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Abstract. This paper introduces source theory, a new theory for decision under ambiguity 
(unknown probabilities). It shows how Savage’s subjective probabilities, with source- 
dependent nonlinear weighting functions, can model Ellsberg’s ambiguity. It can do so in 
Savage’s framework of state-contingent assets, permits nonexpected utility for risk, and 
avoids multistage complications. It is tractable, shows ambiguity attitudes through simple 
graphs, is empirically realistic, and can be used prescriptively. We provide a new tool to 
analyze weighting functions: pmatchers. They give Arrow–Pratt-like transformations but 
operate “within” rather than “outside” functions. We further show that ambiguity percep
tion and inverse S probability weighting, seemingly unrelated concepts, are two sides of 
the same “insensitivity” coin.
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1. Introduction
Many decisions, from job choice to investment decisions 
to medical decisions, involve choices between uncertain 
alternatives. Since Savage (1954), decision analysis mod
els uncertainty using expected utility (EU). Under EU, 
decisions can be rationalized by subjective beliefs. The 
Ellsberg (1961) paradox challenged EU, both norma
tively and descriptively (Trautmann and van de Kuilen 
2015, Gilboa and Marinacci 2016). It showed that people 
are ambiguity averse and behave as if they trust their 
subjective probabilities under ambiguity less than the 
objective probabilities under risk.

This paper presents a new theory of ambiguity: source 
theory (ST). It shows how probability weighting func
tions can be used to analyze uncertainty and ambiguity. 
For example, suppose that a manager has to compare the 
quality of production components that can be obtained 
from a local supplier or a foreign supplier, where the 

only concern is possible mechanical failure. She may spe
cify her beliefs about such failures, and those beliefs may 
be the same for the two suppliers. She may still strictly 
prefer the local supplier because of familiarity. ST allows 
the beliefs for the two suppliers to be expressed by sub
jective probabilities, which may be the same. Given iden
tical outcomes, classical EU then cannot explain the strict 
preference. ST can by using different probability weight
ing functions (i.e., more pessimistic for the foreign sup
plier than for the local supplier).

We show that (i) contrary to current thinking, am
biguity can be tractably analyzed in the Savage (1954) 
framework for uncertainty; (ii) ST gives a theoretical 
foundation to the empirically popular source method 
and makes it suitable for prescriptive applications; (iii) 
ST can model source preference, which generalizes ambi
guity aversion; (iv) ST can also model insensitivity, 
which captures ambiguity perception, is empirically 
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necessary, and for instance, can explain underpreven
tion; and (v) ST can be applied to all (natural) sources of 
uncertainty, not just (artificial) urns.

Section 2 reviews the insights, debates, and challenges 
in the literature and gives the background and motiva
tion for our approach. It also provides applications of ST. 
Standard concepts are in Section 3. Section 4 formalizes 
the theoretical framework underlying ST, including 
sources. We then define source preference and source 
insensitivity. We do so in both a comparative (Section 5) 
and an absolute (Section 6) sense. Section 7 obtains our 
first main result, Theorem 1, a preference foundation 
of ST.

Section 8 shows that pmatchers provide proper tools 
to analyze uncertainty attitudes under ST. The pmatchers 
map subjective probabilities, formally called a-neutral, of 
one source into gambling-equivalent (same willingness 
to bet) a-neutral probabilities of another source. Our 
other main results, Theorems 2 and 3 in Section 8, show 
that under ST, source preference is equivalent to a dis
liked (roughly, lower) pmatcher, and insensitivity of 
sources (ambiguity perception) is equivalent to an in
sensitive (inverse S-shaped) pmatcher. Gutierrez and 
Kemel (2024) applied pmatchers empirically and showed 
their usefulness. We axiomatically justify their choice. 
Section 9 highlights the tractability of ST. Calculations are 
easy, and plots of pmatchers allow us to visually display 
ambiguity attitudes (see Figure 1 in Section 9). Section 10
discusses related frameworks, and Section 11 concludes. 
Proofs are in Appendix B. Technical details and further 
references are in the Online Appendix.

2. History and Motivation
Ambiguity is central in decision under uncertainty. 
There are many ambiguity theories (Gilboa and Mari
nacci 2016). Most use the Anscombe and Aumann (1963) 
framework, which simplifies the mathematical analysis 
but makes assumptions that restrict its applicability (Sec
tion 10). The Savage (1954) framework avoids these 
restrictions but has been considered too complex for for
mal analyses of ambiguity. Thus, Karni et al. (2022, p. 
229) wrote: “Savage’s most brilliant measure-theoretic 
approach was not so easily extended beyond its original 
domain and this was a main reason why so little hap
pened in the field for decades after his 1954 masterpiece.”

By contrast, the Savage framework has often been 
used in empirical applications of the source method 
(Einhorn and Hogarth 1985, Abdellaoui et al. 2011) 
(see Online Appendix D.1 for further references). This 
method assumes that subjective probabilities exist within 
sources of uncertainty. However, agents use different 
weighting functions to evaluate subjective probabilities 
across sources. For example, in the Ellsberg paradox, 
people prefer betting on an urn with a known composi
tion to betting on an urn with an unknown composition. 

Classical (nonweighted) subjective probabilities cannot 
explain this behavior. The source method explains it by a 
more pessimistic weighting function for the unknown 
urn than for the known urn.

The source method has been suggested since the 
origins of the ambiguity literature (Fellner 1961, p. 672; 
Kahneman and Tversky 1979, p. 289). It can analyze any 
type of uncertainty, not just artificial urns, making it suit
able for the analysis of real-world problems, which often 
involve choices between different ambiguous alterna
tives. For example, the home bias in finance means that 
people systematically prefer to invest in domestic stocks 
over foreign stocks. Both investments are ambiguous, 
but investors prefer one source of uncertainty to the 
other. This source preference can be modeled by a differ
ent, more pessimistic weighting function for foreign 
stocks than for domestic stocks.

Despite its wide empirical use, the source method has 
not yet received a theoretical foundation. There has not 
yet been a formal definition (our Definition 1), there has 
been no preference foundation (our Theorem 1), and 
there has not been a way to characterize people’s 
source preference. Surveys of ambiguity theories have not 
mentioned it (Karni et al. 2014, Machina and Siniscalchi 
2014, Gilboa and Marinacci 2016). Because of the lack of 
a theoretical foundation, the source method has not been 
used in prescriptive applications or subjected to critical 
empirical tests. It may come as a surprise that such 
a widely applied empirical method lacks theoretical 
modeling. This absence is because of the aforementioned 
perceived difficulty of applying Savage’s framework to 
formal analyses of ambiguity.

ST gives a theoretical basis for the source method. We 
give a preference foundation for ST and for its main atti
tudinal components. Preference foundations are consid
ered necessary for prescriptive applications. Expected 
utility obtained a normative status only after the Savage 
(1954) behavioral foundation, allowing decision analysis 
to thrive. We give theoretical credibility to the source 
method and make it prescriptively applicable (for non- 
Bayesians): for instance, in climate change, the biggest 
field of prescriptive applications of ambiguity today 
(Berger et al. 2017, Chandy et al. 2019). After measuring 
preferences with the source method, we can study their 
properties and judge their normative appeal.

Besides theoretical soundness, empirical testability, 
and the normative status of a model, preference founda
tions also show the key concepts to be measured, such as 
the Savage (1954) subjective probabilities or the Gilboa 
and Schmeidler (1989) sets of priors. Our theorems show 
that pmatchers are the key concept for ambiguity. For 
example, they can capture the Ellsberg paradoxes, the 
home bias (French and Poterba 1991, footnote 4), and the 
competence effect (i.e., how one’s perceived level of 
knowledge about a source of uncertainty influences 
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choices (de Lara Resende and Wu 2010, definition 3 and 
equation 1.1). In general, the source method gave good 
explanatory power for effort provision (Chen and Zhong 
2024, equation 3 and prediction 2), belief updating (Bail
lon et al. 2018b, equation 2), game theory (Ivanov 2011, 
p. 367, the fourth paragraph and assumption 1), and 
many other applications (Online Appendix D.1).

