≤ . . . ≤ (r2(β))n:n are the order statistics of the squared
residuals and h ≤ n. Thus, LTS regression corresponds to finding the sub-
set of h observations whose least squares fit produces the smallest sum of
squared residuals. The subset size h can be seen as an initial guess of the
number of good observations in the data. While the LTS is highly robust, it
clearly does not produce sparse model estimates. Furthermore, if h < p, the
LTS estimator cannot be computed. A sparse and regularized version of the
LTS is obtained by adding an L1 penalty with penalty parameter λ to (1.3),
leading to the sparse LTS estimator

(1.4) β̂sparseLTS = argmin
β

h∑
i=1

(
r2(β)

)
i:n

+ hλ
p∑
j=1

|βj |.

We prove in this paper that sparse LTS has a high breakdown point. It is
resistant to multiple regression outliers, including leverage points. Besides
being highly robust, and similar to the lasso estimate, sparse LTS (i) im-
proves the prediction performance through variance reduction if the sample
size is small relative to the dimension, (ii) ensures higher interpretability
due to simultaneous model selection, and (iii) avoids computational prob-
lems of traditional robust regression methods in the case of high-dimensional
data. For the NCI data, sparse LTS was less influenced by the outliers than
competitor methods and showed better prediction performance, while the
resulting model is small enough to be easily interpreted (see Section 7).

The sparse LTS (1.4) can also be interpreted as a trimmed version of
the lasso, since the limit case h = n yields the lasso solution. Other robust
versions of the lasso have been considered in the literature. Most of them
are penalized M-estimators, as in van de Geer (2008) and Li, Peng and
Zhu (2011). Rosset and Zhu (2004) proposed a Huber-type loss function,
which requires knowledge of the residual scale. A least absolute deviations
(LAD) type of estimator called LAD-lasso is proposed by Wang, Li and
Jiang (2007),

(1.5) β̂LAD-lasso = argmin
β

n∑
i=1

|yi − x′iβ|+ nλ
p∑
j=1

|βj |.

However, none of these methods is robust with respect to leverage points,
i.e., outliers in the predictor space, and can handle outliers only in the re-
sponse variable. The main competitor of the sparse LTS is robust least an-
gle regression, called RLARS, and proposed in Khan, Van Aelst and Zamar
(2007). They develop a robust version of the LARS algorithm, essentially
replacing correlations by a robust type of correlation, to sequence and select
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4 A. ALFONS, C. CROUX AND S. GELPER

the most important predictor variables. Then a non-sparse robust regression
estimator is applied to the selected predictor variables. RLARS, as will be
confirmed by our simulation study, is robust with respect to leverage points.
A main drawback of the RLARS algorithm of Khan, Van Aelst and Zamar
(2007) is the lack of a natural definition, since it is not optimizing a clearly
defined objective function.

An entirely different approach is taken by She and Owen (2011), who
propose an iterative procedure for outlier detection. Their method is based
on imposing a sparsity criterion on the estimator of the mean-shift parameter
γ in the extended regression model

(1.6) y = Xβ + γ + ε.

They stress that this method requires a nonconvex sparsity criterion. An
extension of the method to high-dimensional data is obtained by also as-
suming sparsity of the coefficients β. Nevertheless, their paper mainly fo-
cuses on outlier detection and much less on sparse robust estimation. Note
that another procedure for simultaneous outlier identification and variable
selection based on the mean-shift model is proposed by Menjoge and Welsch
(2010).

The rest of the paper is organized as follows. In Section 2 the breakdown
point of the sparse LTS estimator is obtained. Further, we also show that
the lasso and the LAD-lasso have a breakdown point of only 1/n. A detailed
description of the proposed algorithm to compute the sparse LTS regression
estimator is provided in Section 3. Section 4 introduces a reweighted version
of the estimator in order to increase statistical efficiency. The choice of the
penalty parameter λ is discussed in Section 5. Simulation studies are per-
formed in Section 6. In addition, Section 7 presents an application to protein
and gene expression data of the well-known cancer cell panel of the National
Cancer Institute. The results indicate that these data contain outliers such
that robust methods are necessary for analysis. Moreover, sparse LTS yields
a model that is easy to interpret and has excellent prediction performance.
Finally, Section 8 presents some computation times and Section 9 concludes.

2. Breakdown point. The most popular measure for the robustness
of an estimator is the replacement finite-sample breakdown point (FBP) (e.g
Maronna, Martin and Yohai, 2006). Let Z = (X,y) denote the sample. For
a regression estimator β̂, the breakdown point is defined as

(2.1) ε∗(β̂;Z) = min

{
m

n
: sup
Z̃

‖β̂(Z̃)‖2 =∞
}
,
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SPARSE LEAST TRIMMED SQUARES REGRESSION 5

where Z̃ are corrupted data obtained from Z by replacing m of the original
n data points by arbitrary values. We obtained the following result, from
which the breakdown point of the sparse LTS estimator immediately follows.
The proof is in the appendix.

Theorem 1. Let ρ(x) be a convex and symmetric loss function with
ρ(0) = 0 and ρ(x) > 0 for x 6= 0, and define ρ(x) := (ρ(x1), . . . , ρ(xn))′.
With subset size h ≤ n, consider the regression estimator

(2.2) β̂ = argmin
β

h∑
i=1

(ρ(y −Xβ))i:n + hλ
p∑
j=1

|βj |,

where (ρ(y −Xβ)))1:n ≤ . . . ≤ (ρ(y −Xβ))n:n are the order statistics of
the regression loss. Then the breakdown point of the estimator β̂ is given by

ε∗(β̂;Z) =
n− h+ 1

n
.

