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Lecture 1: Preferences, Arbitrage and Expected Value



State space

S — (finite or infinite) set of possible states. One and only one
state s ∈ S is true—unbeknownst to the decision-maker.

Example 1.1.1: Deciding what merchandise to take, with three
weather states.

no rain (s1) some rain (s2) all rain (s3)
x (“ice cream”) 400 100 -400
y (“hot dogs”) -400 100 400
0 (“neither”) 0 0 0
x+y (“both”) 0 200 0



Financial market example

S — (finite or infinite) set of possible states.

Example 1.1.2: Betting on the copper price next month

price ≥ 2.53 2.53 > price ≥ 2.47 2.47 > price
x 50K -30K -30K
y -30K -30K 50K
0 (“neither”) 0 0 0
x+y (“both”) 20K -60K 20K



Events

E ⊂ S — Subsets of the state space, empty or containing one or
multiple s ∈ S .

Example 1.1.2: E.g. All copper prices next month that lie above
2.53

price ≥ 2.53 (E1) 2.53 > price ≥ 2.47 (E2) 2.47 > price (E3)
x 50K -30K -30K
y -30K -30K 50K
0 (“neither”) 0 0 0
x+y (“both”) 20K -60K 20K



Prospects

R — Outcome space.

Prospects — Mappings from S to R.

no rain (s1) some rain (s2) all rain (s3)

x (“ice cream”) 400 100 -400
y (“hot dogs”) -400 100 400
0 (“neither”) 0 0 0
x+y (“both”) 0 200 0

Think of x , y , 0 more generally as investments in a retail context.

Note: No probabilities defined



Prospects (2)

R — Outcome space.

Prospects — Mappings from S to R.

price ≥ 2.53(E1) 2.53 > price ≥ 2.47(E2) 2.47 > price (E3)

x 50K -30K -30K
y -30K -30K 50K
0 (“neither”) 0 0 0
x+y (“both”) 20K -60K 20K

Financial markets often allow investors to make bets on all possible
events.



Prospects and preference

Notation

Prospect — x = (E1 : x1, ...,En : xn) for events {E1, ...En} = S
Complementary event — E c = S − E
Binary prospect — αEβ ≡ (E : α,E c : β)
Constant prospect — α = (E1 : α, ...,En : α)

Domain of preference — All prospects that take on finitely many
values.
Preference relation % — A binary relation on the set of all
prospects in the domain



Preference

x % y — You are willing to choose x from {x , y}.
→ Preference is a binary choice.

x � y — Strict preference: x % y and not y % x
x ∼ y — Indifference: x % y and y % x

α = CE (x) — Certainty equivalent: You are preference equivalent
(indifferent) between outcome α and prospect x .

A function V (·) represents % — For all x , y , x % y if and only if
V (x) ≥ V (y).



Basic properties of %

Weak order — % is complete and transitive
Reflexivity — x ∼ x , for all x
Monotonicity —
(i) If x(s) ≥ y(s) for all s ∈ S , then x % y ,
and
(ii) If x(s) > y(s) for all s ∈ S , then x � y

Notice that the properties require the statement for the entire
domain of preference.



A first representation result

Exercise 1.2.5:
(a) Assume weak order and monotonicity. Then:

[α % β ⇔ α ≥ β]

(Proof on the board.)

(b) Assume weak order, monotonicity, and that a certainty
equivalent CE (x) exists for all x . Then: CE (·) represents %.

Proof: Since CE (x) ∼ x and CE (y) ∼ y hold for certainty
equivalents, we know from transitivity that x % y iff
CE (x) % CE (y).
By part (a), CE (x) % CE (y) holds iff CE (x) ≥ CE (y) and hence
CE (·) represents %. �



Collecting assumptions

Nondegeneracy — There exists an event E and outcomes γ, β such
that γEγ � γEβ � βEβ.

Structural Assumption 1.2.1 (”Decision under Uncertainty”): S
is a finite or infinite state space and R is the outcome set.
Prospects map states to outcomes, taking only finitely many
values. % is a preference relation on the set of prospects, i.e. on
all such maps. Nondegeneracy holds.



Lecture 2: Expected Value, Additivity, Arbitrage



Collecting assumptions

Recall:

Structural Assumption 1.2.1 (”Decision under Uncertainty”): S
is a finite or infinite state space and R is the outcome set.
Prospects map states to outcomes, taking only finitely many
values. % is a preference relation on the set of prospects, i.e. on
all such maps. Nondegeneracy holds.



Expected value

(Not least) in the interest of the researcher: Can the representing
function be a weighted average of outcomes?

Probabilities — For a given state space S , a set of probabilities
over the possible events is a collection {P(Ei )}i for all events Ei in
the state space, satisfying P(S) = 1,P(∅) = 0 and
P(Ei ∪ Ej) = P(Ei ) + P(Ej) for disjoint Ei ,Ej .

Expected Value — Under Structural Assumption 1.2.1, expected
value (EV) holds if there exist probabilities P(Ei ) for all events Ei

in the state space, such that

x = (E1x1...Enxn)→
n∑

i=1

P(Ei )xi ≡ EV (x)

represents %.



Deriving decisions

Exercise 1.3.1



Discussion of EV

I Very convenient for analysis

I Degrees of freedom: ”subjective probabilities” P(Ei )

I Note: P(Ei ) is derived from %.

I Will see shortly: Maximization is equivalent to consistency of
%.

I Black box: an as-if construction. Realism?

I Normatively useful?



Eliciting subjective parameters

Exercises 1.3.5 & 1.3.4



Additivity

A related concept that is defined directly on the preference:
Additivity — [x % y ⇒ x + z % y + z ] for all prospects x , y , z

Tables 1.5.1 & 1.5.3

Tables 1.5.2 & 1.5.4



EV implies additivity

(Part of Exercise 1.6.4.:) Assume that EV holds. Then: % is a
weak order, for each prospect there exists a certainty equivalent,
and additivity and monotonicity are satisfied.

(Proof on the board, taking as given that CE is additive under EV:
CE (x + y) = CE (x) + CE (y).)



Discussion of additivity

I A strong consistency requirement that is easy to grasp

I Rules out diminishing sensitivity

I Rules out considerations of correlation

I Normatively appealing for small outcomes.



Freedom from arbitrage

Additivity refers to sums of outcomes that are combined. A
property of combined choice is freedom from arbitrage.

Dutch book — Fix the preference %. Arbitrage, or a Dutch book,
is a collection of pairs of prospects (x j , y j), with j = 1...m, such
that the {x j}j are the preferred prospects but when combined they
yield strictly less than the {y j}j :

x j % y j for all j = 1...m,
and∑m

j=1 x
j(s) <

∑m
j=1 y

j(s) for all s ∈ S .

”Freedom from arbitrage”: No Dutch book exists, i.e. the
decision-maker’s preference does not allow the construction.



Discussion of freedom from arbitrage

I Normatively appealing

I Important concept in finance



De Finetti’s theorem

Theorem 1.6.1 — Under Structural Assumption 1.2.1, the
following three statements are equivalent.

(i) Expected Value holds.

(ii) % is a weak order, for each prospect there exists a certainty
equivalent, and no arbitrage (Dutch book) is possible.

(iii) % is a weak order, for each prospect there exists a certainty
equivalent, and additivity and monotonicity are satisfied.



Discussion

I Modulo weak/technical constraints, we have equivalence of
EV, freedom from arbitrage, and additivity.

I (iii) ⇒ (i). Only EV satisfies additivity.

I (i) or (iii) ⇒ (ii). EV and additivity both avoid Dutch books

I (ii) ⇒ (i). Only EV / additivity avoids Dutch books.

I A representation theorem: (i) ⇔ (iii)

I You will prove the theorem in class. We only proved (i) ⇒
(iii).

I EV now more appealing?

I Freedom from arbitrage seems very weak. But it relates to
choice between x j versus y j that is not combined with other
choice.



Finance example

Assignment 1.6.11



Lecture 3: Risk versus uncertainty



Probability-contingent prospects

We continue to use:
Structural Assumption 1.2.1 (”Decision under Uncertainty”): S
is a finite or infinite state space and R is the outcome set.
Prospects map states to outcomes, taking only finitely many
values. % is a preference relation on the set of prospects, i.e. on
all such maps. Nondegeneracy holds.