We give behavioral foundations of two components 
of uncertainty attitudes. The first captures aversion/ 
preference. Ambiguity aversion in the Ellsberg paradox 
is a special case of source preference, for a risky source 
over an ambiguous source. The second component is 
insensitivity. Under ambiguity, people struggle to dis
criminate between different levels of likelihoods. In the 
extreme, they treat all nondegenerate likelihoods as 
50/50. Insensitivity captures ambiguity perception (Bail
lon et al. 2018b) and adds a subjective element, namely 
cognitive ability.

Aversion and insensitivity have distinct implications. 
The home bias is an example of source preference for 
domestic over foreign stocks. Insensitivity can explain 
why people are reluctant to take measures toward cli
mate change. If people do not sufficiently distinguish 
changes in likelihood, then they underestimate the bene
fits of climate measures. Aversion cannot explain such 
underestimation because it favors reductions of uncer
tainty. Extreme insensitivity leads people to only value 
measures that fully eliminate threats and to dismiss all 
other mitigation measures.

Insensitivity has received much attention in the recent 
literature (Trautmann and van de Kuilen 2015). Many 
studies measured it and showed its relevance for real-life 
decisions (Dimmock et al. 2016, Watanabe and Fujimi 
2024) (Online Appendix D.2). However, no mathemati
cal tools to analyze insensitivity have been provided in 
the literature as yet. This paper is the first to define insen
sitivity formally. The analysis is, admittedly, complex 
but is necessary for applications. Our Theorems 1 and 4
show that insensitivity is also indispensable to model 
ambiguity theoretically. The problems of insensitivity 
should be delt with rather than ignored.

3. Basic Definitions
S denotes a state space. Its subsets are events.1 Later 
assumptions imply that S is infinite. A weighting function 
W is defined on all events and satisfies W(∅) � 0, 
W(S) � 1, and A ⊃ B⇒W(A) ≥W(B). Probability mea
sures P are weighting functions that satisfy additivity. 
Following Savage (1954), we do not impose countable 
additivity on probability measures.
Γ denotes a set of consequences, or outcomes, and can 

be finite or infinite. We assume that all outcomes are 
gains, leaving reference dependence to future studies. 
An act maps S to Γ and is finite valued. We denote acts 
by x � (E1 : x1, : : : , En : xn), mapping every s ∈ Ej to 

xj ∈ Γ. It is implicit in this notation that the Ej’s partition 
S and that the xj’s are outcomes. Further, αEβ denotes 
(E : α, Ec : β). A preference relation � of an agent is given 
over acts, with � , ≻, ⋏, and ~ as usual. We assume that 
� is a weak order (transitive and complete). As usual, 
we identify constant acts with outcomes so that � also 
denotes a preference relation over outcomes.

We assume biseparable utility with a utility function U :

Γ→ R and a weighting function W such that preferences 
over binary acts γEβ, with γ�β, maximize

W(E)U(γ) + (1�W(E))U(β): (1) 

An event is null if its outcomes never affect preference. 
We assume that � satisfies strong monotonicity: strictly 
improving an outcome of an act on a nonnull event 
strictly improves the act.

In Equation (1), W(E) is called the decision weight of 
event E when ranked best (i.e., when yielding the best out
come(s)). We interpret it as the share of the agent’s atten
tion given to event E if it is ranked best. We sometimes 
denote it as πb(E) or πb for short if E is understood. The 
complementary share of attention, 1�W(E), is the deci
sion weight of event Ec when ranked worst (yielding the 
worst outcome(s)), also denoted πw(Ec) or πw for short if 
Ec is understood. For acts (E1 : x1, : : : , En : xn) with more 
than two outcomes x1 ≻⋯≻ xn there are “middle” 
events with neither best nor worst outcomes. The 
remaining share of attention is divided among them. 
Empirical studies usually find that the attention paid to a 
fixed event Ei when ranked middle is approximately 
constant (even though theoretically, it could depend 
on several aspects of the act). In informal interpreta
tions, we, therefore, sometimes use the term “middle” 
attention/weight πm(Ei) without further specification or 
πm. The preference conditions defined later will specify 
all comparisons between πb, πm, and πw, and later theo
rems will confirm that these comparisons capture 
the relevant aspects for uncertainty and ambiguity 
attitudes.

Rank-dependent utility (RDU; or Choquet expected util
ity), a special case of biseparable utility, holds if 
(E1 : x1, : : : , En : xn), with x1 � ⋯ � xn, is evaluated by 
Pn

j�1πjU(xj) with πj �W(Ej∪⋯∪E1)�W(Ej�1∪⋯∪E1); 
here, π1 �W(E1) � πb(E1). Expected utility (EU) holds if, 
further, W is a probability measure. EU holds if and only 
if the decision weight of a fixed event is the same for all 
acts: in particular, when ranked best or worst. This 
weight is then always the probability of that event. 
Deviations from EU are characterized by the way in 
which the decision weight of a fixed event varies over 
different acts. We analyze and interpret uncertainty atti
tudes from this perspective.

For events A, B, we define A � B (A is preferred to B) if 
γAβ�γBβ for some γ ≻ β. Under biseparable utility, � is 
represented by W, implying that it is a weak order, and 
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the preference is the same for all γ ≻ β (Savage 1954, con
dition P4). The event interval [E, G] contains all events F 
with W(E) ≤W(F) ≤W(G) (i.e., E � F � G). The Archime
dean axiom holds if there is no infinite sequence of disjoint 
nonnull events E1, E2, … with Ei ~ Ej for all i, j. The 
axiom is necessary and not restrictive in uniform sources 
(defined later), the main topic of this paper. For simplic
ity, we assume it throughout.

The function πw(E) � 1�W(Ec) is called the dual of 
W. Although duality is not needed in our formal analy
sis, it facilitates conceptual understanding. Insensitivity 
conditions defined later always involve two conditions 
that are, in fact, one condition but imposed both on the 
weighting function and its dual.

We assume the Gilboa (1987) Savage-type richness: (i) 
There are at least three nonequivalent outcomes. (ii) con
vex rangedness holds: for all events A ⊂ C and W(A) ≤ µ
≤W(C), there exists A ⊂ B ⊂ C with W(B) � µ. RDU (i.e., 
prospect theory for gains) is the primary model of inter
est for our analysis. Intuitive discussions that need speci
fic models will be targeted to this model.

Our formal results are valid under all special cases of 
biseparable utility that besides rank-dependent utility/ 
Choquet expected utility for uncertainty (Gilboa 1987, 
Schmeidler 1989, Tversky and Kahneman 1992 for 
gains), include various multiple prior models, such as 
α-maxmin EU (Ghirardato et al. 2004) and its special 
cases of maxmin EU (Gilboa and Schmeidler 1989), Hur
wicz expected utility (Gul and Pesendorfer 2015), and 
neoadditive utility (Chateauneuf et al. 2007). For risk, 
which we take as a special case of uncertainty and as 
part of our model, our results are valid under most of the 
popular models (Wakker 2010, observation 7.11.1).

4. Source Theory
We first formalize the concept of a source. Formally, 
sources are algebras of events. Uncertainty attitudes may 
differ for different sources. For instance, Tversky and 
Fox (1995) showed that basketball fans are ambiguity 
averse for Ellsberg urns but ambiguity seeking for bas
ketball games. Such findings illustrate that ambiguity 
theories have to reckon with source dependence. Our 
formal results will always assume that weighting func
tions satisfy convex rangedness when restricted to 
sources. That is, we only consider “rich” infinite sources. 
We sometimes use finite sources in illustrations. An act x 
is from a source if it is measurable w.r.t. (with respect to) that 
source (i.e., x�1(α) is in the source for each outcome α).

In principle, our results can be applied to any algebra 
of events, taking it as a source. In applications, people 
will usually specify sources that are of special interest to 
them, and then, sources are exogenous. In the Ellsberg 
paradox, they are also exogenous, determined by infor
mation about urns irrespective of preference. Therefore, 
sources will mostly be exogenous, similar to 

commodities in consumer theory, and this is our primary 
interpretation. Other authors have preferred endogenous 
interpretations of sources. Most of our results concern 
uniform sources (defined later), which can be taken as 
endogenous. Observation 5 lists the related results, valid 
if sources are endogenous and if they are exogenous. 
Grant et al. (2022) adopted a similarly flexible interpreta
tion of sources.

