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1 Introduction

Statistical inference based on extreme value theory uses only large observations in a sam-

ple. The large observations are selected by either the peaks-over-threshold (POT) method

or by the block maxima method. Asymptotic theories for most estimators based on these

two methods are established using the tail quantile process of the peaks-over-threshold or

the quantile process of block maxima. However, the asymptotic variance obtained in such

asymptotic theories, though mostly explicit, can be intricate. One example is the much used

probability weighted moment (PWM) estimator in the block maxima method; see Ferreira

and de Haan (2015). The direct motivation for the present research is to estimate this vari-

ance via the bootstrap. We derive a bootstrap version of the fundamental expansions for the

(tail) quantile process in both the POT and block maxima methods. Consequently, for any

statistical estimator in extreme value theory whose asymptotic property is established via

the (tail) quantile process, the bootstrap mimics faithfully the original asymptotic behavior

of the estimator.

Although the bootstrap is a widely used method for obtaining the distribution of a

statistical estimator, it does not work automatically for estimators based on extreme value

theory. A somewhat trivial example is that the bootstrapped full sample maxima lies below

the actual full sample maxima. More formally, Bickel and Freedman (1981) shows the non-

consistency of the bootstrap method, when using the sample maxima as an estimator of

the right endpoint of a distribution. For the definition of the consistency of the bootstrap

method, see Van der Vaart (1998, Section 23.2). Broadly speaking, proving consistency of the

bootstrap in extreme value theory is a difficult issue because even if observations are drawn

from a distribution that satisfies the extreme value conditions, the corresponding empirical

distribution function does not satisfy the extreme value conditions. Consequently, it is not

obvious that the bootstrap can be used to obtain the distribution of statistical estimators

in extreme value theory. Therefore, our somewhat surprising result provides confidence for

using the bootstrap in extreme value theory.
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The first question regarding the bootstrap in extreme value theory is what to bootstrap.

For the POT method, one can bootstrap just the selected peaks or one can bootstrap the

original sample and reconstruct the peaks. We choose the latter for better expected per-

formance because the former seems not to randomize sufficiently the observations. In the

block maxima method, one can bootstrap just the block maxima of the original sample or

one can bootstrap the original sample and reconstruct the block maxima. We again choose

the latter for a similar reason.

For the POT method we wish to construct a bootstrap analogue of the following fun-

damental expansion of the tail quantile process (due to Drees (1998)). Let X̃1, X̃2, . . . be a

sequence of i.i.d. random variables with a common distribution function F . Suppose that

the sample maximum X̃n:n, properly normalized, converges to one of the extreme value dis-

tributions Gγ(x) = exp{−(1+γx)−1/γ}. Note that Gγ is a Fréchet distribution for γ positive,

a negative Weibull distribution for γ negative and a Gumbel distribution for γ = 0. Denote

X̃1,n ≤ · · · ≤ X̃n,n as the order statistics from a sample of n observations. For any intermedi-

ate sequence k = k(n) satisfying k →∞, k/n→ 0 as n→∞, the process
{
X̃n−[ks],n

}
0≤s≤1

is called the tail quantile process.

The asymptotic expansion of the tail quantile process relies on the second order condition

of extreme value theory (cf. Appendix B, de Haan and Ferreira (2006)) as follows. Define

U(t) = F←
(
1− 1

t

)
for t > 0 where ← indicates the left-continuous inverse function. Assume

that there exist ρ ≤ 0, a positive function a and an eventually positive or negative function

A with limt→∞A(t) = 0 such that for x > 0

lim
t→∞

U(tx)−U(t)
a(t)

− xγ−1
γ

A(t)
=: Ψγ,ρ(x), (1.1)

where

Ψγ,ρ(x) =


xγ+ρ−1
γ+ρ

, if ρ < 0

1
γ
xγ log x, if ρ = 0 6= γ

1
2
(log x)2, if ρ = 0 = γ.
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Here γ and ρ are called the extreme value index and the second order index respectively,

while a and A are called the first and second order scale functions respectively. This second

order condition implies the mentioned convergence of the sample maximum.

The following result is a version of Theorem 2.1 in Drees (1998); see also Corollary 2.4.5

in de Haan and Ferreira (2006).1

Proposition 1.1 Assume the second order condition (1.1) holds. Let k = k(n) → ∞ and
√
kA
(
n
k

)
= O(1) as n→∞. There exist an appropriate version of the auxiliary functions a

and A, denoted as a0 and A0, a sequence of independent Brownian motions W1,W2, . . . such

that, for any ε > 0, as n→∞,

√
k

(
X̃n−[kx],n − b0

(
n
k

)
a0
(
n
k

) − x−γ − 1

γ

)

=x−γ−1Wn(x) +
√
kA0

(n
k

)
Ψγ,ρ

(
1

x

)
+ x−γ−1/2−εoP (1), (1.2)

holds uniformly for x ∈ (0, 2], where

b0

(n
k

)
:=

 U
(
n
k

)
if γ ≥ −1/2

X̃n,n +
a0(nk )
γ

+
a0(nk )A0(nk )

γ+ρ
1ρ<0 if γ < −1/2.

