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Abstract

In this paper, we investigate the optimal portfolio construction aiming at extracting the
most diversification benefit. We employ the diversification ratio based on the Value–at–risk as
the measure of the diversification benefit. With modeling the dependence of risk factors by the
multivariate regularly variation model, the most diversified portfolio is obtained by optimizing
the asymptotic diversification ratio. Theoretically, we show that the asymptotic solution is
a good approximation to the finite–level solution. Our theoretical results are supported by
extensive numerical examples. By applying our portfolio optimization strategy to real market
data, we show that our strategy provides a fast algorithm for handling a large portfolio, while
outperforming other peer strategies in out–of–sample risk analyses.

1 Introduction

In order to mitigating risks in portfolios of financial investment, a common tool used by risk
managers is the diversification strategy. The benefit from a diversification strategy can be reflected
in the reduction of tail risks in a diversified portfolio. Guided by regulation rules such as the Basel
II and III Accords for banking regulation and the Solvency II Directive for insurance regulation,
the Value-at-Risk (VaR) became the main concern of the regulators, and therefore is also adopted
by risk managers as the main measure of risks. In this paper, we investigate the optimal portfolio
construction aiming at extracting the most diversification benefit based on the VaR measure.

A key difficulty in evaluating the diversification benefit based on the VaR measure is that
there is often no explicit formula for calculating the portfolio VaR. Since a portfolio is a linear
combination of the underlying risky assets, only if the asset returns follow sum-stable distribu-
tions such as the Gaussian distribution or the stable distributions, one can precisely calculate the
distribution of the portfolio return, and derive the VaR therefrom. As an alternative, Extreme
Value Theory (EVT), in particular, the multivariate regular variation (MRV) model, may provide
an explicit approximation to the tail of the distribution of the portfolio return; see e.g. Mainik
and Rüchendorf [13], Mainik and Embrechts [14] and Zhou [26]. By inverting the approximation
formula on the tail of the distribution, one may get an approximation for the VaR measure, when
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the probability level in VaR is considered to be close to 1. Therefore, the EVT approach opens a
new door for investigating the diversification benefit based on the VaR measure.

Nevertheless, when applying the EVT approach, two difficulties remain to be handled. Both
of them are due to the fact that the approximation holds only in the limit when the probability
level in VaR tending to 1. Firstly, the EVT approach provides an approximation for “the VaR
in the limit” when the probability level in VaR tends to 1. However, for heavy-tailed portfolio
returns as assumed in the setup of the MRV, when the probability level in VaR tends to 1, the VaR
converges to infinity. Consequently, the goal of portfolio optimization turns to be minimizing “the
VaR in the limit”, even if the limit is infinity. It is difficult to provide an economic interpretation
for such a mathematical exercise. Secondly, the practical goal for risk managers is to minimize
VaR at a given probability level, such as 99% (Basel II) or 99.5% (Solvency II), while “the VaR in
the limit” is not of their concern. Further, it is not guaranteed that the optimal portfolio based
on minimizing “ the VaR in the limit” is also close to the practical goal.

The first difficulty can be overcome by comparing the portfolio VaR to the VaRs of marginal
risks. For that purpose, we employ the measure diversification ratio (DR), or sometimes with its
alternative name: the risk concentration based on VaR; see, for example Degen et al. [4] and Em-
brechts et al. [6]. The diversification ratio is defined as follows. Let X := (X1, . . . Xd)

T be a non-
negative random vector indicating the losses of d assets. The value of a portfolio is given by wTX,

where the weights satisfy w = (w1, w2, . . . , wd)
T ∈ Σd :=

{
x ∈ [0, 1]d : x1 + x2 + . . .+ xd = 1

}
.

For this portfolio, the diversification ratio (DR) based on VaR at level q ∈ (0, 1) is defined as

DRw,q =
VaRq(w

TX)∑d
i=1wiVaRq(Xi)

. (1.1)

The DR is a measure of diversification benefit in the following sense. Consider the comonotonic
case where all assets are completely dependent. Then DR is a constant one regardless how the
portfolio is allocated. This is a special case in which any diversification strategy would not reduce
the portfolio risk. Consequently, in a general case, 1−DRw,q can be regarded as the diversification
benefit.

The first result in this paper is to show that the DR converges to a finite value for any portfolio
as q → 1 under the MRV model. More specifically, by modeling the joint distribution of the random
vector X by MRV, we can derive an explicit formula for

DRw,1 := lim
q↑1

DRw,q

with respect to the weight w and the two key elements characterizing the MRV model: the tail
index of the marginals and the spectral measure for the tail dependence structure.1

This result overcomes the first difficulty regarding the interpretation: one may target minimiz-
ing the DR in the limit, which is at a finite level. We show that there exists a unique solution to
the optimization problem

w∗ := min
w∈Σd

DRw,1.

A portfolio that minimizes the DR is consequently extracting the most diversification benefit
based on the VaR measure. It is also worth noticing that by taking the marginal VaRs in the
denominator, the optimal portfolio based on the DR is mainly driven by the dependence structure
across the risky assets, while is more robust to changes in marginal risks.

1As pointed out by Mainik and Embrechts [14], under the MRV structure, when the tail index is great than 1,
DRw,1 < 1. In other words, the VaR measure possesses subadditivity as q → 1. Hence, diversification is always
optimal in this situation and the optimization problem (1.2) is well defined.
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However, the second difficulty raised above remains valid after switching to minimizing the
DR. Is the optimal solution based on minimizing the DR in the limit close to the practical goal
of minimizing the DR at a given probability level? We formalize this question by the following
notations.

Practically, with introducing the DR, risk managers aim at solving the following optimization
problem:

min
w∈Σd

DRw,q. (1.2)

Denote the solution to (1.2) by wq.
We remark that solving (1.2) directly is computationally intensive. With observations on the

joint distribution of the random vector X, wq can be estimated by conducting a numerical search.
However, such a searching algorithm suffers from the dimensionality curse: the computational
burden increases exponentially with respect to the dimension d.

The second main result of this paper is to show how close the solution w∗ is from the solution
of the original optimization problem wq. First, we show theoretically that

lim
q↑1

wq = w∗. (1.3)

The convergence in (1.3) ensures that one may use the solution to the optimization problem in
the limit as an approximation to the solution to the original problem with a finite level q close
to 1. Further, define the distance between wq and w∗, measured by ∥wq −w∗∥ with respect
to an arbitrary norm as Dq. In other words, given a finite level of q close to 1, the solution
wq is within an area defined as a Dq radius circle around w∗. For a special case of MRV, the
Farlie–Gumbel–Morgenstern (FGM) copula, we explicitly determine Dq.

Empirically, with observations on the joint distribution of the random vector X, one can
estimate the two main components for the MRV: the marginal tail index and the spectral measure.
By plugging in the estimates of these two elements, the solution w∗ can be estimated using
conventional convex optimization method. We show the consistency of the estimator. Notice
that the computational burden is much lower than the aforementioned numerical approach for
solving wq.

We use a few numerical examples to support our theoretical results and also apply our method
to empirical data. We find that portfolio constructed using our approach possess the lowest DR
and also suffers low losses in out–of–sample periods, compared to other portfolio optimization
strategies,

One possible drawback of our portfolio optimization strategy (1.2) is that it only minimizes
the risk without taking into account the upper side potential: portfolio returns. Given that the
limit of DR is a convex function, it is in fact straightforward to consider the return components
simultaneously. For example, consider the “safety–first” criterion proposed by Roy [23], which
aims at first constraining the downside risk to a given level and then maximizing the profit.
This is equivalent to minimizing risk with a linear constraint on the returns. Comparing this
optimization problem with the aforementioned unconstrained convex minimization problem, taking
the return into consideration is just to impose an additional linear constraint. It is straightforward
to verify that our current results remain valid for the constrained optimization problem. To avoid
complicating the discussion, in this paper we opt to focusing on the optimization of DR without
considering the return side.

Our proposed portfolio optimization strategy is comparable to other strategies based on tail
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risk. Mainik and Rüchendorf [13], proposed to minimize the so-called extreme risk index (ERI),

ERI = argmin
w

lim
q↑1

VaRq(w
TX)

VaRq(||X||1)
,

which essentially is minimizing the portfolio VaR. This strategy is more sensitive to marginal tail
risks and consequently load high on marginals with a low VaR. On the contrary, minimizing DR
in (1.1) scales off the effect of marginals and focuses more on the dependence structure.

Another closely related strategy is the so called most diversified portfolio (MDP)

MDP = argmin
w

var(wTX)∑d
i=1wivar(Xi)

,

proposed by Choueifaty and Coignard [2]. The MDP method shares the same structure with our
approach: it considers the ratio between portfolio risk and the sum of individual risks measured
by variances. Since variance is a measure of overall risk rather than focusing on the tail region,
the MDP method may fail to capture the extreme risks.

The paper is organized as follows. In Section 2, we provide our main results on the convergence
of optimal portfolios. Section 3 discusses the convergence rate of the optimal portfolio. In Section
4, we demonstrate the empirical performance of our strategy based on two numerical examples.
Section 5 provides the application of our strategy to real market data. Proofs are postponed to
Section 6.