The breakdown point is the same for any loss function ρ fulfilling the as-
sumptions. In particular, the breakdown point for the sparse LTS estimator
β̂sparseLTS with subset size h ≤ n, in which ρ(x) = x2, is still (n− h+ 1)/n.
The smaller the value of h, the higher the breakdown point. By taking h
small enough, it is even possible to have a breakdown point larger than 50%.
However, while this is mathematically possible, we are not advising to use
h < n/2 since robust statistics aim for models that fit the majority of the
data. Thus we do not envisage to have such large breakdown points. Instead,
we suggest to take a value of h equal to a fraction α of the sample size, with
α = 0.75, such that the final estimate is based on a sufficiently large num-
ber of observations. This guarantees a sufficiently high statistical efficiency,
as will be shown in the simulations in Section 6. The resulting breakdown
point is then about 1 − α = 25%. Notice that the breakdown point does
not depend on the dimension p. Even if the number of predictor variables is
larger than the sample size, a high breakdown point is guaranteed. For the
non-sparse LTS, the breakdown point does depend on p (see Rousseeuw and
Leroy, 2003).

Applying Theorem 1 to the lasso (corresponding to ρ(x) = x2 and h = n)
yields a finite-sample breakdown point of

ε∗(β̂lasso;Z) =
1
n
.

Hence only one outlier can already send the lasso solution to infinity, despite
the fact that large values of the regression estimate are penalized in the
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6 A. ALFONS, C. CROUX AND S. GELPER

objective function of the lasso. The non-robustness of the Lasso comes from
the use of the squared residuals in the objective function (1.2). Using other
convex loss functions, as done in the LAD-lasso or penalized M-estimators,
does not solve the problem and results in a breakdown point of 1/n as well.
The theoretical results on robustness are also reflected in the application to
the NCI data in Section 7, where the lasso is much more influenced by the
outliers than the sparse LTS.

3. Algorithm. We first present an equivalent formulation of the sparse
LTS estimator (1.4). For a fixed penalty parameter λ, define the objective
function

(3.1) Q(H,β) =
∑
i∈H

(yi − x′iβ)2 + hλ
p∑
j=1

|βj |,

which is the L1 penalized residual sum of squares based on a subsample
H ⊆ {1, . . . , n} with |H| = h. With

(3.2) β̂H = argmin
β

Q(H,β),

the sparse LTS estimator is given by β̂Hopt
, where

(3.3) Hopt = argmin
H⊆{1,...,n}:|H|=h

Q(H, β̂H).

Hence, the sparse LTS corresponds to finding the subset of h ≤ n observa-
tions whose lasso fit produces the smallest penalized residual sum of squares.
To find this optimal subset, we use an analogue of the FAST-LTS algorithm
developed by Rousseeuw and Van Driessen (2006).

The algorithm is based on concentration steps or C-steps. The C-step at
iteration k consists of computing the lasso solution based on the current
subset Hk, with |Hk| = h, and constructing the next subset Hk+1 from
the observations corresponding to the h smallest squared residuals. Let Hk

denote a certain subsample derived at iteration k and let β̂Hk
be the coeffi-

cients of the corresponding lasso fit. After computing the squared residuals
r2
k = (r2

k,1, . . . , r
2
k,n)′ with r2

k,i = (yi − x′iβ̂Hk
)2, the subsample Hk+1 for it-

eration k+ 1 is defined as the set of indices corresponding to the h smallest
squared residuals. In mathematical terms, this can be written as

Hk+1 =
{
i ∈ {1, . . . , n} : r2

k,i ∈ {(r2
k)j:n : j = 1, . . . , h}

}
,
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SPARSE LEAST TRIMMED SQUARES REGRESSION 7

where (r2
k)1:n ≤ . . . ≤ (r2

k)n:n denote the order statistics of the squared
residuals. Let β̂Hk+1

denote coefficients of the lasso fit based on Hk+1. Then

(3.4) Q(Hk+1, β̂Hk+1
) ≤ Q(Hk+1, β̂Hk

) ≤ Q(Hk, β̂Hk
),

where the first inequality follows from the definition of β̂Hk+1
, and the sec-

ond inequality from the definition of Hk. From (3.4) it follows that a C-step
results in a decrease of the sparse LTS objective function, and that a se-
quence of C-steps yields convergence to a local minimum in a finite number
of steps.

To increase the chances of arriving at the global minimum, a sufficiently
large number s of initial subsamples H0 should be used, each of them being
used as starting point for a sequence of C-steps. Rather than randomly
selecting h data points, any initial subset H0 of size h is constructed from
an elemental subset of size 3 as follows. Draw three observations from the
data at random, say, xi1 , xi2 and xi3 . The lasso fit for this elemental subset
is then

(3.5) β̂{i1,i2,i3} = argmin
β

Q({i1, i2, i3},β),

and the initial subset H0 is then given by the indices of the h observations
with the smallest squared residuals with respect to the fit in (3.5). The non-
sparse FAST-LTS algorithm uses elemental subsets of size p, since any OLS
regression requires at least as many observations as the dimension p. This
would make the algorithm not applicable if p > n. Fortunately the lasso is
already properly defined for samples of size 3, even for large values of p.
Moreover, from a robustness point of view, using only three observations is
optimal, as it ensures the highest probability of not including outliers in the
elemental set. It is important to note that the elemental subsets of size 3 are
only used to construct the initial subsets of size h for the C-step algorithms.
All C-steps are performed on subsets of size h.

In this paper, we used s = 500 initial subsets. Using a larger number of
subsets did not lead to better prediction performance in the case of the NCI
data. Following the strategy advised in Rousseeuw and Van Driessen (2006),
we perform only two C-steps for all s subsets and retain the s1 = 10 subsam-
ples with the lowest values of the objective function (3.1). For the reduced
number of subsets s1, further C-steps are performed until convergence. This
is a standard strategy for C-step algorithms to decrease computation time.