We sometimes, but not always, assume that a special 
source, called risk and denoted R, is present. For R, 
probabilities of its events R are known, denoted K(R). 
Risky acts are acts from that source. We then assume sto
chastic dominance; that is, for P � K and all risky acts x, y:

[for all α ∈ Γ : P(x �α) ≥ P(y �α)] ⇒ x � y: (2) 

It implies that risky acts that induce the same probability 
distribution over outcomes are indifferent (apply Equa
tion (2) both ways). In other words, preferences over 
risky acts depend only on the probability distribution 
that they induce over outcomes. We usually identify 
risky acts with their induced probability distributions. 
We call w a probability weighting function if w : 0;1[ ]

→ [0;1], w is strictly increasing, w(0) � 0, and w(1) �1. 
Our assumptions imply Observation 1.

Observation 1. For R, there exists a unique continu
ous probability weighting function w such that for all 
risky events R,

W(R) � w(K(R)): (3) 

Because R1 � R2 � K(R1) ≥ K(R2) for risky events R1 
and R2, we can rewrite Equation (2) for risky acts x, y as

[for all α ∈ Γ : {s ∈ S : x(s)�α}� {s ∈ S : y(s)�α}]

⇒ x � y: (4) 

Cumulative dominance holds if Equation (4) also holds for 
all acts x, y that are not risky. We assume cumulative 
dominance throughout the paper.

A source S is uniform if there exists a probability mea
sure PS on S such that Equation (2) holds with P � PS 

for all acts x, y from that source.

Definition 1. Source theory holds for S if besides bise
parable utility holding for S, S is uniform.

Uniformity has sometimes been called local probabi
listic sophistication. Theorem 1 will explain our term 
“uniform.” In the definition, PS may concern subjective 
probabilities, or it may merely be a mathematical device 
without any particular interpretation. Risk is a special 
case of uniformity. As with risk, preferences over acts 
from a uniform source S are entirely determined by the 
probability distributions over outcomes induced by PS 

under ST, but they depend on the source S. Conse
quently, as for risk, we can define a continuous source- 
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dependent probability weighting function wS under ST 
such that we have:

for a uniform S : W � wS ◦PS: (5) 

The proof is identical to Observation 1 and is omitted. 
We call wS the source function of S. w � wR is the source 
function for risk. The source S is ambiguity neutral if it is 
uniform, the risky source R is present in the domain of 
events, and wS � w. That is, the probabilities PS are trea
ted as if objective. An agent is ambiguity neutral if the 
algebra of all events is ambiguity neutral. In general, for 
any uniform source S, we call PS the a-neutral probability 
measure because it would serve as a regular, objective 
probability measure had the agent been ambiguity neu
tral (with unchanged risk attitude).

Chew and Sagi (2008) demonstrated the importance of 
uniformity for ambiguity and thus, “revived” the use of 
probabilities to analyze ambiguity. ST combines this 
insight with the classical idea of probability weighting 
for ambiguity.

S is an EU source, or expected utility holds in S, if EU 
represents preferences over all acts from S. Then, the 
source is uniform, and wS is the identity function. EU for 
risk thus means that w is the identity. We summarize the 
assumptions made so far. They are assumed explicitly in 
theorems and implicitly elsewhere. Section 10 discusses 
behavioral foundations of biseparable utility. Using 
those, we can obtain a complete behavioral foundation 
of ST and of our other results.

Assumption 1 (Structural Assumption). S is a state space 
with subsets events, and Γ is an outcome set. Acts x � (E1 :

x1, : : : , En : xn) are finite-valued maps from S to Γ, endowed 
with a weak order � , the preference relation. Γ contains at 
least three nonindifferent outcomes, and the Archimedean 
axiom holds. Sources are subalgebras of events. Biseparable 
utility holds, with a utility function U : Γ→ R, a weight
ing function W on S, and a representation W(E)U(γ) +
(1�W(E))U(β) over binary acts γEβ (γ�β). W is convex 
ranged for every source. The relation � is extended to out
comes via constant acts, maximizing U, and to events via 
bets on them, maximizing W. Strong monotonicity, cumu
lative dominance, and the Archimedean axiom hold.

5. Comparative Uncertainty and 
Ambiguity Attitudes

This section analyzes the main novelty of uncertainty 
relative to risk: within-person between-sources compari
sons. This was a big but not always sufficiently appreci
ated novelty in Ellsberg (1961).

5.1. Introduction
We take risk as a single source of uncertainty, partly for 
tractability reasons. The domain of ambiguity, however, 
is too rich to be taken as one single source, similarly as 
the domain of nonmonetary commodities is too rich to 

be taken as one. Therefore, we distinguish between dif
ferent sources of ambiguity. This leads to within-person 
between-sources comparisons.

We consider comparisons between two sources A and 
C. Although our analysis is symmetric between the 
sources, an asymmetric presentation is more convenient. 
In elucidations, we take C as an established source used 
for calibration and A as a new source to be compared 
with C. Ambiguity concerns the special case of C �R. 
Generic elements of A are A, Ai, Aj, and those of C are 
C, Ci, Cj.

The preference conditions introduced next completely 
cover all comparisons between best-, middle-, and 
worst-rank decision weights πb,πm,πw: source dispre
ference concerns πb losing more weight than πw (Sec
tion 5.2), and insensitivity concerns πm losing more 
weight than either πb or πw (Section 5.3). Theorems 1
and 4 will further suggest that the two conditions com
pletely capture uncertainty attitudes.

5.2. Source Preference
We first consider changes in decision weights for two
fold partitions (A1, A2) and (C1, C2) with πb(A1) �

πb(C1):
2 It means πw(A2) � πw(C2) so that the two parti

tions involve the same decision weights. We call such 
twofold partitions matching. If C �R, then K(C1) is the 
matching probability of A1. It is the gambling-equivalent 
objective probability of A1.

Definition 2. (Source) preference for C over A holds, or 
C is preferred to A, if for all partitions (C1, C2) from C 

and (A1, A2) from A, we have

W(A1) �W(C1) ⇒W(A2) ≤W(C2): (6) 

Thus, if in the two matching partitions we change the 
ranks of A2 and C2 from worst to best, then W(A2) �

πb(A2) < πb(C2) �W(C2) may occur, whereas we had 
πw(A2) � πw(C2). It means that A2 loses more weight 
than C2 (or gains less weight) when becoming best. 
There is less attention for favorable events, and more for 
unfavorable events, for source A than for source C, lead
ing to more dislike of A. Formally, source preference (or 
preference for short) for C over A allows for such 
inequalities but precludes any reversed inequalities.

The Ellsberg two-color paradox illustrates source pref
erence for known urns over unknown urns, where we 
recall that W captures the preference for gambling on 
events. Assume that winning on red (A1) from an urn 
with an unknown composition but symmetric in its two 
colors, red and black, is indifferent to winning on red 
from a known urn (C1) with 45% red balls so that 0.45 is 
the matching probability of A1 and by symmetry, also of 
A2. The complementary C2 (winning on black from the 
known urn: 55%) will then be preferred to winning on 
black from the unknown urn (A2) as in Equation (6).
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Source indifference means source preference both ways. 
We then also say that the two sources are equally preferred. 
The most well-known case of source preference is ambi
guity aversion. Definitions of absolute ambiguity atti
tudes follow by comparisons to risk.

Definition 3. Ambiguity aversion holds for source A if 
the risky source R is preferred to A. Ambiguity aver
sion holds if it holds for the source of all events.

Ambiguity seeking is the opposite: source preference for 
A over R. Ambiguity indifference for source A means that 
there is both ambiguity aversion and ambiguity seeking 
for A. Then, A is equally preferred as R. Comparative 
results for ambiguity and uncertainty coincide: source 
preference for source C over source A is the same as more 
ambiguity aversion for A than for C.

Given the richness and monotonicity that we assume, 
source preference for C over A is equivalent to the fol
lowing condition (Appendix A):

W(A1) ≥W(C1) ⇒W(A2) ≤W(C2): (7) 

Similar conditions have been used in many models in 
the literature.