Additional assumption: There exists an objective probability
measure P over events E ⊂ S .
Let pj = P(Ej) denote the probability of event Ej . A prospect
x = (E1 : x1, ...,En : xn) has a probability distribution
(p1 : x1, ..., pn : xn) (a ”lottery”).
% is defined over probability-contingent prospects or lotteries,
which are probability distributions with finitely many outcomes
values.



Example

Example 2.1.1



Decision under risk

Assumption 2.1.2 (”Decision under Risk”): Structural Assumption
1.2.1 holds. In addition, an objective probability measure P is
given on the state space, assigning to each event E its probability
P(E ). Different event-contingent prospects that generate the same
probability-contingent prospect are preference equivalent.



Construction of probabilities

It is unclear where the values of objective probabilities should come
from.
Empirical evidence? Deduction?
Notice the difference from subjective probabilities in EV, which are
derived from %.

% obeys p: Different event-contingent prospects that generate the
same probability-contingent prospect are preference equivalent. A
strong assumption for any given p.

But at least it is within our previous assumptions: for given P and
preference %, we can construct an appropriate S so that Structural
Assumption 1.2.1 holds. (Next slides.)



Risk as a special case of uncertainty

The aim is to represent any given lottery (p1 : x1, ..., pn : xn) as an
event-contingent prospect. Let S = [0, 1) be the unit interval. We
assign n events by partitioning S = {[0, q1), [q1, q2), ..., [qn−1, 1)}.
Let a random number be drawn from S , and let this number be
the true state.
E.g., event 1 is that the true state lies in [0, q1).
Mapping the n possible events into the outcome space R yields an
event-contingent prospect
{[0, q1) : x1, [q1, q2) : x2, ..., [qn−1, 1) : xn} like in Structural
Assumption 1.2.1.
To generate probabilities, we take the uniform probability measure
(”Lebesgue measure”) pj = qj − qj−1. (With q0 = 0 and qn = 1.)
We are free to choose the {qj}j , and hence any given lottery can
be expressed in such a way, as generated by an event-contingent
prospect. A lottery is a prospect, but with the additional
information about the probabilities of events. All previous results
apply to the case where probabilities are known.



Risk as a special case of uncertainty (2)

But notice that multiple event-contingent prospects can generate
the same probability-contingent prospect: E.g.

{[0, 1

2
) : $0, [

1

2
, 1) : $100}

and

{[0, 1

2
) : $100, [

1

2
, 1) : $0}

both yield the lottery (12 : $0, 12 : $100).



Getting used to it

Exercises 2.4.1, 2.4.2



Full-domain assumption

Assumption 2.2.1 (”Richness for decision under risk”): Every
possible distribution over the outcomes that takes on finitely many
values is available in the preference domain.

Summarizing the previous assumptions:

Structural Assumption 2.5.2 (”Decision under risk and
richness”): % is a preference relation over the set of all
probability-contingent prospects, i.e. over all finite probability
distributions over R.



Risk preferences as behavioral assumptions

With objective probabilities, the expected value of prospects (and
all their other moments) are defined without reference to %.
We can ask how % relates to the moments.
For example, we say that % exhibits risk aversion if every lottery is
weakly less preferred than its expected value.

Risk Aversion — E [x ] % x , for all x in the domain of preference.

Risk Neutrality — E [x ] ∼ x , for all x .

Risk Seeking — x % E [x ], for all x .



Risk preferences and EV

Under Structural Assumption 2.5.2, ”EV holds” if and only if %
exhibits risk neutrality.

Note the argument: Under Str. Ass. 2.5.2, preferences obey the
objective measure p. ”EV holds” means that the EV function
represents %. With objective p, the EV function is given by E[x].
Hence a lottery x is preferred to a lottery y iff E[x] ≥ E[y].



EV may surprise

Example 2.5.1



Expected utility

Bernoulli’s invention: When probabilities are known, the value of
the outcome may still be flexible.

Expected Utility — Under Structural Assumption 2.5.2, expected
utility (EU) holds if there exists a strictly increasing function
U : R→ R, mapping an outcome into a utility value, such that the
expected utility function

x = (p1 : x1...pn : xn)→
n∑

i=1

piU(xi ) ≡ EU(x)

represents %.



Lecture 4: Expected utility under risk



Recall the earlier definitions

Structural Assumption 2.5.2 (”Decision under risk and
richness”): % is a preference relation over the set of all
probability-contingent prospects, i.e. over all finite probability
distributions over R.

Expected Utility — Under Structural Assumption 2.5.2, expected
utility (EU) holds if there exists a strictly increasing function
U : R→ R, mapping an outcome into a utility value, such that the
expected utility function

x = (p1 : x1...pn : xn)→
n∑

i=1

piU(xi ) ≡ EU(x)

represents %.



Deriving decisions under EU

Exercise 2.5.1 & Example 2.5.4



Eliciting utilities under EU

Exercise 2.5.3

(Note the notation 1000.580 referring to the first outcome
occurring with probability 0.58.)



Behavioral foundation of EU

Wherever possible, we use simple binary lotteries.

Standard gamble — (p : M, 1− p : m), for some M > m and p.



Standard gamble solvability

Standard gamble solvability—For all outcomes M > α > m there
exists a “standard gamble probability” p ∈ (0, 1) satisfying

α ∼ (p : M, 1− p : m)

If EU holds, we can normalize U(M) = 1 and U(m) = 0 (to be
shown in class). Consider M > α > m. Under EU,
U(M) > U(α) > U(m) holds, and there exists p ∈ (0, 1) such that

U(α) = pU(M) + (1− p)U(m)

⇒ EU implies SG solvability.

SG solvability makes utilities and probabilities commensurable.



Standard gamble dominance

Standard gamble dominance — For all outcomes M > m and
probabilities p > q,

(p : M, 1− p : m) � (q : M, 1− q : m)

SG dominance corresponds to monotonicity.

EU implies SG dominance. (Board.)



Linearity of EU

EU is tractable especially when dealing with complicated lotteries.

Probabilistic mixture — For a pair of lotteries x , y and a
probability λ ∈ [0, 1], let xλy denote the probabilistic mixture of x
and y : a lottery that assigns to each outcome α a probability of λ
times α’s probability under x plus 1− λ times α’s probability under
y . (See Example 2.6.1.)

Proposition: (Exercise 2.6.6.) EU is linear in probability:

EU(xλy) = λEU(x) + (1− λ)EU(y)

(Proof on board.)



Standard gamble consistency

A weak form of linearity:

Standard gamble consistency — For all outcomes α,M,m, all
probabilities p, λ, and all lotteries C , it holds that

α ∼ (p : M, 1− p : m)

implies
αλC ∼ (p : M, 1− p : m)λC

where the last term denotes a probabilistic mixture between
(p : M, 1− p : m) and C .

Note: Under EU, SG holds:
EU(αλC ) = λEU(α) + (1− λ)EU(C )
EU((p : M, 1−p : m)λC ) = λEU(p : M, 1−p : m) + (1−λ)EU(C )

Realism? Normative appeal?



von Neumann-Morgenstern’s EU representation theorem

Theorem 2.6.3 — Under Structural Assumption 2.5.2, the
following two statements are equivalent:

1. EU holds.

2. % satisfies weak ordering, SG solvability, SG dominance and SG
consistency.



Proof of vNM’s theorem

We saw that EU implies weak ordering, SG solvability, SG
dominance and SG consistency. It remains to show the reverse.

Fix two prospects x = (p1 : x1...pn : xn) and y = (q1 : y1...qn : xn).
Let M be the largest outcome and m the smallest outcome of all
outcomes in x or y , and normalize U(M) = 1 and U(m) = 0.
For each outcome xj define U(xj) to be the SG probability for the
standard gamble with outcomes (M,m). U(xj) exists due to SG
solvability.
Consider the indifferences in the Figure 2.9.1. The first indifference
holds due to the application of SG consistency. The second
equivalence uses the repeated application of SG consistency, for all
outcomes. The equality is by construction, and Assumption 2.1.2
implies preference equivalence between the two equal prospects.



Proof of vNM’s theorem (2)

Figure 2.9.1 (not 2.7.1)

 



Proof of vNM’s theorem (3)

Summing up Figure 2.9.1: The prospect x is preference equivalent
to the binary lottery that yields M with probability

∑n
i=1 piU(xi )

and yields m otherwise.
Define EU(x) ≡

∑n
i=1 piU(xi ) as our candidate EU function, and

U(·) as the candidate utility function.∑n
i=1 piU(xi ) is a probability, but has the ”right” structure of

EU(x): it is a function that maps lotteries into R, and it is linear
in the outcome probabilities pi .