Estimation of an intercept: the regression model in (1.1) does not contain
an intercept. It is indeed common to assume that the variables are mean-
centered and the predictor variables are standardized before applying the
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8 A. ALFONS, C. CROUX AND S. GELPER

lasso. However, computing the means and standard deviations over all obser-
vations does not result in a robust method, so we take a different approach.
Each time the sparse LTS algorithm computes a lasso fit on a subsample of
size h, the variables are first centered and the predictors are standardized
using the means and standard deviations computed from the respective sub-
sample. The resulting procedure then minimizes (1.4) with squared residuals
r2
i = (yi − β0 − x′iβ)2, where β0 stands for the intercept. We verified that

adding an intercept to the model has no impact on the breakdown point of
the sparse LTS estimator of β.

4. Reweighted sparse LTS estimator. Let α denote the proportion
of observations from the full sample to be retained in each subsample, i.e.,
h = b(n + 1)αc. In this paper we take α = 0.75. Then (1 − α) may be
interpreted as an initial guess of the proportion of outliers in the data. This
initial guess is typically rather conservative to ensure that outliers do not
impact the results, and may therefore result in a loss of statistical efficiency.
To increase efficiency, a reweighting step that downweights outliers detected
by the sparse LTS estimator can be performed.

Under the normal error model, observations with standardized residuals
larger than a certain quantile of the standard normal distribution may be
declared as outliers. Since the sparse LTS estimator – like the lasso – is
biased, we need to center the residuals. A natural estimate for the center of
the residuals is

(4.1) µ̂raw =
1
h

∑
i∈Hopt

ri,

where ri = yi−x′iβ̂sparseLTS and Hopt is the optimal subset from (3.3). Then
the residual scale estimate associated to the raw sparse LTS estimator is
given by

(4.2) σ̂raw = kα

√√√√1
h

h∑
i=1

(r2
c)i:n,

with squared centered residuals r2
c =

(
(r1 − µ̂raw)2, . . . , (rn − µ̂raw)2

)′, and

(4.3) kα =

(
1
α

∫ Φ−1((α+1)/2)

−Φ−1((α+1)/2)
u2dΦ(u)

)−1/2

,

a factor to ensure that σ̂raw is a consistent estimate of the standard deviation
at the normal model. This formulation allows to define binary weights

(4.4) wi =

{
1 if |(ri − µ̂raw)/σ̂raw| ≤ Φ−1(1− δ)
0 if |(ri − µ̂raw)/σ̂raw| > Φ−1(1− δ) , i = 1, . . . , n.
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SPARSE LEAST TRIMMED SQUARES REGRESSION 9

In this paper δ = 0.0125 is used such that 2.5% of the observations are
expected to be flagged as outliers in the normal model, which is a typical
choice.

The reweighted sparse LTS estimator is given by the weighted lasso fit

(4.5) β̂reweighted = argmin
β

n∑
i=1

wi(yi − x′iβ)2 + λnw

p∑
j=1

|βj |,

with nw =
∑n
i=1wi the sum of weights. With the choice of weights given in

(4.4), the reweighted sparse LTS is the lasso fit based on the observations not
flagged as outliers. Of course, other weighting schemes could be considered.
Using the residual center estimate

(4.6) µ̂reweighted =
1
nw

n∑
i=1

wi
(
yi − x′iβ̂reweighted

)
,

the residual scale estimate of the reweighted sparse LTS estimator is given
by

(4.7) σ̂reweighted = kαw

√√√√ 1
nw

n∑
i=1

wi
(
yi − x′iβ̂reweighted − µ̂reweighted

)2
,

where kαw is the consistency factor from (4.3) with αw = nw/n.
Note that this reweighting step is conceptually different from the adaptive

lasso by Zou (2006). While the adaptive lasso derives individual penalties on
the predictors from initial coefficient estimates, the reweighted sparse LTS
aims to include all non-outlying observations into fitting the model.

5. Choice of the penalty parameter. In practical data analysis, a
suitable value of the penalty parameter λ is not known in advance. We
propose to select λ by optimizing the Bayes Information Criterion (BIC), or
the estimated prediction performance via cross-validation. In this paper, we
use the BIC since it requires less computational effort. The BIC of a given
model estimated with shrinkage parameter λ is given by

(5.1) BIC(λ) = log(σ̂) + df(λ)
log(n)
n

,

where σ̂ denotes the corresponding residual scale estimate, (4.2) or (4.7),
and df(λ) are the degrees of freedom of the model. The degrees of freedom
are given by the number of non-zero estimated parameters in β̂ (see Zou,
Hastie and Tibshirani, 2007).
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10 A. ALFONS, C. CROUX AND S. GELPER

As an alternative to the BIC, cross-validation can be used. To prevent out-
liers from affecting the choice of λ, a robust prediction loss function should
be used. A natural choice is the root trimmed mean squared prediction error
(RTMSPE) with the same trimming proportion as for computing the sparse
LTS. In k-fold cross-validation, the data are split randomly in k blocks of
approximately equal size. Each block is left out once to fit the model, and
the left-out block is used as test data. In this manner, and for a given value
of λ, a prediction is obtained for each observation in the sample. Denote the
vector of squared prediction errors e2 = (e2

1, . . . , e
2
n)′. Then

(5.2) RTMSPE(λ) =

√√√√1
h

h∑
i=1

(e2)i:n.

To reduce variability, the RTMSPE may be averaged over a number of dif-
ferent random splits of the data.