2 Convergence of optimal portfolios

2.1 Preliminaries

2.1.1 The multivariate regular variation model

A nonnegative random vector X is said to be multivariate regularly varying (MRV), if there exist

a sequence bt → ∞ and a Radon measure v on B
(
[0,∞]d \ {0}

)
such that v

(
[0,∞]d \Rd

+

)
= 0,

and

vt = tPr

(
X

bt
∈ ·
)

v−→ v, t → ∞, (2.1)

where
v−→ refers to the vague convergence. A possible choice of bt is bt = F←R (1− 1/t) where

R = ||X|| and ∥·∥ is an arbitrary norm. In this paper, we assume that the limit measure v is
nondegenerate in the sense that

v
({

x ∈ Rd
+ : xi > 1

})
> 0,

for all i = 1, 2, . . . , d.
The limiting measure v has the scaling property

v(tA) = t−αv(A) (2.2)

for all sets A ∈ B
(
[0,∞]d \ {0}

)
. The scaling property leads to a decomposition of the v measure

after a polar coordinate transformation as follows.
For any arbitrary norm ∥·∥, the polar coordinate transform of a vector x is

T (x) =
(
∥x∥ , ∥x∥−1 x

)
. (2.3)
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Without loss of generality, we can assume that v(∥x∥ ≥ 1) = 1 based on a proper choice of the
sequence bt. Then the scaling property (2.2) leads to the decomposition

v = ρα ⊗Ψ, (2.4)

where ρα(x,∞) = x−α for x > 0 and Ψ is a probability measure on the unit sphere Sd−1
+ ={

s ∈ Rd
+ : ∥s∥ = 1

}
. The measure Ψ in (2.4) is called the spectral or angular measure. Throughout

the paper, we denote that X is MRV with index α and spectral measure Ψ by X ∈ MRVα(Ψ),
which implies the corresponding limit measure v as in (2.4).

Theoretically, it does not matter which norm is chosen in the polar representation (2.3). For
simplicity, in this paper we consider the L1-norm ∥·∥1.

Further, by constraining the measures vt and v to the set A1 :=
{
x ∈ Rd

+ : ∥x∥1 > 1
}
, and tak-

ing bt = F←R (1− 1/t) with R = ||X||1, the vague convergence in (2.1) implies the weak convergence
on B (A1), as

vt(·) =
Pr
(
t−1X ∈ ·

)
Pr (∥X∥1 > t)

w−→ v(·)|A1 , t → ∞, (2.5)

where v|A1 is the restriction of v to the set A1. Note that vt in (2.5) can also be rewritten as a
conditional probability Pr

(
t−1X ∈ ·| ∥X∥1 > t

)
.

2.1.2 Convergence of minimizers

In this subsection, we give a general result on the convergence of minimizers. Throughout the
paper, for a function g : Z → R, we denote M(g) the set of all the minimizers of g. That is,

M(g) =

{
x ∈ Z : g(x) = inf

y∈Z
g (y)

}
.

A minimizer of g is denoted by mg ∈ M(g).

Lemma 2.1 Suppose that {fn} is a sequence of lower semi-continuous functions from a compact
metric space Z to R = [−∞,∞], and fn converges uniformly to a function f . If, in addition,
assume that f has a unique minimum point in Z, then

lim
n→∞

mfn = argmin f. (2.6)

Proof. On the compact metric space Z, we have that the sequence {fn} is equi-coercive and
gamma-converges to f under the conditions of Theorem 2.1. Then by Corollary 7.24 in Dal Maso
[3], the relation (2.6) holds.

2.2 Main results

The first result regards the weak convergence of DRw,q as q ↑ 1, which is a direct consequence of
known result in the literature.

Proposition 2.1 Suppose the nonnegative random vector X has a continuous joint distribution
F . Further assume that X ∈ MRVα(Ψ) with α > 0. Then for any w ∈ Σd, we have

lim
q↑1

DRw,q = DRw,1,
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where

DRw,1 =
η
1/α
w∑d

i=1wiη
1/α
ei

with ηw =
∫
Σd(w

T s)αΨ(ds) and ei = (0, ..., 1, ..., 0)T only the ith component being 1 for i = 1, .., d.

Proof. Note that

DRw,q =
VaRq(w

TX)/VaRq(∥X∥1)∑d
i=1wiVaRq(Xi)/VaRq(∥X∥1)

. (2.7)

For X ∈ MRVα(Ψ) with α > 0, it follows that

lim
q↑1

VaRq(u
TX)

VaRq(∥X∥1)
= η

1/α
u , u ∈ Σd, (2.8)

which can be found in e.g. Mainik and Rüchendorf [13], Mainik and Embrechts [14] and Zhou [26].
The proposition can be proved by letting u = w and u = ei in (2.8).

In the following theorem, we develop the uniform convergence of DRw,q, which is essential for
proving the convergence of minimizers. It is also an interesting result on its own. The proof is
postponed to Section 6.

Theorem 2.1 Suppose the nonnegative random vector X has a continuous joint distribution F .
Further assume that X ∈ MRVα(Ψ) with α > 0. Then

lim
q↑1

sup
w∈Σd

|DRw,q −DRw,1| = 0. (2.9)

The main result of this section, in the following theorem, shows that the convergence of a
sequence of optimal solutions of DRw,q to the unique minimizer of DRw,1.

Theorem 2.2 Suppose the nonnegative random vector X has a continuous joint distribution. Fur-
ther assume that X ∈ MRVα(Ψ) with α > 1, and Ψ

({
x : aTx = 0

})
= 0 for any a ∈ Rd. Then

w∗ = argminDRw,1 exists and is unique. Moreover,

lim
q↑1

wq = w∗, (2.10)

where wq is a solution of minw∈Σd DRw,q.

Proof. The existence w∗ is due to the continuity of DRw,1 and the compactness of Σd. To show
the uniqueness, first note that the minimization problem minw∈Σd DRw,1 is equivalent to

min
w

η
1/α
w

s.t.
∑d

i=1wiη
1/α
ei = 1 with wi ≥ 0 for i = 1, 2, . . . , d.

(2.11)

Since the set of constraints in (2.11) is nonempty, closed and bounded, it is compact. By Theorem

2.4 of Mainik and Embrechts [14], η
1/α
w is strictly convex when α > 1 and Ψ

({
x : aTx = 0

})
= 0

for any a ∈ Rd. Suppose w1 and w2 are two different minimal points of the optimization problem.
Let w = (w1 +w2)/2. From the strictly convexity of the object function and compactness of the

set of constraints, it follows that η
1/α
w < η

1/α
w1 = η

1/α
w2 , which yields a contradiction. Thus, w∗ is

unique.
Now we prove (2.10). In the proof of Theorem 6.2, we showed that VaRq(w

TX) is continuous
with respect to w ∈ Σd for q large. Then there exists q∗ > 0 such that DRw,q is continuous
with respect to w ∈ Σd for every q∗ < q < 1. The desired result follows from Theorem 2.1, the
uniqueness of w∗ and Lemma 2.1.
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2.3 Beyond the main theorem

In our main result, Theorem 2.2, some restrictions are imposed on the index α and spectral
measure Ψ to make sure that the optimization problem is well defined. In fact, they are not
necessary conditions. In the following through several special cases, we show that the conditions
can be relaxed.

The condition Ψ
({

x : aTx = 0
})

= 0 for any a ∈ Rd means that the spectral measure Ψ does
not concentrate on any linear subspace. It ensures the uniqueness of the solution w∗ of the limiting
problem DRw,1. But it excludes the special cases such as independent or comonotonic structure of
X. If X has independent structure with regularly varying marginals, then it is not hard to show
that

DRw,1 =

d∑
k=1

wα
k .

By Jensen’s inequality, DRw,1 is minimized when wk = 1/d for k = 1, 2, ..., d, which is unique.
Therefore, Theorem 2.2 holds for the independent case. If X is comonotonic, then DRw,q = 1 for
any w or q. There is no optimization problem to consider.

If we restrict ourselves to elliptical distributions, then Theorem 2.2 holds for any α ∈ R, without
any restriction on Ψ, or even without the MRV assumption. In the rest of the section, we focus
on this special case.

A random vector X in Rd is elliptically distributed if it satisfies

X
d
= µ+ Y BU, (2.12)

where µ ∈ Rd, A ∈ Rd×d,U = (U1, ..., Ud)
T is uniformly distributed on the Euclidean sphere Sd2,

and Y is a non-negative random variable that is independent of U. The matrix C := BBT is
called ellipticity matrix of X. To avoid degenerate cases, we assume throughout the following that
C is positive definite.

It is well known that if X is elliptical distributed, then X ∈ MRVα(Ψ) if and only if Y ∈ RV−α;
for example, see Hult and Lindskog [11]. By Theorem 6.8 of McNeil et al. [17], the subadditivity
property of VaR always holds for 0.5 ≤ q < 1. It then follows that DRw,q ≤ 1, which means that
diversification is always optimal for 0.5 ≤ q < 1 no matter what distribution Y follows and thus
the optimization problem is well defined. In the general MRV case, to have DRw,q ≤ 1 is ensured
by restricting α > 1. In another word, if X is elliptical distributed and Y ∈ RV−α, then Theorem
2.2 holds without any restriction on α.