Need to check that (i) % can be represented by this particular
function EU(x), and that (ii) U(xj) is strictly increasing in xj .



Proof of vNM’s theorem (4)

Need to check that (i) % can be represented by EU(x), and (ii)
U(xj) is strictly increasing in xj .

(i) Consider x and y . x is preference equivalent to a binary lottery
assigning probability EU(x) to M and the remaining probability to
m, and y is preference equivalent to a binary lottery assigning
EU(y) to M and 1− EU(y) to m. By SG dominance, all binary
lotteries with M and m as outcomes are ordered by the probability
of receiving M. Hence, by transitivity, EU(x) ≥ EU(y) is
equivalent to x % y .

(ii) Consider two outcomes xk > xj . Apply SG dominance with a
different selection of M,m : M = xk ,m = xj , p = 1, q = 0 to find
that xk � xj . Since we already saw that

∑n
i=1 piU(xi ) represents

%, it holds equivalently that U(xk) > U(xj). �



EU as decision aid

Figures 3.1.1 and 3.1.2



Lecture 5: Expected utility and stochastic dominance



Alternative formulation of EU axioms

Def: % satisfies continuity if for all lotteries

x � y � z there exists a p ∈ (0, 1) satisfying the

indifference

y ∼ (p : x , 1− p : z).

Def: % satifies independence if for all

probabilities λ and all lotteries x , y ,C, it holds

that

x % y

implies

(λ : x , 1− λ : C ) % (λ : y , 1− λ : C ).



Alternative formulation of EU axioms (2)

Proposition: Under Structural Assumption 2.5.2, the

following two are equivalent:

1. EU holds, but with U not necessarily strictly

increasing.

2. % satisfies weak ordering, continuity, and

independence.



(First-order) stochastic dominance

x first-order stochastically dominates y — x can be generated
from y by shifting probability mass from an outcome to a preferred
outcome (once or in multiple instances).

% satisfies stochastic dominance — Whenever x first-order
stochastically dominates y , it holds that x % y .

Exercise 2.7.1



Counterexamples to EU

Exercise 2.8.1



Counterexamples to EU (2)

Problem 1. Which of the following options do you prefer?
C1. A sure gain of 1 million Euros.
C2. An 80% chance to gain 5 million Euros and a 20% chance to
gain nothing.

Problem 2. Which of the following options do you prefer?
D1. A 5% chance to gain 1 million Euros and a 95% chance to
gain nothing.
D2. A 4% chance to gain 5 million Euros and a 96% chance to
gain nothing.



Counterexamples to EU (3)

Figure 2.4.1, (g) and (h)



Stochastic dominance for continuous distributions

For convenience: Also consider lotteries Fx with a bounded
continuum of outcomes: α ∈ [xmin, xmax] and ∃ a density for all α.

Notice that we can approximate any pair of such lotteries (Fx ,Fy )
by two lotteries (x , y) with finitely many outcomes (satisfying
Structural Assumption 2.5.2).

We formulate some properties/ideas for continuous lotteries but
apply the results to finite lotteries.

x first-order stochastically dominates y —

Fx(α) ≤ Fy (α), for all α ∈ [xmin, xmax].



Stochastic dominance for continuous distributions (2)



Equivalence of EU and stochastic dominance

Proposition: Under Structural Assumption 2.5.2, the following
two statements about lotteries x , y are equivalent:

1. x first-order-stochastically dominates y .

2. All EU-representable preferences prescribe x % y .



Equivalence of EU and stochastic dominance (2)

We already showed 1. ⇒ 2.

2. ⇒ 1. is unlikely to be applied in practice, since 2. is usually not
known when 1. is not yet known. But the statement [2. ⇒ 1.]
implies that we know exactly what the EU assumptions buy us: we
restrict attention to all preferences that do not violate stochastic
dominance.
Suppose that we assumed EU and that neither x nor y first-order
stochastically dominates the other. Then, [not 1.⇒ not 2.] implies
that we ruled out neither x % y nor y % x .



Proof of the proposition

Consider lottery x = (p1 : x1, ..., pn : xn), where x1 > ... > xn. The
expected value is the summed area inside the rectangles.

EV (x) =
∑
i

pixi



Proof of the proposition (2)

Anticipating the case of a continuous outcome range, we take the
lottery with n outcomes to be equi-distant (wlog), as an
approximation of a continuous distribution.
Notation caveat: x is used for both the lottery and as an outcome
value.

Look at the figure ”row by row” from left to right, and note that
we can determine the area differently, by multiplying two things for
each outcome: how much better is the outcome than the
next-worse outcome (= xi − xi+1) and what is the probability of
receiving at least xi , which is pi + pi−1 + ...+ p1 =

∑i
j=1 pj .

EV (x) =
n∑

i=1

(
i∑

j=1

pj)(xi − xi+1).



Proof of the proposition (3)

To approximate the continuous case, we let n→∞.

(
i∑

j=1

pj) = Pr(outcome ≥ xi ) = 1− Pr(outcome < xi )

→ 1− Pr(outcome ≤ xi ) = 1− F (xi )

Drop the subscript i and replace (xi − xi+1) by its infinitesimal
analog, the differential dx . The summation over (xi − xi+1)
becomes an integral over dx :

EV (x) =

∫ xmax

xmin

(1− F (x))dx .

This is the area above the cdf, or the ”epigraph”.



Proof of the proposition (4)



Proof of the proposition (5)

Transform the x axis in the first graph (note: vertical axis) to
measure U—replace each xi in the graph by U(xi ).



Proof of the proposition (6)

Analogously to the derivation of EV:

EU(x) =
∑
i

(
i∑

j=1

pj)(U(xi )− U(xi+1))

x ′i s marginal contribution to U is relevant.

Again, let n→∞. The marginal U-contribution becomes dU.
Since the derivative is U ′(x) = dU

dx , we have dU = U ′(x)dx .

EU(x) =

∫ xmax

xmin

U ′(x)(1− F (x))dx . (1)

The normalized EU of the distribution is the area above the cdf,
but weighted according to the U-contribution of x . (For EV, think
of an equal weight of 1.)



Proof of the proposition (7)

To show that 2.⇒ 1. : We show the counterpositive, i.e. that not
1. implies not 2. Assume that y is not first-order-stochastically
dominated by x . Then there exists a value α̃ with
1− Fy (α̃) > 1− Fx(α̃). Consider a ”pseudo-EU-maximizer” who
maximizes EU with a weakly increasing step function:

Ũ(α) = 1 if α > α̃

Ũ(α) = 0 otherwise

Using expression (1), she chooses y over x (strictly). Moreover,
one can find strictly increasing functions that are arbitrarily close
to Ũ, and hence have the same property. That is, there exist an
EU agent who chooses y and hence, 2. does not hold. �



Lecture 6: Choosing not to choose

See presentation slides flipping coins slides 2013 05 31.ppt



Lecture 7: Risk preferences under expexted utility



Collecting assumptions

Structural Assumption 3.0.1 (”Decision under risk and EU”):
% is a preference relation over the set of all probability-contingent
prospects, which is the set of all finite probability distributions over
the outcome set R. Expected utility holds with a utility function U
that is continuous and strictly increasing.



Risk aversion and concavity

Recall:

Risk Aversion — E [x ] % x , for all x in the domain of preference.

Risk Neutrality — E [x ] ∼ x , for all x .

Risk Seeking — x % E [x ], for all x .

Notice that these assumptions on % can stand alone, e.g. without
assuming EU.



Risk aversion and concavity (2)

Recall also:

f : X → R is concave — f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y)

f : X → R is linear — f (λx + (1− λ)y) = λf (x) + (1− λ)f (y)

f : X → R is convex — f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

for all x , y ∈ X and all λ ∈ [0, 1].

Theorem 3.2.1 — Under Structural Assumption 3.0.1,

risk aversion ⇔ U concave
risk neutrality ⇔ U linear
risk loving ⇔ U convex.



Figure 3.2.1



Experiment

1. Choose between

(1 : EUR 4000) and (0.5 : EUR 0, 0.5 : EUR 10000)

2. Choose between

(1 : EUR 84000) and (0.5 : EUR 80000, 0.5 : EUR 90000)

3. Are you typically a risk averter? I.e. do you reject gambles in
favor of their expected value?

Note that the answer to 3. does not determine 1. and 2.