The selected λ then minimizes BIC(λ) or RTMSPE(λ) over a grid of values
in the interval [0, λ̂0]. We take a grid with steps of size 0.025λ̂0, where λ̂0 is
an estimate of the shrinkage parameter λ0 that would shrink all parameters
to zero. If p > n, 0 is of course excluded from the grid. For the lasso solution
we take

(5.3) λ̂0 =
2
n

max
j∈{1,...,p}

Cor(y,xj),

exactly the same as given and motivated in Efron et al. (2004). In (5.3),
Cor(y,xj) stands for the Pearson correlation between y and the jth column
of the design matrix X. For sparse LTS, we need a robust estimate λ̂0. We
propose to replace the Pearson correlation in (5.3) by the robust correla-
tion based on bivariate winsorization of the data (see Khan, Van Aelst and
Zamar, 2007).

6. Simulation study. This section presents a simulation study for
comparing the performance of various sparse estimators. The simulations are
performed in R (R Development Core Team, 2011) with package simFrame
(Alfons, Templ and Filzmoser, 2010; Alfons, 2012b), which is a general
framework for simulation studies in statistics. Sparse LTS is evaluated for
the subset size h = b(n+ 1)0.75c. Both the raw and the reweighted version
(see Section 4) are considered. We prefer to take a relatively large trimming
proportion to guarantee a breakdown point of 25%. Adding the reweighting
step will then increase the statistical efficiency of sparse LTS. We make a
comparison with the lasso, the LAD-lasso and robust least angle regression
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SPARSE LEAST TRIMMED SQUARES REGRESSION 11

(RLARS), discussed in the introduction. We selected the LAD-lasso estima-
tor as a representative of the class of penalized M-estimators, since it does
not need an initial residual scale estimator.

For every generated sample, an optimal value of the shrinkage parameter
λ is selected. The penalty parameters for sparse LTS and the lasso are chosen
using the BIC, as described in Section 5. For the LAD-lasso, we estimate
the shrinkage parameter in the same way as in Wang, Li and Jiang (2007).
However, if p > n we cannot use their approach and use the BIC as in
(5.1), with the mean absolute value of residuals (multiplied by a consistency
factor) as scale estimate. For RLARS, we add the sequenced variables to the
model in a stepwise fashion and fit robust MM-regressions (Yohai, 1987), as
advocated in Khan, Van Aelst and Zamar (2007). The optimal model when
using RLARS is then again selected via BIC, now using the robust scale
estimate resulting from the MM-regression.

6.1. Sampling Schemes. The first configuration is a latent factor model
taken from Khan, Van Aelst and Zamar (2007) and covers the case of n > p.
From k = 6 latent independent standard normal variables l1, . . . , lk and an
independent normal error variable e with standard deviation σ, the response
variable y is constructed as

y := l1 + . . .+ lk + e,

where σ is chosen so that the signal-to-noise ratio is 3, i.e., σ =
√
k/3. With

independent standard normal variables e1, . . . , ep, a set of p = 50 candidate
predictors is then constructed as

xj := lj + τej , j = 1, . . . , k,

xk+1 := l1 + δek+1,
xk+2 := l1 + δek+2,

...
x3k−1 := lk + δe3k−1,
x3k := lk + δe3k,

xj := ej , j = 3k + 1, . . . , p,

where τ = 0.3 and δ = 5 so that x1, . . . ,xk are low-noise perturbations of the
latent variables, xk+1, . . . ,x3k are noise covariates that are correlated with
the latent variables, and x3k+1, . . . ,xp are independent noise covariates. The
number of observations is set to n = 150.
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12 A. ALFONS, C. CROUX AND S. GELPER

The second configuration covers the case of moderate high-dimensional
data. We generate n = 100 observations from a p-dimensional normal dis-
tribution N(0,Σ), with p = 1 000. The covariance matrix Σ = (Σij)1≤i,j≤p
is given by Σij = 0.5|i−j|, creating correlated predictor variables. Using the
coefficient vector β = (βj)1≤j≤p with β1 = β7 = 1.5, β2 = 0.5, β4 = β11 = 1,
and βj = 0 for j ∈ {1, . . . , p}\{1, 2, 4, 7, 11}, the response variable is gener-
ated according to the regression model (1.1), where the error terms follow a
normal distribution with σ = 0.5.

Finally, the third configuration represents a more extreme case of high-
dimensional data with n = 100 observations and p = 20 000 variables. The
first 1 000 predictor variables are generated from a multivariate normal dis-
tribution N(0,Σ) with Σij = 0.6|i−j|. Furthermore, the remaining 19 000
covariates are standard normal variables. Then the response variable is gen-
erated according to (1.1), where the coefficient vector β = (βj)1≤j≤p is given
by βj = 1 for 1 ≤ j ≤ 10 and βj = 0 for 11 ≤ j ≤ p, and the error terms
follow a standard normal distribution.

For each of the three simulation settings, we apply contamination schemes
taken from Khan, Van Aelst and Zamar (2007). To be more precise, we
consider

1. No contamination
2. Vertical outliers: 10% of the error terms in the regression model follow

a normal N(20, σ) instead of a N(0, σ).
3. Leverage points: Same as in 2, but the 10% contaminated observations

contain high-leverage values by drawing the predictor variables from
independent N(50, 1) distributions.