The first goal of this paper is to establish a parallel result for the tail quantile process

based on the bootstrapped observations. Take a bootstrap sample, that is, draw i.i.d. random

variables X̃∗1 , X̃
∗
2 , . . . , X̃

∗
n from the empirical distribution function Fn of X̃1, X̃2, . . . , X̃n. After

ordering the bootstrapped observations as X̃∗1,n ≤ · · · ≤ X̃∗n,n, we consider the bootstrapped

tail quantile process
{
X̃∗n−[ks],n

}
0≤s≤1

for an intermediate sequence k and will prove a result

analogue to (1.2); see Section 2. The bootstrap analogue that we develop has a similar

structure except that in the expansion we have two independent Brownian motion terms,

one due to the randomness of the original sample and the other one due to the bootstrap

1Notice that Corollary 2.4.5 in de Haan and Ferreira (2006) is subject to a technical error in the random
shift function b0

(
n
k

)
, which is fixed in this Proposition (personal communication with the authors).
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randomness.

The same holds - mutatis mutandis - for the fundamental expansion of the quantile process

of the block maxima. The original result in Ferreira and de Haan (2015) is as follows. Recall

that X̃1, X̃2, . . . are a sequence of i.i.d. random variables with a common distribution function

F . Define the block maxima of the sample X̃1, X̃2, . . . , X̃n as

Xi = max
(i−1)m<j≤im

X̃j,

for i = 1, 2, . . . , k, where n = mk. Let X1,k ≤ X2,k ≤ . . . ≤ Xk,k be the order statistics of

the block maxima X1, X2, . . . , Xk.

Denote V :=
(

1
− logF

)←
. The asymptotic expansion of the quantile process of block max-

ima
{
Xdkxe,k

}
x∈[1/(k+1),k/(k+1)]

relies on a different second order condition, this time regarding

the V function: with replacing U by V in the second order condition (1.1), we assume that

a similar limit relation holds with different auxiliary functions, a scale function ã, a second

order scale function Ã and a different second order index ρ̃. The asymptotic expansion is

given in the following Proposition; see Theorem 2.1 in Ferreira and de Haan (2015).

Proposition 1.2 Assume the second order condition (1.1) holds for the V function. Let

m = m(n)→∞ and k = k(n)→∞ in such a way that
√
kÃ (m)→ λ ∈ R as n→∞, where

Ã is the second order scale function for the V function. Then, there exist an appropriate

version of the auxiliary functions ã and Ã, denoted as ã0 and Ã0, and an appropriate sequence

of Brownian bridges {Bk(·)}∞k=1 such that for any ε > 0, as n→∞,

√
k

(
Xdkxe,k − V (m)

ã0 (m)
− (− log x)−γ − 1

γ

)
=

Bk (x)

x (− log x)1+γ

+
√
kÃ0 (m) Ψγ,ρ̃

(
1

− log x

)
+ x−1/2−ε(1− x)−1/2−γ−ρ̃−εoP (1), (1.3)

holds uniformly for all x ∈ [1/(k + 1), k/(k + 1)].

Next, recall that the bootstrapped sample are i.i.d. random variables X̃∗1 , X̃
∗
2 , . . . , X̃

∗
n

5



drawn from the empirical distribution function Fn of X̃1, X̃2, . . . , X̃n. Then, we construct

the bootstrapped block maxima by

X∗i = max
(i−1)m<j≤im

X̃∗j for i = 1, . . . , k

This setup shows that we bootstrap the original sample and reconstruct the bootstrapped

block maxima from the bootstrapped sample instead of bootstrapping the block maxima

from the original sample.

The second goal of the paper is to prove for the bootstrap block maxima a result similar

to (1.3) for the original sample. This will be done in Section 3. The bootstrap analogue of

this result that we develop has a similar structure except that in the expansion we have a

Brownian bridge term due to the randomness of the bootstrap and a Brownian motion term

due to the randomness of the original sample.

The bootstrap expansions that we prove lead easily (by integrating the various terms) to

the asymptotic distribution of extreme value estimators. In Section 4, a few examples are

given for applying our bootstrap expansions in the POT and the block maxima methods to

estimate the distribution of estimators for the extreme value index. For the POT method, we

use the PWM estimator (Hosking and Wallis (1987)) as an example. For the block maxima

method, we use the PWM estimator in Hosking et al. (1985) as an example. We show that

the sample variance of bootstrapped estimates can be a good estimator for the asymptotic

variance of the original estimator.

The proof of our main results uses a simple representation of the bootstrap sample. For

the POT method the representation for the bootstrap tail quantile process is as follows

Lemma 1.3 Let Fn be the empirical distribution function of
{
X̃j

}n
j=1

. Let Y ∗1 , · · · , Y ∗n be

i.i.d. random variables following the standard Pareto distribution 1 − 1/x, for x > 1, and
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independent of
{
X̃j

}n
j=1

. Then,

{
X̃∗j

}n
j=1

d
=
{
F←n (1− 1/Y ∗j )

}n
j=1

, (1.4){
X̃∗n−[ks],n

}
s∈(0,1]

d
=
{
X̃n−[kD̃n(s)],n

}
s∈(0,1]

, (1.5)

where D̃n(s) = n
kY ∗
n−[ks],n

.

