Peter P. Wakker

§1 .1; 15t meeting

Example 1.1.1 (Street vendor)
Table 1.1.1. Net profits for street vendor

no rain(s,) some rain(s,) all rain(ss)

x (“ice cream”) 400 100 —400 ir

y (“hot dogs”) —400 100 400
0 (“neither”) 0 0 0

x+y(“both’) 0 200 0 p#




More realistic:
Example 1.1.2 (Finance)
Speculate on copper price next month

K: €1000

Table 1.1.2. Net profits

price = 2.53 2.53 > price = 2.47 2.47 > price

X 50K —30K —30K
Y —30K —30K 50K
0 (“neither’) 0 0 0

x +y (“both”) 20K —60K 20K




We continue with street vendor:

no rain (s;) some rain (s,) all rain (s3)

j X 400 100 —400
&y 400 100 400
0 0 0 0
}+,//’ x+y 0 200 0

What would you do? ...

Notation: (x4, x,, x3): €x; if s; obtains;
ice cream = (400,100, —400)

Proposal: do expected value (EV) maximization.
“Determine” pq, vy, v3:
p; = subjective probability of s; (...).

EV(x) =0.40 x 400 + 0.30 x 100 + 0.30 x (—400) = 70;
EV(y) =—-10;EV(0) = 0; EV(x + y) = 60;
x IS chosen!



§1.2-§1.3

Story change (now descriptive).

Street vendor # you. EV holds.
What are p;?

Exercise 1.3.3. (300,0,0) > (0,0,300).
Show D1 = D3.

SOIUtion: D1 X 300 = D3 X 300 = D1 = D3.

Also: x >y = p; > p;.



Want to find p4, p,, p; exactly.
Experimental heaven:

can exactly observe preference between
any (xi, x,x3) and (y1, Y2, y3)-

For any (x4, x5, x3), can find CE a:
a~(xq,%X5,X3).

Notation: a = (a, a, a).

How find py, py, p3?



Find CE of (1,0,0): a~(1,0,0)
EV.1Xa=p; X14+p, X0+p3 X0;

a = pl'
p, and p5 similarly.



Measure-predict

Exercise 1.3.5. Assume

(100,0,0)~50

(0,100,0)~25.

What are p{,p,, 37

Whatis CE(0,0,100)7

What is preference between (0,100,0) and
(0,0,100)7

Solution:

p;100+ (1 —p,)0=50=p; =0.5
p,100 + (1 — p,)0 = 25 = p, = 0.25
p3 =1—=p; —px = 0.25
CE(0,0,100) = 0.25 x 100 = 25
(0,100,0)~(0,0,100) (EV = 25)



§1.4-§1.5

Story change (normative again).
Street vendor = you.

You hire expensive advisor.
His advice: "Maximize EV!”
Are you convinced?

Not really!

- Ad hoc.

- pj’S how?
- Additions/multiplications in EV are ad hoc.



Can you one more time think of justification?

Not bad. Weak points:

- Needs repeated decisions.

- Sumtotal of wealth over lifetime not always
relevant.

Need different story.

Advisor apologizes. Asks for 2"d chance.
Recommends:



1. Monotonicity

2. Transitivity
3. Additivity: x zy=>x+z>y+z

Examples of additivity:
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Table 1.5.2 (Finance)

K: €1000
Eq E, E;
If |x 50K —30K —30K
Z 30K 30K 30K
then |x + z| 80K 0 0

A4

A4

E; E, E;
Y —30K —30K 50K
Z 30K 30K 30K
vyv+z| 0 0 80K
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Table 1.5.3

If

then

no some all

rain __ rain rain
X 400 100 —400
Z 150 100 50
x+2z] 550 200 —350

A4

A4

no some all

rain  rain rain
y —400 100 400
Z 150 100 50
v+ 2z|—250 200 450
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Table 1.5.4 (Finance)

K: €1000
By B Es
If | x 50K —30K —30K
z 40K 0 —40K
then |x +z| 90K —30K —70K

W

N4

Ey By Ej
y |-30K —30K 50K
z 40K 0 —40K
y+z| 10K —30K 10K

Additivity modified: only for moderate amounts.

Only if z does not change your life situation (the
extra happiness from a €).

We assume moderate amounts henceforth.




We next explore implications of the advice.

Notation:

In this course, subscripts always indicate states of
nature.

Superscripts can distinguish different choice
options.

For street vendor, x! and x? indicate different
merchandises

E.g., x' = (x{,x3,x3); x* = (x7, x5, x35).

14



Theorem.
If x1 = y! and x? = y?,
then x1 + x% = y1 + y2.

Proof.

By additivity (x? in role of added z)
xl =yl =

xt+x% =yl +x%.

x% = y% >

x‘+yl =y2+ylie,

yl+x% =yl +y2.

Transitivity:

xt+x% =yl 4+ y2

15



Theorem.
If x1 = y1x% =92, ..., x%0 = y20,
then x* + -+ x20 =yt + ... + 20,

20

Proof.

By previous theorem,
xt+x% =yt +y%.

x3 = y3
+
xt+x?2+x3 =yl +y%2 +y3
x* = y*
+

... etc.
Holds for any number of preferences, also if
more/less than 20.

16



Now imagine you have well-contemplated preferences:
xt =yt
x% 3z y°

Imagine you calculate and find:
spixi o+ axP <y 4+ oyt

Mm ...

Syt xXg ot xM < yr 4yt
Mmm ...

S3ixs 4+ axlt <yl + 4yl
Ouch!!!

You violate advice of advisor!
Do you see why?
Is called arbitrage/Dutch book.
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§1.6

Following theorem ignores technicalities (see book)

Theorem 1.6.1 [de Finetti’s surprise] The following
three statements are equivalent:

(i) Expected value holds.

(i) Monotonicity, transitivity, & additivity hold.

(1) No arbitrage.
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§2.2; 2"d meeting ' %

Sa?ojd“
I x 400 100 —400
&y —400 100 400
0 0 0 0
g x+y 0 200 0
. . 1 1 1
ObJeCtlve D1 = Z,pz — E,p3 — Z

x = (3:400,2:100,7:-400) |

- 1__ l l -
y _(Z' 400,2.100,4.400) Y

0=1(1:0)
x +y = (5:200,-:0)
. only probs matter

Prospects: probY distrs over money

Note something about x and y? x =y !



Notation

(P1:X1) s Pt Xp)
P1 X4

L

Pn

Risk aversion:
P1 X4

i

Pn
Risk neutrality:

Risk seeking:

(p:a,1—p:B) = a,p

(1l:a) =«
< P1X1 T o+ PnXnp
=



Nilas Bernoulli
(1713)

How much you pay to play it once?

1 1 1

= =2 + —.4 + =.8 + -
EV= 5.2+ 7.4+ 5.8+

[ [ [
1 + 1 4+ 1 +-

Empirically: CE = €4. XEV!

|
8

21



Daniel Bernoulli (1738):
Expected utility (EU)

X1
(é . : N
xn

“€E1I0M =10 x €1M ”

(M : million)
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Exercise 2.5.3: Assume EU, with
U(0) =0,U(100) =1, and 50 ~ 100, =40.
(a) What is U(50)?
(b) (0.40:100,0.20:50, 0.40: 0)
versus
(0.33:100,0.33:50,0.34: 0);
which is preferred?

Solution.

(a) EU(50) = EU(100,:40) = 0.58 X 1 = 0.58.
U(50) = EU(50) = 0.58.

(b ) EU(0.40: 100, 0.20: 50,0.40:0) = 0.40 X 1 + 0.20 X 0.58 =
0.516.
EU(0.33:100,0.33:50,0.34:0) = 0.33 x 1 + 0.33 X 0.58 =
0.5214.