In addition, we investigate a fourth and more stressful outlier scenario. Keep-
ing the contamination level at 10%, outliers in the predictor variables are
drawn from independent N(10, 0.01) distributions. Note the small standard
deviation such that the outliers form a dense cluster. Let x̃i denote such a
leverage point. Then the values of the response variable of the contaminated
observations are generated by ỹi = ηx̃′iγ with γ = (−1/p)1≤j≤p. The direc-
tion of γ is very different from the one of the true regression parameter β in
the following ways. First, γ is not sparse. Second, all predictors have a neg-
ative effect on the response in the contaminated observations, whereas the
variables with non-zero coefficients have a positive effect on the response in
the good data points. Furthermore, the parameter η controls the magnitude
of the leverage effect and is varied from 1 to 25 in five equidistant steps.

This results in a total of 12 different simulations schemes, which we think
to be representative for the many different simulation designs we tried out.
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SPARSE LEAST TRIMMED SQUARES REGRESSION 13

The first scheme has n > p, the second setting has p > n, and the third
setting has p� n. The choices for the contamination schemes are standard,
inducing both vertical outliers and leverage points in the samples.

6.2. Performance measures. Since one of the aims of sparse model es-
timation is to improve prediction performance, the different estimators are
evaluated by the root mean squared prediction error (RMSPE). For this
purpose, n additional observations from the respective sampling schemes
(without outliers) are generated as test data, and this in each simulation
run. Then the RMSPE is given by

RMSPE(β̂) =

√√√√ 1
n

n∑
i=1

(y∗i − x∗i ′β̂)2,

where y∗i and x∗i , i = 1, . . . , n, denote the observations of the response and
predictor variables in the test data, respectively. The RMSPE of the or-
acle estimator, which uses the true coefficient values β, is computed as a
benchmark for the evaluated methods. We report average RMSPE over all
simulation runs.

Concerning sparsity, the estimated models are evaluated by the false pos-
itive rate (FPR) and the false negative rate (FNR). A false positive is a
coefficient that is zero in the true model, but is estimated as non-zero. Anal-
ogously, a false negative is a coefficient that is non-zero in the true model,
but is estimated as zero. In mathematical terms, the FPR and FNR are
defined as

FPR(β̂) =
|{j ∈ {1, . . . , p} : β̂j 6= 0 ∧ βj = 0}|
|{j ∈ {1, . . . , p} : βj = 0}|

,

FNR(β̂) =
|{j ∈ {1, . . . , p} : β̂j = 0 ∧ βj 6= 0}|
|{j ∈ {1, . . . , p} : βj 6= 0}|

.

Both FPR and FNR should be as small as possible for a sparse estimator,
and are averaged over all simulation runs. Note that false negatives in general
have a stronger effect on the RMSPE than false positives. A false negative
means that important information is not used for prediction, whereas a false
positive merely adds a bit of variance.

6.3. Simulation results. In this subsection, the simulation results for the
different data configurations are presented and discussed.
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14 A. ALFONS, C. CROUX AND S. GELPER

6.3.1. Results for the first sampling scheme. The simulation results for
the first data configuration are displayed in Table 1. Keep in mind that this
configuration is exactly the same as in Khan, Van Aelst and Zamar (2007),
and that the contamination settings are a subset of the ones applied in
their paper. In the scenario without contamination, LAD-lasso, RLARS and
lasso show excellent performance with low RMSPE and FPR. The prediction
performance of sparse LTS is good, but it has a larger FPR than the other
three methods. The reweighting step clearly improves the estimates, which
is reflected in the lower values for RMSPE and FPR. Furthermore, none of
the methods suffer from false negatives.

In the case of vertical outliers, the non-robust lasso is clearly influenced
by the outliers, reflected in the much higher RMSPE and FPR. RLARS,
LAD-lasso and sparse LTS, on the other hand, keep their excellent behavior.
Sparse LTS still has a considerable tendency toward false positives, but the
reweighting step is a significant improvement over the raw estimator.

When leverage points are introduced in addition to the vertical outliers,
the performance of RLARS, sparse LTS and LAD-lasso is comparable. The
FPR of RLARS and LAD-lasso slightly increased, whereas the FPR of sparse
LTS slightly decreased. The LAD-lasso still performs well, and even the lasso
performs better than in the case of only vertical outliers. This suggests that
the leverage points in this example do not have a bad leverage effect.

In Figure 1 the results for the fourth contamination setting are shown.
The RMSPE is thereby plotted as a function of the parameter η. With
increasing η, the RMSPE of the lasso and the LAD-lasso increases. RLARS
has a considerably higher RMSPE than sparse LTS for lower values of η, but
the RMSPE gradually decreases with increasing η. However, the RMSPE of

Table 1
Results for the first simulation scheme, with n = 150 and p = 50. Root mean squared
prediction error (RMSPE), the false positive rate (FPR) and the false negative rate

(FNR), averaged over 500 simulation runs, are reported for every method.

No contamination Vertical outliers Leverage points
Method RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR

Lasso 1.18 0.10 0.00 2.44 0.54 0.09 2.20 0.00 0.16
LAD-lasso 1.13 0.05 0.00 1.15 0.07 0.00 1.27 0.18 0.00
RLARS 1.14 0.07 0.00 1.12 0.03 0.00 1.22 0.09 0.00
Raw sparse LTS 1.29 0.34 0.00 1.26 0.32 0.00 1.26 0.26 0.00
Sparse LTS 1.24 0.22 0.00 1.22 0.25 0.00 1.22 0.18 0.00
Oracle 0.82 0.82 0.82
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η (controlling the magnitude of the leverage effect)
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Fig 1. Root mean squared prediction error (RMSPE) for the first simulation scheme,
with n = 150 and p = 50, and for the fourth contamination setting, averaged over 500
simulation runs. Lines for raw and reweighted sparse LTS almost coincide.

sparse LTS remains the lowest, thus, it has the best overall performance.