→ Need measure of risk aversion



Comparative risk aversion

4 comparisons of two preference relations %1 and %2, under
Structural Assumption 3.0.1:

1. %2is more risk averse than %1 — α ∼1 x implies that α %2 x
for all lotteries x and all outcomes α

2. Risk premium of a lottery x — the distance between the
lottery’s expected value and the lottery’s certainty equivalent,
π(x) = EV (x)− CE (x).

Exercise 3.2.3

Note: Structural Assumption 3.0.1 not required for Definitions 1.
and 2.



Comparative risk aversion (2)

Let U1 and U2 be utility functions that represent %1 and %2 in the
EU sense.

Let φ(u) = U2(U−11 (u)) describe the utility that agent %2 derives
from the sure amount that gives agent %1 a utility level of u.

3. U2 is a concave transformation of U1 — φ is concave.

4. Arrow-Pratt degree of absolute risk aversion —

rAP(x) = −U′′(x)
U′(x) .



Comparative risk aversion (3)

Proposition (see Thm 3.4.1 and Ex 3.4.1): The following four
statements are equivalent.

I %2 is more risk averse than %1.

I %2 has a higher risk premium: for all lotteries x ,
π2(x) ≥ π1(x).

I φ(u) = U2(U−11 (u)) is a concave transformation of U1.

I %2 has a higher degree of absolute risk aversion: for all
outcomes α, rAP,2(α) ≥ rAP,1(α).



Mean-preserving spread

(On the board.)



Constant Absolute Risk Aversion

U(x) = 1− exp(−rx)
x ∈ R, r > 0.

See Figure 3.5.2.

More generally (allowing for convex functions):

U(x) = 1− exp(−rx) for r > 0
U(x) = x for r = 0

U(x) = exp(−rx)− 1 for r < 0

(Sometimes rescaled as U(x) = 1−exp(−rx)
r .)

As suggested by the name, it has a constant (independent of x)
Arrow-Pratt degree of risk aversion:

rAP(x) = −U′′(x)
U′(x) = −−r

2 exp(−rx)
r exp(−rx) = r



Constant Absolute Risk Aversion (2)

Proposition: Assume Structural Assumption 3.0.1 and that the
utility function is differentiable. The following are equivalent:

I % is represented by CARA utility.

I The preference between two lotteries (x , y) is not affected if µ
is added to both lotteries, for all µ ∈ R and all (x , y).

(Board.)



Decreasing Absolute Risk Aversion

Economists often assume that the degree of absolute risk aversion
decreases with the outcome size. This has also been measured in
experiments.

Preferences exhibit decreasing absolute risk aversion (DARA) if the
risk premium π(x) for any given lottery x weakly decreases if a

sure payment µ ≥ 0 is added to the lottery, i.e. ∂π(x+µ)
∂µ ≤ 0.

We get the following characterization.
Proposition: Under EU, preferences are DARA if and only if the

Arrow-Pratt degree rAP(α) = −U′′(α)
U′(α) weakly decreases in α.



Constant Relative Risk Aversion

U(x) = x r

x ∈ R+, r 6= 0.

More generally:

U(x) = x r for r > 0
U(x) = ln x for r = 0
U(x) = −x r for r < 0

(The ln curve is the unique function between the cases r > 0 and
r < 0.)

The function is often written as U(x) = x1−γ or U(x) = x1−γ

1−γ .



Lecture 8: Multiattribute utility



Multiattribute utility

Outcome spaces may be more general than R and/or
multi-dimensional:

Multiattribute outcome set — X = X 1 × X 2 × ...× Xm, where X i

is the ith attribute set, which may be a general set.

(Multiattribute) outcome — α = (α1, ..., αm) ∈ X



Health example

Example 3.7.1, EU(Q,T ), momontonicity in life duration, zero
condition, SG invariance, Observation 3.7.2



Probabilistic multiattribute outcomes

Probability-contingent prospects over the elements of X are
defined as before:

Prospect — x = (p1 : x1, ..., pn : xn), where the jth outcome is
xj = (x1j , ..., x

m
j )

EU is defined analogously, too. See Figure 3.7.2.

Marginal prospect — (p1 : x i1, ..., pn : x in), the probability
distribution over attribute set X i generated by x .
See Figure 3.7.3 (and note the typo: the right panel should not
depict a lottery between the marginals; it should depict just the
marginals).



Multiattribute risk attitudes

Consider a sure attribute γ i ∈ X i and let γ iα denote outcome α
but with its ith attribute replaced by γ i .

Consider attributes γ i , δi and outcomes α, β with γ iβ % γ iα,
δiβ % γ iβ and δiα % γ iα.

Consider a choice between prospects:

δiα0.5γ
iβ and γ iα0.5δ

iβ

E.g. compare (3.7.2) and (3.7.3)



Multiattribute risk attitudes (2)

Consider a sure attribute γ i ∈ X i and let γ iα denote outcome α
but with its ith attribute replaced by γ i .

Consider attributes γ i , δi and outcomes α, β with γ iβ % γ iα,
δiβ % γ iβ and δiα % γ iα.

Multiattribute risk aversion — δiα0.5γ
iβ % γ iα0.5δ

iβ
for all such i , α, β, γ i , δi

Multiattribute risk seeking — γ iα0.5δ
iβ % δiα0.5γ

iβ
for all such i , α, β, γ i , δi

Multiattribute risk neutrality — γ iα0.5δ
iβ ∼ δiα0.5γ

iβ
for all such i , α, β, γ i , δi



Additive decomposability

Multiattribute risk neutrality says that an improvement in one
attribute i is evaluated independently of the other attributes.

Proposition (see Thm 3.7.3): The following three are equivalent.

(i) Multiattribute risk neutrality

(ii) U(α1, ..., αm) = U(α1) + ...+ U(αm)

(iii) Marginal independence: Preference over prospects (x , y)
depends only on the marginal prospects generated by x and y .



Identical dimensions
Anscombe and Aumann (1963) assume X 1 = X 2 = ... = Xm = C
(set of prizes).

Let all but the ith attribute be fixed and consider prospects over
the remaining attribute i . Preference over such prospects over C
will depend on i and on the level at which the other attributes are
fixed.

A & A monotonicity — All preference relations over prospects over
C that do not prescribe equivalence everywhere are the same.

Theorem 3.7.6 — Assume EU and X 1 = X 2 = ... = Xm = C .
Consider the additive decomposition

U(α1, ..., αm) = q1u(α1) + ...+ qmu(αm)

where u : C → R and
∑m

i=1 q
i = 1. This additive decomposition

holds if and only if: (i) marginal independence and (ii) A & A
monotonicity both hold.



Identical dimensions (2)

Theorem 3.7.6 — Assume EU and X 1 = X 2 = ... = Xm = C .
Consider the additive decomposition

U(α1, ..., αm) = q1u(α1) + ...+ qmu(αm)

where u : C → R and
∑m

i=1 q
i = 1. This additive decomposition

holds if and only if: (i) marginal independence and (ii) A & A
monotonicity both hold.

Anscombe and Aumann’s interpretation of attributes: Outcome
α = (α1, ..., αm) is a gamble on a horse race with m horses, where
αi is the prize won if horse i wins. Prospects over outcomes are
prospects over gambles. qi is the subjective probability of horse i
winning.
Note that under this interpretation, marginal independence is a
consistency property, similar to SG consistency.



Lecture 9: Expected utility under uncertainty



Choice experiments

Figure 4.1.1 with cand1 = Steinbrück, cand2 = Merkel, in units of
EUR 1,000.00

Figure 4.1.2 with g given by the integer nearest to α4

Figure 4.1.3

Figure 4.1.4

Figure 4.1.5



Recall previous concepts

Structural Assumption 1.2.1 (”Decision under Uncertainty”): S
is a finite or infinite state space and R is the outcome set.
Prospects map states to outcomes, taking only finitely many
values. % is a preference relation on the set of prospects, i.e. on
all such maps. Nondegeneracy holds.

Continuity — For every partition {Ei}ni=1 of S and for all prospects
y ∈ Rn, y = (E1 : y1, ...,En : yn), the better-than-set and
worse-than-set, {x ∈ Rn|x % y} and {x ∈ Rn|y % x}, are closed in
Rn.

EV under Structural Assumption 1.2.1: Utility known, probabilities
flexible

EU under Structural Assumption 2.5.2: Utility flexible, probabilities
known



Definition of EU

Expected Utility — Under Structural Assumption 1.2.1, expected
utility (EU) holds if there exist probabilities P(Ei ) for all events Ei

in the state space and there exists a strictly increasing function
U : R→ R that depends only on outcomes, such that

E1x1...Enxn →
n∑

i=1

P(Ei )U(xi ) ≡ EU(x)

represents %.