Actually, elliptical distributions leads to the explicit expressions of DRw,q and DRw,1. This
enables us to further relax the assumption of MRV. As long as Y is unbounded, we are able to
directly show the convergence of (2.10) without the assumption that Y is regularly varying. A
direct calculation yields that

VaRq

(
wTX

)
= wTµ+

∥∥BTw
∥∥
2
F←Z (q) , (2.13)

where Z
d
= RU1. The diversification ratio for elliptical distributions can then be obtained as

DRw,q =
wTµ+

∥∥BTw
∥∥
2
F←Z (q)

wTµ+
∑d

i=1wi ∥BTei∥2 F←Z (q)
. (2.14)

If the random variable Y is unbounded, then by F←Z (q) → ∞ as q ↑ 1, we obtain

lim
q↑1

DRw,q =

∥∥BTw
∥∥
2∑d

i=1wi ∥BTei∥2
:= DRw,1. (2.15)
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In the following lemma, we first show that the convergence in (2.15) is indeed uniform, whose proof
is postponed to the last section.

Lemma 2.2 For elliptically distributed X and w ∈ Σd, if µ ∈ l1, the induced norm ∥B∥2 =

sup
x ̸=0

∥Bx∥2
∥x∥2

< ∞ and random variable Y is unbounded, then the convergence in (2.15) is uniform

for w ∈ Σd. Moreover, the mapping w → DRw,1 is continuous.

Now we are ready to show that Theorem 2.2 holds in the most general setting of elliptical
distributions by dropping the MRV assumption.

Theorem 2.3 Under the conditions of Lemma 2.2, we have

lim
q↑1

argmin
w∈Σd

VaRq(w
TX)∑d

i=1wiVaRq(Xi)
= argmin

w∈Σd

∥∥BTw
∥∥
2∑d

i=1wi ∥BTei∥2
. (2.16)

Proof. By Lemmas 2.1 and 2.2, we only need to show that the solutions of the minimization
problems on both sides of (2.16) exist and are unique. To achieve it, first note that the minimization
problem

min
w∈Σd

VaRq(w
TX)∑d

i=1wiVaRq(Xi)

is equivalent to a convex optimization problem

min
w

wTµ+
∥∥BTw

∥∥
2
F←Z (q)

s.t. wTµ+
∑d

i=1wi

∥∥BTei
∥∥
2
F←Z (q) = 1 with wi ≥ 0 for i = 1, 2, . . . , d.

(2.17)

Similarly, the minimization problem

min
w∈Σd

∥∥BTw
∥∥
2∑d

i=1wi ∥BTei∥2
is equivalent to

min
w

∥∥BTw
∥∥
2

s.t.
∑d

i=1wi

∥∥BTei
∥∥
2
= 1 with wi ≥ 0 for i = 1, 2, . . . , d.

(2.18)

Denote the constraint sets in (2.17) and (2.18) by C1 and C2. It is obvious that C1 and C2 are
nonempty, closed, convex and bounded. Hence, they are compact by the Heine–Borel theorem. By
the triangle inequality and positive homogeneity of ∥·∥2, the objective functions in (2.17) and (2.18)
are convex over Rd, and they are continuous over the constraint sets C1 and C2; see Rochafellar
(2015). By the compactness of the constraint set and continuity of the objective functions, the
solutions to (2.17) and (2.18) exist due to the Weierstrass extreme value theorem.

Next, we show the uniqueness of the solution to (2.18). Due to the convexity, we have for any
λ ∈ (0, 1), ∥∥BT (λw1 + (1− λ)w2)

∥∥
2
≤ λ

∥∥BTw1

∥∥
2
+ (1− λ)

∥∥BTw2

∥∥
2
. (2.19)

The equality in (2.19) holds only when w1 = kw2 for k ∈ R+ and w1,w2 nonzero. If both w1 and
w2 belong to the constraint set C1 or C2, then k can only be 1. This means for any w1 ̸= w2, the
strictly inequality in (2.19) holds. Therefore, the objective function in (2.18) is strictly convex.
The uniqueness of the solution then follows from the similarly arguments in the proof of Theorem
2.2.
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2.4 Estimation of the diversification ratio

When the DR optimization strategy with MRV structure is applied in practice, the estimations of
MRV structure and DRw,1 are required. In this section, we propose an estimation procedure and
show the consistency of the estimators.

Assume X ∈ MRVα(Ψ) with α > 1. Let X1, . . .Xn be an i.i.d. sample of X. By Theorem 2.1,
we propose the following estimation procedure.

1. Estimate the tail index α by an estimator α̂.

2. Estimate the spectral measure Ψ by an estimator Ψ̂.

3. Estimate ηw by

η̂w =

∫
Σd

(wT s)α̂Ψ̂(ds).

4. Estimate DRw,1 by

D̂Rw,1 =
η̂
1/α
w∑d

i=1wiη̂
1/α
ei

.

With the estimated diversification ratio, we can obtain an optimal portfolio by minimizing
D̂Rw,1. Denote the optimal portfolio weights following this procedure as ŵ∗.

More specifically, in the first two steps, we use standard estimators for α and Ψ as follows. Let
(R,S) and (Ri, Si) denote the polar coordinates of X and Xi with respect to ||·||1. That is,

(R,S) =

(
||X||1,

X

||X||1

)
. (2.20)

Assume in this section that the distribution function of R is continuous. Choose an intermediate
sequence k such that

k (n) → ∞,
k (n)

n
→ 0.

We use the observations corresponding to the top k order statistics of R1, . . . , Rn for estimating α
and Ψ. Denote the k upper order statistics of R1, . . . , Rn by R(1) ≥ . . . ≥ R(k). The tail index α
is estimated by some usual estimator as a function of these order statistics:

α̂ = α̂
(
R(1), . . . , R(k)

)
.

Many existing estimators can be applied here, see for example, Hill [10], Pickands [21], Smith [24],
Dekkers et al. [5], among others. They all possess consistency and asymptotic normality.

Next, let π (1) , . . . , π (k) denote the indices corresponding to R(1), . . . , R(k) in the original
sequence R1, . . . , Rn. These indices are used to identify each “angle” Sπ(j) corresponding to R(j).
The spectral measure Ψ is estimated by the empirical measure of the angular parts Sπ(1), . . . , Sπ(k),

Ψ̂ =
1

k

k∑
j=1

δSπ(j)
, (2.21)

where δ
π(j)

(·) is the Dirac measure.
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Lemma 2.3 Let X1, . . . ,Xn be an i.i.d. sample of X ∈ MRVα(Ψ) with α > 1. Assume that
the distribution function FR of R in (2.20) is continuous. If the estimator α̂ is consistent almost
surely, and then the estimator D̂Rw,1 is consistent uniformly in w ∈Σd, i.e.,

sup
w∈Σd

∣∣∣D̂Rw,1 −DRw,1

∣∣∣→ 0, a.s. (2.22)

Combining Theorem 2.1 and Lemma 2.3, we obtain the consistency in the optimal portfolio
weights in the following theorem.

Theorem 2.4 Under the conditions of Theorem 2.3 and Ψ
({

x : aTx = 0
})

= 0 for any a ∈ Rd,

the estimator ŵ∗ and the estimated value D̂Rw∗,1 are consistent almost surely, i.e.,

ŵ∗ → w∗, a.s.; D̂Rw∗,1 → DRw∗,1, a.s.

Here we only established consistency. Under some additional conditions, further asymptotic
properties for the estimator of DRw,1 can be established in a straightforward way. For example,
Theorem 4.5 of Mainik and Rüchendorf [13] shows that, under some additional conditions, for any
w ∈ Σd,

√
k (η̂w − ηw) converges to a distribution Gw. Then by the functional delta method (e.g.

Theorem 20.8 in Van der Vaart [25]), it is easy to show that
√
k
(
D̂Rw,1 −DRw,1

)
converges to

a given distribution. However, to establish the convergence in a uniform way is difficult and may
be left for future research. Without a uniform asymptotic property on D̂Rw,1 we cannot further
investigate the asymptotic property of the optimal portfolio weights.

3 The rate of convergence to the optimal portfolio: an example

In this section, we discuss how w∗ approximates wq by determining the convergence rate of (2.10)
under some special dependence structure, such as the FGM copula.

The FGM copula was originally introduced by Morgenstern [20] and investigated by Gumbel
[9] and Farlie [7]. The FGM copula is defined as

C(u, v) = uv(1 + θ(1− u)(1− v)), (u, v) ∈ [0, 1]2, (3.1)

where θ ∈ [−1, 1] is a dependence parameter. This model has been generalized in various ways, for
example, from two dimensions to higher dimensions or with more general form of (1−u)(1− v) in
(3.1); see Cambanis [1], Fischer and Klein [8], among others. Here we focus on a high dimensional
generalized FGM copula proposed by Cambanis [1], which is defined as

C(u1, . . . , un) =
n∏

k=1

uk

1 +
∑

1≤i<j≤n
aij(1− ui)(1− uj)

 , (u1, . . . , un) ∈ [0, 1]n. (3.2)

The constants ai,j , 1 ≤ i < j ≤ n, are so chosen that C(u1, . . . , un) is a proper copula. A necessary
and sufficient condition on ai,j ’s is that they satisfy a set of 2n inequalities

1 +
∑

1≤i<j≤n
ϵiϵjaij ≥ 0 for all (ϵ1, . . . , ϵn) ∈ {−1, 1}n.

A FGM copula defined as in (3.2) is asymptotically independent.
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We intend to consider the random vector X following FGM copula with identical regularly
varying marginals. For that purpose we need a second-order convergence in Proposition 2.1. This
further requires the second-order expansion of tail probabilities of the weighted sum

FwTX(t) = Pr
(
wTX > t

)
,

where FwTX = 1− FwTX is the distribution function of wTX. In the next subsection, we present
this result.