(0.33:100,0.33:50,0.34:0) is preferred.
23



St. Petersburg paradox reconsidered
2

EU with U(a) = In(a) T/

1 1 1

EU= =ln2 + -nd 4+ =In8 + ... =1.39.

2 4 3
= [n4 !

So, CE (certainty equivalent) now is €4.
Agrees with empirical findings.
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Question. Assume U(0) = 0 & U(100) = 1.
How measure U(30)7

?
P7 100
30 ~ (5 Say p = 0.4.
0

1—p?
UB0)=04%x1+06x0=0.4.

We similarly measure, say, U(70):

!
9 100
70 ~ cé
0

1—qg?




General (standard gamble) method for
measuring utility

Assume best concelvable outcome M and worst m.
SetU(M) =1and U(m) = 0.

p?

a ~ C<:M =>U(a) =p

1—p?

In health domain: quality of life ~ utility.
Perfect health (©) is best (U = 1).
Death (2) is worst (U = 0).

0.96 ©

Blind ~ Q = quality of life of blindness is 0.96.

0.04 * Blindness brings loss of 4% quality of life.
26



$2.6

Preparatory notation: multistage lotteries

1/2 o 156200

213 © _ 106 400

<<fmo T
1/2 0

Rule: consecutive probabilities should be multiplied.
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MCCord & de Neus|IIe (19806):
we are not in experimental heaven!

Standard gamble measurement

p
M
a~ Cé has “certainty effect.” (e

1—pm

Violates EU much!

Better take stimuli where EU less violated.

28



McCord & de Neufville (1986) proposed:

)

1/2 1/2

1—p?

m m

1/2 1/2

Claim: under EU, U(a) = p.

Here no certainty effect.

29



More general:

Claim: then still U(a) = p.

30



Now imagine both

but p’ # p. What to think?

1. EU 3. (No surprise.)

2. McCord & de Neufville (1986):

“This is exactly our point!

AT

p Is better than p".

31



Change of story: so far perspective was descriptive.
From now on, normative. Assume

i

but p’ # p. What to think normatively?
Let's assume p’ > p. Then

e L

1-41



My claim: irrational!
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Standard gamble consistency:
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THEOREM (von Neumann-Morgenstern’s
surprise).

The following two statements are logically
equivalent for your preferences:

1) Expected utility holds;

i) Transitivity, completeness, SG dominance,
SG solvability, & SG consistency hold.
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$3.1
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cure normal | Y P Uxb EU
voice 1 .60 .60
04 artificial: | ' 744
recurrency, speech 9 16 .144
surgery
. 744
cure artificial: \

speechi 19 .70 .63

surge 03 artificiali 711
gery speechg 9 .09 .081
recurrency N, ® : 0 21 0_ )+

é..I:I.y.b.é.t..r.].é.f.l..c.é.l...é{é.ﬁ.a.é.r..a............................................................... ............... .?j;’] ..............
: gamble question: For which p equwalence’? :Patient with
T n 6(.'"‘ Patient answers: p =0.9. ¢ Iarynx cancer :
1 P_mal Ex ected utility: (s%) = ii(stageT3). |
artifi- ¢ Vo|Ce inormal voice) ='1; i iRadio-therapy:
: cial h ° (L)J ar |f1|C|aI (s)p1eec(51 or surgery? i
| aree — 2 i g a Rl b
s = 00 * . Answer- r.th!

e eeeeeencenensencanencencnencentasenteneneentasantanrnreneaaeneaneaaenranenneneaneneaneanencaneaeeneanennensnnt s 37



§3.2-§3.5

Theorem 3.2.1. Assume EU.

Risk aversion < U concave.
Risk neutrality & U linear.
Risk seeking & U convex.

Comparisons:
a~1x > a ?2 X. ?2 ?1

Theorem 3.4.1. Under EU,
>, MRAthan >; © U, = ¢@U, for a concave ¢.

” 144
—-U;

Holds iff — T
Holds iff >, has blgger risk premiums than >;.

Decreasing absolute risk aversion:

a~x>a+e<x+efore>0.
38



§4.1-84.3 (3 meeting)

There exists P on events AND U on outcomes, s.t.
(E1:xq, -, Enixn) » P(E)U(x1) + -+ P(Ep) U (xy)

represents .
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(a)

cand,; wins cand; wins

10

B
B

— 1 .
cand, wins cand, wins

Your switching value on the dotted line is a!.

(b)

cand,; wins cand; wins o

N
]

—1 -
cand, wins cand, wins

Your switching value on the dotted line is o2,

(c)
candT wins candT wins o
— 1 .
cand, wins cand, wins
Your switching value on the dotted line is o.
(d)
cand, wins cand, wins o

B
B

— 1 -
cand, wins cand, wins

Your switching value on the dotted line is o*.

Indicate in each Fig. which outcome on the dotted line ...
makes the two prospects indifferent (the switching value).

Figure 4.1.1 [TO Upwards]. Eliciting a! ... a* for unknown probabilities
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(a)

cand, wins _, cand, wins
a 10

ﬁ
ﬁ

- g - cee
cand, wins cand, wins

Your switching value on.the dotted line 1s.G.

(b)

cand; wins cand; wins ol

ﬁ
ﬁ

— 8 — G
cand, wins cand, wins

Your switching value on the dotted line is B2

(c)

cand, wins cand, wins B2

B
i

: g :
cand, wins cand, wins

Your switching value on the dotted line is B3.

(d)

cand, wins cand, wins

B3

ﬁ
ﬁ

— 8 ;
cand, wins cand, wins

Your switching value on the dotted line is B*.

Indicate in each fig. which outcome on the dotted line ...
makes the two prospects indifferent (the switching value).

Figure 4.1.2 [2nd TO Upwards]. Eliciting B2, B3, p*



(a)

0.5 o
0
05
Elicitation of y?
(b)
0.5 V2
0
05
Elicitation of y!
(c)
0.5 o
2
05 !
Elicitation of 3

Indicate in each Fig. which outcome
on the dotted line ..., ifreceived with
certainty, is indifferent to the prospect.

Figure 4.1.3 [CEs]. Eliciting y2,y',y?



(a)

cand; wins cand; wins 4

N
]

— 8 .
cand, wins cand, wins

Your switching value on the dotted line is &3.

(b)

cand; wins cand; wins 83

ﬁ
ﬁ

— 8 -
cand, wins cand, wins

Your switching value on the dotted line is 8.

(©)

cand; wins cand, wins 52

B
)

— 8 — 1
cand, wins cand, wins

Your switching value on the dotted line is §'.

(d)

cand, wins cand, wins Sl

N
]

— 8 .
cand, wins cand, wins

Your switching value on the dotted line is &°.

Indicate in each fig. which outcome on the dotted line ...

makes the two prospects indifferent (the switching value).

Figure 4.1.4 [TO Downwards]. Eliciting &° ... &°
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(a)

ot
al ~
1- o
Elicitation of PE!
(b)
ot
o~
- o’
Elicitation of PE?
(c)
ot
o~
e

Elicitation of PE3

Indicate in each Fig. which
probability on the dotted lines ...
makes the prospect indifferent to
receiving the sure amount to the left.

Figure 4.1.5 [PEs]. Eliciting PE!, PE2, PE3
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EXERCISE 1 Experiment. Consider Figure 4.1.1 (TO upwards; do not consider the other
figures). Assume that both candidates have a nonzero probability of winning. Show that,
under EU (with a°=10, p, for the (subjective) probability of cand, winning, and p, = 1 —p;):

U(at)-U(a?) = U(a®)-U(a?) = U(a?)-U(a) = U(a)-U(a? . (1)
First derive the last equality using only Figs. 4.1.1a and b.