Here
{
X̃n−[kx],n

}
is the tail quantile process of the original sample and D̃n(s) = n

kY ∗
n−[ks],n

with
{
Y ∗n−[ks],n

}
the tail quantile process for the standard Pareto distribution. The two pro-

cesses are independent. Then we combine the expansions of both processes. The combined

expansion requires that D̃n(s) is in the correct range of the process
{
X̃n−[kx],n

}
. The proof

for the block maxima method is considerably more complicated. It is based on a similar

representation for the bootstrap quantile process of the block maxima; see (3.4) below.

In Section 2 the fundamental expansion for the POT method is given along with an

outline of the proof. The rest of the proof can be found in the Appendix A.1. Section

3 handles the block maxima method in a similar way with leaving detailed proofs to the

Appendix A.2. Section 4 provides a few examples for applications. We show that the

asymptotic expansions of the tail quantile process of the bootstrapped sample leads to a

consistency result for the bootstrapped PWM estimator using the POT method. However,

the asymptotic expansion of the quantile process of the bootstrapped sample maxima does

not lead to a similar consistency result for the PWM estimator using the block maxima

method. Section 5 provides simulation studies illustrating the theoretical findings.

2 The peaks-over-threshold method

Let X̃1, X̃2, . . . , X̃n be a sequence of i.i.d. random variables with common distribution

function F . Denote U := (1/(1 − F ))← as the corresponding quantile function and X̃1,n ≤

X̃2,n ≤ · · · ≤ X̃n,n as the order statistics. Let X̃∗1 , X̃
∗
2 , . . . , X̃

∗
n be an i.i.d. bootstrapped
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sample drawing from the empirical distribution function Fn of X̃1, X̃2, . . . , X̃n.

We prove the following bootstrap analogue of the tail quantile process result in (1.2). A

paper related to this result is Litvinova and Mervyn (2018).

Theorem 2.1 Suppose the second order condition (1.1) holds. Let k = k(n) → ∞ and
√
kA
(
n
k

)
= O(1) as n → ∞. There exists an appropriate version of the functions a and

A, denoted as a0 and A0, two independent sequences of Brownian motions W1,W2, . . . and

W ∗
1 ,W

∗
2 , . . . such that as for any ε > 0, as n→∞,

√
k

(
X̃∗n−[ks],n − b0

(
n
k

)
a0
(
n
k

) − s−γ − 1

γ

)

= s−γ−1W ∗
n (s) + s−γ−1Wn (s) +

√
kA0

(n
k

)
Ψγ,ρ

(
1

s

)
+ s−γ−1/2−εoP (1), (2.1)

holds uniformly for all s ∈ [1/(k + 1), 1], where b0
(
n
k

)
is the same as in Proposition 1.1.

Combining Theorem 2.1 with Proposition 1.1 yields the following result

Corollary 2.2 Under the conditions in Theorem 2.1, as n→∞,

√
k

(
X̃∗n−[ks],n − X̃n−[ks],n

a0
(
n
k

) )
= s−γ−1W ∗

n (s) + s−γ−1/2−εoP (1),

holds uniformly for all s ∈ [1/(k + 1), 1].

Remark 2.1 The Brownian motions {Wn} stem from the randomness of the original sample

whereas the Brownian motions {W ∗
n} stem from the randomness of the bootstrap procedure.

The latter is independent of the original sample. Consequently, Corollary 2.2 implies a

consistency result for the tail quantile process if
√
kA(n/k)→ 0 as n→∞.

To prove the theorem, we need three auxiliary results. First, recall Proposition 1.1,

which gives the expansion of the tail quantile process of the original observations
{
X̃j

}n
j=1

.

Second, Lemma 1.3 relates the tail quantile process of the bootstrapped observations to the
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tail quantile process of the original observations in. Finally, Lemma 2.3 below guarantees

that we can use the asymptotic expansion of the latter process to obtain the expansion of

the former process.

We introduce the notation

An(s)
P� Bn(s) uniformly for s ∈ S, as n→∞, (2.2)

to indicate that both An(s)/Bn(s) = OP (1) and Bn(s)/An(s) = OP (1) hold, while the two

OP (1) terms are uniformly bounded for all s ∈ S.

Lemma 2.3 Assume that k → ∞ and k/n → 0 as n → ∞. Then, as n → ∞, uniformly

for all s ∈ [1/(k + 1), 1],

D̃n(s)
P� s and Pr(D̃n(s) < 2)→ 1

The first step in the proof of Theorem 2.1 is the substitution of x in (1.2) with D̃n(s),

which is made available by Lemma 2.3. We obtain that, under the conditions of the Theorem,

as n→∞,

√
k

(
X̃∗n−[ks],n − b0

(
n
k

)
a0
(
n
k

) − (D̃n(s))−γ − 1

γ

)

= (D̃n(s))−γ−1Wn

(
D̃n(s)

)
+
√
kA0

(n
k

)
Ψγ,ρ

(
(D̃n(s))−1

)
+ (D̃n(s))−γ−1/2−εoP (1),

(2.3)

uniformly for 0 < s ≤ 1. For the proof of Theorem 2.1 it remains to expand the four terms

involving D̃n(s).

The term (D̃n(s))−γ−1
γ

on the left hand side of (2.3) can be handled by taking ξ = −γ in

the following lemma.