5.3. Insensitivity
Besides source preference (including ambiguity aver
sion), which is a motivational component, uncertainty 
attitudes also include a cognitive component, insen
sitivity, which reflects a lack of discriminatory power. 
The behavioral implication of insensitivity is extremity 
orientedness, focusing on extreme events rather than 
middle events.3 Such focusing moves the perfectly linear 
perception of likelihood in expected utility in the direc
tion of a flat default of “just don’t know” in the middle, 
where middle events become one blur.

Many ambiguity models in the literature contain a 
component of ambiguity perception determined by per
ceived vagueness of information (Marinacci 2015). For 
instance, the size of the set of priors in the α-maxmin 
model can be interpreted this way. Increasing the set 
of priors increases insensitivity, with more weight for 
extreme events. Our insensitivity component generalizes 
ambiguity perception by allowing dependence on the 
agent’s cognitive ability, a subjective factor. Baillon et al. 
(2018a) and many other studies (Online Appendix D.3) 
have shown that, empirically, insensitivity does indeed 
depend on cognitive ability. Hence, for empirical work, 
this subjective generalization of ambiguity perception is 
desirable. For risk, where vagueness of probabilities does 
not play any role, insensitivity leads to inverse S-shaped 
probability weighting, and this is the prevailing empiri
cal pattern (Fehr-Duda and Epper 2012). Gonzalez and 
Wu (1999, pp. 136–139) provided an excellent explana
tion of insensitivity for risk. Insensitivity is stronger 
under ambiguity (Trautmann and van de Kuilen 2015)4

as it is reinforced by the perceived uncertainty about the 

probabilities. Thus, our insensitivity component brings 
together ambiguity perception and inverse S probability 
weighting. Henkel (2024) found a strong empirical 
relation between these concepts. Wakker (2010, p. 292) 
provided a detailed discussion of insensitivity for uncer
tainty, and for risk (Wakker 2010, section 7.9). Many 
papers have shown its empirical and practical relevance 
(end of Section 2).

For insensitivity, we compare middle events with 
extreme events. To consider middle events, we need 
threefold partitions (A1, A2, A3) and (C1, C2, C3). We con
sider partitions where πb(A1) � πb(C1) and πw(A3) �
πw(C3). Then, the remaining share of attention, infor
mally denoted πm � 1�πb�πw, will also be the same 
for the two partitions, and the partitions involve the 
same decision weights. We, therefore, also call such 
threefold partitions matching.

The following condition entails that changing middle 
weights πm to extreme weights πb or πw involves more 
gain of weight in the source with more insensitivity. The 
insensitivity region [B, D] below serves to ensure, 
through the inequalities involving the events in the pre
mises, that middle events are really middle and not (too 
close to) best or worst. For instance, consider Equation 
(8) below, comparing the change from πm(A2) to πb(A2)
with the change from πm(C2) to πb(C2). Here, πm(A2)
and πm(C2) were calibrated to be equal so that they can
cel in the comparison, and we can directly compare 
πb(A2) �W(A2)with πb(C2) �W(C2). Then, the inequal
ity with W(D) ensures that the worst events A3 and C3 
are big enough to separate A2 and C2 when middle from 
being (close to) worst. This way, we avoid comparisons 
between πb’s and πw’s (which concern source prefer
ence). Below, Equation (9) is Equation (8) but applied to 
the dual of W.

Definition 4. Source A is more insensitive than source 
C with insensitivity region [B, D] if for all partitions 
(C1, C2, C3) from C and (A1, A2, A3) from A:

W(A1) �W(C1)& W(Ac
3)

�W(Cc
3) ≤W(D) ⇒W(A2) ≥W(C2) (8) 

and

W(B) ≤W(A1) �W(C1)& W(Ac
3)

�W(Cc
3) ⇒W(Ac

2) ≤W(Cc
2): (9) 

Thus, for A, there is more focus on extreme events 
(i.e., more insensitivity), with A2 gaining more weight 
than C2 when turning from middle to extreme (best in 
Equation (8) and worst in Equation (9)). A verbal state
ment of Definition 4 is as follows: assume two threefold 
matching partitions. If a middle event changes rank with 
an extreme event, where it is safely bounded away from 
the other extreme, then more weight is gained as there is 
more insensitivity.
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To illustrate Definition 4, consider source A, the varia
tion of a stock index in a given hour, and source C, the 
result of rolls of two 10-sided dies giving a number 
between 0 and 99. Baillon et al. (2018a) found, on aver
age, indifference between A1 � “the index decreases by 
strictly more than 0.2%” and C1 � “the die falls on 38 or 
less” and also, between Ac

3 � “the index either increases 
by less than 0.2% or decreases” and Cc

3 � “the die falls on 
64 or less.” Subtracting C1 from Cc

3 has a clear impact, 
giving event C2 (die: 39–64) with only 26 chances of win
ning. However, subtracting the ambiguous A1 from the 
larger but still ambiguous Ac

3, giving the ambiguous 
event A2 (�0:2% ≤ index change ≤ 0:2%), will be felt less 
clearly, yielding a preference to bet on the vaguely small 
A2 rather than on the clearly small C2.

The inequality W(Cc
3) ≤W(D) in Equation (8) pre

cludes cases such as C3 � A3 � ∅, in which case C2 and 
A2 would actually be ranked worst in the matching parti
tions and not be genuinely middle. In fact, we would 
then have twofold partitions and would observe source 
preference. Within the insensitivity region [B, D], there 
will be less discriminatory power, with W shallower for 
A than for C events. The larger [B, D] is, the more restric
tive and informative the above definition is. Empirically, 
we can usually take events B and D with matching prob
abilities 0:05 and 0:95, which are strong enough for most 
applications. We can often even take B empty.

Definition 5. Ambiguity-generated insensitivity (a-insen
sitivity) holds for source A if it is more insensitive than 
R (w.r.t. insensitivity region [B, D])); a-insensitivity 
holds if there is a-insensitivity for the source of all 
events (w.r.t. insensitivity region [B, D]).

Comparative results for ambiguity and uncertainty 
again coincide: more a-insensitivity for A than for C is the 
same as more insensitivity.

6. Absolute Uncertainty Attitudes
Absolute conditions follow from comparative condi
tions by choosing a neutrality point. Before, we chose 
the risk source as the neutrality point for ambiguity. 
The following proposition, which readily follows from 
substitution, suggests that EU sources are natural neu
trality points for general uncertainty. The proposition 
guarantees that it does not matter which EU source is 
selected as neutrality source.

Proposition 1. Any two EU sources are equally preferred 
and equally insensitive with the maximal insensitivity 
region [∅, S].

We now apply the comparative Definition 2, taking 
EU sources as the neutrality point: source preference holds 
for A (in an absolute sense) if there exists an EU source C 

such that A is preferred to C. By Proposition 1, this then 
holds for all EU sources C (i.e., it is independent of which 

C is chosen).5 The existence clause regarding C may still 
seem to be problematic for empirical purposes: how to 
find any such C? Fortunately, substitution in Equation (6) 
readily shows (using W(C2) � 1�W(C1) � 1�W(A1)) 
that the condition is equivalent to

W(A) ≥ 1�W(Ac) for all A ∈A: (10) 

Thus, no specification of any EU source C is needed after 
all. The definition is extended this way if no EU source C 

is available in the preference domain.
Unfortunately, there is no convenient verb related to 

source preference. Hence, we formally say that A is liked 
and that the restriction of W to A is liked if Equation (10) 
holds. W is liked if Equation (10) holds for all events A. 
Disliked results from reversed inequalities.

We use the same approach for insensitivity, applying 
the comparative Definition 4 with EU sources as neutral
ity points. Source A and also W’s restriction to A are 
insensitive with insensitivity region [B, D] (in an absolute 
sense) if there exists an EU source C such that A is more 
insensitive than C with insensitivity region [B, D]. Again, 
by Proposition 1, this then holds for all EU sources C (i.e., 
it is independent of which C is chosen). Substitution 
in Equation (8) readily shows (using W(C2) �W(Cc

3)�
W(C1) �W(Ac

3)�W(A1) in Equation (8), with dual 
equalities in Equation (9)) that the condition is equiva
lent to:

W(A2) ≥W(A1 ∪ A2)�W(A1)

whenever W(A1 ∪ A2) ≤W(D) (11) 

and

1�W(Ac
2) ≥W(A1 ∪ A2)�W(A1)

whenever W(A1) ≥W(B) (12) 

for all partitions (A1, A2, A3) from A.
Again, no specification of an EU source C is needed, and 
the definition is extended this way.