6.3.2. Results for the second sampling scheme. Table 2 contains the sim-
ulation results for the moderate high-dimensional data configuration. In the
scenario without contamination, RLARS and the lasso perform best with
very low RMSPE and almost perfect FPR and FNR. Also the LAD-lasso
has excellent prediction performance, followed by sparse LTS. The LAD-
lasso leads to a slightly higher FPR than the other methods, though. When
vertical outliers are added, RLARS still has excellent prediction performance
despite some false negatives. We see that the sparse LTS performs best here.
In addition, the prediction performance of the non-robust lasso already suf-
fers greatly from the vertical outliers. In the scenario with additional leverage
points, sparse LTS remains stable and is still the best. For RLARS, sparsity
behavior according to FPR and FNR does not change significantly either,
but there is a small increase in the RMSPE. On the other hand, LAD-lasso
already has a considerably larger RMSPE than sparse LTS, and again a
slightly higher FPR than the other methods. Furthermore, the lasso is still
highly influenced by the outliers, which is reflected in a very high FNR and
poor prediction performance.

The results for the fourth contamination setting are presented in Fig-
ure 2. As for the previous simulation scheme, the RMSPE for the lasso and
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16 A. ALFONS, C. CROUX AND S. GELPER

Table 2
Results for the second simulation scheme, with n = 100 and p = 1000. Root mean

squared prediction error (RMSPE), the false positive rate (FPR) and the false negative
rate (FNR), averaged over 500 simulation runs, are reported for every method.

No contamination Vertical outliers Leverage points
Method RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR

Lasso 0.62 0.00 0.00 2.56 0.08 0.16 2.53 0.00 0.71
LAD-lasso 0.66 0.08 0.00 0.82 0.00 0.01 1.17 0.08 0.01
RLARS 0.60 0.01 0.00 0.73 0.00 0.10 0.92 0.02 0.09
Raw sparse LTS 0.81 0.02 0.00 0.73 0.02 0.00 0.73 0.02 0.00
Sparse LTS 0.74 0.01 0.00 0.69 0.01 0.00 0.71 0.02 0.00
Oracle 0.50 0.50 0.50

η (controlling the magnitude of the leverage effect)
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Fig 2. Root mean squared prediction error (RMSPE) for the second simulation scheme,
with n = 100 and p = 1000, and for the fourth contamination setting, averaged over 500
simulation runs. Lines for raw and reweighted sparse LTS almost coincide.

the LAD-lasso is increasing with increasing parameter η. The RMSPE for
RLARS, however, is gradually decreasing. Sparse LTS shows particularly
interesting behavior: the RMSPE is close to the oracle at first, then there is
a kink in the curve (with the value of the RMSPE being in between those
for the LAD-lasso and the lasso), after which the RMSPE returns to low
values close to the oracle. In any case, for most of the investigated values of
η, sparse LTS has the best performance.
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6.3.3. Results for the third sampling scheme. Table 3 contains the sim-
ulation results for the more extreme high-dimensional data configuration.
Note that the LAD-lasso was no longer computationally feasible with such
a large number of variables. In addition, the number of simulation runs was
reduced from 500 to 100 to lower the computational effort.

In the case without contamination, the sparse LTS suffers from an ef-
ficiency problem, which is reflected in larger values for RMSPE and FNR
than for the other methods. The lasso and RLARS have considerably better
performance in this case. With vertical outliers, the RMSPE for the lasso in-
creases greatly due to many false negatives. Also, RLARS has a larger FNR
than sparse LTS, resulting in a slightly lower RMSPE for the reweighted ver-
sion of the latter. When leverage points are introduced, sparse LTS clearly
exhibits the lowest RMSPE and FNR. Furthermore, the lasso results in a
very large FNR.

Figure 3 shows the results for the fourth contamination setting. Most
interestingly, the RMSPE of RLARS in this case keeps increasing in the
beginning and even goes above the one of the lasso, before dropping dropping
continuously in the remaining steps. Sparse LTS again shows a kink in the
curve for the RMSPE, but clearly performs best.

6.3.4. Summary of the simulation results. Sparse LTS shows the best
overall performance in this simulation study, if the reweighted version is
taken. Concerning the other investigated methods, RLARS also performs
well, but suffers sometimes from an increased percentage of false negatives
under contamination. It is also confirmed that the lasso is not robust to
outliers. The LAD-lasso still sustains vertical outliers, but is not robust
against bad leverage points.

Table 3
Results for the third simulation scheme, with n = 100 and p = 20 000. Root mean squared

prediction error (RMSPE), the false positive rate (FPR) and the false negative rate
(FNR), averaged over 100 simulation runs, are reported for every method.

No contamination Vertical outliers Leverage points
Method RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR

Lasso 1.43 0.000 0.00 5.19 0.004 0.49 5.57 0.000 0.83
RLARS 1.54 0.001 0.00 2.53 0.000 0.38 3.34 0.001 0.45
Raw sparse LTS 3.00 0.001 0.19 2.59 0.002 0.11 2.59 0.002 0.10
Sparse LTS 2.88 0.001 0.16 2.49 0.002 0.10 2.57 0.002 0.09
Oracle 1.00 1.00 1.00
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η (controlling the magnitude of the leverage effect)
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Fig 3. Root mean squared prediction error (RMSPE) for the third simulation scheme,
with n = 100 and p = 20 000, and for the fourth contamination setting, averaged over 100
simulation runs. Lines for raw and reweighted sparse LTS almost coincide.