EXERCISE 2 Experiment. Assume EU for Figures 4.1.1 and 4.1.2, with nonzero probabilities
of winning for both candidates.

a) Show that U(B*)-U(B*) = U(B*)-U(B?*) = U(B*)—U(a') = U(a') - U(a).

b) Show that fi=aJ for all j.

EXERCISE 3 Experiment. Assume EU for Figures 4.1.1 and 4.1.3, with nonzero probabilities
of winning for both candidates. Show that Y=o/ for all j.

EXERCISE 4 Experiment. Do not assume EU. Assume only weak ordering of your preference
relation. Further assume strong monotonicity, which means that any prospect becomes
strictly better as soon as one of its outcomes is strictly improved. Under EU, not assumed
here, the latter assumption would amount to all outcome events being nonnull. Show that 8 =
od for all j in Figures 4.1.1 and 4.1.4.

EXERCISE 5 Experiment. Assume EU for Figure 4.1.5. Throughout, we normalize U(a%)=0
and U(a*)=1. Assume the data of Figure 4.1.1, and the implications of EU there. Do not
consider your own answers PE' in Figure 4.1.5. Instead, consider the answers PE! that EU
predicts given U(al)=j/4 for all j. Show that EU predicts PEI=j/4 for all j. In other words,

your answers in Figures 4.1.1 and 4.1.5 violate EU unless PEi=j/4 for all j.
45



Solution to Exercise 1:

Subjective probabilities
P(cand,) = ps;
P(cand,) = p,.
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10

|l
Fig. 4.1.1a: pU(aV) +p,U(1) = p,U(@®) + p,U(8)
‘= C

P (U@) = U@®) =p, x (U®) —UD)) ~._

\
\

Fig. 4.1.1b:. ” p1U(a?) +p,U(1) = p1U(a’) + p,U(8) ,"”

O~y ' P
:' Npy X (U(e®) —U(a')) =p, x (U(B) —U(1))~

U(cxz) —U(at) =U(a?) —U(a?)

We continue and next investigate U(a3) and U(a®*). As above:

Figs 4.1.1b & 4.1.1¢c: U(a®) — U(a?) = U(a?) — U(al):

47



Similarly:

Fig. 4.1.1b: p1U(a®) + p,U(D) = pU(at) + p,U(8)
‘. C

1 x (U@ = U@h) =p2 x (UB) ~UM)~.

\
' \

|
Fig. 4.1.1 ”‘ p,U(@®) + pUD) = p,U(a?) + poU(8)

i~ g
\p; X (U@®) —U(a?)) = p, x (U(8) — U(l))"

I

I
|
1
\

U(a®) = Ula?) = Ua?) — Ual)
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Similarly:

Fig. 4.1.1c: p,U(a®) +p,U(1)= pU(a?) + p,U(8)
C C

1 x (U@@) = U@?) =p, x (UG ~ UMW)~

\
' \

|
Fig. 4.1.1d: ”‘ U@ + pUD) = pU(a®) +ppU(8)

i~ g
\p; X (U@ —U@®)) = p, x (U(8) — U(l))"

I

I
|
1
\

U(a) = Ue®) = Ua®) — U(a?)
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Taking all together:
Ula) —U@®)=U@3®) -U@?®) =U(@?®) —U(a?) =U( ) —U(a®

If U(a®) = 0,U(a*) = 1, then: U(al) = 7, U(a®) ==, U(a®) ==
The a’s are “equally spaced in utility units.”

50



Now you draw the graph of your U, as follows.
1. Take paper and pencill.

51



2. Draw axes
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3. Write the symbols as below

10 €
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4. Scaling utility

5 1 o
U
0 o .
a Y a
]
10 €

| add the diagonal.
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5. Write the symbol a? where your own a* is.

@
P
P
.
.
.
.
.
7’
.
.
.

.,
’
.,
,
.,
.,
’
.,
.
.,
.,
-’
.,
__________________________ .
-’
.,
.
-’
.,
-,
’
.,
,
.,
.,
’

O‘O > =4
04 a a
|

10 €
6. There U Is %
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6. Add a! and a?.

7
’
.,
-’
’
.
-’
.,
.,

’
.
.,
’
.,
-,
.,
.,
’
.,
.
_____________________________________________ -
.,
-’
.,
.
-’
.,
.,
’
.,
.,

’
.,
,
.,
.,
’
.,
.
.,
.,
-’
.,
__________________________ .
-’
.,
.
-’
.,
-,
’
.,
,
.,
.,
’
.,
.
.,
.,
-’
.,
.
-’
.,
.
’
__________ .,
.,
’
.,
-,
.,
.,
’
.,
.
.,

0% 1 2 3 '4
]
10 €

Your utility graph!
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Solution to Exercise 2:
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Similarly:

Fig.44.1a:  pU(al) + p,U@) = pU(®) + pU(8)

R
1 x (U@ =U@?)) =py x (U@ ~UD)~.

\
' \

Fig. 4.%.1b: ”‘ plU(cr )+P2U( )—P1U(C¥1)+p2U(o) ,””
{_B {—a
\p; X (U(@A) —U(aD) =p, x (U®) — U ))1

I

I
|
1
\

V() — Ulab) = Uad) — U(a®)
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Similarly:

Fig. 4.4.1b: p1U(e?) + p,UC) = pU(at) 4+ pU(8)
o~ b
#P1 X (Ua®) —U(@")) =p, x (U®) —U@)~__

\
' \

|
Fig. 4.1 ”‘ 2, U + p,UR) = pU@2) + pUE)

‘S K
o1 X (U@ —U@)) = p, x (UE) — U(L)),

I

I
|
1
\

V() — Ue) = U@2) — Ula)
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Similarly:

Fig. 4.%.1c: p,U@R) + p,UR) = p U) + p,U(8)

Cg C - |

1 x (U@ ~U@Y) =p2 x (UG ~UD)~.

' |
Flg. .44 ”‘ pr U@ +p,UX) = pU@2) +p,UE)
o~ | !

"P1 X (U(C‘f ) — U2 )) = P2 X (U(ﬁ) - U(L))"

I
|
1
\

‘ ~
U@t —U@®) =U@® - U@d)
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Solution to Exercise 3.
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e
EU(CZ4) +§U(CZO) =
U(a?);

2 = g
, vo=
gU(VZ) +gU(C¥O) =
EU(aZ) +§U(a°) =
U(ab);
y1 =gl
-
gU(Cﬁ) +2U(V2) =
zU(a‘L) +§U(a2) =
U(a®);
3 = a3

The y’s are just another way of measuring the same as the a’s.

FIG. 4.1.3a.

y2 o~
o

F1G. 4.1.3b.
) V2

yt o~
7t

FIG. 4.1 3c.
Y2 ol

y> o~
y2
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Solution to Exercise 4.

Now the §’s, from Figure 4.1.4.
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FIG. 4.1.4a

cand, $3 cand, ol

cand, 8 cand, 1
FIG. 4.1.4b

cand, 52 cand, 83

cand, 8 cand, 1
FIG. 4.1.4¢

cand, §! cand, 52

cand, 8 cand, l
FIG. 4.1.4d

cand, §0 cand, 5!
E 8 E 1

cand,

cand,

The §’s are just another way of measuring the same as the a’s.

Fig. 4.1.4a: compare Fig. 4.1.1d.
All the same except &°.
Hence, &° = a®> must be.

Fig. 4.1.4b: compare Fig. 4.1.1c.

Given that & = a3, we must
have &2 = o?.

Fig. 4.1.4c: compare Fig. 4.1.1b.
Given that 82 = a2, we must
have 6! = a!