The inequalities compare the decision weight of A2 
when ranked middle and when ranked extreme, safely 
bounded away from the other extreme. The conditions 
ensure that W is shallow and “insensitive” for events in 
A between B and D (i.e., on the insensitivity region 
[B, D]). Equation (11) (and similarly, Equation (13) 
below) without the boundary restriction (W(A1 ∪ A2)
≤W(D)) is sometimes called subadditivity. Insensitivity 
amounts to imposing subadditivity and its dual but 
imposing boundary conditions to avoid that the two con
ditions “bite” each other.

For risk, w is liked if w(p) ≥ 1�w(1� p) for all p and 
disliked if the reversed inequality holds. Further, w is 
insensitive with insensitivity region b, d[ ] (0 ≤ b < d ≤ 1) if 
for all probabilities p1, p2, p3 summing to 1:

w(p2) ≥ w(p1 + p2)�w(p1) whenever p1 + p2 ≤ d (13) 
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and

1�w(p1 + p3) ≥ w(p1 + p2)�w(p1) whenever p1 ≥ b:
(14) 

For w, the insensitivity region b, d[ ] is a subinterval of the 
reals. If risk is available as a source with objective proba
bility measure K, then E b, d[ ] denotes the corresponding 
event interval [B, D] (i.e., K(B) � b and K(D) � d). In 
other words, it contains the events with matching proba
bilities between b and d.

7. A Behavioral Foundation of Source 
Theory and Its Main Attitudinal 
Comparisons

Preference conditions to capture the aforementioned 
comparative properties readily follow because all condi
tions were in terms of inequalities and equalities for W 
that immediately translate into preferences and indiffer
ences between events. We, therefore, use the same terms. 
Source preference holds for C over A if for all partitions 
(A1, A2) from A and (C1, C2) from C:

A1 ~ C1⇒ A2 � C2: (15) 

There is more insensitivity for source A than for source C 

(or A is more insensitive than C) with insensitivity region 
[B, D] if for all partitions {C1, C2, C3} from C and 
{A1, A2, A3} from A,

A1 ~ C1 & Ac
3 ~ Cc

3 � D⇒ A2 � C2 (16) 

and
B � A1 ~ C1 & Ac

3 ~ Cc
3⇒ Ac

2 � Cc
2: (17) 

Again, the left-hand side of Equation (16) specifies that 
A2 and C2 have the same weight when ranked middle 
and that they are safely bounded away from the 
extreme/worst rank because the worse A3 and C3 are 
big enough. The right-hand side then specifies that A2 
gains more weight than C2 when moved from the mid
dle to the other extreme (the best) rank. Equation (17) is 
the same condition imposed dually. Again, when com
paring with one extreme, one bounds away from the 
other extreme. The following result trivially follows from 
substitution.

Observation 2. W shows more source preference (or 
insensitivity) for one source over another if and only 
if preferences do.

We further have Observation 3.

Observation 3. The source preference and source 
insensitivity relations are transitive. For insensitivity, 
the new insensitivity region is the intersection of the 
other two.

Two sources are equally preferred or equally insensitive 
if the comparative relations hold in both directions. In 

several results presented later, insensitivity regions 
should be large enough to avoid triviality. An insensitivity 
region B, D[ ] is regular for source S if for every fourfold 
partition (E1, E2, E3, E4) of S from S, we have Ej � B and 
Ec

j � D for at least one j. Intuitively, the region should cap
ture at least the middle half of the event domain. If we 
take S uniform and B and D from S, then PS(B) ≤ 1

4 ≤
3
4 ≤

PS(D) follows (take PS(Ej) �
1
4 for all j). Empirically, 

insensitivity regions are commonly found to be larger.
Under the assumption of EU for risk (or another 

source), commonly made in the literature on ambiguity, 
the absolute conditions can readily be obtained by apply
ing Observation 2 to comparisons with those EU prefer
ences. How to obtain a tractable general behavioral 
foundation of these conditions in general without assum
ing EU for risk, is an open question to us. We are now 
ready for our first main result, a preference foundation 
of ST.

Theorem 1. Under structural Assumption 1, the following 
two statements are equivalent for a source S. 

i. Source theory (Definition 1) holds for S.
ii. S is equally preferred and insensitive to itself w.r.t. a 

regular insensitivity region.

The proof shows that the probability measure in a 
uniform source is uniquely determined. There have 
been several behavioral foundations of general proba
bilistic sophistication (Machina and Schmeidler 1992; 
Chew and Sagi 2008; Grant et al. 2022, theorem 5). 
Buchak (2013) provided a behavioral foundation under 
rank-dependent utility, an important special case of our 
model. The main feature of our behavioral foundation is 
that it captures the meaning of probabilistic sophistica
tion (within one source) directly in terms of ambiguity 
attitudes: the source must be equal to itself regarding 
ambiguity aversion and a-insensitivity. There should not 
be more sensitivity or preference for some of its events 
than for others: hence, the term uniform. Theorem 1
suggests that our two components, source preference 
and insensitivity, completely capture the essence of 
ambiguity/ uncertainty attitudes.

8. pmatchers to Capture Uncertainty 
Attitudes Under Source Theory

This section provides comparative uncertainty/ 
ambiguity results for ST, resulting in a new tool to ana
lyze uncertainty: pmatchers. It has often been observed 
that in doing so, one should control for beliefs. We 
indeed do so in all results in this paper.

Assumption 2 (For This Section). ST holds for sources C 

and A with generic events C, C1, C2, : : : and A, A1, A2, : : : , 
a-neutral probability measures PC and PA, and source func
tions wC and wA.

We first present the second and third main results of 
this paper, illustrated in Figure 1 in Section 9, and then 
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discuss them, especially the resulting new concept of 
pmatchers (denoted φ).

Theorem 2. Under structural Assumption 1 and Assump
tion 2, the following two statements are equivalent for 
sources A and C. 

i. C is preferred to A.
ii. There exists a disliked transformation φ such that 

wA � wC ◦φ.

Ambiguity aversion as in the Ellsberg paradox, the com
petence effect, and the home bias can all be accommodated 
by source preference: one prefers to deal with uncertainties 
from a source C that is unambiguous, that one feels more 
competent about, or that is about domestic stocks than 
from an opposite source A. Thus, preferences as in Equa
tion (15) and inequalities as in Equation (6) will result. The
orem 2 shows that pmatchers capture these phenomena.

Theorem 3. Under structural Assumption 1 and Assump
tion 2, the following two statements are equivalent for 
sources A and C. 

i. A is more insensitive than C.
ii. There exists an insensitive transformation φ such that 

wA � wC ◦φ.
Furthermore, if the insensitivity region for the preference 

condition is [B, D] where the boundary events (i.e., B, D) 
are from source A, then the insensitivity region for φ is 
[PA(B), PA(D)].

The literature on ambiguity and its applications has as 
yet mostly focused on the source preference component. 
However, Trautmann and van de Kuilen (2015) and 
many others emphasized the importance of insensitivity 
(end of our Section 2). We expect more insensitivity 
under lower competence and for unfamiliar (foreign) 
stocks and, thus, predict preference for lower compe
tence gains and unfamiliar gains if the perceived likeli
hoods (inputs of φ in statement (ii) in Theorem 3 above) 
are low, contrary to current thinking in the literature. We 
leave further study of such implications to future work.

In Theorem 3, for any general insensitivity region 
[B′, D′], we can always take B and D from A (take B ~ B′
and D ~ D′), and then, the insensitivity region for φ is 
[PA(B), PA(D)]. In this sense, the theorem can handle 
any general insensitivity region.