7. NCI-60 cancer cell panel. In this section the sparse LTS estima-
tor is compared to the competing methods in an application to the cancer
cell panel of the National Cancer Institute. It consists of data on 60 human
cancer cell lines and can be downloaded via the web application CellMiner
(http://discover.nci.nih.gov/cellminer/). We regress protein expres-
sion on gene expression data. The gene expression data were obtained with
an Affymetrix HG-U133A chip and normalized with the GCRMA method,
resulting in a set of p = 22 283 predictors. The protein expressions based
on 162 antibodies were acquired via reverse-phase protein lysate arrays and
log2 transformed. One observation had to be removed since all values were
missing in the gene expression data, reducing the number of observations
to n = 59. More details on how the data were obtained can be found in
Shankavaram et al. (2007). Furthermore, Lee et al. (2011) also use this data
for regression analysis, but consider only nonrobust methods. They obtain
models that still consist of several hundred to several thousand predictors
and are thus difficult to interpret.

Similar to Lee et al. (2011), we first order the protein expression variables
according to their scale, but use the MAD (median absolute deviation from
the median, multiplied with the consistency factor 1.4826) as a scale estima-
tor instead of the standard deviation. We show the results for the protein
expressions based on the KRT18 antibody, which constitutes the variable
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Table 4
Root trimmed mean squared prediction error (RTMSPE) for protein expressions based on

the KRT18 antibody (NCI-60 cancer cell panel data), computed from leave-one-out
cross-validation.

Method RTMSPE

Lasso 1.058
RLARS 0.936
Raw sparse LTS 0.727
Sparse LTS 0.721

with the largest MAD, serving as one dependent variable. Hence, our re-
sponse variable measures the expression levels of the protein keratin 18,
which is known to be persistently expressed in carcinomas (Oshima, Barib-
ault and Cauĺın, 1996). We compare raw and reweighted sparse LTS with
25% trimming, lasso and RLARS. As in the simulation study, the LAD-lasso
could not be computed for such a large p. The optimal models are selected
via BIC as discussed in Section 5. The raw sparse LTS estimator thereby
results in a model with 32 genes. In the reweighting step, one more obser-
vation is added to the best subset found by the raw estimator, yielding a
model with 33 genes for reweighted sparse LTS (thus also one more gene
is selected compared to the raw estimator). The lasso model is somewhat
larger with 52 genes, whereas the RLARS model is somewhat smaller with
18 genes.

Sparse LTS and the lasso have three selected genes in common, one of
which is KRT8. The product of this gene, the protein keratin 8, typically
forms an intermediate filament with keratin 18 such that their expression
levels are closely linked (e.g., Owens and Lane, 2003). However, the larger
model of the lasso is much more difficult to interpret. Two of the genes
selected by the lasso are not even recorded in the Gene database (Maglott
et al., 2005) of the National Center for Biotechnology Information (NCBI).
The sparse LTS model is considerably smaller and easier to interpret. For
instance, the gene expression level of MSLN, whose product mesothelin is
overexpressed in various forms of cancer (Hassan, Bera and Pastan, 2004),
has a positive effect on the protein expression level of keratin 18.

Concerning prediction performance, the root trimmed mean squared pre-
diction error (RTMSPE) is computed as in (5.2) via leave-one-out cross-
validation (so k = n). Table 4 reports the RTMSPE for the considered meth-
ods. Sparse LTS clearly shows the smallest RTMSPE, followed by RLARS
and the lasso. In addition, sparse LTS detects 13 observations as outliers,
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showing the need for a robust procedure. Further analysis revealed that
including those 13 observations changes the correlation structure of the pre-
dictor variables with the response. Consequently, the order in which the
genes are added to the model by the lasso algorithm on the full sample is
completely different from the order on the best subset found by sparse LTS.
Leaving out those 13 observations therefore yields more reliable results for
the majority of the cancer cell lines.

It is also worth noting that the models still contain a rather large number
of variables given the small number of observations. For the lasso, it is well
known that it tends to select many noise variables in high dimensions since
the same penalty is applied on all variables. Meinshausen (2007) therefore
proposed a relaxation of the penalty for the selected variables of an initial
lasso fit. Adding such a relaxation step to the sparse LTS procedure may
thus be beneficial for large p and is considered for future work.

8. Computational details and CPU times. All computations are
carried out in R version 2.14.0 (R Development Core Team, 2011) using the
packages robustHD (Alfons, 2012a) for sparse LTS and RLARS, quantreg
(Koenker, 2011) for the LAD-lasso and lars (Hastie and Efron, 2011) for the
lasso. Most of sparse LTS is thereby implemented in C++, while RLARS is
an optimized version of the R code by Khan, Van Aelst and Zamar (2007).
Optimization of the RLARS code was necessary since the original code builds
a p× p matrix of robust correlations, which is not computationally feasible
for very large p. The optimized version only stores an q× p matrix, where q
is the number of sequenced variables. Furthermore, the robust correlations
are computed with C++ rather than R.

Since computation time is an important practical consideration, Figure 4
displays computation times of lasso, LAD-lasso, RLARS and sparse LTS in
seconds. Note that those are average times over 10 runs based on simulated
data with n = 100 and varying dimension p, obtained on an Intel Xeon
X5670 machine. For sparse LTS and the LAD-lasso, the reported CPU times
are averages over a grid of five values for λ. RLARS is a hybrid procedure,
thus we only report the CPU times for obtaining the sequence of predictors,
but not for fitting the models along the sequence.

As expected, the computation time of the non-robust lasso remains very
low for increasing p. Sparse LTS is still reasonably fast up to p ≈ 10 000,
but computation time is a considerable factor if p is much larger than that.
However, sparse LTS remains faster than obtaining the RLARS sequence.
A further advantage of the subsampling algorithm of sparse LTS is that it
can easily be parallelized to reduce computation time on modern multicore
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Fig 4. CPU times (in seconds) for n = 100 and varying p, averaged over 10 runs.

computers, which is future work.