Fig. 4.1.4d: compare Fig. 4.1.1a.
Given that &' = a!, we must
have &° = oY

Below: Figure 4.1.1 with:
upper/lower panels interchanged
left/right prospects interchanged.

FiG. 4.1.1d
cand, o3 cand, o
cand, 8 cand, I
FiG.4.1.1c
cand, o2 cand, NE
cand, 8 cand, 1
F1G. 4.1.1b

cand,; cand,;

E : |
1
cand, cand,

FIG. 4.1.1a
cand, cand,
C 10) E
cand, cand,
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Solution to Exercise 5
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We may set U(a®) = 0,U(a’) = i. Then:

U(al) = PEYU(a*) + (1 — PEVHU(a®);
i=PE1><1+(1—PE1)><O=PE1.

U(a?) = PE*U(a*) + (1 — PEHU(a®);
2

= PE2x 1+ (1—PE?)x0 = PE2,

U(a3) = PE3U(a*) + (1 — PE3)U(a®);
3

== PE3x 1+ (1—PE®) x 0 = PE®,

FIG. 4.1.5a

1
PE ol
(X,O
1—PE!
FI1G. 4.1.5b
2
PE ol
0
(04
1—PE?
FIG. 4.1.5¢
3
PE ot
O(,O
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Common findings

Table 4.11.2. Statistical tests of equalities

C(O O!l Bz B3 B4 OLO )/1 )/2 y3 OL4 80 61 82 63 OL4 PEl PEZ
o = — *
ot = * * ns
o2 ns & ms *
(13 ns * ns
o’ NS = =
* significant

PES
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Ch. 5 (reorganized relative to
book, with different division
over sections)
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Simplest way to evaluate risky prospects:

(C. Huygens 1657) é

P1
. . 1
Cé - — P1Xq + 7 F PX,
Py
Violated by risk aversion: %%, [5)
P+

X1
é : < P4X1 LA PrX,

o X
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Bernoulli (1738):
Expected utility (EU)

X1
gé: : N

p, *n
Theorem. EU: Risk aversion < U concave
U1
U concave:

(04

Measure of risk aversion: —U"’/U" (Pratt & Arrow).

Other often-used index of risk aversion: —aU"’/U".
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Intuitive problem: m
Risk aversion < U concave:

travel back in time/memory when first heard.
U reflects value of money;

not risk !?

U determined by specific nature of outcomes.
Different for

# years to live;

# hours of listening to music;

# liters of wine;

n.c.>.nquantitative outcomes (health states) ... ?
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Lopes (1987):
@ “Risk attitude is more than the
psychophysics of money.”

Criticisms of the EU formula can be found

way earlier:

D’Alembert (1768) “Opuscules Mathématiques,”
vol. iv., (extraits de lettres).

“Il me sembiloit [in reading Bernoulli’'s Ars Conjectandi] que cette matiere avoit besoin d’étre traitée
d’'une maniére plus claire; je voyois bien que I'espérance étoit plus grande, 1° que la somme espérée
étoit plus grande, 2° que la probabilité de gagner I'étoit aussi. Mais je ne voyois pas avec la méme
évidence, et je ne le vois pas encore, 1° que la probabilité soit estimée exactement par les méthodes
utilisées; 20 que quand elle le seroit, 'espérance doive étre proportionnelle a cette probabilité simple,
plutdt qu’a une puissance ou méme a une fonction de cette probabilité; 3° que quand il y a plusieurs
combinaisons qui donnent différens avantages ou différens risques (qu’on regarde comme des
avantages négatifs) il faille se contenter d’ajouter simplement ensemble toutes les espérances pour
avoir I'espérance totale.” [italics from the original]
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Tversky (1975):

“In utility theory [EU], risk aversion is explained by
the concavity of the utility function for money. Once
the monetary scale is properly transformed—no
risk aversion remains. (In this respect it is
somewhat misleading to refer to the measurement
of the utility for money as ‘the measurement or
attitudes towards risk’. One’s utility function reflects
one’s attitude towards money, not towards risk.
Risk aversion is an epiphenomenon in utility

theory.)”
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Empirical problems: [/*%

=

Plentiful (Allais, Ellsberg)

Inconsistencies in utility measurements.

One more (Rgn 2000):
For small amounts EU =~ EV.
However, empirically not so!
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Outline:
§1. Expected Utility and Risk Aversion;
™ §2. The Valuable Intuition of Probabilistic Sensitivity
(Deviating from EU);

§3. The Old Theory on Probabilistic Sensitivity for
Multiple Outcomes and why It Is Wrong;

§4. Quiggin/Schmeidler Rank-Dependent Theory on
Probabilistic Sensitivity for Multiple Outcomes
and why It Is Natural;

§5. Applications to Modeling Risk.
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Assume following data:

0.10
$1~( z
@ 090

$100

0

0.30

$100
$9 ~( z
0

b 070

0.50

$25~( >

(c) 0.50

$100

(d)

0.70

$49~<§
0

0.30

$100

0

0.90
$81~( z
© 010

$100

0

EU: U(a) = pU(100) = p.
Below: is graph of U!

i

0.7 1

100
$‘ $100-

Psychology: a = w(p)100
Below is graph of w(p)! (x 100)

§70 -




Psychologists (Lopes etc.): What economists do
with money, is better done with probabilities! Rlsk
attitude has more to do with probabilities. s

Economists  Psychologists | i creasing.

P P w(0) = 0,
q;gepum cg_:pg»w@a w(1)=1

Joint

At first, for simplicity, we consider linear U for
¥s, |s OK for moderate money amounts. R
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Outline:

§1. Expected Utility and Risk Aversion;

§2. The Valuable Intuition of Probabilistic Sensitivity
(Deviating from EU);

§3. The Old Theory on Probabilistic Sensitivity for
Multiple Outcomes and why It Is Wrong;

§4. Quiggin/Schmeidler Rank-Dependent Theory on
Probabilistic Sensitivity for Multiple Outcomes
and why It Is Natural;

§5. Applications to Modeling Risk.

~
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More general, more outcomes:

P4 X,
= W(p)U(Xq) + -+ w(p)U(X,)!?

X
Pn
To explain what follows in a simple way,
we assume U linear.

(What follows holds in fact for general U.)
Above formula is old (Edwards 1954).

&

Revived by prospect theory (Kahneman &
Tversky 1979)? -‘1\,,.
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However, problem:

To explain,

Say:

w IS not identity,

so not w(p) = p for all p.

Then w IS nonlinear.
Then, for some p,, p,

W(p;+p,y) = W(pq) + W(p,)
(take my word).
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Case 1. w(p;+p,) > w(py) + w(p,).
Something will goO WIrong (similarly later for Case 2 with <).

e \We will consider the theoretical value of a
prospect;

o Will change an outcome to see what
happens;

e An anomaly will resuilt.
First we repeat well-known things from

expected value (EV) and expected utility (EU).

1



Figure * (for x, > --- > x> 0;
with p, and p, as above).

7
| 7

X/////////(/////////fffzy
”.%///////////ﬁ*@

\\

0 o} P

EV, pix, + -+ p.X, IS area .



2
X3
Xn




k>
?
23
dr
Ile,
C?OL

0O

g’[aIIy

inn

Iirr)%)

FO >

Pn
ft

le I%

tin

ta

o)

R




Figure ** (Preparatory illustration of EU)

EU Isarea E.
P1U(X1) + poU(X2) + - + p_U(x,)

EU: we transform heights of columns
(distances from x; “all the way down” to the x-axis).
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Figure ***

w(p,)

Xy Xs

Xo X4

Transforming probabi-
lities of fixed outcomes
(the old—wrong—way).