The theorems identify as a central tool for analyzing 
uncertainty the transformation φ, which satisfies

φ � w�1
C ◦wA and wA � wC ◦φ: (18) 

By convex rangedness and strong monotonicity, φ is 
well defined, continuous, and strictly increasing. It is 
also uniquely determined in all results in this section. It 
calibrates for every a-neutral probability p in source A, 
the gambling-equivalent a-neutral probability φ(p) in 
source C. That is, we take C ~ A, and then, for PA(A) � p, 
we have PC(C) � φ(p). We, therefore, call φ the pmatcher 
from A to C. We henceforth use this notation φ. This φ

can readily be obtained empirically if the a-neutral prob
abilities of the sources are available. Dimmock et al. 
(2016, theorem 3.1) showed that matching probabilities 
conveniently capture ambiguity attitudes. This concerns 
the special case where source C is risk. Thus, our Theo
rems 2 and 3 have generalized their result to general 
uncertainty, showing that pmatchers generalize match
ing probabilities and are suited to analyze uncertainty 
attitudes in general. For easy reference, we display the 
following result, which readily follows from the preced
ing discussion.

Observation 4. Under structural Assumption 1 and 
Assumption 2, φ(PA(A)) � PC(C) if and only if A ~ C. 
Consequently, φ(PA(A)) > PC(C) if and only if A ≻ C, 
and φ(PA(A)) < PC(C) if and only if A ⋏ C.

The following theorem shows that we completely cap
ture ambiguity and uncertainty attitudes through the 
two components of preference and insensitivity. We do 
not impose Assumption 2 in the following theorem 
because it is implied by the other conditions.

Theorem 4. Under structural Assumption 1, sources A 

and C are equally preferred and insensitive with a regular 
insensitivity region if and only if both are uniform and 
wA � wC. A and C are then equally insensitive with the 
maximal insensitivity region [∅, S].

It is desirable that we can compare sources and possi
bly find that they are at the same level regarding relevant 
properties. The theorem shows that such a comparison is 
only possible for uniform sources, underscoring their 
importance. Example 1 will show that insensitivity is 
indispensable for this purpose.

Ambiguity concerns comparisons of uncertainty with 
risk (i.e., C �R). Hence, our results for general uncertainty 
immediately imply the following results for ambiguity.

Corollary 1. Assume C �R. Under structural Assump
tion 1 and Assumption 2, we have

wA � wR ◦φ: (19) 
Here, wA, capturing the uncertainty attitude, combines 

the risk attitude wR and the ambiguity attitude φ, where 
the pmatcher φ is the matching probability function. 
Ambiguity aversion holds if and only if matching pro
babilities are disliked; a-insensitivity holds if and only 
if matching probabilities are insensitive. Ambiguity 
neutrality holds for source A if and only if it is equally 
preferred6 and insensitive as risk (with a regular insensi
tivity region). They are then equally insensitive with the 
maximal insensitivity region [∅, S]. Ambiguity neutrality 
holds for all events if and only if the source of all events 
is equally preferred and insensitive as risk.

The following example shows that aversion/source 
preference alone is not enough to capture ambiguity and 
uncertainty attitudes or their neutrality.

Baillon et al.: Source Theory: A Tractable and Positive Ambiguity Theory 
Management Science, Articles in Advance, pp. 1–16, © 2025 The Author(s) 9 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

62
.4

5.
22

0.
89

] 
on

 1
2 

Fe
br

ua
ry

 2
02

5,
 a

t 0
7:

34
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Example 1. Suppose an agent behaves according to 
EU for a known urn (risk) but has an insensitive, sym
metric,7 but nonlinear source function wA for an 
unknown urn. Then, γAβ ~ γpβ⇒ γAcβ ~ γ1�pβ so that 
ambiguity indifference holds. This has often been 
defined as ambiguity neutrality in the literature. How
ever, the agent is less sensitive to the unknown urn, 
and ambiguity greatly impacts the agent.

The example underscores a new insight that we obtain 
from analyzing insensitivity: we must distinguish 
between ambiguity indifference and the strictly more 
restrictive ambiguity neutrality. This distinction is usu
ally not made in the literature.

As mentioned before, sources can be taken to be 
endogenous in our analysis. An endogenous uniform source 
is any algebra of events that is uniform, with convex 
rangedness of the restriction of W. All results of this sec
tion can then be applied.

Observation 5 (Endogenous Results). The results of this 
section (Theorem 2, Theorem 3, Theorem 4, Observa
tion 4, and Corollary 1) remain valid if A and C are 
endogenous uniform sources.

9. Tractability of Source Theory
Besides being empirically tractable, ST also provides 
tractable calculations. The formula

Z ∞

0
wS(Gf , U(α))dα (20) 

captures the rank-dependent utility value of an act f 
from a uniform source S, assuming nonnegative out
comes and utilities. Here, with PS the a-neutral probabil
ity measure on S, Gf , U denotes the dual (1� : : : ) of the 
distribution function that f induces over outcome utili
ties by PS , and wS denotes the source function. The only 
addition to classical Bayesian expected utility calcula
tions concerns the added transformation wS . This addi
tion is straightforward and easier than, for instance, 
adding higher-order distributions and calculating double 
integrals as in the smooth model or solving extra maxi
mization and minimization problems for every evalua
tion of every single act as in multiple prior models. A 
restriction of Equation (20) is that the (dual) distribution 
should be available. Alternative formulas for rank- 
dependent utility that do not use distribution functions 
require a ranking of outcomes, and authors have com
plained about this (Spiliopoulos and Hertwig 2023, foot
note 12). However, again, ranking outcomes is easier 
than carrying out extra integrations or solving extra opti
mization problems.

Because of their mathematical tractability, the func
tionals that we use, nonlinear transformations of subjec
tive additive probabilities, currently provide the most 
popular risk measures (Artzner et al. 1999) called law- 

invariant or distorted risk measures. There is extensive 
literature on these measures, including the works of 
Wang et al. (2020) and Liu et al. (2021). Hence, this paper 
also serves as a preference foundation of those risk mea
sures and provides new tools for analyzing them.

The analysis of the preceding section shows that we 
can easily manipulate uncertainty attitudes analytically 
and numerically by inserting the bold transformation φA 

in Equation (21) to capture how A deviates from the cali
bration source C. In particular, it has to be inserted to the 
right of wC and not to the left as has been commonly 
done with Pratt–Arrow-type utility transformations:

Z ∞

0
wC ◦wA(Gf , U(α))dα: (21) 

Wakker (2004) axiomatized a simple version of such a 
“right-side” transformation. Adding more source dislike 
or insensitivity can readily be done by adding φA accord
ingly. Ambiguity is handled by taking C �R. Then, am
biguity aversion is added by adding a disliked φA, as we 
proved axiomatically, and so on. Unfamiliar sources, as 
with the home bias and competence effect, will involve 
disliked and insensitive pmatchers wA in Equation (21).

An attractive feature of ST is that we can apply it 
graphically. Figure 1 shows the ease with which uncer
tainty attitudes can be completely captured and com
pared visually under ST. It shows the data of subject 2 of 
Abdellaoui et al. (2011, figure 10).8 Source A is the 
CAC40 stock index, which passed a test of uniformity. 
Source C is risk. Figure 1(a) shows the source functions 
wA and w. Risk is disliked (w(p) +w(1� p) ≤ 1) and also 
exhibits insensitivity. Dislike and insensitivity are rein
forced by the extra uncertainty about probabilities 
because of the ambiguity of CAC40. The distance 
between the graph and the diagonal can be taken as a 
measure of insensitivity. Figure 1(b) shows that the 
pmatcher (w�1 ◦wA; i.e., the matching probability func
tion) indeed has the corresponding properties so that the 
comparative conditions of Theorems 2 and 3 hold. Figure 
1(b) shows what uncertainty adds to risk (i.e., the ambi
guity attitude).

Figure 1. Attitudes of Subject 2 of Abdellaoui et al. (2011) 

(a) (b)

Notes. (a) Source functions for CAC40 and for risk. (b) Matching 
probabilities for CAC40.
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A non-Bayesian decision analyst who wants to use 
ambiguity theory in prescriptive consultancy does not 
have to show formulas to a client but can directly work 
with graphs, such as in Figure 1. Extra aversion can be 
captured by vertically moving the curve downward. 
Extra perceived uncertainty about probabilities (in
sensitivity) is captured by horizontally moving weight 
(“probability mass”) from the expected middle to the 
unexpected extremes, resulting in fat-tail distributions 
that have often been observed for returns of financial 
assets. Insensitivity can provide an intuitive accommoda
tion of the pricing kernel puzzle in finance (Hens and 
Reichlin 2013, Polkovnichenko and Zhao 2013). Because 
pmatchers can be represented visually, they are suitable 
for policy communications as figures are more accessible 
to nonspecialists than formulas and tables.