Lemma 2.4 Assume that k → ∞ and k/n → 0 as n → ∞. There exists a sequence of

Brownian motions W ∗
1 ,W

∗
2 , . . . such that for any ξ ∈ R, uniformly for all s ∈ [1/(k + 1), 1],
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as n→∞,

√
k


(
D̃n(s)

)ξ
− sξ

ξ

 = −sξ−1W ∗
n(s) + sξ−1/2−εoP (1) = sξ−1/2−εOP (1). (2.4)

The three terms on the right hand side of (2.3) are handled by the following lemmas.

Lemma 2.5 Under the conditions in Theorem 2.1, uniformly for all s ∈ [1/(k + 1), 1], as

n→∞, (
D̃n(s)

)−γ−1
Wn

(
D̃n(s)

)
= s−γ−1Wn(s) + s−γ−1/2−εop(1).

Lemma 2.6 Under the conditions in Theorem 2.1, uniformly for all s ∈ [1/(k + 1), 1], as

n→∞,

√
kA0

(n
k

)
Ψγ,ρ

(
1

D̃n(s)

)
=
√
kA0

(n
k

)
Ψγ,ρ

(
1

s

)
+ s−γ−1/2−εop(1).

Lemma 2.7 Under the conditions in Theorem 2.1,, niformly for all s ∈ [1/(k + 1), 1], as

n→∞,

(D̃n(s))−γ−1/2−εoP (1) = s−γ−1/2−εop(1).

Then the theorem follows. Proof of all lemmas are left to Appendix A.1.

3 The block maxima method

In this section we present a bootstrap analogue of (1.3).

Theorem 3.1 Suppose the second order condition (1.1) holds. Let n = mk with k = k(n)

satisfying k,m → ∞, k = O(nl) for some 0 < l < 2/3 and k1/2 exp {(log log k)2}A(m) =

O(1), as n → ∞. Then for all 0 < λ < 1/2, there exist an appropriate version of the

functions a and A, denoted as a0 and A0, a sequence of Brownian bridges B∗1 , B
∗
2 , . . . and,
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independently, a sequence of Brownian motions W1,W2, . . . such that as n→∞, uniformly

for all s ∈ [1/(k + 1), k/(k + 1)],

√
k

(
X∗dkse,k − b̃0 (m)

a0 (m)
− (− log s)−γ − 1

γ

)
=

B∗k (s)

s (− log s)1+γ
+
Wn (− log s)

(− log s)1+γ

+ s−1/2−λ
(1− s)1/2−λ

(− log s)1+γ
op(1), (3.1)

where

b̃0(m) :=

 U(m) if γ ≥ −1/2,

X̃n,n + a0(m)
γ

if γ < −1/2,

Remark 3.1 The Brownian motions {Wn} stem from the randomness of the original sample

whereas the Brownian bridges {B∗k} stem from the randomness of the bootstrap procedure.

Remark 3.2 Compared to the expansion for the quantile process based on the original block

maxima in (1.3), the shift function b̃0(m) in Theorem 3.1 differs in two aspects. For γ ≥

−1/2, the shift depends on the function U , not the function V . For γ < −1/2, the shift

function is random.

Remark 3.3 Notice that the second order condition (1.1) differs from the original second

order conditions assumed for the block maxima approach as in Ferreira and de Haan (2015):

the condition (1.1) is more suitable for the POT method. Nevertheless, the two types of

second order conditions imply each other if −1 < ρ ≤ 0, see Drees et al. (2003). Therefore,

for −1 < ρ ≤ 0, the conditions required are comparable. If ρ < −1, the second order condition

(1.1) implies the alternative second order condition in Ferreira and de Haan (2015), with

an alternative second order scale function A∗ that is regularly varying with index −1. In

this case the requirement that as n → ∞, k = O(nl) for 0 < l < 2/3 is only slightly more

restrictive than
√
kA∗(n/k) = O(1), required in the original block maxima result in Ferreira

and de Haan (2015).

The general idea behind the proof of the main theorem is similar to the proof of Theorem
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2.1, but the steps taken are more complicated. First, we establish an extended version for the

asymptotic expansion of the tail quantile process of the original observations (see Proposition

3.2). Second, we relate the quantile process of the bootstrapped block maxima {X∗i }
k
i=1 to

the tail quantile process of the original observations
{
X̃j

}n
j=1

(see Lemma 3.3 and Lemma

3.4 below). Finally, we can use the asymptotic expansion of the latter process to obtain the

expansion of the former process. We first present the three auxiliary results, and then show

the steps toward proving the main theorem at the end of this Section.

Proposition 3.2 Assume that the second order condition (1.1) holds. Assume that an in-

termediate sequence k := k(n) satisfies that k →∞, k1/2 exp {(log log k)2}A(m) = O(1) and

k = O(n/(log n)3) as n→∞. Then there exist a version of the functions a and A, denoted

as a0 and A0, and a sequence of Brownian motions Wn such that for all 0 < ε < 1/2, as

n→∞,

√
k

(
X̃n−[kx],n − b̃0 (m)

a0 (m)
− x−γ − 1

γ

)
= x−γ−1Wn(x) + x−γ−1/2−εoP (1), (3.2)

holds uniformly for x ∈ (0, (log k)2], where b̃0 (m) is defined as in Theorem 3.1.

Notice that this proposition is a generalization of Proposition 1.1 in the sense that the range

of x is extended. The extension is useful in the proof of Theorem 3.1.