Value of prospect is

W(p4)X1 + W(py)X,
+ W(p3)X3+ -+ W(pp)X,
IS area |ll :

We have transformed
height of each row/layer
(distance from endpoint
down to its lower
neighbor).
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Now we “play” with x, and see if the old
evaluation behaves well. We reduce x,.
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Figure »***

w(pn).

X4

Transforming probabi-
lities of fixed outcomes
(the old—wrong—way).

Value of prospect is

W(p4)X1 + W(p,)X,
+ W(p3)X3+ -+ W(p,)X,
IS area |ll :

We have transformed
height of each row/layer
(distance from endpoint
down to its lower
neighbor).
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Figure ***x Transforming probabi-

W(pn),..f'. lities of fixed outcomes
J— (the old—wrong—way).
| Value of prospect is
' _ W(ptp)xy
X
w(p ) T W(p3)X3+ -~ + W(pp)X,
3 is area [ :
N We have transformed
f‘é height of each row/layer
< (distance from endpoint
= down to its lower
=8

neighbor).

v Y
0 X, ‘X3 X, additional areal!!
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Case 2. w(p;+p,) < w(py) + w(p,).

Similar problems.

Now move X, up towards x,, until it hits x,:

a sudden implosion of area, with
- discontinuity;
- Increasing X, may decrease value.

Conclusion. Transforming probabilities in
old way is unsound.
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Old way does not work.
First discovered: Fishburn (1978).
Also by: Kahneman & Tversky (1979).

2

Taking stock of end 1970s:

1. Good psychological intuition that
risk attitude < probabilistic sensitivity.

But

2. No theory to do it.

Then came the Quiggin & Schmeidler
“‘rank-dependent” idea:
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Outline:

§1. Expected Utility and Risk Aversion;

§2. The Valuable Intuition of Probabilistic Sensitivity
(Deviating from EU);

§3. The Old Theory on Probabilistic Sensitivity for
Multiple Outcomes and why It Is Wrong;

§4 Quiggin/Schmeidler Rank-Dependent Theory on
Probabilistic Sensitivity for Multiple Outcomes
and why It Is Natural;

§5. Applications to Modeling Risk.
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Economists'

7/

XZ/ outcome
)5(3///////5__ sensitivity (EU)
N //// oY —

0 p1 p2 Pr
o % Psychologists'
b probabilistic |
sensitivity (‘OPT”
Ps Ig( )W(pS)é

P1 w(p;):
O |

X4 0 X" Xs X, X

Quiggin (1982) & Schmeidler (1989): Why not do the same in
the probability dimension as in the outcome dimension?




I sensitivity (PT)

(e, )= 1)
Psychologists
. probabilistic il w(p,,_4+ - +pq)
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Figure *#x*x .
9 Value is area [ :

— + .-+
1= WO *PUM oo o, )
W(pn_¢t Py I

+
w(P(>a))=W(p,+p;) +

e (W(py+pq) — W(pq))Xs
W(p1 +

w(p1)X;

Using rank-notation simplifies. Then value is
(W(pn*r,) = W(r))x, + =+ (W(py+ry) — W(rp))X, + (W(p4+ry) — w(ry))X



Preceding formula really did with probabilities
what EU did with outcomes. Now for the first
time we have the right analog of EU for
probabilistic sensitivity!

Best is to combine the two,

with both w(p) and U(a),
resulting in (new) prospect theory:
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F|g Ure **xx**

Value Is area

W(p,t - +pq)
W(p,_¢t - +pq) - This valuation
' T method is called
(cumulative)
W(p2+p1) (PT), or RDU.
W(p4)1

0 U(x,)~U(xs) U(x,) U(x,)

Value is
(W(p,tr,) = W(r))U(x,) + =+ (W(pytry) — w(ry) )U(x5) + (W(ps+ry) — w(ry))U(x,)
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Ch. 5 finished

08



§6.1 (4™ meeting)

w:
w:|0,1] - [0,1], w(0) = 0,w(1) =1,
strictly increasing.

Utility function: as usual.

Consider
(pl: xl) ---;pn: Xn)
X12 "an
(l.gl.gl. 7Y\ _(1.91.
Example: (5.9,3.9,2.3)_(2.9,2.3)

Now preparatory concepts.
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For (p1: X1, ..o, PniXp); X1 = =+ = Xp

of x;: pi—q + -+ p1

p\rorjustp” withp =0,r=0,p+r<1.

n(p”) =w(p +1r)—w(r)

For x; with outcome probability p; and rank r;:
decision weight is m(p;"); is

marginal w contribution of outcome-
probabillity to rank.
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Assume DUR.
holds if
3 weighting function w
3 utility U
s.t.
(P1: X1, oo, PriXp) P ?:1 7TjU(xj)
represents preference
where:
X122 Xy
m=m(p’)=w(p;++p) —w(pj_y + - +py)
Notation. n(xj) = TI;
p?: best rank 0; also denoted p?;
p1~P: worst rank 1 — p; also denoted p".
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§6.3Decision weights m(a) of outcomes o; consider
(V4:80, %4:60, Y4:40, Y4:20)

1

m(20) =1 —w(%4)
o) =wen-wea| S v)
m(60) = w(’2) — W(l%) // | ) pp
m(80) = w('/4) 0 sl

1(20) = 1 — w(¥a) !

m(40) = w(¥%) — w(%) |
n(60) = w("2) — w(¥4)- w(p)
=p

7(80) = w(¥4)

0 % Y% % 1




§6.3
Define pessimism through

n(p":

How??

Hint ...

Answer: Increasing in r!
Define optimism through
n(p":

How?

Decreasing in r.
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n(p") increasing in r (pessimism):
w(p +r) —w(r) increasing in r:

w CONVEX. w(p)
w'(r) increasing in r.

Optimism: w concave. "

///

//’
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______________________________________________________________________________________________________________________________

§ 0.06 —75|< 0.06 — 25K OO6—75K
§00725K<<0070 §00725K>§0070
i 0.87 — 0 0.87 — 0 0.87 — 25K 0.87 — 25K

(0.07%%¢)(U(25K) — U(0)) < = (0.07*)(U(25K) — U(0))
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(e) (f)

02 0 0.96 Y
0.05_10x106
L 10x10°
0.95 Y
Figure 2.4.1

Quantitatively accommodate using RDU; take U linear.

Fig. (e): w(0.8) x 50 < 1 x 10; w(0.8) < %

. | - w(0.04)
Fig. (f): w(0.04) x 50 > w(0.05) x 10; =

> 21
5
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% Your certainty equivalent?

Common: CE > 1.
Accommodate this with RDU. Again U linear.

w(1076) > 1076
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§7.1

motivational

Typical shapes of probability weighting

P
expected utility

extreme
inverse-S
(“fifty-fifty”)

prevailing pessimistic

finding fifty-fifty
cognitive
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§7.7 1
i Inverse-S:
W How define formally?

“Specify inflection point b, then
require concavity to the left,

convexity to the right?”

No! We different.

1. Specity insensitivity region in the middle.

2. Specify through inequalities that w differences
are smaller there than at extremes.

3. Avoid comparisons between two extremes

(by restricting domains of inequalities).
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Inverse-S, or

, holds on
insensitivity region [b,.,, w,p |
iIf (i) and (ii) below hold.

w

LCDA In insensitivity region, w
7 B differences smaller than at
b\ [/ eXt remes.

—

best- rank InSenSItIVIty- worst rank
region region region

(i’_)'_' n(p?) = m(p) on" [0,w,p] (r + p < Wyp)

(i) T(@") = w(p")on" [byp, 1] (r = byp)

*.\restricting domains to avoid comparisons
. between two extremes.

e o = e e e e = e = e e e e e e e e e e e e e e e e e e e e e e e = e
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§6.4-6.5 (5" meeting)
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FIG. 4.1.1a
12

- 1o> Exercise: Assume objective
é é P(cand,) = 0.5 = P(cand,), DUR,
and RDU. Set U(a®) = 0, U(a?) =

F““f}z 1/4. What is U(a?)?
é é Exercise continued: What are U(a?)
and U(a*)?
FIG.4.1.1d You work ...