10. Discussion
10.1. Complete Behavioral Foundation and 

Positive/Normative Status
Our main results assumed biseparable utility. For a com
plete behavioral foundation of source theory and our 
other results, a behavioral foundation of that assumption 
should be provided. Ghirardato and Marinacci (2001) 
did so for the special case of a continuum of outcomes 
(e.g., money) but not necessarily a continuum of events 
as we need. The latter can be guaranteed by adding 
the Gilboa (1987) event solvability: if γ ≻ β, γAβ ≻ x ≻
γCβ, A ⊃ C, then γBβ ~ x for some A ⊃ B ⊃ C. The Gilboa 
(1987) behavioral foundation of biseparable utility in
volved a continuum of events and the special case of 
RDU. Thus, for these two special cases capturing the 
most important applications, we can obtain complete 
behavioral foundations by adding the cited axiomatiza
tions. For brevity, we did not repeat them in this paper.

There is much interest in prescriptive applications of 
ambiguity theory today (Gilboa and Marinacci 2016, Ber
ger et al. 2017, Chandy et al. 2019). Source theory is 
tractable with visual aids (Figure 1) and can serve this 
purpose well. It is also descriptively useful: for instance, 
because insensitivity allows for adding cognitive limita
tions and subjective factors to ambiguity perception.

10.2. Risk as One Source
Following Tversky and Fox (1995, p. 271), we assumed 
one fixed w for all objective probabilities. We let parsi
mony prevail over fit here for tractability reasons. The 
assumption holds approximately for emotion-neutral 
risky events and outcomes, and we focus on those.9
Objective probabilities served as the neutrality bench
mark for ambiguity attitudes.

10.3. Models of High Generality But Low Specificity
ST provides a specification of Choquet expected utility 
(Gilboa 1987, Schmeidler 1989) and prospect theory 

(Tversky and Kahneman 1992). Those theories use non
additive measures. However, it has often been argued 
that nonadditive measures are too general to be tractable 
beyond the simplest state spaces (Tversky and Kahne
man 1992, p. 311; Ivanov 2011, p. 367; Basu and Echeni
que 2020). Basu and Echenique (2020) showed that this 
tractability problem holds even more for multiple prior 
models. Second-order distributions as used in the 
smooth model (Klibanoff et al. 2005) are yet more general 
and less tractable, with subjective parameters of yet 
higher cardinality. The problem grows for many general
izations of the aforementioned models proposed in the 
literature. Spiliopoulos and Hertwig (2023, p. 1198) dis
cussed this problem in their extensive empirical study 
and hence, used the source method because of its 
tractability.10

The aforementioned ambiguity models, using high- 
dimensional parameters, have been used in empirical 
studies, but then, strong parametric assumptions had to 
be added, especially if the underlying models were very 
general. Those extra assumptions then drove the results 
more than the underlying model (Polisson et al. 2020, 
p. 1783). ST uses nonadditive weighting functions, but it 
adds uniformity restrictions and thus, achieves better 
parsimony. Abdellaoui et al. (2011) and Dimmock et al. 
(2016) showed that the source method is tractable 
enough to even allow for nonparametric measurements 
(i.e., without any parametric assumption added). The 
source method outperformed other ambiguity theories 
in data fitting (Sonsino et al. 2022, section 5.5) and pre
diction tests (Kothiyal et al. 2014, Georgalos 2019), un
derscoring its good trade-off between generality and 
parsimony.

10.4. Further Related Literature
Many studies on ambiguity used the Anscombe and 
Aumann (1963) (AA) framework. Here, acts do not 
assign outcomes to states but probability distributions 
over prizes. Acts are, thus, two stage. EU is assumed for 
risk,11 and a backward induction evaluation is applied 
to the two-stage acts. Denti and Pomatto (2022) showed 
that this evaluation is equivalent to separable partitions 
of the state space on which one can condition ambiguity 
of information. The AA framework makes it possible to 
use linear algebra to analyze ambiguity, which greatly 
facilitates the mathematical analysis, and thus, it has 
propelled the ambiguity field. Multistage optimization 
should be studied for applications anyhow and is non
trivial for ambiguity. Yet, there is also interest in study
ing ambiguity in a single-stage framework, such as 
that of Savage (1954). Multistage stimuli are complex 
for tests and applications. In the words of Kreps (1988, 
p. 101): “imaginary objects … [make] perfectly good 
sense in normative applications … But this is a very 
dicey … procedure in descriptive applications.” 
Epstein and Halevy (2019, p. 684) thus favored the 
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Savage framework: “This disconnect in the literature 
between Anscombe–Aumann acts and descriptive 
modeling in the field suggests (to us) that tests of prefer
ence models that refer only to Savage-style acts are 
more relevant to the potential usefulness of these mod
els outside the laboratory.”

Regarding backward induction and in general, multi
stage optimization, as unproblematic and self-evident as 
they are under classical EU, so problematic and contro
versial they are under ambiguity and non-EU. Many 
studies have, thus, criticized backward induction in the 
AA framework (normatively: Machina 1989; descrip
tively: Schneider and Schonger 2019) (further references 
are in Online Appendix D.5). Further, especially for 
empirical work, it is desirable to allow for violations of 
EU. ST introduces its ambiguity concepts while avoiding 
dynamic complications and allowing violations of EU 
for risk. As a price to pay, our results had to be derived 
without resorting to linear algebra as a tool to simplify 
the mathematics. However, as we have shown, our tools 
remain tractable, providing immunity to violations of 
backward induction or of EU for risk.

The AA framework requires the availability of events 
with known probabilities, and most studies of uncer
tainty have as yet focused on comparing such events 
with events with unknown (or vague) probabilities. The 
unknown-probability events mostly concerned Ellsberg 
urns with unknown compositions because such “artificial” 
events have a symmetry that facilitates comparisons with 
known-probability events. The natural events relevant in 
applications, such as in climate change, usually lack such 
symmetry, and events with known probabilities are often 
not even available. Thus, for the home bias, neither domes
tic stocks nor foreign stocks usually have known probabili
ties, and known-probability events to compare with are 
usually not available. The AA framework then cannot be 
applied. ST can be applied. The general techniques of Sec
tions 5–9 can then readily be applied and now that there 
are preference foundations, also can be applied for pre
scriptions (for non-Bayesians) as in climate change. Many 
authors have argued for the importance to handle natural 
events beyond Ellsberg urns.12

Gul and Pesendorfer (2015) did not need the Anscombe– 
Aumann framework. However, their requirement that all 
ideal events (interpreted as unambiguous) should be eli
cited (needed to determine their inner and outer measures) 
is intractable. Further, their assumption that diffuse events 
exist, which involves extreme unrealistic decision attitudes 
violating monotonicity (Grant et al. 2022), is unrealistic, 
both normatively and descriptively.

In many ambiguity theories, ambiguity attitudes 
depend mainly on the set of outcomes and not on the 
events. Examples include Chew et al. (2008, pp. 
186–187), Kontek and Lewandowski (2018), and Grant 
et al. (2022). Kontek and Lewandowski (2018, p. 2818) 

proposed to use subjective (a-neutral) probabilities as in 
ST. The most well-known theory of this kind is the Kli
banoff et al. (2005) smooth model, where ambiguity atti
tudes are determined by a function φ operating on 
outcomes. An outcome interval with φ convex (on the 
utility image of this interval) gives ambiguity-seeking 
behavior, and an outcome interval with φ concave gives 
ambiguity aversion. Such theories cannot accommodate 
the fourfold pattern of ambiguity, where ambiguity aver
sion depends on the events concerned rather than on 
the outcomes or insensitivity; see König-Kersting et al. 
(2023).13 In agreement with that reference and with 
Machina (2009, p. 390) and Dillenberger et al. (2017), we 
think that ambiguity attitudes are mainly event driven 
rather than outcome driven. Chew et al. (2017) found 
that event-driven models fit data better than the smooth 
model.