(The assumption is often referred to as Subjective Expected
Utility.)



Discussion of EU (— just like EV)

I Very convenient for analysis

I Degrees of freedom: ”subjective probabilities and utilities”
P(Ei ) and U

I Note: P(Ei ) and U are derived from %.

I Will see shortly: Maximization is equivalent to consistency of
%.

I Black box: an as-if construction. Realism?

I Normatively useful?



Predicting choices

Exercise 4.2.1



Eliciting subjective parameters

Exercise 4.2.3



Getting used to EU

Exercise 4.2.5

αEx — A prospect that yields α if s ∈ E and yields x(s) otherwise.

E is null — αEx ∼ βEx for all prospects x and all outcomes α, β
— E is nonnull otherwise.

Exercise 4.2.6

Exercise 4.2.7



Using your experimental choices

Excercise 4.3.1: Consider Figure 4.1.1, with α0 = 10. Show that
the assumption of EU implies that U(αk)−U(αk−1) is constant in
k .

Figure 4.3.1, Figure 4.3.2

Note that we can measure U precisely with this method, hence
also measure P, e.g. using standard gambles: for given E , select
M,m, α such that

U(α) = P(E )U(M) + (1− P(E ))U(m)
P(E ) = U(α)



Consistency under EU

Excercise 4.3.2

Exercise 4.3.3

Note: The predictions hold under more general assumptions than
EU.

Exercise 4.3.4:
Do not assume EU but only weak ordering and strong
monotonicity (x � y if x ≥ y and ∃s with x(s) > y(s)).

Exercise 4.3.5



Choices in Figure 4.1.1 — in slow motion
Consider Figure 4.1.1 (a) and (d)

α1
E1 ∼ α0

E8

α4
E1 ∼ α3

E8

8	 1 — ”Receiving 8 instead of 1”

Conditional an some event (here, E c), 8	 1 reflects the preference
value of receiving the right prospect. This value depends on the
utility difference between 8 and 1 and on the likelihood of E c .

α1 	 α0 contingent on E exactly offsets 8	 1 contingent on E c .

α4 	 α3 contingent on E exactly offsets 8	 1 contingent on E c .

We write this as

α1 	 α0 ∼t α
4 	 α3



Definition of t-indifference

Consider general prospects x , y , events E and outcomes α, β, γ, δ,
and indifferences:

αEx ∼ βEy

and

γEx ∼ δEy

α	 β ∼t γ 	 δ (”t-indifference” for α, β, γ, δ) — There exist
prospects x , y and a nonnull event E such that the two
above-listed indifferences hold.

Figure 4.5.1, Example 4.5.2



Lecture 10: Expected utility under uncertainty (2)



Definition of t-indifference

Consider general prospects x , y , events E and outcomes α, β, γ, δ,
and indifferences:

αEx ∼ βEy

and

γEx ∼ δEy

α	 β ∼t γ 	 δ (”t-indifference” for α, β, γ, δ) — There exist
prospects x , y and a nonnull event E such that the two
above-listed indifferences hold.



t-indifference and EU

Exercise 4.5.3: Show that under EU,

α	 β ∼t γ 	 δ ⇒ U(α)− U(β) = U(γ)− U(δ)

Proof: Under EU, the indifferences are

αEx ∼ βEy
γEx ∼ δEy

P(E )U(α) +
∑

sj /∈E P(sj)U(xj) = P(E )U(β) +
∑

sj /∈E P(sj)U(yj)

P(E )U(γ) +
∑

sj /∈E P(sj)U(xj) = P(E )U(δ) +
∑

sj /∈E P(sj)U(yj)

U(α)− U(β) = 1
P(E)

∑
sj /∈E P(sj)(U(yj)− U(xj))

U(γ)− U(δ) = 1
P(E)

∑
sj /∈E P(sj)(U(yj)− U(xj)) �



t-indifference and EU (2)

Suppose that in addition to α	 β ∼t γ 	 δ we observe that
α′ 	 β ∼t γ 	 δ with α > α′ (see Example 4.6.1).

Not under EU (by the result of Exercise 4.5.3).

Tradeoff consistency — Strictly improving an outcome in any
t-indifference breaks that indifference.



EU representation theorem (∼ Savage)

Theorem 4.6.4 — Under Structural Assumption 1.2.1, the
following two statements are equivalent.

1. EU holds with continuous and strictly increasing U(·).

2. % satisfies weak ordering, monotonicity, continuity, and tradeoff
consistency.

Observation 4.6.4’: Moreover: in (2), the probabilities P are
uniquely determined and utility U is unique up to positive affine
transformations.



Discussion of Theorem 4.6.4

I Notice the same nature as in vN-M’s theorem: Consistency
and some technical conditions are equivalent to EU.

I Surprising that we need no stronger conditions in (2) to
obtain a consistent P measure in (1).

I The case of decision under risk is included in Structural
Assumption 1.2.1. The ”tradeoff method” of stating
consistency works also for this domain of preferences. See
Figure 4.7.1.

I Note again the degrees of freedom—e.g. allowing for arbitrary
beliefs.



Proof of the theorem

We saw (or will see on PS) that 1. (EU) implies 2. For (a sketch
of) the proof of 2.⇒1., we restrict to some simplifying
assumptions:

– a two-element state space S = {E1,E2} (→ (x1, x2) denotes
general prospects)
– a particular but arbitrary preference ratio, as specified below
(α1 − α0 = β3 − β0)
– For all (x1, x2) � (y1, y2), there exists a large enough y ′1 such
that (x1, x2) ∼ (y

′
1, y2), and analogously for y2.

– Strong monotonicity: If (x1, x2) ≥ (y1, y2) and (x1, x2) 6= (y1, y2),
then (x1, x2) � (y1, y2).



Proof of the theorem (2)

Assume that property 2. holds, and construct the EU function as
follows.
Fix a small outcome α0 = β0 and a larger outcome α1. Define
outcome β1 by requiring

(α1, β0) ∼ (α0, β1).

Now fix β0, β1 and define {αi+1}∞i=1 recursively by

(αi+1, β0) ∼ (αi , β1).

Likewise, fix α0, α1 and define {βj+1}∞j=1

(α1, βj) ∼ (α0, βj+1).

[See Figure 4.15.1]



Proof of the theorem (3)
We constructed sequences such that

αi+1 	 αi ∼t α1 	 α0 (1.)

and
βj+1 	 βj ∼t β1 	 β0 (1’.)

for all i , j . For arbitrary i , j > 0, consider the indifference

(α1, βj) ∼ (α0, βj+1) (2.)

and modify the RHS by replacing α0 by αi > α0. Strong
monotonicity implies

(α1, βj) ≺ (αi , βj+1).

But for some large enough α∗ we have

(α∗, βj) ∼ (αi , βj+1). (3.)

(2.) and (3.) together imply the t-indifference:

α∗ 	 αi ∼t α1 	 α0 (4.)



Proof of the theorem (4)

αi+1 	 αi ∼t α1 	 α0 (1.)

(α∗, βj) ∼ (αi , βj+1). (3.)

α∗ 	 αi ∼t α1 	 α0 (4.)

(1.) and (4.) imply, by tradeoff consistency, that α∗ = αi+1. Using
(3.) we therefore know

(αi+1, βj) ∼ (αi , βj+1).

Decreasing one superscript by 1 and increasing the other by 1 does
not change the preference value of a prospect (αi , βj). Repeated
application shows that decreasing one superscript by any k ∈ N
and increasing the other by k does not change the preference value.



Proof of the theorem (5)
Therefore, defining V1(αi ) = i and V2(βj) = j , the function

V1(αi ) + V2(βj)

represents % over all constructed prospects (αi , βj). Now consider
a small stepsize: choosing α0 = β0 sufficiently small and α1

sufficiently close to α0 ensures that an arbitrarily dense and wide
set of prospects on {E1,E2} can be covered. Continuity expands
the representation to all prospects on {E1,E2}.

But this representation does not yet have the right form. To arrive
at EU representation, we need to find subjective probabilities
P(E1) and P(E2) and a function U : R→ R such that

V1(αi ) = P(E1)U(αi )

and
V2(βj) = P(E2)U(βj).



Proof of the theorem (6)

The size ratio of the α’s and β’s determines the probabilities.
Assume (arbitrarily) that α1 − α0 = β3 − β0.