3.1 Tail expansion for the weighted sum

Assume that the random vector X has a common marginal distribution function G = 1 − G.
Further, assume G to be second-order regularly varying (2RV), denoted by G ∈ 2RV−α,ρ. That is,
there exist some ρ ≤ 0 and a measurable function A(·), which does not change sign eventually and
converges to 0, such that, for all x > 0,

lim
t→∞

G(tx)/G(t)− x−α

A(t)
= x−α

xρ − 1

ρ
=: H−α,ρ(x). (3.3)

When ρ = 0, H−α,ρ(x) is understood as x−α log x.
For simplicity, here we only consider the case α > 1 which implies that X has a finite mean.

The results for 0 < α ≤ 1 can be obtained in a similar way. The proof of the next lemma is
postponed.

Lemma 3.1 Let X be a nonnegative random vector with identically distributed marginal with
common distribution function G satisfying that G ∈ 2RV−α,ρ with α > 1, ρ ≤ 0 and auxiliary
function A(·). Assume that X follows an n-dimensional generalized FGM copula given by (3.2).
Then as t → ∞, we have that

FwTX(t)

G(t)
−

d∑
k=1

wα
k

=

{
αt−1µ∗G(1 + o(1)), ρ < −1,

(1 +Qa)
∑d

k=1H−α,ρ
(
w−1k

)
A(t)(1 + o(1)), ρ ≥ −1,

(3.4)

where H−α,ρ(·) is given in (3.3), Qa =
∑

1≤i<j≤n aij, µG =
∫∞
0 xdF (x), µG2 =

∫∞
0 xdF 2(x), and

µ∗G =(1 +Qa)µG

∑
k ̸=l

wα
kwl

+
∑
i<j

ai,j

 ∑
k,l=i,j

∑
l ̸=k

µG2wα
kwl − µGwk

∑
m̸=i,j

wα
m − 2µGw

α
kwl − µGw

α
kwl


−
∑
i<j

ai,j
∑
k ̸=i,j

∑
l ̸=k,i,j

µGw
α
kwl.

Further, the convergence in (3.4) is uniform for all w ∈ Σd.
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3.2 Convergence rate

We first show a general lemma regarding the convergence rate of minimizers under the setup of
Lemma 2.1. Define the distance between fn and f as Dn = ||fn − f ||∞, where || · ||∞ is the
supremum norm. The distance between mfn and argmin f is defined as ||mfn − argmin f ||� for a
norm || · ||� on the space Z. Since Z is a metric space, all the norms on Z are equivalent in the
sense that there exist constants c1 and c2 such that

c1||x||� ≤ ||x||♢ ≤ c2||x||�, x ∈ Z,

for any two norms || · ||� and || · ||♢ on Z. In case no confusion arises, the norm index ∞ or � is
dropped in the rest of the paper.

Lemma 3.2 Under the assumptions of Lemma 2.1, we have for n large

||mfn − argmin f || < C
√

Dn,

where Dn = ||fn − f ||∞ and C is a constant.

Lemma 2.1 shows thatmfn , the minimizer of function fn, can be approximated by the minimizer
of the limiting function mf , which is usually much easier to calculate. The result in Lemma 3.2
further explores how good the approximation is. In practice, if we can determine Dn, which is
related to the second-order expansion of fn, then the error of the approximation can be determined.

Now we are ready to determine the convergence rate of the optimal portfolio under the FGM
copula.

Theorem 3.1 Under the conditions of Lemma 3.1, we have that

(1− q)(−1∨ρ)/α
∥∥wq − d−1

∥∥ = O(1),

where wq is a solution of minw∈Σd DRw,q, and d−1 = (1/d, ..., 1/d)T .

Proof. In this proof, all the limits are taken as q ↑ 1. We first derive the second-order expansion
of DRw,q. Similar to the proof of Theorem 4.6 in Mao and Yang [16], we have that

U

(
1

FwTX(F←
wTX

(q))

)
= G←(q) + o(A(G←(q))),

where U(·) is the tail quantile function of G defined as U(·) = (1/G)←(·) = G←(1 − 1/·). For
simplicity, denote t = F←

wTX
(q). It is easy to see that t → ∞ as q ↑ 1. Then noting that

U(1/G(t)) = t+ o(A(t)) and by the uniform convergence of (3.3), it follows that

DRw,q =
F←
wTX

(q)

G←(q)
=

U(1/G(t))

U(1/FwTX(t))
+ o(A(t))

=

(
FwTX(t)

G(t)

)1/α

+H1/α,ρ/α

(
FwTX(t)

G(t)

)
α−2A(U(1/FwTX(t)))(1 + o(1))

=


(∑d

k=1w
α
k

)1/α(
1 + µ∗G

(∑d
k=1w

α
k

)−1/α−1
(G←(q))−1 (1 + o(1))

)
, ρ < −1,(∑d

k=1w
α
k

)1/α
(1 + ταA(G

←(q))(1 + o(1))) , ρ > −1.

(3.5)
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where

τα =
(1 +Qa)

∑d
k=1H−α,ρ

(
w−1k

)
α
∑d

k=1w
α
k

+

(∑d
k=1w

α
k

)ρ/α
ρα

.

This gives the second-order expansion of DRw,q.
Immediately from (3.5), the limiting function is

lim
q↑1

DRw,q =

(
d∑

k=1

wα
k

)1/α

= DRw,1.

By Jensen’s inequality, DRw,1 is uniquely minimized at d−1 = (1/d, ..., 1/d)T . If ρ < −1, then

DRw,q −

(
d∑

k=1

wα
k

)1/α

= µ∗G

(
d∑

k=1

wα
k

)−1
(G←(q))−1 (1 + o(1)).

By Lemma 3.1, the above convergence is uniform. Hence, we have that for some constant C > 0∣∣∣∣∣∣DRw,q −

(
d∑

k=1

wα
k

)1/α
∣∣∣∣∣∣ < C (G←(q))−1 .

By Lemma 3.2, we get that
(1− q)−1/α

∥∥wq − d−1
∥∥ = O(1).

Similarly, if ρ > −1, then

DRw,q −

(
d∑

k=1

wα
k

)1/α

=

(
d∑

k=1

wα
k

)1/α

ταA(G
←(q))(1 + o(1)).

Since for any w ∈ Σd

τα ≤ (1 +Qa) ρd
(α−1)2/α + dρ(1−α)/α

ρα
,

we obtain that for some constant C > 0∣∣∣∣∣∣DRw,q −

(
d∑

k=1

wα
k

)1/α
∣∣∣∣∣∣ < CA(G←(q)).

By Lemma 3.2 we get that
(1− q)ρ/α

∥∥wq − d−1
∥∥ = O(1).

This completes the proof.

4 Numerical examples

In this section, we conduct two numerical examples to examine our theoretical results. The first
example is an elliptical distribution–the bivariate Student–t distribution, while the second one is
a non-elliptical distribution.
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Figure 1: Optimal portfolio from elliptical distribution risk factors
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Note: The portfolios are constructed as a linear combination of two risk factors from a bivariate Student-t distribution

tα(µ,Σ) with µ = (1, 2)T and Σ is

(
1 ρ
ρ 1

)
. The DRw,q of such portfolios for various values of q against the weight

w1 are plotted for different pairs of (α, ρ) with α = 2, 4 and ρ = 0.3, 0.7 in the four subfigures. The level of q is set

to 0.95, 0.99, 0.999 and 0.9999. For each q level, the optimal portfolio weight on w1 is indicated by a vertical line of

different style. The optimal solution for DRw,1 is indicated by a thick vertical line.

Consider X follows a bivariate Student-t distribution tα(µ,Σ), where µ = (1, 2)T and the

covariance matrix Σ is

(
1 ρ
ρ 1

)
. Then the marginals both follow Student-t distribution with the

degree of freedom α but different shifts 1 and 2.
We construct portfolios as a linear combination of the two risk factors from X defined above.

As discussed in Section 2.3, both DRw,q and DRw,1 can be explicitly expressed for elliptical
distributions as in (2.14) and (2.15), which are used in this example. In Figure 1, we plot the
diversification ratio of such portfolios for various values of q against the weight w1. For the
parameters, we choose α and ρ at α = 2, 4 and ρ = 0.3, 0.7, and plot the results for different pairs
of (α, ρ) in the four subfigures in Figure 1. The level of q is set to 0.95, 0.99, 0.999 and 0.9999. For
each q level, we indicates the optimal portfolio weight on w1 by a vertical line, which is given at
the lowest point of the convex diversification ratio curve. Notice that due to the different shifts,
the optimal portfolio at a finite q level tends to load higher on the first dimension with a lower
mean. However, as q → 1, the difference in the mean plays no role in the limit of the diversification
ratio. Therefore, due to symmetry, the optimal portfolio for q = 1 load equal weights on the two
dimensions. We indicate this optimal solution for the limit diversification ratio by a thick vertical
line located at 0.5.