Recall that Fn is the empirical distribution function of
{
X̃j

}n
j=1

and X̃1,n ≤ X̃2,n ≤

. . . ≤ X̃n,n are the order statistics of the original observations X̃1, X̃2, . . . , X̃n. Denote

Φ(x) := exp(−1/x) for x > 0, the distribution function of the standard Fréchet distribution.

We have the following representation result.

Lemma 3.3 Let Z∗1 , · · · , Z∗k be i.i.d. random variables with distribution function Φ, inde-
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pendent of
{
X̃j

}n
j=1

. Then

{X∗i }
k
i=1

d
= {F←n (Φ(mZ∗i )}ki=1 , (3.3){

X∗dkse,k
}
s∈[ 1

k+1
, k
k+1

]

d
=
{
X̃n−[kDn(s)],n

}
s∈[ 1

k+1
, k
k+1

]
, (3.4)

where Dn(s) = m
(

1− Φ
(
mZ∗dkse,k

))
.

The representation in (3.4) suggests that the expansion for the process{
X∗dkse,k

}
s∈[1/(k+1),k/(k+1)]

can be obtained by substituting x in (3.2) with Dn(s) for

s ∈ [1/(k + 1), k/(k + 1)]. The following lemma guarantees that such a substitution is

allowed. Recall the notation
P� defined in (2.2).

Lemma 3.4 Assume that m/ log k → ∞ as n → ∞. Then, as n → ∞, uniformly for all

s ∈ [1/(k + 1), k/(k + 1)],

Dn (s)
P� 1

Z∗dkse,k

P� − log s.

For the proof of Theorem 3.1 we need some auxiliary results. Proposition 3.2, Lemma

3.3 and Lemma 3.4 imply that under the conditions of Theorem 3.1, as n→∞,

√
k

(
X∗dkse,k − b̃0 (m)

a0 (m)
− (Dn(s))−γ − 1

γ

)

= (Dn(s))−γ−1Wn (Dn(s)) + (Dn(s))−γ−1/2−εoP (1), (3.5)

uniformly for all s ∈ [1/(k + 1), k/(k + 1)]. Next, we approximate the various terms in (3.5)

under the same conditions as in Theorem 3.1.

The term (Dn(s))−γ−1
γ

on the left hand side of (3.5) can be handled by taking ξ = −γ in

the following lemma.

Lemma 3.5 Under the conditions in Theorem 3.1, for any 0 < λ < 1/2, there exists a

sequence of Brownian bridges B∗1 , B
∗
2 , . . . such that as k →∞, uniformly for all s ∈ [1/(k +
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1), k/(k + 1)],

√
k

(
(Dn (s))ξ − 1

ξ
− (− log s)ξ − 1

ξ

)

=− B∗k (s)

s(− log s)1−ξ
+ s−1/2−λ

(1− s)1/2−λ

(− log s)1−ξ
oP (1), (3.6)

for any ξ ∈ R.

Consequently, for any τ > 0, as n→∞, uniformly for all s ∈ [1/(k + 1), k/(k + 1)],

(Dn (s))ξ − (− log s)ξ

ξ
= k−1/2s−1/2(1− s)1/2(− log s)−1+ξ(log k)τOP (1). (3.7)

Next, the two terms on the right hand side of (3.5) are handled by the following lemmas.

Lemma 3.6 Under the conditions in Theorem 3.1,as k →∞,

(Dn (s))−γ−1Wn (Dn (s)) = (− log s)−γ−1Wn (− log s) + s−1/2−λ
(1− s)1/2−λ

(− log s)1+γ
oP (1),

holds uniformly for all s ∈ [1/(k + 1), k/(k + 1)].

Lemma 3.7 Choose ε such that ε < λ. Then, under the conditions in Theorem 3.1, uni-

formly for all s ∈ [1/(k + 1), k/(k + 1)], as k →∞,

(Dn (s))−γ−1/2−ε oP (1) = s−1/2−λ
(1− s)1/2−λ

(− log s)1+γ
oP (1).

Then the theorem follows. Proofs of Proposition 3.2 and all lemmas are left to Appendix

A.2.

4 Applications

In this section, we apply our main results, Theorem 2.1 for the POT method and Theorem

3.1 for the block maxima method to obtain the asymptotic behavior of the bootstrapped
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version of a few estimators in extreme value theory. As in the case of the original estimator,

the asymptotic behavior of the bootstrapped estimator follows directly from the expansion

of the bootstrapped (tail) quantile process (Theorem 2.1 and 3.1). For the POT method,

we use the PWM estimator (Hosking and Wallis (1987)) as an example and show that the

bootstrap is consistent for the PWM estimator. Here consistency refers to the consistency

of the bootstrap defined in Bickel and Freedman (1981). For the block maxima method, we

use the PWM estimator in Hosking et al. (1985) as an example. We show that the bootstrap

is not consistent. Nevertheless, the sample variance of bootstrapped estimates may still be a

good estimator for the asymptotic variance of the original PWM estimator. The POT and

block maxima methods are handled in two separate subsections.

4.1 The POT method

We start with the PWM estimator for the extreme value index using the POT method;

see Hosking and Wallis (1987). Let X̃1, X̃2, . . . , X̃n be a sequence of i.i.d. random variables

with common distribution function F satisfying the second order condition (1.1). Denote

X̃1,n ≤ · · · ≤ X̃n,n as the order statistics from a sample of n observations. Define the PWM

estimator in the POT method as

γ̂POT :=
I1 − 4I2
I1 − 2I2

,

where the probability weighted moments Iq are given by

Iq =
1

k

k∑
i=1

(
i

k

)q−1
(X̃n−i+1,n − X̃n−k,n),

for q = 1, 2. Here k := k(n) is an intermediate sequence such that k → ∞ and k/n → 0 as

n→∞.