1/2 o3

§ § Solution:
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Fig. 4.1.1a:

-

Fig. 4.1.1b:

IR
Calculations under EY (with probs %) 1

1
Fig.a: DU (at) + W)U ) = WEU(a)+ (- wiU(8)
1 1
AU -U@”) = D(U®) —UM)~_

\

1 1
Fig.b: ”\ U (a?) + U (1)

/

LU @) +(-v)U(8) /'||

;S wi(U(a?) - Uab))

(UE®) - uD)”

U(a?) — U(aY) = U(al) — U(a®) U(a?) = 2/4!
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Fig. 4.1.1b:
i~y
Fig. 4.1.1c: |
-y

Similarly:
Fig.b: %U(az) + % U(1)

L WE(U(a?) - U(at))

LU (@) +(-wiz)U(8)

7
/

/ \
I 1 1
Fig.c: ”‘\ %U(a3) + % U(l) = %U(a2)+ >)U(8) ]

/
\

U - UE@) = g UE) - um)”

/

D(U(8) — U(D)~_

- = =

U@ -U@) =U@»)-U@) U(a®) =3/4
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Fig. 4.1.1c: |
i~
Fig. 4.1.1d:
-y

Similarly:
Fig.b: %U(a?’) + % U(1)

WU (a?) - U(a?))

LU (a?)+(-wiz)U(8)

7
/

/ \
I 1 1
Fig.c: ”‘\ %U(a‘*) + % U(l) = %U(a3)+ >)U(8) ]

/
\

D(U(8) — U(D)~_

N\

U -UE@) = g UE) - um)”

/

- = =

Ua*) —U(a®) = U(a®) — U(a?) U(a*) = 4/4.
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RDU:

Ula) = U@ =U@3®) -U@?®) =U(@?®) —U(a)) =U)) —U(a®
CansetU(a’) = j/4.
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(a)

1/2 1/2 10

B
N

1/2 8 1/2

Your switching value on the dotted line is G.

()

1/2 . 12

N
N

G
1/2 1/2
Your switching value on the dotted line is B2.
(c)
1/2 12 B2
<<: E G
1/2 8 172
Your switching value on the dotted line is 33,
(d)
1/2 12 B3
12 8 172 G
Your switching value on the dotted line is p%.

Figure 4.1.2 [2nd TO Upwards)]. Eliciting 2, B3, B*

Now to fs.
What can you say about

their U-values under RDU?

You work ...
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Fig. 4.2.1a:
ST
Fig. 4.2.1b:
I

Salculations under EU (with probs 1) 1
Figa: el (ab) + (=2)U(g) = 34U (o) + U (G)

@) - U@) = NUG) — U@ _

S [ S PN )

Fig.b: 11 >§U(,B ) + g) = >§U(cx )+ (=g U(G) !
I//\\ >%(U ) — U(al)) = (U(G) — U(g))’/

/
I
1

QKI!1?

U(B?) - U(aY) = U(aY) — U(a®) No!
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Fig. 4.2.1a:
T S
Fig. 4.2.1b:
I

f’s still “quite similar” to a’s!
Fig.a: % U(al) + %U(g) = % U(a®)+ %U(G)
LwE)(Uah) - Ua))

7
/

Fig.b: ||'\\ DUE?) +wGUE) = (-weU@E@)+WpUE)
h %(U(ﬁz)—U(al)) = %(U(G)—U(g))"

\‘U(ﬁz) —U(al) = U(at) = U(a®) We still get this!

> (U(G) - U@®)~.

\

|
I

/
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Fig. 4.2.1b:

T

Fig. 4.2.1c:

TS S

Similarly:

Fig.b: U2 +weU(@ = WU (et +w;U(G)
AGUEH-U@)) = g (UE) - V@)

rge I\ wdues) +widug = cwduEn+viue |l
SRUEH -UED) = vy (UE - UE)

/

I
1
\

V(B3 — U(B?) = UB2) — U(ah)
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Fig. 4.2.1c:

T e
Fig. 4.2.1d:
-
And similarly:
Fig.c B +wau(g) = 1-wSU(p2)+wEU(G)
LR UEH -UED) = Wi (UG - U@)~,
Fig.d: ”I\ %U(ﬁ4)+ %U(g) = %U(IB3)+ %U(G) /,"”
SUewUEH -UED) = v (UE) - U@E)

/

]

UBY) —UB) = UB) —UB2)
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Taking all together:
Up") —Uu@>) =Up*)-UuE?) =U0p*) -U') =U(") - U(a®)

We may set U(a®) = 0,U(al) = i. Then:

U(p?) === U(a?), U(B®) == =U(a®), U(BY) = = U(a*);
The B’s have the same utility, so are the same, as the a’s:
,8226(2 ,8326(3 ,8426(4.

The B’s are just another way for measuring the same as the a’s,
also under RDU.
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RDU to accommodate y’s

Exercise. Assume U(a/) =2,j = 0,..., 4.
Can RDU accommodate y? < a?? (And similarly, y! < a'and y3 < a3?)

. F1G. 4.1 4a.
Solution. v )
UG =w () U@+ (1- (l)) U(a®) CO‘
The smaller W(l) the smaller y2. ve o~ ;
Ifw() 1/ztheny = a?. So, 7
if W()<1/2 then y? < a?
Indeed then:
UG =w(2) U + (1 —w (g)) U(a®)
<iu@® + (1 - 1) U(a®) = U(a?):
2 2
LU <Ue)implies y? < af. ]
similarly, y* < a': () = w (%) vy + (1 —w (%)) U(a®) HG. L4 A
<W()U(a2)+<1— ())U(ao) ylo~
(if W(%) < 2) <3 U(az) + (1 — E) U(a®) = U(a)); o0
e UOh<U@)Impliesyt<al. P
Similarly, y* < a®: U(®) = w (3) U(a*) + (1 —w (%)) U(y?) F16. 4.1 4c. T
<W()U(a4')+(1— ())U(az) i~
ifwl<n)  <U@H+(1-3) U@ =U(@®); 2
? U(y3) < U(a®) implies y3 < 3. 72
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RDU cannot accommodate 6's
(a)

cand; wins cand; wins 4

N
]

— 8 .
cand, wins cand, wins

Your switching value on the dotted line is &°.

(b)

cand; wins cand; wins 83

ﬁ
ﬁ

— 8 — 1
cand, wins cand, wins

Your switching value on the dotted line is 8.

(©)

cand, wins cand, wins 52

N
]

— 8 -
cand, wins cand, wins

Your switching value on the dotted line is §.

(d)

cand, wins cand, wins 5!

(Although some
insights will be
offered later.)

N
]

— 8 .
cand, wins cand, wins

Your switching value on the dotted line is &°.

Figure 4.1.4 [TO Downwards]. Eliciting &° ... &°
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RDU to accommodate PE’’s

Exercise. Assume again U(a’/) = i,j =0,...,4. R
Can RDU accommodate PE! > %? ol o~ Cé
(And, also, PE? > %and PE3 > %.) TR

You work ...
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Set U(aj) = i:

U(al) = WPEYWU (a*) + (1 —wW(PEYU(a®);
w(PEY) = ..

PE! > i is well possible: if w “pushes PE! down.”

E.g. if PE' =Zbutw(3) =1.

3 4
PE! < % is also possible: if w “pushes PE! up.”