9. Conclusions and discussion. Least trimmed squares (LTS) is a ro-
bust regression method frequently used in practice. Nevertheless, it does not
allow for sparse model estimates and cannot be applied to high-dimensional
data with p > n. This paper introduced the sparse LTS estimator, which
overcomes these two issues simultaneously by adding an L1 penalty to the
LTS objective function. Simulation results and a real data application to
protein and gene expression data of the NCI-60 cancer cell panel illustrated
the excellent performance of sparse LTS and showed that it performs as
well or better than robust variable selection methods such as RLARS. In
addition, an advantage of sparse LTS over algorithmic procedures such as
RLARS is that the objective function allows for theoretical investigation of
its statistical properties. As such, we could derive the breakdown point of
the sparse LTS estimator. However, it should be noted that efficiency is an
issue with sparse LTS. A reweighting step can thereby lead to a substantial
improvement in efficiency, as shown in the simulation study.

In the paper, an L1 penalization was imposed on the regression parameter,
as for the lasso. Other choices for the penalty are possible. For example, an
L2 penalty leads to ridge regression. A robust version of ridge regression was
recently proposed by Maronna (2011), using L2 penalized MM-estimators.
Even though the resulting estimates are not sparse, prediction accuracy is
improved by shrinking the coefficients, and the computational issues with
high-dimensional robust estimators are overcome due to the regularization.
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Another possible choice for the penalty function is the smoothly clipped
absolute deviation penalty (SCAD) proposed by Fan and Li (2001). It sat-
isfies the mathematical conditions for sparsity but results in a more difficult
optimization problem than the lasso. Still, a robust version of SCAD can
be obtained by optimizing the associated objective function over trimmed
samples, instead of over the full sample.

There are several other open questions that we leave for future research.
For instance, we did not provide any asymptotics for sparse LTS, as was
for example done for penalized M-estimators in Germain and Roueff (2010).
Potentially, sparse LTS could be used as an initial estimator for computing
penalized M-estimators.

All in all, the results presented in this paper suggest that sparse LTS is
a valuable addition to the statistics researcher’s toolbox. The sparse LTS
estimator has an intuitively appealing definition, and is related to the popu-
lar least trimmed squares estimator of robust regression. It performs model
selection, outlier detection and robust estimation simultaneously, and is ap-
plicable if the dimension is larger than the sample size.

Acknowledgments. We would like to thank the editor and two anony-
mous referees for their constructive remarks that led to an improvement of
the paper.

PROOF OF BREAKDOWN POINT

Proof of Theorem 1. In this proof the L1 norm of a vector β is de-
noted as ‖β‖1 and the Euclidean norm as ‖β‖2. Since these norms are topo-
logically equivalent there exists a constant c1 > 0 such that ‖β‖1 ≥ c1‖β‖2
for all vectors β. The proof is split into two parts.

First, we prove that ε∗(β̂;Z) ≥ n−h+1
n . Replace the last m ≤ n − h

observations, resulting in the contaminated sample Z̃. Then there are still
n − m ≥ h good observations in Z̃. Let My = max1≤i≤n |yi| and Mx1 =
max1≤i≤n |xi1|. For the case βj = 0, j = 1, . . . , p, the value of the objective
function is given by

Q(0) =
h∑
i=1

(ρ(ỹ))i:n ≤
n∑

i=n−h+1

(ρ(y))i:n ≤ hρ(My).

Now consider any β with ‖β‖2 ≥ M := (hρ(My) + 1)/(λc1). For the value
of the objective function, it holds that

Q(β) ≥ λ‖β‖1 ≥ λc1‖β‖2 ≥ hρ(My) + 1 > Q(0).
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Since Q(β̂) ≤ Q(0), we conclude that ‖β̂(Z̃)‖2 ≤ M , where M does not
depend on the outliers. This concludes the first part of the proof.

Second, we prove that ε∗(β̂;Z) ≤ n−h+1
n . Move the last m = n−h+1 ob-

servations of Z to the position z(γ, τ) = (x(τ)′, y(γ, τ))′ = ((τ, 0, . . . , 0), γτ)′

with γ, τ > 0, and denote Zγ,τ the resulting contaminated sample. Assume
that there exists a constant M such that

(A.1) sup
τ,γ
‖β̂(Zγ,τ )‖2 ≤M,

i.e., there is no breakdown. We will show that this leads to a contradiction.
Let βγ = (γ, 0, . . . , 0)′ ∈ Rp with γ = M + 2 and define τ > 0 such that

ρ(τ) ≥ max(h −m, 0)ρ(My + γMx1) + hλγ + 1. Note that τ is always well
defined due to the assumptions on ρ, in particular since ρ(∞) = ∞. Then
the objective function is given by

Q(βγ) =


∑h−m
i=1

(
ρ(y −Xβγ)

)
i:(n−m)

+ hλ|γ|, if h > m,

hλ|γ|, else,

since the residuals with respect to the outliers are all zero. Hence,

(A.2) Q(βγ) ≤ max(h−m, 0)ρ(My + γMx1) + hλγ ≤ ρ(τ)− 1.

Furthermore, for β = (β1, . . . , βp)′ with ‖β‖2 ≤ γ − 1 we have

Q(β) ≥ ρ(γτ − τβ1),

since at least one outlier will be in the set of the smallest h residuals. Now
β1 ≤ ‖β‖2 ≤ γ − 1, so that

(A.3) Q(β) ≥ ρ(τ(γ − β1)) ≥ ρ(τ),

since ρ is non-decreasing.
Combining (A.2) and (A.3) leads to

‖β̂(Zγ,τ )‖2 ≥ γ − 1 = M + 1,

which contradicts the assumption (A.1). Hence there is breakdown.
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