Since V1(αi ) + V2(βj) = i + j represents preference, we see that
starting from (α0, β0) a step of size α1 − α0 in β-direction
increases utility (V1 + V2) by three times as much as a step of the
same size in α-direction.

This suggests that E2 is three times as likely as E1.

Tradeoff consistency ensure that this reasoning is true (i.e. leads to
the uniquely possible probabilities)—see next slides.



Proof of the theorem (7)

From (α0, β6) ∼ (α3, β3) and (α0, β3) ∼ (α3, β0) we obtain

β6 	 β3 ∼t β3 	 β0.

Substituting α1 = β3 and α0 = β0,

β6 	 α1 ∼t α1 	 α0.

Because also
α2 	 α1 ∼t α1 	 α0,

tradeoff consistency implies β6 = α2.

Applying the same argument recursively gives β3i = αi for all i .



Proof of the theorem (8)
Once again, observe that because V1 + V2 = i + j represents %, a
step of any size (αi − α0) in β-direction increases utility by three
times as much as a step of the same size in α-direction. That is,

3V1(αi ) = V2(αi ) or, equivalently, V1(αi ) =
1

3
V2(αi ).

Preferences over (αi , βj) are thus represented by:

1

3
V2(αi ) + V2(βj)

Compare this to the EU function:

EU = P(E1)U(αi ) + P(E2)U(βj)

Both are weighted sums. But we need more, namely that EU
represents the same preferences, i.e. for all (αi

1, β
j
1), (αi

2, β
j
2),

P(E1)U(αi
1) + P(E2)U(βj1) ≥ P(E1)U(αi

2) + P(E2)U(βj2)

⇔
1

3
V2(αi

1) + V2(βj1) ≥ 1

3
V2(αi

2) + V2(βj2)



Proof of the theorem (9)
There exists exactly one possibility to achieve this, namely the
combination of (i) and (ii) as follows. (i) The weights have to be
identical

P(E1) =
1

4
and P(E2) =

3

4
,

(otherwise one can find two pairs (αi
1, β

j
1), (αi

2, β
j
2) that are

differently ranked by the two functions), and (ii) U provides the
same ordering of R as V2, i.e.

U(·) =
4

3
V2(·)

or positive affine transformations thereof. (Again because
otherwise ∃(αi

1, β
j
1), (αi

2, β
j
2) that are differently ranked by the two

functions.) Overall we have shown that the function

EU =
1

4

4

3
V2(x1) +

3

4

4

3
V2(x2)

represents % over prospects on (E1,E2) and that only positive
affine transformations U(·) = 4

3V2(·) preserve the EU form. �



Hybrid case I

In many choice contexts, we have objective probabilities for some
events R but not for general events E .

Structural Assumption 4.9.1 (”Uncertainty plus EU-for-risk”):
Structural Assumption 1.2.1 (decision under uncertainty) holds. In
addition, for some of the events, notated as probabilized events R,
a probability P(R) is given. If, for an event-contingent prospect
R1 : x1, ...,Rn : xn, all outcome events are probabilized with
P(Rj) = pj , then this prospect generates a probability distribution
p1 : x1, ..., pn : xn (a probability-contingent prospect) over the
outcomes. All event-contingent prospects that generate the same
probability-contingent prospect are preference equivalent.
Preferences over probability-contingent prospects satisfy EU.



Hybrid case I (2)

To make the probabilized events comparable to the others, look for
a suitable P(R):

Matching probability of E — q is a probability such that
1E0 ∼ 1q0.

Matching probabilities may or may not exist under Structural
Assumption 4.9.1.

Existence and additivity of matching probabilities — For all
disjoint events E1,E2, there exist matching probabilities q1, q2 that
further satisfy 1E1∪E20 ∼ 1q1+q20.

(Note the different property name ”addivity” on p. 120.) See
Figure 4.9.2.



Hybrid case I (3)
Another consistency, relating to complex prospects:

Probabilistic matching — For each partition E1, ...,En, the
indifference

E1 : x1, ...,En : xn ∼ q1 : x1, ..., qn : xn

holds for all outcomes xj whenever {qj}j are the matching
probabilities of events {Ej}j .

See Figure 4.9.3.

Theorem 4.9.4 — Under Structural Assumption 4.9.1, the
following two statements are equivalent.

1. EU holds.

2. % satisfies weak ordering, existence and additivity of matching
probabilities, and probabilistic matching.



Lecture 11: Probability weighting under risk



Motivation

Back to Structural Assumption 2.5.2 (risk).

Is EU’s linearity in probabilitites is a reasonable way to organize
choices?

I Why should attitudes towards lotteries be determined solely
through attitudes towards sure outcomes?

I Decision-makers often pay extra attention to small
probabilities.

I For small gambles, a smooth U is close to linear,
contradicting risk aversion vis-a-vis small gambles.



Motivation (2): Example
Non-linearity of U was a modelling choice that we made. Consider
preferences in Figure 5.1.1.

The convex shape is akin to arguing that the decisionmaker dislikes
lotteries: each probability p of receiving the high outcome lies
below the p-weighted average of receiving the sure outcomes.



Transforming the probability axis

For lotteries with n > 2 outcomes, we have to be careful how to
transform probabilities.
Recall the transformation from EV to EU:

Transforming the outcome axis, the height of each column in the
integral was changed according to U : x → U(x)—see next slide.



Transforming the probability axis (2)

EU(x) =
n∑

i=1

(
i∑

j=1

pj)(U(xi )− U(xi+1))

Now, instead transform the probability axis: change the length of
each ”row” in the integral, and swap axes.



Transforming the probability axis (3)

Figure 5.5.2 in the book (not 5.4.1). The transformation assigned
non-constant weights to cumulative probabilities.

Rank of outcome xi — The probability of receiving strictly more
than xi : pi−1 + ...+ p1 =

∑i−1
j=1 pj , for x1 ≥ x2 ≥ ... ≥ xn.



A formulaeic analogue to EU

Consider again the transformation from EV to EU.

EV (x) =
n∑

i=1

pixi =
n∑

i=1

(
i∑

j=1

pj)(xi − xi+1).

Consider
∑n

i=1 pixi as a summation from the worst outcome (n) to
the best outcome (1). Stepping from i + 1 and i , we ask: ’What
does outcome i add to the sum?’ (It adds a column in Figure
5.2.1.)

Notice that pi and xi have ’different roles’ in this change of
indices:absolute (xi measures the distance from 0) versus marginal
(pi ).



A formulaeic analogue to EU (2)
Now consider the equivalent expression

∑n
i=1(

∑i
j=1 pj)(xi − xi+1).

Here, (xi − xi+1) is the marginal increase in outcome, and
(
∑i

j=1 pj) is the (absolute) rank of outcome i + 1.

We saw in Lecture 5, when transforming x → U(x): It is
equivalent to apply the EU transformation U : x → U(x) to the
absolute value xi , or to replace the marginal x contribution of
outcome i by its marginal U contribution.

EU(x) =
n∑

i=1

piU(xi )

=
n∑

i=1

(
i∑

j=1

pj)(U(xi )− U(xi+1))

To transform the probability axis, we do the same but in reverse
roles.



A formulaeic analogue to EU (3)

w : [0, 1]→ [0, 1] is a probability weighting function — w is
strictly increasing and satisfies w(0) = 0 and w(1) = 1.

We apply w to transform ranks:

w :
i−1∑
j=1

pj → w(
i−1∑
j=1

pj).

If w(p) = p, then w(
∑i

j=1 pj)− w(
∑i−1

j=1 pj) = pi .

Now construct an expression where the w axis has the marginal
role. The marginal w contribution of outcome i is
w(

∑i
j=1 pj)− w(

∑i−1
j=1 pj). (See Figure 5.5.2.)



A formulaeic analogue to EU (4)

Rank-dependent preferences with linear utility — Preferences are
represented by

RDLU(x) =
n∑

i=1

[w(
i∑

j=1

pj)− w(
i−1∑
j=1

pj)]xi

Another reason that we do not simply transform p, but rather
transform ranks, is that the model with transformed p violates
first-order stochastic dominance.



A formulaeic analogue to EU (5)

Final step: both transformations at once, of outcomes and ranks.



A formulaeic analogue to EU (6)

Rank-dependent utility — Under Structural Assumption 2.5.2,
rank-dependent utility (RDU) holds if there exist a strictly
increasing utility function U : R→ R and a probability weighting
function w such that preferences over lotteries (p1 : x1, ...pn : xn)
with rank-ordered outcomes x1 ≥ ... ≥ xn are represented by

RDU(x) =
n∑

i=1

[w(
i∑

j=1

pj)− w(
i−1∑
j=1

pj)]U(xi ).