U(a?) = WIPE2U(a*) + (1 —w(PE?)U(a);

w(PE?) = =

PE? > % is well possible: if w “pushes PEZ down.’

U(a3) = wPE3U(a*) + (1 —w(PE3)U(a®);
w(PE3) = =
PE3 > % is well possible: if w “pushes PE3 down.”

Can you see something “very nice”?

FIG. 4.1.5a
PE! ol
0
1—pgr %

FIG. 4.1.5b
PEZ ol
0
1—pEz >

F1G. 4.1.5¢
PE3 ol

o~ (g

0
—pps %
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0y & I~

U(al) = wiPEYWU (a*) + (1 = wW(PEY)U(a®);

PE! > ~ is well possible: if w “pushes PE! down.”
, 1 1 1\ 1
E.g.,if PE- = 3 but w (—) = -

3 4
PE! < % is also possible: if w “pushes PE! up.”

U(a?) = WPE?U(a*) + (1 —w(PE?)U(a®);

PE? > ~ is well possible: if w “pushes PE? down.’

U(a®) = wPE3U (a*) + (1 = w(PE3)U(a®);

PE3 > ~is well possible: if w “pushes PE?3 down.”

We measured w!

FIG. 4.1.5a
PE! ol
ao
1—PE!
FI1G. 4.1.5b
PEZ ol
0
o
1—PE?
F1G. 4.1.5¢
PE3 ol
o~ (5
ao
1—PE3
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Your w graph:
% """"""""""""""""""""""""""""" ;j:f':: """""

72
Va
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Our experiment measured both U and w;
all of RDU. Easily!
Is Abdellaoui’s (2000) method.
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Term “accommodate’ ...
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Prescriptive implication of RDU.
New insights?

e T R
voice
0.4 artificial
recurrency, speech
surgery ®
0.6 =
cure artificial
speech
surgery 0.3 artificial
speech
recurrency ®
eeeeeeeeeeeeeesssseseeseesesessessessesseessessssessessessss et e e
pnmoarl_ For which p equivalence?:
Ea.rtlfl_or voice:
:iclal R ;

:ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo----....................----0000000005 131



§7.4
Violations of the sure-thing principle give direct
insights into optimism/pessimism
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Green: direction you want to go

q C"' g C+ E
Py 6 ? P, 'Y I
P oL P B

. Left case:
§ C+replaced by C*;

Question: what is
preference under
pessimism?

Answer:

>

Optimism: <
Question: what under
inverse-S?

Answer:

<

0>y>B>a
Py p 2y
q C ~ q C
pl (x pl ﬁ
Reference case:
y>c>P

P oL 9 P B
q C q C
Right case:
§a>C_

Question: what is
preference under
pessimism?
Answer:
s
Optimism:
Question: what under
inverse-S?
Answer:
=
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§7.2
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$6.9

General way to calculate EU:

1. Distribution function E,: E.(a) = P(x < a).

2. Distribution function Fy ;: Fy y(@) = P(x < U™ (a)).
3. Dual G,y =1—-F,y
4,

EU(X) — fg{+ Gx,U(t)dt _ fg{-(l T Gx,U(t))dt

RDU(x) = L+ wo G, y(t)dt — SR_(1 — W o G, y(t))dt

Moral: get distribution function! (Handles ranking of outcomes. )
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§7.6

Rank: P(Outcome ranked better),
“goodnews probability.”
Note: w always transforms ranks.

7

Critic:

why not use ¢ ("badnews probs™) =
P(Outcome ranked worse)?

Use p\¢ = p¢ instead of p”?

Take nonadditive z:[0,1] - [0,1]
(p1: X1, v, Pn: X)) With x; = --- = x,, evaluated by

Z; U (x;)

with ; = z(pj + = +pn) = 2(Pj41 + + + Pn)
Why not”??
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Answer: Does not matter!

Define w(p) = 1 — z(1 — p)
(le., z(p) =1 — w(l —p))
1) = w(py + 4 1) W(pjor + -+ py) =

1= 2(pjas + - +90) — (1= 2(pj + - +py)) =
z(pj + -+ pp) = 2(Djs1 + -+ Pr)

Is the same!
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§8. 1-8.2 (6t meeting)

2-100 2100 2100
0 100 extra 0 0
1/2 { on bank 4 ) 1/2 1/2
\ fromtax
50 . 50 50
Situation left &S Situation middle &S Situation right
monetary plaulsl.ibdle
calculus (called « (g%at'e't .
“reference additivity”)

independence”)

Common prefs
must violate one
of the two
principles.
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§8. 1-8.2 (6t meeting)

2-100 2100 2100
0 100 extré 0 0
1/2 { on bank 4 1/2 1/2
. fromtax |
50 . 50 ~50
Situation left &S Situation middle &S Situation right
monetary plaulsl.ibdle
calculus (called « (g%at'e't .
“reference additivity”)

independence”)

Common prefs
must violate one
of the two
principles.

139



$8.4
Reference point 8. We scale 6 = 0.

u: ‘R — R as before.
Basic utility

Scaling: u(0) =0

A > 0: loss aversion factor
U:R — R: overall utility
Fora = 0: U(a) = u(a)
Fora <0:U(a) =A% u(a)

Loss aversion: A > 1

Gain seeking: 1 <1
140



FIGURESR. 4.1, Lass aversion

losses 0

FIG. a. Thebasicutility u,
differentiableat x=0.

T3NS

losses 0 Jains

Fic, b, Utility U, obtained by “pulling u
down” by afactor A=1 forlosses,
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§8.6
&

1/2 11

Assume J < 0 (")
12 —10

at every wealth level m.

(*) =  Um(11)+Up(-10)

< U,(0), ie.,

v,(11)-U,,0) < U,,(0) —U,,(—10) for all m.

All U,,, a bit concave at 0.
Bit of loss aversion.

7
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Now classical analysis

1/2 11

C<: 10 ) ° ")

12

U(11)+U(-10)

< U(0)

At every wealth level m:

U(m+11) + U( —10)<U( )

Um+11)—-U(m) < U(m) —U(m — 10) for all m.

143



Um+11)—-U(m) <U(m)—-U(m —10)
U(m+11)-U(m) < U(m)-U(m-—10)

11 11 .
Um+11)-U(m) 10 [ U(m)-U(m—-10) |

11 ST 10 !

\/ \N
U(m+11) U'(m—10)

U'(m+11) < = U'(m—10) forallm.

Increase wealth by 21: U’ drops by factor over %

10 100
Increase wealth by 2100: U’ drops > (E) ~ 0.00001.

Decline M, s(—100) for all M.
2?222?22?227?
§ 144



§9.2
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Def. of PT
There exist u, U,A,w™, w™ s.t.

For x = (pq: x4, ..., P X)) With
x12"-2xk202xk+12"°2xn

PT(x) = Xic, mU(x;);

ifi <k (x; = 0):
Pi—1t+DP1

Ty = ”(pi ) =
w4+ +p) —wr (i + -+ p1);

ifj > k (x; < 0):

= T Ppip) =

w™(p; + -+ pn) =W (Pjr1 + -+ Dp).
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Measurement ...

Pragmatic measurement of A:
ay:(—1) ~0:then 1 =~ «
Explanation:

wHe5)U () + w=—05)U(-1) =0
u(a) + Alu(—=1) = 0

u =~ linear near O

a—A=0;

A= a.
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U(1020) — U(1010) < U(20) — U(10)
How about
U(—1010) — U(—-1020) 7 U(—10) — U(—20)

Economists: >
Ps: <

Empirical: Ws are right.
U is convex on (—oo,0)!
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§9.5

Empirical findings

U I
losses /D gains

FiG. b, Utility L, obtained by "pulling u
down® by afactor A=1 farlasses,

1

o 4 E

Shitl
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§10.1
Keynes (1921) & Knight (1921):

real uncertainty if new risks.
Unique events.