First, we observe that wq is converging to w1 as q ↑ 1. This verifies our theoretical result in
Theorem 2.2. Second, the absolute difference between wq and w1 remains at a low level across
all subfigures. For example, when focusing on approximating the optimal portfolio based on
diversification ratio at q = 0.99 level, if one takes the optimal weight for the limit diversification
ratio 0.5 as an approximation, then she makes an error for loading 2% less on the first dimension.
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Third, given the level of dependence (ρ), the heavier the marginal tails reflected in a lower α,
the faster the convergence rate. This is in line with our finding in Theorem 3.1: α plays a role
in the speed of convergence, the higher the α, the slower the speed of convergence. Lastly, when
fixing the level of heavy–tailedness (α), the more dependence reflected in a higher ρ, the slower
the convergence rate in the limit relation wq → w1. Nevertheless, the slow convergence is not of a
concern in practice. With a strong dependence at the first place, the room for diversification benefit
is limited. As a result, the diversification ratio is in general at a high level and is less sensitive to
the variation of the weights. Therefore, with a strong dependence, although the solution in the
limit (0.5, 0.5)T might not be close to the optimal solution at a finite q, investing in the portfolio
(0.5, 0.5)T would not result in a large increase in diversification ratio at a finite q level, compared
to the actual optimal portfolio.

Next, we study a different numerical example based on a non-elliptical distribution. We con-
struct the example using linear combinations of heavy-tailed random variables. Let Y1 and Y2 be
two i.i.d. random variables with regularly varying tails. A random vector X = (X1, X2)

T is then
defined as

X = AY, A :=

(
1 0

ρ
√
1− ρ2

)
, (4.1)

where ρ ∈ (−1, 1). Such random vector follows a non-elliptical distribution. In the case that the
variance of Y1 and Y2 exists, ρ is the correlation coefficient betweenX1 andX2 Under this structure,
the diversification ratio DRw,1 can be explicitly calculated. Following Mainik and Embrechts [14],
we have that

ηw
ηe1

= (w1 + w2ρ)
α +

(
w2

√
1− ρ2

)α
,

and

ηw
ηe2

=
(w1 + w2ρ)

α +
(
w2

√
1− ρ2

)α
ρα +

√
1− ρ2

α .

Hence,

DRw,1 =

w1

(
(w1 + w2ρ)

α +
(
w2

√
1− ρ2

)α)− 1
α
+ w2

(w1 + w2ρ)
α +

(
w2

√
1− ρ2

)α
ρα +

√
1− ρ2

α

−
1
α

−1

.

We use this formula to determine DRw,1. Since the expression for DRw,q is less explicit, its
calculation is based on simulations.

Consider a special case where Y1 and Y2 follow a standard Student–t distribution with degree
of freedom α > 1. By choosing α = 2, 4 and ρ = 0.3, 0.7, in Figure 2 we plot the calculated
diversification ratios DRw,q against the loading on X1, w1 for various values of q: 0.95, 0.99, 0.999
and 0.9999. The optimal weight for each q level is again marked by a corresponding vertical line,
with thick vertical line indicating the optimal weight for the limit case q = 1.

All four observations in the elliptical case remain qualitatively valid for the non–elliptical case.
Quantitatively, the distance between the optimal solutions for finite q and the limit case can be
far apart. For example, in the worst case scenario when the lower tail index meets the stronger
dependence (right bottom subfigure), the distance between the optimal weight for q = 0.99 and
that for q = 1 is around 0.25. In this case, the optimal portfolio in the limit is not a good
approximation for that based on a finite q. To summarize, we recommend using the optimal
portfolio based on the limit diversification ratio particularly for the case with low cross–sectional
dependence and heavy marginal tails.
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Figure 2: Optimal portfolio from non–elliptical distribution risk factors
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Note: The portfolios are constructed as a linear combination of two risk factors from a vector X defined in (4.1) with

Y1 and Y2 following a standard Student–t distribution with degree of freedom α > 1. The DRw,q of such portfolios

for various values of q against the weight w1 are plotted for different pairs of (α, ρ) with α = 2, 4 and ρ = 0.3, 0.7

in the four subfigures. The level of q is set to 0.95, 0.99, 0.999 and 0.9999. For each q level, the optimal portfolio

weight on w1 is indicated by a vertical line of different style. The optimal solution for DRw,1 is indicated by a thick

vertical line.
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5 Empirical study

In the numerical examples, the limit diversification ratio DRw,1 can be calculated explicitly. With
real data application, we need to estimate this function using historical data, and then consider
the optimal portfolio based on the estimated diversification ratio. In Section 2.4, we discuss the
estimation methodology for DRw,1. In this section, we apply our estimation method and the
optimal portfolio construction procedure to real market data.

The dataset consists of underlying stocks in the S&P 500 index that have a full trading history
throughout the period from January 2, 2002 to December 31, 2015. This results in 425 stocks. We
construct the continuously compounded loss returns of these stocks. That is, if the price of asset
i at time t is denoted by Pi(t), then the log loss at time t for asset i, denoted by Xi(t) is given by

Xi(t) = − log

(
Pi(t)

Pi(t− 1)

)
.

We conduct three empirical studies. Firstly, we demonstrate the difference between the optimal
portfolio constructed based on minimizing a diversification ratio at a finite q level and that based
on minimizing the limit diversification ratio. Secondly, we show that our proposed methodology
has the advantage of bearing less computational burden. Lastly, we evaluate the out–of–sample
performance between our portfolio optimization procedure and those existing in the literature.

The first empirical study is set up as follows. To avoid dimensional curse in the numerical
search strategy (see below), we select 10 stocks from the dataset that share a similar level of tail
index. Notice that having the same marginal tail index is a necessary condition for MRV. We
estimate the tail indices of the 425 stocks using the Hill estimator (Hill [10]) as

α̂ =
k∑k

n=1 log
(
R(n)/R(k+1)

) .
We select 10 stocks with the lowest estimates that are not significantly different from each other.
Here, to test whether the 10 stocks have significantly different tail indices, we employ the test
constructed in Moore et al. [19] for testing tail index equivalence. In other words, we select 10
stocks with the lowest estimates while not being rejected by this test. The reason for selecting
stocks with lower α follows from the numerical example: the approximation works better when
α is lower. The selected stocks are given in Table 1, where the estimate of α and its standard
deviation (std) for each stock are provided. From Table 1, we observe that the point estimates of
the tail index range from 1.989 to 2.040.

Table 1: Tail index estimates for the 10 selected stocks

Stock C FRT HST LM L RF TMK VTR VNO XEL

α̂ 1.989 2.000 2.002 2.007 2.012 2.014 2.019 2.036 2.036 2.040
std 0.168 0.169 0.169 0.170 0.170 0.170 0.171 0.172 0.172 0.172

Note: The table shows the tail index estimates for 10 selected stocks within the S&P 500 index based on their daily

returns in the period from January 2, 2002 to December 31, 2015. The tail indices are estimated using the Hill

estimator (Hill [10]). The second row reports the standard deviations of the estimates.

Our empirical analysis is based on daily data in each five-year window, namely, 2002–2006,
2003–2007, etc. Within each window, for a given q level, we first construct the optimal portfolio
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that minimizes DRw,q by a numerical search. This is achieved by assigning weights to the 10 stocks
on a grid spanning the set σ10, evaluating DRw,q at each grid point and taking the weights that
corresponds to the minimum diversification ratio. Then we construct the optimal portfolio based
on minimizing the estimated DRw,1 using the procedure laid out in Section 2.4.

The numerical search strategy gives a numerical optimal while our portfolio optimization strat-
egy gives an approximation to that. To evaluate the difference between the two optimal portfolios,
we use ||wq−w∗||1/10. This distance indicates the average error made on the weight for one stock.
We conduct this analysis for nine different windows and four different levels of q: 0.95, 0.975, 0.99
and 0.999.

In the estimation procedure, we need to select the intermediate sequence k. It should be chosen
by balancing the bias and variance of the estimation. Here, we choose k to be 4% for estimating
α and 10% for estimating the spectral measure Ψ̂. Moreover, since we only consider the loss, the
estimator for ηw is slightly modified to

η̂w =
1

k

∑(
wTSπ(j)

)α̂
.

Table 2 shows the results on the error made using our optimization procedure. We observe
that the distance is decreasing as q increases. This is in line with our theoretical result.

Table 2: Average error made on the weight for each stock

q 02-06 03-07 04-08 05-09 06-10 07-11 08-12 09-13 10-14

95% 0.1348 0.1091 0.125 0.0673 0.0868 0.0967 0.1447 0.1426 0.0941
97.50% 0.0838 0.0978 0.0967 0.0638 0.0795 0.0663 0.0985 0.0668 0.0802
99% 0.0837 0.0861 0.0858 0.0573 0.0636 0.0476 0.0834 0.0642 0.0731
99.9% 0.0442 0.0582 0.0688 0.0444 0.0397 0.0435 0.0435 0.0538 0.044

Note: Within in each five-year window, for a given q level, two portfolios are constructed. The numerical search

strategy provides the first optimal portfolio that minimizes DRw,q. This is achieved by assigning weights to the 10

stocks on a grid spanning the set σ10, evaluating DRw,q at each grid point and taking the weights that corresponds

to the minimum diversification ratio. The second optimal portfolio minimizes the estimated DRw,1 using the

procedure laid out in Section 2.4. The numbers reported are the distance calculated by ||wq −w∗||1/10 between the

two portfolios.

Next, we turn to analyzing the computation time for obtaining the optimal portfolio. For this
analysis, we use only data in the most recent six windows and only consider q = 0.95. To show
that the computational burden for the numerical search strategy largely depends on the number
of stocks, we also perform the numerical search when using less stocks, namely the first 3, 5, and
8 stocks in Table 1. In contrast, we perform our portfolio optimization strategy always based on
10 stocks. The computation time of all the experiments run in Matlab 2013a on a Thinkpad T430
(dual core, 2.6GHz CPU, 4GB of memory) computer is reported in Table 3. We observe that as
the number of stocks increasing, the computation time for w95% increases significantly. On the
contrary, our portfolio optimization strategy for 10 stocks takes even less time than that using the
numerical search for 3 stocks.