The asymptotic behavior of the PWM estimator using the POT method is as follows; see
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e.g. equation (3.4) in Cai et al. (2013) with q = 2, r = 1.

Proposition 4.1 Assume that γ < 1/2 and
√
kA(n/k) = O(1) as n → ∞. With the same

Brownian motions Wn defined in Proposition 1.1, we have that as n→∞,

√
k(γ̂POT − γ) = L̃(Wn) + b̃n(γ, ρ) + oP (1),

where the random part is

L̃(Wn) = (2− γ)(1− γ)

(
2(2− γ)

∫ 1

0

s(s−γ−1Wn(s)−Wn(1))ds

−(1− γ)

∫ 1

0

(s−γ−1Wn(s)−Wn(1))ds

)
,

and the asymptotic bias term is b̃n(γ, ρ) =
√
kA0(n/k) (2−γ)(1−γ)

(2−γ−ρ)(1−γ−ρ) , where A0 is the same

as in Proposition 1.1.

The proof of this proposition is based on the asymptotic expansion of the tail quantile process

in Proposition 1.1. From this proposition, one may calculate the asymptotic variance of the

PWM estimator as follows,

Var(L̃(Wn)) =
(1− γ)(2− γ)2(1− γ + 2γ2)

(1− 2γ)(3− 2γ)
,

see Theorem 3.6.1 in de Haan and Ferreira (2006). Practically, one may use the estimated γ

to obtain a consistent estimate of the asymptotic variance. Therefore, using the bootstrap

is not a necessary step for obtaining the variance of the estimator. Nevertheless, we show

that using bootstrap can achieve the consistency of the estimator.

We consider the bootstrap sample X̃∗1 , X̃
∗
2 , . . . , X̃

∗
n and construct the PWM estimator

based on the bootstrap sample, denoted as γ̂∗POT . Notice that the expansion in Theorem 2.1

has a structure very similar to the one in Proposition 1.1, except an extra term. Similar to

the corresponding proof in Cai et al. (2013), we obtain the following result.

16



Proposition 4.2 Assume that γ < 1/2 and
√
kA(n/k) = O(1) as n → ∞. With the same

Brownian motions Wn and W ∗
n defined in Theorem 2.1, we have that as n→∞,

√
k(γ̂∗POT − γ) = L̃(Wn +W ∗

n) + b̃n(γ, ρ) + oP (1),

where L̃(·) is the same operator as in Proposition 4.1 and b̃n(γ, ρ) is the same bias term

therein. Here the Brownian motions Wn are the same sequence as that in Proposition 4.1,

and they are independent of the Brownian motions W ∗
n .

Note that the operator L̃(·) is a linear operator, i.e. L̃(Wn + W ∗
n) = L̃(Wn) + L̃(W ∗

n).

Therefore, by comparing γ̂∗POT and γ̂POT , we obtain that as n→∞,

√
k(γ̂∗POT − γ̂POT ) = L̃(W ∗

n) + oP (1). (4.1)

The relation (4.1) serves as an important step in proving the consistency of the bootstrap

procedure as in the following Theorem. The proof is postponed to Appendix A.3.

Theorem 4.3 Assume that γ < 1/2 and
√
kA(n/k) = o(1) as n→∞. The PWM estimator

using the POT method is consistent: as n→∞,

sup
x∈R

∣∣∣Pr
(√

k(γ̂∗POT − γ̂POT ) ≤ x | X̃1, . . . , X̃n

)
− Pr

(√
k(γ̂POT − γ) ≤ x

)∣∣∣→ 0,

where L̃(·) is the same operator as in Proposition 4.1 and b̃n(γ, ρ) is the same bias term

therein. Here the Brownian motion Wn is the same sequence as that in Proposition 4.1, and

is independent of the Brownian motion W ∗
n .

Theorem 4.3 motivates the bootstrap procedure for obtaining the asymptotic variance

of γ̂POT : by bootstrapping d times and obtain estimators γ̂∗l , l = 1, 2, . . . , d, the sample
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variance of these bootstrapped estimates

s2boot :=
1

d− 1

d∑
l=1

(
γ̂∗l −

1

d

d∑
l=1

γ̂∗l

)2

,

approximates the asymptotic variance of the original estimator γ̂POT .

We remark that although Theorem 4.3 requires the condition
√
kA(n/k) = o(1) as n→∞

which assumes away the bias in the original estimator. This is only necessary for obtaining

the consistency result. Nevertheless the aforementioned procedure for obtaining the asymp-

totic variance is also valid if the bias is present: i.e.
√
kA(n/k) = O(1) as n → ∞. In this

case, the equation (4.1) is still valid. Therefore, the sample variance of {γ̂∗l }, is still a good

approximate of Var(L̃(Wn))/k.

An alternative way to approximate the asymptotic variance involves the original estimator

γ̂POT . Theorem 4.3 implies that the following statistic

s2alternative =
1

d

d∑
l=1

(γ̂∗l − γ̂POT )2 ,

is also an approximation of the asymptotic variance of the original estimator.