Remarks on RDU

I RDU is sometimes written as

RDU(x) =
n∑

i=1

πiU(xi ) where

πi = w(
i∑

j=1

pj)− w(
i−1∑
j=1

pj).

Importantly, note that the ”decision weight” πi is a function
of all pj , j = 1...i .

I For the best outcome x1, the formula requires that we find the
expression

∑1−1
j=1 pj . We use the notational convention that∑0

j=1 pj = 0.



Remarks on RDU (2)

I For the worst outcome xn , we use the weighting function’s
boundary restriction w(1) = 1: w(

∑n
j=1 pj) = w(1) = 1

I If outcomes are not rank-ordered (x1 ≥ ... ≥ xn) we simply
re-label them to ensure rank-ordering. Under the assumption
that preferences respond only to the distribution over money
(see Assumption 2.1.2) this is wlog.



Example

See Section 5.6



Lecture 12: Probability weighting under risk (2)



Recall

Ranked probability pr — A pair (p, r) where p is the probability of
an outcome and r is its rank, in a given prospect.

In RDU, the decision weight depends on both p and r:

RDU(x) =
n∑

i=1

πiU(xi )

=
n∑

i=1

π(p
(pi−1+...+p1)
i )U(xi )

=
n∑

i=1

(w(pi + ...p1)− w(pi−1 + ...+ p1))U(xi )



Optimism and Pessimism

Figures 6.3.1 and 6.3.2

Pessimism — Worsening the rank increases the decision weight,
i.e. π(pr

′
) ≥ π(pr ) whenever r ′ ≥ r .

Optimism — Improving the rank increases the decision weight, i.e.
π(pr

′
) ≥ π(pr ) whenever r ′ ≤ r .

w is convex — w(p + r ′)− w(r ′) ≥ w(p + r)− w(r) whenever
r ′ ≥ r .
w is concave — w(p + r ′)− w(r ′) ≤ w(p + r)− w(r) whenever
r ′ ≥ r .

Observation: Under RDU, pessimism holds iff w is convex.

Proof: Plug the definition of π into the definition of optimism and
optimism. �



Typical w

Figure 6.1.1



Behavioral foundation of RDU
Consider Figure 4.1.1 again and make the assumption that
Steinbrück wins with probability 0.5.

We can assume that Structural Assumption 2.5.2 holds for this
example and investigate RDU’s prediction.

π(0.50)U(α1) + π(0.50.5)U(1) = π(0.50)U(α0) + π(0.50.5)U(8)

⇔ π(0.50)(U(α1)− U(α0)) = π(0.50.5)(U(8)− U(1))

Analogously,

π(0.50)(U(α2)− U(α1)) = π(0.50.5)(U(8)− U(1))

π(0.50)(U(α3)− U(α2)) = π(0.50.5)(U(8)− U(1))

π(0.50)(U(α4)− U(α4)) = π(0.50.5)(U(8)− U(1))

→ U can be measured under RDU.



Behavioral foundation of RDU (2)

 



Behavioral foundation of RDU (3)
8	 1 — ”Receiving 8 instead of 1”

Conditional an some probabilized event (here, candidate 2 wins),
8	 1 reflects the preference value of receiving the right prospect.
This value depends on the utility difference between 8 and 1 and
on the decision weight of the event.

α	 β ∼t
c γ 	 δ — The indifferences in Figure 6.5.1 hold for some

outcome probability p and some rank r and some prospects x , y .

 



Behavioral foundation of RDU (4)
Observation 6.5.3: Under RDU,
α	 β ∼t

c γ 	 δ ⇒ U(α)− U(β) = U(γ)− U(δ)

Proof: (We consider only the case where α 6= xi for all i , and
similarly for β, γ, δ. See the book for the more general case.)
The two indifferences are, under RDU,

π(pr )U(α) +
m∑
i=2

πiU(xi ) = π(pr )U(β) +
n∑

j=2

πjU(yj)

π(pr )U(γ) +
m∑
i=2

πiU(xi ) = π(pr )U(δ) +
n∑

j=2

πjU(yj)

π(pr )(U(α)− U(β)) =
n∑

j=2

πjU(yj)−
m∑
i=2

πiU(xi ) = π(pr )(U(γ)− U(δ))

w ′ > 0⇒ π(pr ) > 0⇒ U(α)− U(β) = U(γ)− U(δ). �



Behavioral foundation of RDU (5)
It could be that

α	 β ∼t
c γ 	 δ

and

α′ 	 β ∼t
c γ 	 δ

for α′ 6= α.

Not under RDU, by observation 6.5.3.

Rank-tradeoff consistency —Improving an outcome in any ∼t
c

relationship breaks the relationship.

A variant of monotonicity is also implied by RDU:

Strict stochastic dominance — Shifting positive probability mass
from an outcome to a strictly preferred outcome leads to a strictly
preferred outcome.



Behavioral foundation of RDU (6)

Theorem 6.5.6 — Under Structural Assumption 2.5.2, the
following two statements are equivalent.

1. RDU holds with continuous and strictly increasing U(·).

2. % satisfies weak ordering, strict stochastic dominance,
continuity, and rank-tradeoff consistency.

(No proof.)



Measuring w

(See also Sections 6.4, 7.1 and 7.2)

Exercise 6.5.6

(First redo Figure 4.1.1 with 50/50 probabilites, then Figure 4.1.5.)



Likelihood insensitivity
Likelihood insensitivity assings high decision weight to the tails of
the outcome distribution. It may be due to cognitive rather than
motivational factors.

RDU can combine it with pessimism. See Figures 7.1.2a and
7.1.2b. Also, see Figure 7.2.4 for a simple version.

w is likelihood insensitive with insensitivity region [brb,wrb] — The
boundaries brb (best-rank boundary) and wrb (worst-rank
boundary) delimit an intermediate region of ranks where the
decision weights are smaller than for best-ranked probabilities and
worst-ranked probabilities:

w(p)− w(0) ≥ w(p + r)− w(r) if r + p ≤ wrb

and

w(1)− w(1− p) ≥ w(r + p)− w(r) if r ≥ brb

See Figure 7.7.1’



Loss ranks

Recall Rank of outcome xi — The probability of receiving strictly
more than xi : pi−1 + ...+ p1 =

∑i−1
j=1 pj , for x1 ≥ x2 ≥ ... ≥ xn.

Loss rank of outcome xi — The probability of receiving strictly less
than xi : pi+1 + ...+ pn =

∑n
j=i+1 pj .

Loss-ranked probability pl — A pair (p, l) where p is the
probability of an outcome and l is its loss-rank, in a given prospect.

Consider a weighting function z for loss ranks and decision weights

π(pl) = z(p + l)− z(l),

the marginal contribution of the outcome to the loss-rank. RDU
can be re-written as∑n

i=1(z(pi + ...+ pn)− z(pi+1 + ...+ pn))U(xi ),



Loss ranks (2)

Should/can we set z = w?

Only if we are willing to assume that w is symmetric:

w(p) = 1− w(1− p)

We may not be willing to do so. (And why should we, considering
that w was defined for (gain-)ranks not loss-ranks?)

But we can use the above natural alternative notation if defining z
as the dual weighting function of w :

z(p) = 1− w(1− p)



Lecture 13: Prospect theory under risk



Gains and losses

Figure 8.1.1a

Figure 8.1.1b

Notice that RDU or EU need to change their components if choice
differs between a and b.



Asset integration versus narrow bracketing

Figure 8.1.1c

Isolation / mental accounting / narrow bracketing implies that
choice in b and c are identical.
Note that this is in accordance with additivity, which in turn is
equivalent to freedom from arbitrage (de Finetti).

But problems a and c are the same if things are added – asset
integration. The same consumption possibilities exist iff choice is
identical between a and c.

Most discussions argue for asset integration as the only rational (or
normatively sound) principle. Wakker (Ch. 8.2): the problem are
the risk attitudes.



Loss aversion

The reference point may be viewed as the point where risk
attitudes change discontinuously.
A separate role: Utilities from sure outcomes are also evaluated
differently: losses loom larger than gains—loss version.
E.g. with a reference point of 0, a given function u satisfying
u(0) = 0, and λ ∈ R+:

U(α) = u(α) for α ≥ 0

U(α) = λu(α) for α < 0

Loss aversion — Preferences are represented by RDU with the
above utility function and λ > 1.