Finally, we perform an out–of–sample analysis comparing our portfolio optimization strategy
with those in the literature. Within each five-year window, we perform our strategy to construct
the optimal portfolio based on the 10 selected stocks in Table 1. Then we hold this portfolio for one
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Table 3: Computation time

Strategy 05-09 06-10 07-11 08-12 09-13 10-14

Numerical search 3 Stocks 0.350s 0.310s 0.261s 0.249s 0.231s 0.235s
Numerical search 5 Stocks 0.483s 0.402s 0.417s 0.391s 0.570s 0.612s
Numerical search 8 Stocks 1.226s 1.265s 1.594s 0.861s 1.463s 1.397s
Numerical search 10 Stocks 2.418s 2.799s 3.673s 2.022s 2.016s 2.383s
Minimizing DRw,1 10 Stocks 0.218s 0.189s 0.164s 0.175s 0.304s 0.166s

Note: Within each five-year window, the numerical search strategy is performed for minimizing the DR with q = 0.95

based on 3, 5, 8 and 10 stocks. The computation time are reported in the first four rows. The last row reports the

computation time when performing the portfolio optimization strategy minimizing DRw,1 based on 10 stocks.

year, and calculate the diversification ratio at 95% and the 95% VaR using the one-year out–of–
sample data. We focus on q = 95% here because one-year loss data (roughly 250 daily observations)
do not permit an accurate estimation of tail risk measures with a higher probability level. With
a similar setup, we also apply the numerical search strategy laid out in the first empirical study
which minimizes the DRw,95% within each five-year window, and evaluates the out–of–sample
performance of this strategy. In addition, we apply four other strategies as competitors for out–
of–sample performance, namely, the ERI, the MDP, global minimum variance (see, e.g. Merton
[18]), and lastly a simple equal weight strategy.

Figure 3 shows the results on the out–of–sample diversification ratios. Our strategy produces
consistently the lowest diversification ratio only except in 2009, where our strategy yields a di-
versification ratio slightly above that derived from the MDP, and in 2010 slightly higher than
that derived from the numerical research strategy. To achieve the tail diversification benefit mea-
sured by the diversification ratio, our portfolio optimization strategy gives the best out–of–sample
performance.

Figure 4 shows the results on the out–of–sample VaR. Our portfolio optimization strategy
produces the lowest VaR in 2007 and 2008, but not in the other years. Nevertheless, the VaR of
the optimal portfolio from our strategy is never largely above ERI, which minimizes VaR among
the six strategies. Furthermore, it matters the most to get an optimal portfolio with the lowest
risk in the period ahead of the crisis. Therefore, we conclude that our strategy also gives the best
out–of–sample performance in terms of risk management.

From all three empirical studies, we conclude that the computation burden of our portfolio
optimization strategy is much lower than the numerical search. Although there is a moderate
distance between the optimal portfolios obtained from our limit DR optimization strategy and the
numerical search strategy, it turns out in the out–of–sample analysis that our strategy outperforms.
It is therefore worth bearing the errors on the weights while using the fast and better performed
algorithm derived from our limit DR optimization strategy.

6 Proofs

In this section, we first prove Theorem 2.1, which is the key and the most difficult part in the
proof of Theorem 2.2, in two steps as Sections 6.1 and 6.2. Then the very last section contains all
the proofs of lemmas from previous sections.
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Figure 3: Out–of–sample diversification ratio

2007 2008 2009 2010 2011 2012 2013 2014 2015
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

 

 

DR(Limit)
DR(NS)
GMV
MDP
ERI
Equal

Note: Within each five-year window, the optimal portfolio based on the 10 selected stocks in Table 1 is constructed

by minimizing DRw,1. These weights are held for one year. The diversification ratio at 95% is reported using the

one-year out–of–sample data and named as DR(Limit) in the figure. The same steps are repeated for five other

strategies, the numerical search strategy for minimizing DRw,95% (DR(NS)), global minimum variance (GMV; see,

e.g. Merton [18]), the MDP, the ERI, and equal weight strategy (Equal).
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Figure 4: Comparison of portfolio risks

2007 2008 2009 2010 2011 2012 2013 2014 2015
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 

 

DR(Limit)
DR(NS)
GMV
MDP
ERI
Equal

Note: Within each five-year window, the optimal portfolio based on the 10 selected stocks in Table 1 is constructed

by minimizing DRw,1. These weights are held for one year. The 95% VaR is reported using the one-year out–

of–sample data and named as DR(Limit) in the figure. The same steps are repeated for five other strategies, the

numerical search strategy for minimizing DRw,95% (DR(NS)), global minimum variance (GMV; see, e.g. Merton

[18]), the MDP, the ERI, and equal weight strategy (Equal).

21



6.1 Uniform convergence in Radon measures

Define a family of mappings from A1 =
{
x ∈ Rd

+ : ∥x∥1 > 1
}
to R+ as

M =

{
fw(x) =

1

1 +wTx
: w ∈ Σd, x ∈ A1

}
. (6.1)

Note that the construction of the mappings in M is not unique. Let Aw,1 denotes the events where
the portfolio loss wTX exceeds 1, namely for w ∈ Σd,

Aw,1 =
{
x ∈ Rd

+ : wTx > 1,
}
.

Theorem 6.1 If X ∈ MRVα(Ψ) with α > 0, then

lim
t→∞

sup
w∈Σd

|vt (Aw,1)− v (Aw,1)| = 0, (6.2)

where νt and ν are defined in (2.5).

Proof. Since Aw,1 ∈ B (A1), by (2.5) we have that vt (Aw,1) converges weakly to v (Aw,1). To
further show the uniform convergence, we apply Theorem 3.4 of Rao [22]. That is we need to verify
the following three conditions. (1) The mappings in M defined in (6.1) are continuous mappings
from a separable metric space to R+. (2) The family M is relative compact; that is every sequence
in M on a compact subset of A1 has a subsequence that converges uniformly. (3) For each fw ∈ M ,
vf−1w has a continuous distribution. Next, we prove them separately.

(1) By Theorem 1.5 of Lindskog [12], there exists a metric ρ such that (A1, ρ) is a locally
compact, complete and separable metric space. It is easy to see that each fw ∈ M is continuous.

(2) Note that for x,y ∈ A1, we have wTx,wTy > 0. Then, by Cauchy–Schwarz inequality,

|fw(x)− fw(y)| =
∣∣∣∣ wT (x− y)

(1 +wTx)(1+wTy)

∣∣∣∣ ≤ √
d ∥x− y∥2 .

For arbitrary ε > 0, we can choose δ < ε/
√
d, which is independent of f , x and y, such that when

∥x− y∥2 < δ, we have |fw(x)− fw(y)| < ε. This shows that M is equicontinuous at each x ∈ A1.
Moreover, M is uniformly bounded as for each x ∈ A1,

sup
fw∈M

{fw(x)} = sup
w∈Σd

{
1

1 +wTx

}
<

1

2
.

Therefore, from the Arzelà-Ascoli theorem, we know M is relatively compact.
(3) For x ∈ R+, we have

vf−1((0, x)) =

∫
Σd

∫
R+

1{rwT s> 1
x
−1}ρα(dr)Ψ(ds)

=

(
1

x
− 1

)−α ∫
Σd

(
wT s

)α
Ψ(ds),

which is obviously continuous for any 0 < x < 1/2. Furthermore, we have

v(A1) =

∫
Σd

∫
R+

1{r>1}ρα(dr)Ψ(ds)

=

∫
Σd

Ψ(ds) = 1.
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By far, we have verified the three conditions. By the weak convergence in (2.5) and Theorem
3.4 of Rao [22], we obtain

lim
t→∞

sup
w∈Σd

|vt (Aw,1)− v (Aw,1)| = 0,

where the supremum is taken over all sets Aw,1 of the form Aw,1 =
{
x ∈ Rd

+ : fw(x) <
1
2

}
={

x ∈ Rd
+ : wTx > 1

}
with w ∈ Σd.

Next corollary is a natural rewriting of relation (6.2). It yields a uniform convergence of the
ratio Pr

(
wTX >t

)
/Pr (∥X∥1>t) to ηw. However, only the weak convergence of it is known in

the literature.

Corollary 6.1

lim
t→∞

sup
w∈Σd

∣∣∣∣∣Pr
(
wTX >t

)
Pr (∥X∥1>t)

− ηw

∣∣∣∣∣ = 0, (6.3)

where

ηw =

∫
Σd

(wT s)αΨ(ds).

Further, the mapping w 7→ ηw is uniform continuous.

Proof. First note that Aw,t = tAw,1. Since Aw,1 ⊂ B (A1) for w ∈ Σd, we have that

vt (Aw,1) =
Pr
(
X
t ∈ Aw,1

)
Pr (∥X∥1>t)

=
Pr (X ∈ Aw,t)

Pr (∥X∥1>t)
.

Moreover v (Aw,1) is actually

v (Aw,1) =

∫
Σd

(wT s)αΨ(ds) = ηw.

The desired result (6.3) then follows. Lastly, since ηw is continuous on the compact set Σd, it
implies the uniform continuity of ηw.