For any other estimator for the extreme value index using the POT method, as long

as its asymptotic behavior can be established using the tail quantile process in Proposition

1.1 and the asymptotic limit of the estimator depends on a linear operator of the limit of

the tail quantile process, then similar results as in Proposition 4.5 and Theorem 4.3 can be

established. In other words, the bootstrap procedure is consistent if the asymptotic bias

is zero. Further, the sample variance of the bootstrapped estimates can approximate the

variance of the original estimator. Examples of such estimators are the Pickands’ estimator

(Pickands (1975)), the maximum likelihood estimator (Smith (1987)) and the negative Hill

estimator (Falk (1995)).
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4.2 The block maxima method

Analogously to the POT method, we investigate the bootstrapped PWM estimator for

the extreme value index using the block maxima method, which differs from the PWM

estimator using the POT method. The estimator was introduced in Hosking et al. (1985)

with its asymptotic normality proved in Ferreira and de Haan (2015).

Let X̃1, X̃2, . . . , X̃n be a sequence of i.i.d. random variables with common distribution

function F satisfying the second order condition (1.1). Define the block maxima of the sample

as Xi = max(i−1)m<j≤im X̃j, for i = 1, 2, . . . , k, where n = mk. Let X1,k ≤ X2,k ≤ . . . ≤ Xk,k

be the order statistics of the block maxima X1, X2, . . . , Xk. The PWM estimator using the

block maxima method, denoted as γ̂BM , is the solution of the equation

3γ̂BM − 1

2γ̂BM − 1
=

3β2 − β0
2β1 − β0

,

where the probability weighted moments βq are given by

βq =
1

k

k∑
i=1

(i− 1) · · · (i− q)
(k − 1) · · · (k − q)

Xi,k,

for q = 0, 1, 2. Here k := k(n) is an intermediate sequence such that k → ∞ and k/n → 0

as n→∞.

Theorem 2.3 in Ferreira and de Haan (2015) shows the asymptotic behavior of the PWM

estimator using the block maxima method. We cite this result in a simpler form where the

sequence k = k(n) is chosen such that no asymptotic bias appears.

Proposition 4.4 (A simpler version of Theorem 2.3 in Ferreira and de Haan (2015))

Assume the conditions in Theorem 3.1. Further assume γ < 1/2. There exists a series of

standard Brownian bridge B1, B2, · · · such that as n→∞,

√
k(γ̂BM − γ) = L

(
Bk(s)

s(− log s)1+γ

)
+ oP (1),
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where L(·) is a linear operator on the sample path of a stochastic process.

Here we omit the detailed formula for L because we only need its linearity property. Notice

that the operator L, though being explicit, is very complicated. This makes the asymptotic

variance of the PWM estimator using the block maxima method almost intractable. This is

a real situation where the bootstrap can help.

We consider the bootstrap sample X̃∗1 , X̃
∗
2 , . . . , X̃

∗
n, reconstruct the block maxima and the

PWM estimator based on the bootstrap sample, denoted as γ̂∗BM . Based on the asymptotic

expansion of the bootstrapped tail quantile process in Theorem 3.1, we get the following

result.

Proposition 4.5 Assume the conditions in Theorem 3.1. Further assume γ < 1/2. With

the same Brownian motions Wn and Brownian Bridges B∗n defined therein, we have that as

n→∞,
√
k(γ̂∗BM − γ) = L

(
B∗k(s)

s(− log s)1+γ
+
Wn(− log s)

(− log s)1+γ

)
+ oP (1),

where L(·) is the same operator as in Proposition 4.4. Here the Brownian bridge B∗k is

independent of the Brownian bridge Bk.

We note that a consistency result analog to Theorem 4.3 cannot be established for the

bootstrapped PWM estimator. In other words, the bootstrapped PWM estimator using the

block maxima method is not consistent. Since L(·) is a linear operator, by comparing the

expansion of γ̂∗BM with γ̂BM , we get that as n→∞,

√
k(γ̂∗BM − γ̂M) = L

(
B∗k(s)

s(− log s)1+γ

)
+ L

(
Wn(− log s)

(− log s)1+γ

)
− L

(
Bk(s)

s(− log s)1+γ

)
+ oP (1).

Different from (4.1), the additional term L
(
Wn(− log s)
(− log s)1+γ

, γ
)
− L

(
Bk(s)

s(− log s)1+γ

)
is a common

bias in the limit distribution of
√
k(γ̂∗BM − γ̂M) when considering different bootstrapped

estimators. Therefore, the conditional distribution of the bootstrapped estimator does not

converge to the same distribution as the original estimator.

20



Nevertheless, since the bias term is common for all bootstrapped estimates, we can use

the bootstrap procedure to approximate the asymptotic variance by considering the sample

variance of the bootstrapped estimates. Repeat the bootstrap procedure for d times and get

obtain estimators γ̂∗l , l = 1, 2, . . . , d. When considering γ̂∗l − 1
d

∑d
l=1 γ̂

∗
l , the common term

L
(
Wn(− log s)
(− log s)1+γ

, γ
)
− L

(
Bk(s)

s(− log s)1+γ

)
cancels out. Consequently, the sample variance of {γ̂∗l },

s2boot :=
1

d− 1

d∑
l=1

(
γ̂∗l −

1

d

d∑
l=1

γ̂∗l

)2

,

can be used as an approximation of the variance of 1√
k
L
(

B∗
k(s)

s(− log s)1+γ
, γ
)

, which equals to the

asymptotic variance of the original estimator γ̂BM .