Candidates for reference point:
(i) Status quo / initial wealth, and choice is framed as choice
between changes in wealth
(ii) Expectation (See e.g. Koszegi/Rabin 2005, 2006)



Reference dependence is more than a fixed initial wealth

Figure 8.1.1 questions that the reference point is known and fixed.

Most of decision theory views the reference point as fixed, for the
purpose for the present analysis.

Rabin (2000). Choose between 0 and 110.5(−10), for different
wealth levels.
Consistently rejecting the lottery implies that that U is concave to
an absurd extent.



Prospect theory — overview

Prospect theory (Tversky/Kahneman 1992) combines three
elements that we studied: utility curvature (diminishing outcome
sensitivity), probabilistic sensitivity and loss aversion.

For a fixed reference point (which is a gross simplification that may
or may not be misleading) PT is almost the same as RDU, with
the exception that it uses two weighting functions: one for gains,
one for losses.

PT involves symmetry/reflection around the reference point:
diminishing outcome sensitivity in gains and losses, and decision
weights that depend on the reference point.



Prospect theory — formal

For a given prospect p1x1...pnxn, assign labels 1...n and identify k
to satisfy the complete sign-ranking:

x1 ≥ ... ≥ xk ≥ 0 ≥ xk+1 ≥ ... ≥ xn

Consider a weighting function w+ that is applied only to outcomes
xk+1, ..., xn by weighting their gain-ranks, and another weighting
function w− that is applied to outcomes x1, ..., xk by weighting
their loss ranks. Decision weights are:

πi = π(p
pi−1+...+p1
i ) = w+(pi + ...+ p1)− w+(pi−1 + ...+ p1)

for i ≤ k, and

πj = π(pjpj+1+...+pn
) = w−((pj + ...+ pn)− w−(pj+1 + ...+ pn)

for j > k .



Prospect theory — formal (2)

Prospect theory — Under Structural Assumption 2.5.2, prospect
theory (PT) holds if there exist a strictly increasing utility function
U : R→ R with U(0) = 0 and two probability weighting functions
w+ and w− such that preferences over lotteries (p1 : x1, ...pn : xn)
with completely sign-ranked outcomes
x1 ≥ ... ≥ xk ≥ 0 ≥ xk+1 ≥ ... ≥ xn for some k ∈ {1, ..., n} are
represented by

PT (x) =
k∑

i=1

π(p
pi−1+...+p1
i )U(xi ) +

n∑
j=k+1

π(pjpj+1+...+pn
)U(xj),

where π(p
pi−1+...+p1
i )U(xi ) and π(pjpj+1+...+pn

) are given on the
previous slide.



Calculating the prospect theory value

See pages 255-256.



Typical U , w+ and w−

Figures 8.4.1, 7.1.2b.
For losses, preferences are often risk seeking but closer to risk
neutrality than for gains.

PT can acount for the typical pattern of (experimental) findings:

I risk averison for medium- and high-probability gains

I risk seeking for medium- and high-probability losses

I risk seeking for small-probability gains

I risk averison for small-probability losses

I λ > 1



Remarks on prospect theory

I Exercise 9.3.2: For a given prospect x define x+ as the
prospect that replaces all of x ’s negative outcomes by 0, and
x− as the prospect that replaces all of x ’s positive outcomes
by 0. Show that PT (x) = PT (x+) + PT (x−).

I For x = x+, PT coincides with RDU with w(p) = w+(p).

I For x = x−, PT coincides with RDU with w = 1−w−(1− p).

I Exercise 9.3.3: The decision weights need not sum to 1.



Lecture 14: Ambiguity preferences



The Ellsberg Paradox

 



The Ellsberg Paradox (2)

 



The Ellsberg Paradox (3)

Source — A set of events.

Source preference — For all events A from source A and all events
B from source B, it may be that

1A0 % 1B0 and 1AC 0 % 1BC 0

but it cannot be that

1B0 % 1A0 and 1BC 0 % 1AC 0.

Probabilistic sophistication — There exists a probability measure P
on S such that each event-contingent prospect is evaluated
according to its corresponding probability-contingent prospect.

The Ellsberg example shows a source preference and violates
probabilistic sophistication.



Overview of RDU under uncertainty

Decision weights for EU under uncertainty: events are assigned
(additive) probabilites P(E )
Decision weights for RDU under risk: ranked probabilities are
assigned w−transformed weights

Decision weights RDU under uncertainty: ranked events are
assigned (non-additive) W−transformed weights.

See p. 279 on piecing together and surprising lack of surprise.



Event weights

Under Structural Assumption 1.2.1, consider a prospect
x = (E1 : x1, ...En : xn), where outcomes are rank-ordered,
x1 ≥ ... ≥ xn.

Rank of outcome xj — The event of receiving an outcome strictly
better than xj , denoted by R = Ej−1 ∪ ... ∪ E1.

Ranked event — ER , a pair (E ,R) where R is event E ’s rank.

Event weighting function — W : 2S → [0, 1] is a weighting
function if W (∅) = 0, W (S) = 1 and [A ⊃ B ⇒W (A) ≥W (B)].

Decision weight π(ER) — The W -contribution of event E to the
rank: π(ER) = W (E ∪ R)−W (R).



RDU under uncertainty – formal

RDU under uncertainty (Choquet expected utility) — Under
Structural Assumption 1.2.1, rank-dependent utility (RDU) holds if
there exist a strictly increasing continuous utility function
U : R→ R and a weighting function W such that preferences over
prospects x = (E1 : x1, ...En : xn) (with x1 ≥ ... ≥ xn) are
represented by

RDU(x) =
∑n

i (W (Ei ∪ ... ∪ E1)−W (Ei−1 ∪ ... ∪ E1))U(xi )

=
∑n

i π(E
Ei−1∪...∪E1

i )U(xi )



RDU can accommodate the Ellsberg paradox

Example 10.3.1

Note: W has many degrees of freedom – hard to use in empirical
applications



Estimation of RDU

The measurements in Figure 4.1.1 and 4.1.2 are still valid:
U(αk)− U(αk−1) is constant in k . See Exercise 10.5.3.

With U measured, we can find the weights:

If α ∼ 1E0, then W (E ) = U(α)/U(1).



Pessimism and optimism

Pessimism — Worsening the rank increases the decision weight,
i.e. π(ER′) ≥ π(ER) whenever R ′ ⊃ R.

Optimism — Improving the rank increases the decision weight, i.e.
π(ER′) ≥ π(ER) whenever R ′ ⊂ R.

Exercise 10.4.2: Pessimism is equivalent to

W (A ∪ B) ≥W (A) + W (B)−W (A ∩ B)



Likelihood insensitivity
See Section 10.4.2 for a formulation of a likelihood insensitivity
[Brb,Wrb], involving a behavioral definition of ”revealed more likely
than”.

Example 10.4.3: As an extreme case of likelihood insensitivity,
consider the weighting where W (E ) = α for all E /∈ {∅, S} and
0 ≤ α ≤ 1.

The weighting implies for x = (x1 ≥ ... ≥ xn):

RDU(x) = αU(x1) + (1− α)U(xn)

(”α-Hurwicz criterion”)

Neo-additive weighting function — There exist (a, b) > 0 with
a + b < 1 and a probability measure P such that
W (∅) = 0,W (S) = 1 and W (E ) = b + aP(E ) for all other E .

With neo-additive weighting, we have:

RDU(x) = b sups∈SU(x(s)) + aEU(x) + (1− a− b)infs∈SU(x(s))



Sets of probabilities

RDU with probability intervals — There exists α and for each
event E there exists an interval IE of probabilities such that:

W (E ) = αinf (IE ) + (1− α)sup(IE )

More popular, and related – but not a special case of RDU:
Multiple priors (Gilboa/Schmeidler (1989)).

Maxmin expected utility — There exists a convex set C of
probability measures (priors) on S, and preferences are represented
by:

MEU(x) = infP∈CEUp(x)



Behavioral foundation of RDU under uncertainty

Theorem 10.5.6 — Under Structural Assumption 1.2.1, the
following two statements are equivalent.

1. RDU holds with continuous and strictly increasing U(·).

2. % satisfies weak ordering, monotonicity, continuity, and
rank-tradeoff consistency.

(Essentially the same as Theorem 6.5.6 for RDU under risk, except
that rank-tradeoff consistency is now defined for ranked events, not
ranked probabilities.)
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