6.2 Uniform convergence in quantiles

In order to show that the convergence in (2.8) is indeed uniform, we first prepare a key lemma.
For notational simplicity, we denote

l(w, q) :=
VaRq(w

TX)

VaRq(∥X∥1)
=

F←
wTX

(q)

F←∥X∥1
(q)

, (6.4)

where FwTX is the distribution function of wTX and F←
wTX

(q) = VaRq(w
TX).

Lemma 6.1 Suppose the nonnegative random vector X has a continuous joint distribution. Fur-
ther assume that X ∈ MRVα(Ψ) with α > 0. Then for any ε > 0 there exist 0 < q̃ < 1 and
δ = δ(ε) such that for all z,w ∈ Σd and q̃ < p, q < 1satisfying ∥(w, q)− (z, p)∥ < δ, we have

|l(w, q)− l(z, p)| < ε. (6.5)
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Proof. Throughout the proof ε > 0 is arbitrary small but fixed. By the uniform convergence in
(6.3), there exists t0 > 0 such that ∣∣∣∣∣1− FwTX(t)

1− F∥X∥1(t)
− ηw

∣∣∣∣∣ < ε, (6.6)

for all w ∈ Σd and t ≥ t0. Moreover, by the uniform continuity of ηw, there exists δ1 > 0 such
that

|ηz − ηw| < ε (6.7)

for all z,w ∈ Σd satisfying ∥w − z∥ < δ1. In view of (6.6) and (6.7), we have

|FwTX(t)− FzTX(t)| <

∣∣∣∣∣FwTX(t)− FzTX(t)

1− F∥X∥1(t)

∣∣∣∣∣
<

∣∣∣∣∣ 1− FzTX(t)

1− F∥X∥1(t)
− ηz

∣∣∣∣∣+ |ηz − ηw|+

∣∣∣∣∣ηw − 1− FwTX(t)

1− F∥X∥1(t)

∣∣∣∣∣
< 3ε,

for any t ≥ t0. Hence FwTX(t) is uniformly continuous in w when t large enough. Especially,
at t0, by the extreme value theorem, there exists w0 such that FwTX(t0) ≥ FwT

0 X(t0) for all w.

Denote the minimum FwT
0 X(t0) by q0. Note that q0 only depends on the choice of t0. Since

FwTX(t0) ≤ FwTX(t) for any t > t0, by letting q = FwTX(t) we have the following equivalence for
any w,

F←wTX(q) ≥ t0 ⇐⇒ q ≥ q0.

Since the random vector X has a continuous joint distribution, one can conclude that F←
wTX

(q)
is continuos in q for all w. That is, for some w and any q ≥ q0 (because we focus on the tail risk),
there exists δ(w, q) > 0 such that ∣∣F←wTX(p)− F←wTX (q)

∣∣ < ε, (6.8)

for any p satisfying |p− q| ≤ δ(w, q). Similarly, F←∥X∥1
(q) is also continuous in q. Then l(w, q) is

continuous in q. Because of the weak convergence in (2.8), the limit case l(w, 1) is well defined to

be η
1/α
w . Also note that there exists q′ such that F←∥X∥1

(q) > 1 for all q ≥ q′. Therefore,

l(w, q) ≤ F←wTX(q), q ≥ q′. (6.9)

Letting q̃ = q′∨q0, we are ready to show (6.5), the uniform continuity, holds on S : =Σd⊗ [q̃, 1].
Due to the relation (6.9), the compactness of S and the finiteness of l(w, q), it suffices to show
that F←

wTX
(q) is continuous in both w and q on S. By the uniform continuity of FwTX(t) in w,

for δ(w, q)/2 with δ(w, q) determined such that (6.8) holds, there exists δ2 such that

FwTX(t)− δ(w, q)/2 ≤ FzTX (t) ≤ FwTX(t) + δ(w, q)/2, (6.10)

for ∥w − z∥ < δ2 and t ≥ t0. Then, for |p− q| ≤ δ(w, q)/2, we obtain the lower bound of F←
zTX

(p)
as

F←zTX(p) = inf {x ≥ t0 : FzTX (x) ≥ p}
≥ inf {x ≥ t0 : FwTX (x) + δ(w, q)/2 ≥ q − δ(w, q)/2}
= F←wTX(q − δ(w, q)), (6.11)
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where the second step is due to (6.10). Similarly, for the upper bound of F←
zTX

(p), we have

F←zTX(p) = inf {x ≥ t0 : FzTX (x) ≥ q}
≤ inf {x ≥ t0 : FwTX (x)− δ(w, q)/2 ≥ q + δ(w, q)/2}
= F←wTX(q + δ(w, q)). (6.12)

Therefore, combining (6.11), (6.12) and (6.8) yields that F←
wTX

(q) is continuous in both w and q
because∣∣F←wTX(q)− F←zTX (p)

∣∣ ≤ ∣∣F←wTX(q + δ(w, q))− F←wTX(q)
∣∣ ∨ ∣∣F←wTX(q − δ(w, q)))− F←wTX(q)

∣∣
< ε,

for ∥w − z∥ < δ2 and |p− q| ≤ δ(w, q)/2. Hence, l(w, q) is uniform continuous on S.

Now we are ready to show that the convergence in (2.8) is uniform.

Theorem 6.2 Suppose the nonnegative random vector X has a continuous joint distribution F .
Further assume that X ∈ MRVα(Ψ) with α > 0. Then

lim
q↑1

sup
w∈Σd

∣∣∣∣VaRq(w
TX)

VaRq(∥X∥1)
− η

1/α
w

∣∣∣∣ = 0. (6.13)

Proof. Consider the decomposition for some v ∈ Σd∣∣∣l(w, q)− η
1/α
w

∣∣∣ ≤ |l(w, q)− l (v, q)|+
∣∣∣l(v, q)− η

1/α
v

∣∣∣+ ∣∣∣η1/αv − η
1/α
w

∣∣∣ , (6.14)

where l(w, q) is defined as in (6.4). By properly choosing v, if the three terms can be shown to be
arbitrarily small for any w ∈ Σd as q close to 1, then (6.13) is proved. In the following we show
how v can be determined.

By Lemma 6.1 and the uniform continuity of ηw, for any ε > 0, there exist δ > 0 and 0 < q̃ < 1
such that for any w, z ∈ Σd satisfying ∥w − z∥ < δ and all q ≥ q̃, we have

|l(w, q)− l(z, q)| < ε. (6.15)

and ∣∣∣η1/αw − η
1/α
z

∣∣∣ < ε. (6.16)

That is, δ is so chosen that both (6.15) and (6.16) hold. Now we are ready to determine v in
(6.14) by constructing open coverings. Let Bw,δ denote the open ball of w; that is Bw,δ = {z ∈
Σd : ∥w − z∥ < δ}. Then the collection of all the sets Bw,δ for each w is an open cover of Σd. By
the compactness, there exists a finite subcover denoted by Bw1,δ, . . . , Bwm,δ. For each selected wi,
by the limit relation in (2.8), there exists 0 < qi < 1 such that∣∣∣l(wi, q)− η

1/α
wi

∣∣∣ < ε,

for all qi ≤ q < 1. Let q∗ = max {q̃, q1, . . . , qm}. For any w ∈ Σd, one can find i such that
w ∈ Bwi,δ, which means ∥w −wi∥ < δ. This wi is the proper choice of v in (6.14) since each term
on the right-hand side of (6.14) is smaller than ε for all q∗ ≤ q < 1. This completes the proof.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Since the convergence limq↑1VaRq(Xi)/VaRq(∥X∥1) = η
1/α
ei is indepen-

dent of w, applying Theorem 6.2 to the rewriting in (2.7) we obtain the desired result.
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6.3 Proofs of lemmas

Lastly, we present the proofs of lemmas from previous sections.

Proof of Lemma 2.2. To prove DRw,q
unif−→ DRw,1, we need to show for any given ε > 0, there

exists a number q0 such that |DRw,q −DRw,1| < ε for every q > q0 and for every w in Σd. Note
the rewriting

|DRw,q −DRw,1| =

∣∣∣∣∣∣
wTµ

(∑d
i=1wi

∥∥BTei
∥∥
2
−
∥∥BTw

∥∥
2

)
(
wTµ+

∑d
i=1wi ∥BTei∥2 F←Z (q)

)∑d
i=1wi ∥BTei∥2

∣∣∣∣∣∣ .
For every w ∈ Σd, since µ ∈ l1, there exists N1 > 0 such that wTµ < ∥µ∥1 < N1. Since ∥B∥2 < ∞,
there exists N2, N3 > 0 such that

0 <

d∑
i=1

wi

∥∥eTi B∥∥2 < d∑
i=1

∥∥BTei
∥∥
2
< d ∥B∥2 < N2,

and ∥∥BTw
∥∥
2
< ∥B∥2 < N3.

Since Y is unbounded, there exists 0 < q0 < 1 such that

F←Z (q) >
N1 (N2 +N3)

N2
2 ε

− N1

N2
,

for every q > q0. Combining the above analysis, the desired result |DRw,q −DRw,1| < ε for every
q > q0 and for every w in Σd follows.