Compared to the POT method, when using the BM method, we cannot use the alternative

approach involving the original estimator γ̂BM to approximate the asymptotic variance, i.e.

the variation of the bootstrapped estimates around the original estimator cannot be used as

an estimator for the variance of the original estimator. Intuitively, since the block maxima

estimator depends on the order of the observations, the original estimator also possesses

randomness due to the random order.

Similar to the POT method, for any estimator of the extreme value index using the block

maxima method, if its asymptotic property can be established using the quantile process in

Proposition 3.2 such that the asymptotic limit of the estimator depends on a linear operator

of the limit of the quantile process, then the sample variance of bootstrapped estimates can

be a good estimator for the asymptotic variance of the original estimator. An example of

such an estimator is the maximum likelihood estimator under the block maxima as analyzed

in Dombry and Ferreira (2019).
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5 Simulations

In this section, we perform various simulation studies to illustrate the theoretical results

obtained in Section 4. Throughout the simulation study, we consider the PWM estimators.

Unless otherwise specified, we consider observations drawn from the Pareto distribution

F (x) = 1− x−1/γ, with an extreme value index γ > 0.

Firstly, we compare the consistency result when using the POT method (Theorem 4.3)

with the inconsistency result when using the block maxima method. To validate the asymp-

totic results, we simulate samples with a very large sample size n = 10000 and a true extreme

value index γ = 0.2. We choose k = 1000 in the estimation. For each method, we first sim-

ulate m = 100 samples and estimate γ using the PWM estimator for each sample, as γ̂i,

1 ≤ i ≤ m, and then plot the histogram of the estimation errors γ̂i− γ. Next, we simulate a

single sample and also estimate γ by the PWM estimator as γ̂. Based on the single sample,

we bootstrap b = 100 times to obtain b bootstrap estimates γ̂∗i , 1 ≤ i ≤ b. We plot the

histogram of the bootstrap errors γ̂∗i − γ̂ for this sample. In Figure 1, panels (a) and (b)

show the two histograms when using the POT and the block maxima methods respectively.

We observe that for the POT method, the two histograms are comparable. In particular,

the range of the errors are similar. By contrast, for the block maxima method, the two

histograms differ: in terms of the range, the bootstrapped errors are shifted towards the left

for this specific simulation. In addition, we perform the Kolmogorov-Smirnov (KS) test to

test whether the two types of errors share the same distribution. For the POT method, we

obtain a KS statistic at 0.11 with p-value 0.581. For the block maxima method, we obtain

a KS statistic at 0.47, with p-value virtually zero. Hence, we conclude that the bootstrap

errors have a different distribution than the estimation errors only when using the block

maxima method.

We further explore the tests between the distributions of the two types of errors, when

using different k values. For k = 500, 510, . . . , 2000, we repeat the same procedure as above

and plot the obtained p-values in Figure 2.
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(b) Block maxima method
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Figure 1: Histograms for estimation errors and bootstrap errors

For the POT method, we observe that for most levels of k, we do not reject that the

two types of errors have a different distribution. However, for the block maxima method,

for all k above 800, the null hypothesis of having the same distribution is rejected under 5%

significance level. This result agrees with the theoretical results regarding consistency.

Finally, we show that the bootstrap estimate for the standard deviation of the PWM

estimators are applicable when using either the POT or the block maxima method. To

illustrate the usefulness of bootstrap, we consider typical sample size used in application

n = 2000. In addition, we choose k = 100, 105, . . . , 500.

Although the asymptotic standard deviations for both PWM estimators, using either the

POT or the block maxima method, are explicitly given in their asymptotic theories, the cal-

culation for that using the block maxima method is rather cumbersome. To avoid calculating

the true standard deviation of an estimator, we conduct a pre-simulation using m = 1000
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Figure 2: P-values for testing the same distributions between estimation and bootstrap errors

samples. The true standard deviation is then approximated by the sample standard devi-

ation of across the m estimates. We present its value multiplied with
√
k as indicated by

the black solid lines. Since the asymptotic theory shows that the speed of convergence is

1/
√
k for both PWM estimators, the scaled true standard deviation is expected to remain

at a horizontal level. Next, we simulate a single sample, and plot the bootstrap standard

deviation for an estimator based on b = 100 bootstrapped samples, also scaled by
√
k, using

the red dash lines.

Figure 3 shows the results for the POT and block maxima methods in panels (a) anb

(b) respectively. Besides the Pareto distribution (left), we also consider the standard normal

distribution (right) as the underlying data generating process. Notice that the standard
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normal distribution corresponds to γ = 0, with a second order index ρ = 0 for both the U

and V functions.

All four figures show that the bootstrapped standard deviation is around the true value

obtained via pre-simulations. Notice that we employed only b = 100 bootstrapped sample

to maintain a very fast computation for the bootstrapped standard deviation. The accuracy

is expected to be further improved when considering higher b.
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(b) Block maxima method
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Figure 3: Bootstrapped standard deviations: the left (right) figure is based on the Pareto
distribution with γ = 0.2 (the standard normal distribution with γ = 0)
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