Financial crises: unforeseen, new events. No
hedges.
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The Ex Governor of the
European Central Bank

When the crisis came, the serious limitations ot existing
economic and financial models immediately became apparent.
Arbitrage broke down in many market segments, as markets
froze and market participants were gripped by panic. Macro
models failed to predict the crisis and seemed incapable of
explaining what was happening to the economy in a convincing
manner. As a policy-maker during the crisis, | found the
available models of limited help. In fact, | would go further: in
the face of the crisis, we felt abandoned by conventional tools.
In the absence of clear guidance from existing analytical
frameworks, policy-makers had to place particular reliance on
our experience. Judgement and experience inevitably played a
key role. Trichet (2010)
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Ambiguity ubiquitous in economics/business.
No repeatable experiments with market.
Samuelson & Nordhaus (1985 p. 8) :

“Economists cannot perform the controlled experiments of

chemists or biologists because they cannot easily control other
important factors.”
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First answer to “how handle ambiguity?”
by Ramsey’31, de Finetti'31, Savage’54:

%

a) Use probabillities still: subjective ones!
b) Maximize EU

Now you invent a nonEU theory for uncertainty

Ellsberg’s (1961) paradox:
Probs don’t work.
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Ellsberg paradox

This violates
subjective
probabilities:

Known urn K: Ambiguous urn A
—— 2 1907
50 R [z | 100 R&B

50 B [*#8%,  in unknown
©= | proportion
~(Re: €20) > (R, €20)
L (Bk: €20) > (BA:€20)
PR 2 P(Ry)
“P(By) > P(By)
1 > 1

Violates subjective probabillities.

Important practical example: homebias
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For ambiguity, we need something
fundamentally new! Beyond probability.

Hard to invent!
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Decision models without probabilities only late

1980s:
Gilboa & Schmeidler (‘87, '89)

s

Hence:

- ambiguity, even though always important,
took off only late 1980s

- much to catch up with

- ambiguity popular today

- young researchers may want to work on it!”?
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§10.2

W is (event) weighting function if
W:25 - [0,1], W(®) =0, W(S) =1,A> B > W(A) = W(B).

For DUU, RDU holds if
there exist weighting function W and utility U s.t.:
|f X1 = e 2 Xn s then

(Ei:xq, o, Eqixy) > ?:1 ;iU (x;)

represents . Here rank of x;

o = - —— —

m;=W(EU-UE;)—W(E_; U--U E1). (m=wep)

m; also denoted 7 (Ej J=1 1).

ER is ranked event (ENR = @)
r(ER) =W(EUR) —W(R)
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Repeating
(Ei:xq, .0, Eqix,y) — ?=1 ;iU (x;)
m;i=W(EjU--UE;) —W(Ej_yU-+UE;), (m =w())

Exercise. Assume U linear (v(a) = )
How elicit W (E) in experimental heaven?

You work ...

Solution: a~1;0. Then
a=W(E)X1+(1-W(E))x0=W(E)

Done.
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Accommodate Ellsberg paradox

Known urn K Ambiguous urn A

2 100-7
100 R&B
In unknown
proportion

(R €20) > (R €20)
L (B €20) > (BL€20)

:\\‘W(RK) > W(R,)
CW(By) > W(Bp)
E.g,
W(Bk) = W(Rg) = 0.4;
W(B,) =W(R,) =0.3.
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§10.4 (71 meeting)
Pessimism: w(EX) ...?
R'oR> n(ER’) > (ER)

Optimism:
R'oR>=> n(ER’) < n(E®)

W convex: pessimism

W concave: optimism
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Likelihood insensitivity

n(E?) = n(ER) on [0, Wrb]
[0,Wrb] ={E c S:0 < E < Wrb}

and

w(EW) = n(EX) on [Brb, S]
Insensitivity region: [Brb, Wrb]
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Green: direction you want to go
0>y>B>a

25?2 o2y Ac ~oh-C Lo 0B
E E E E . -
o B o B A A-C
Left case: . Reference case: Right case:
. Creplaced by C; i §V>C>B ; o> C
c'> S O i S

Question: what is
preference under
pessimism?

Answer:

>

Optimism: X
Question: what under
inverse-S?

Answer:

<

Question: what is
preference under
pessimism?

Answer:

s

Optimism:
Question: what under
inverse-S?

Answer:

>



§10.5.2

How measure U, W?

Our experiment ...
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(a)

cand,; wins cand; wins

10

B
B

— 1 .
cand, wins cand, wins

Your switching value on the dotted line is a!.

(b)

cand,; wins cand; wins o

N
]

—1 -
cand, wins cand, wins

Your switching value on the dotted line is o2,

(c)
candT wins candT wins o
— 1 .
cand, wins cand, wins
Your switching value on the dotted line is o.
(d)
cand, wins cand, wins o

B
B

— 1 -
cand, wins cand, wins

Your switching value on the dotted line is o*.

Indicate in each Fig. which outcome on the dotted line ...
makes the two prospects indifferent (the switching value).

Figure 4.1.1 [TO Upwards]. Eliciting a! ... a* for unknown probabilities 165



Fig. 4.1.1a:

Set U(a®) = 0,U(al) = 1/4.

O~ 1
Fig. 4.1.1b: Replace w(z) by . Etc.
i~y
Calculations under EU (withprebs=%) 1
1 1
Fig.a: U@t + (W)U (1) = WEU (a®)+(1-wZ)U(8)
1 1
U@ -U@)) = D(UE®) — UMW)~
. | 5 1 1 1 il
Fig.o: 1V wGU(a®) + > U(l) = SU(a™)+ > u@) |
\\ 1 1 ‘,’
/U@ -U@)) = SNU(8) — U(1))

U(a?) — U(aY) = U(al) — U(a®) U(a?) = 2/4!
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Measurement of W

(14
: o0

(E))¢

then W(E/) = j/4
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§11.1

group of events
Sources A and B

Imagine

B = A.

Systematic preference for B over A?

Need not be.

Imagine

B >=A&B°‘ = A (*)

Suggests so.

Imagine

(*) sometimes happens, but

never A = B & A° > B¢ (**)

(**): for B over A:
W(A) = W(B) = W(A°) < W(B*)
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§11.2

A W(A) = wy,(P(4))

Accommodate Ellsberg:

Urn K; Urn A;
P(By) = P(Ry) = 1/2 P(B,) = P(Ry) = 1/2
wq(0.5) = 0.4 w,4(0.5) = 0.3

Revives probability in Ellsberg/ambiguity! (Chew & Sagi'08)
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Ellsberg paradox Known urn K: Ambiguous urn A

: 2 100-7
100 R&B

~in unknown
~ proportion

(R €20) > (R,: €20)
- (Bx €20) > (B4€20)

| PIR® > PRA)
“PBk > PBR)
.

s violates |
subistiive 3%
srobabilities: ;

ViolatesgEsjectivegropahilities.

L — - - vu

Important practical example: homebias
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__.-»Source function

A uniform: W(A) = Wd;(P(A))
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Experiment

Abdellaoui, Baillon, Placido, & Wakker (2011)

“The Rich Domain of Uncertainty: Source Functions and Their Experimental
Implementation,”

American Economic Review 101, 695-723.
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§12.1
Prospect theory for ambiguity:

There exist U (u, 1), W*, W~ s.t.

forx; = 2x,202=x,41 = = xy

(E1: X1, s Eni X)) = Yo mU(x;) represents =
j<kim = n+(E]-RJ')

j > k:T[j — T[_(Eij)
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