Next, we show that DRw is continuous. For w,v ∈ Σd, we have that

|DRw,1 −DRv|

≤

∣∣∣∣∣∣
∥∥BT (w − v)

∥∥
2

∑d
i=1 vi

∥∥BTei
∥∥
2
+
∥∥BTv

∥∥
2

(∑d
i=1 vi

∥∥BTei
∥∥
2
−
∑d

i=1wi

∥∥BTei
∥∥
2

)
(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
)

∣∣∣∣∣∣
≤

∥B∥2 ∥w − v∥1
∑d

i=1 vi
∥∥BTei

∥∥
2

(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
) +

∥∥BTv
∥∥
2
∥w − v∥1 max

1≤i≤d

∥∥BTei
∥∥
2

(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
)

= ∥w − v∥1
∥B∥2

∑d
i=1 vi

∥∥BTei
∥∥
2
+
∥∥BTv

∥∥
2
max
1≤i≤d

∥∥BTei
∥∥
2

(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
) .

Since ∥B∥2 < ∞ and BBT is positive definite, the fraction in the last step is bounded. Therefore
for fixed w, when ∥w − v∥1 is small enough, we have |DRw,1 −DRv| < ε. This proves the mapping
w → DRw,1 is continuous.
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Proof of Lemma 2.3. First note that

sup
w∈Σd

∣∣∣D̂Rw,1 −DRw,1

∣∣∣
= sup

w∈Σd

∣∣∣∣∣∣ η̂
1/α
w
∑d

i=1wiη
1/α
ei − η

1/α
w
∑d

i=1wiη̂
1/α
ei(∑d

i=1wiη̂
1/α
ei

)(∑d
i=1wiη

1/α
ei

)
∣∣∣∣∣∣

≤ sup
w∈Σd

∣∣∣∣∣∣
(
η̂
1/α
w − η

1/α
w

)∑d
i=1wiη

1/α
ei(∑d

i=1wiη̂
1/α
ei

)(∑d
i=1wiη

1/α
ei

)
∣∣∣∣∣∣+ sup

w∈Σd

∣∣∣∣∣∣
η
1/α
w

(∑d
i=1wiη

1/α
ei −

∑d
i=1wiη̂

1/α
ei

)
(∑d

i=1wiη̂
1/α
ei

)(∑d
i=1wiη

1/α
ei

)
∣∣∣∣∣∣ . (6.17)

Thus, to show that (6.17) converges to 0 almost surely, the key is the strong consistency of η̂w
uniformly in w. This is ensured by Theorem 4.1(a) of Mainik and Rüchendorf [13] if

lim
q↑1

sup
w∈Σd

|Ψqfw,α −Ψfw,α| = 0, (6.18)

where Ψq is the conditional angular distribution of S|FR(R) > q for q ∈ (0, 1) and fw,α(s) =
(wT s)α. Now we show that (6.18) holds under the current conditions. Note that for any s ∈ Σd,
we have

0 < (wT s)α ≤ wT s ≤ wT1 = 1.

For any s1, s2 ∈ Σd, it follows that

|fw,α(s1)− fw,α(s2)| = |(wT s1)
α − (wT s2)

α|
≤ |(wT s1)− (wT s2)|d
≤ d|s1 − s2|,

where in the second step we used the polynomial expansion formula. This means that the function
class

{
fw,α : w ∈Σd

}
is uniformly Lipschitz for any α > 1. Then by Remark A.5 of Mainik and

Rüchendorf [13], the uniform convergence in (6.18) holds. Hence, η̂w converges to ηw uniformly

in w ∈Σd almost surely. Further, by the continuity of the mapping η̂w 7−→ η̂
1/α
w , we have

sup
w∈Σd

∣∣∣η̂1/αw − η
1/α
w

∣∣∣→ 0, a.s.,

and

sup
w∈Σd

∣∣∣∣∣
d∑

i=1

wiη
1/α
ei −

d∑
i=1

wiη̂
1/α
ei

∣∣∣∣∣ = sup
w∈Σd

∣∣∣∣∣
d∑

i=1

wi

(
η
1/α
ei − η̂

1/α
ei

)∣∣∣∣∣→ 0, a.s.

Further notice that
∑d

i=1wiη
1/α
ei and

∑d
i=1wiη̂

1/α
ei are uniformly bounded away from 0 because

both the empirical measure Ψ̂ and the limit measure Ψ are non–degenerated. Combining all these,
we obtain that (6.17) converges to 0 almost surely, which yields the desired result.

Proof of Lemma 3.1. In this proof the limit is taken as t → ∞. For t > 0, denote the region
St = {(x1, . . . , xd) ∈ Rd

+ :
∑d

i=1wixi ≥ t}. We can split FwTX(t) as

FwTX(t) =

∫
St

d

(
d∏

k=1

Gk(xk)

)
+
∑
i<j

ai,j

∫
St

d

(
(1−Gi(xi)) (1−Gj(xj))

d∏
k=1

Gk(xk)

)

= I(t) +
∑
i<j

ai,jJi,j(t),
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where Gk(x) = G(x/wk) for k = 1, ..., d. The term I(t) can be understood as the survival dis-
tribution function of w1X

∗
1 + · · · + wdX

∗
d , where X∗1 , . . . , X

∗
d are i.i.d. with common distribution

function G. For I(t), it follows from Theorems 4.7 of Mao and Ng [15] that,

I(t)

G(t)
=

d∑
k=1

wα
k +

d∑
k=1

H−α,ρ
(
w−1k

)
A(t)(1 + o(1)) + αt−1µG

∑
k ̸=l

wα
kwl(1 + o(1)).

For Ji,j(t)’s, note that it suffices to study J1,2(t) by symmetry. Then we have

J1,2(t)=I(t)−
∫
St

d

(
G2

1(x1)

d∏
k=2

Gk(xk)

)
−
∫
St

d

G2
2(x2)

∏
k ̸=2

Gk(xk)


+

∫
St

d

(
G2

1(x1)G
2
2(x2)

n∏
k=3

Gk(xk)

)
=I(t)− J

(1)
1,2 (t)− J

(2)
1,2 (t) + J

(3)
1,2 (t).

Note that Gk(x) = G(x/wk) ∼ wα
kG(t) and G2

1(t)/G1(t) → 2. Since α ≥ 1, by regarding G2
1(·) as

a distribution function, Proposition 3.7 of Mao and Ng [15] leads to

J
(1)
1,2 (t)

= (2wα
1 + wα

2 + · · ·+ wα
d )G(t) + o

(
G(t)A(t)

)
+ αt−1

2wα
1

d∑
k=2

wkµG + w1µG2

d∑
k=2

wα
k +

∑
k,l≥2,k ̸=l

wα
kwlµG

G(t)(1 + o(1)).

Similarly,

J
(2)
1,2 (t)

= (wα
1 + 2wα

2 + · · ·+ wα
d )G(t) + o

(
G(t)A(t)

)
.

+ αt−1

2wα
2

∑
k ̸=2

wkµG + w2µG2

∑
k ̸=2

wα
k +

∑
k,l ̸=2,k ̸=l

wα
kwlµG

G(t)(1 + o(1)).

and

J
(3)
1,2 (t) = (2wα

1 + 2wα
2 + · · ·+ wα

d )G(t) + o
(
G(t)A(t)

)
+ αt−1

2

2∑
l=1

∑
k ̸=l

wα
l wkµG2 + 2

2∑
l=1

d∑
k=3

wα
l wkµG

G(t)(1 + o(1))

+ αt−1

 2∑
l=1

d∑
k=3

wα
kwlµG2 +

∑
k,l≥3,k ̸=l

wα
kwlµG

G(t)(1 + o(1)).

Combining all the asymptotics for I(t), J1(t), J2(t) and J3(t) yields that

FwTX(t)

G(t)
−

d∑
k=1

wα
k = (1 +Qa)

I(t)

G(t)
+

∑
i<j ai,j

(
−J

(1)
ij (t)− J

(2)
ij (t) + J

(3)
ij (t)

)
G(t)

−
d∑

k=1

wα
k

=

{
αt−1µ∗G(1 + o(1)), ρ < −1,

(1 +Qa)
∑d

k=1H−α,ρ
(
w−1k

)
A(t)(1 + o(1)), ρ ≥ −1.
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This completes the proof of (3.4).
The uniform convergence of (3.4) follows immediately from checking that for the limit relations

in Proposition 3.7 and Theorems 4.7 of Mao and Ng [15]. The details are omitted here but are
available upon request.

Proof of Lemma 3.2. In this proof we denote argmin f by mf for notational simplicity. By the
definition of Dn, for any n, |fn(mf )− f(mf )| < Dn. It follows that

fn(mfn) ≤ fn(mf ) < f(mf ) +Dn.

Again, by |fn(mfn)− f(mfn)| < Dn we have

f(mfn) < fn(mfn) +Dn < f(mf ) + 2Dn.

Deriving the similar inequalities for the other side yields that

|f(mfn)− f(mf )| < 2Dn. (6.19)

By the Taylor’s theorem, for any x in a small neighborhood of mf we obtain that

f(x) = f(mf ) +
1

2
(x−mf )

T∇2f(mf )(x−mf ) + o
(
||x−mf ||22

)
, (6.20)

where we used the multi-index notation and ∇2f(mf ) is the Hessian matrix of f at mf . Since
Dn → 0 as n → ∞ by Theorem 2.1, mfn is in a small neighborhood of mf for large n. It then
follows from the expansion in (6.20) that

|f(mfn)− f(mf )| >
c

2
||mfn −mf ||22, (6.21)

where c is the smallest eigenvalue of ∇2f(mf ). Combining (6.19) and (6.21) leads to the desired
result.
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