The Chateauneuf et al. (2007) neoadditive model is a 
popular and efficient special case of ST that focuses only 
on overweighting infimum and supremum values, as 
does α-maxmin EU. However, this model ignores attitudes 
toward intermediate values that are relevant, for instance, 
in values at risk and their generalizations in finance.

Online Appendix B discusses the drawbacks of a 
widely used cavexity definition for insensitivity, and 
Online Appendix C discusses the novelty of our condi
tions relative to Tversky and Wakker (1995).

11. Conclusion
For modeling uncertainty and ambiguity attitudes 
through different probability weighting functions, an 
idea that has been alluded to for decades because of its 
plausibility and that has been informally used in many 
empirical studies, we have provided the first formal 
framework and behavioral foundations. In particular, 
we have shown what the right formulas are (e.g., Equa
tion (21)). No formal theory or foundation had been 
provided before because the proper framework for it, 
that of Savage (1954), was considered too difficult to 
handle. We showed that it can be made tractable. A pro 
of the Savage framework relative to the popular one of 
Anscombe– Aumann is that we need no multistage 
stimuli, and we can allow for violations of expected 
utility under risk. Source theory is specific enough to 
allow for measurements and predictions, even without 
parametric assumptions. Now, ambiguity and uncer
tainty can be analyzed tractably, both analytically and 
graphically and both prescriptively and empirically 
realistically.

Our behavioral foundations brought many new 
insights. 
• Probabilistic sophistication and uniform sources 

can be characterized directly in terms of ambiguity atti
tudes (Theorem 1). Probabilistic sophistication captures 
uniform ambiguity.
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• Matching partitions provide a useful tool to com
pare general uncertainty attitudes. They generalize the 
Dimmock et al. (2016) matching probabilities (Section 5).
• Pmatchers provide a useful tool to capture uncer

tainty attitudes quantitatively (Theorems 2 and 3 and 
Equation (21)). They, again, generalize the Dimmock 
et al. (2016) matching probabilities.
• Equation (21) shows the proper formula for using 

pmatchers.
• Equation (19) shows that ambiguity is the differ

ence between uncertainty and risk.
• Insensitivity is admittedly complex to analyze, 

but empirical reality imposes it upon us (Trautmann 
and van de Kuilen 2015). Insensitivity is needed to 
completely capture uncertainty and ambiguity as ex
plained at the end of Section 5.1 and confirmed by The
orems 1 and 4.
• Theorem 3 directly connects ambiguity perception 

and inverse S probability weighting (of the pmatcher). 
These are two sides of the same insensitivity coin.
• Distinguishing between ambiguity indifference 

and ambiguity neutrality is important (Example 1). 
One may neither like nor dislike ambiguity and still be 
impacted by it.

All of our concepts coherently fit together in source 
theory. Uncertainty and ambiguity can tractably and real
istically be analyzed in the Savage–Gilboa framework.
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Appendix A. Reformulations Using Weak 
Preferences

We give reformulations of some conditions using weak 
preferences instead of indifferences in the premises. They 
would give less powerful behavioral foundations but are 
better suited for empirical tests when indifferences are not 
easy to obtain.

Lemma A.1. Equation (6) is equivalent to Equation (7).

Proof. Equation (7) immediately implies Equation (6). Next, 
assume Equation (6). Assume W(A1) ≥W(C1). By convex 
rangedness, we can move part of A1 to A2 so that the pre
mise of Equation (6) follows. The resulting conclusion in that 
equation and set monotonicity of W imply Equation (7). w

We next give the corresponding reformulations of 
insensitivity.

Lemma A.2. Equation (8) is equivalent to:
W(C1)≥W(A1)& W(Cc

3)≤W(Ac
3)

≤W(D) ⇒W(A2) ≥W(C2): (A.1) 
Equation (9) is equivalent to:

W(Cc
3)≤W(Ac

3)& W(C1) ≥W(A1)

≥W(B) ⇒W(Ac
2)≤W(Cc

2): (A.2) 
Equation (15) is equivalent to:

For all partitions (A1, A2) from A and (C1, C2) from C:

A1 � C1⇒ A2 � C2: (A.3) 

Equation (16) is equivalent to:
For all partitions (C1, C2, C3) from C and (A1, A2, A3)

from A:
C1 � A1 & Cc

3 � Ac
3 � D⇒ A2 � C2: (A.4) 

Equation (17) is equivalent to:
For all partitions (C1, C2, C3) from C and (A1, A2, A3) from A,

B � A1 � C1 & Ac
3 � Cc

3⇒ Ac
2 � Cc

2: (A.5) 

Proof. Equation (A.1) immediately implies Equation (8). 
Next, assume Equation (8). For Equation (A.1), assume 
W(C1) ≥W(A1) and W(Cc

3) ≤W(Ac
3). By convex rangedness, 

we can move part of C1 to C2 to get W(C1) �W(A1). Simi
larly, W(Cc

3) �W(Ac
3) by moving part of C3 to C2. (The 

move of part of C1 to C2 did not affect Cc
3.) Equation (8) 

and set monotonicity of W imply Equation (A.1). The 
equivalence of Equations (9) and (A.2) follows similarly. 
It, in fact, is dual to Equations (8) and (A.1). The remain
ing results in terms of preferences follow from the corre
sponding results on W. w

Appendix B. Proofs
Proof of Observation 1. We define w(r) �W(R) for event 
R with K(R) � r. It is well defined because K(R) � K(R′) � r 
implies, by stochastic dominance, W(R) �W(R′) � w(r). 
Convex rangedness implies that w’s domain is the entire 
[0;1] and that w is strictly increasing. This is elementary 
for K countably additive, the most important case. A gen
eral proof is in Online Appendix A. So, Equation (3) holds 
for all risky events R. We have w(0) � 0, w(1) � 1. Surjec
tivity, implied by convex rangedness, implies that w is 
continuous. w

Proof of Observation 3. If πb (πm) loses more weight rel
ative to πw (πb and πw) under A than under B and more 
under B than under C, then also more under A than 
under C. w

Proof of Theorem 1. This theorem does not need bisepar
able utility. The only implication of convex rangedness 
that we use is the Gilboa (1987) event solvability. We also 
use cumulative dominance. The proof will be stated in 
terms of preference conditions. Throughout, all events are 
assumed to be from the source S. By convex rangedness, 
boundary events can be assumed to be from S. We write 
P for PS throughout. We first show that the conditions in 
statement (ii) are necessary. For source preference, assume 
A1 ~ C1. Then, P(A1) � P(C1); so, with subscript 2 indicat
ing complements, P(A2) � P(C2), W(A2) �W(C2), and 
A2 ~ C2, and so, A2 � C2 as required by source preference. 
For insensitivity, consider matching threefold partitions as 
before. A1 ~ C1 and Ac

3 ~ Cc
3 imply P(A1) � P(C1) and 

P(A3) � P(C3); so, P(A2) � P(C2), and hence, both A2 ~ C2 and 
Ac

2 ~ Cc
2. We have A2 � C2 and Ac

2 � Cc
2 as required by more 

insensitivity. The boundary conditions were not needed here. 
This shows that the insensitivity region can be taken maximal: 
[∅, S]. The conditions in (ii) are, indeed, necessary.

We next consider the reversed implication. We assume 
that S is equally preferred and insensitive to itself w.r.t. a 
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regular insensitivity region [B, D]. We throughout use the 
reformulated conditions of Appendix A. By source prefer
ence, A � C⇒ Ac � Cc. The reversed implication, Ac � Cc⇒

A � C, follows by taking complementary events. Hence:

A � C � Ac � Cc: (B.1) 

We often use Equation (B.1) implicitly below.

Lemma B.1. Assume E ∩H � F ∩H � ∅. Then, E � F � 
E ∪H � F ∪H:

Proof of Lemma B.1. First, assume E ~ F. It implies E ∪
H � F ∪H in the following three cases. 

1. H � B. By Equation (A.5), with A1 �H, A2 � (F ∪H)c, 
A3 � F, C1 �H, C2 � (E ∪H)c, C3 � E.

2. H � Dc. By Equation (A.4), with A1 � F, A2 � (F ∪H)c, 
A3 �H, C1 � E, C2 � (E ∪H)c, C3 �H.

3. E � B or E � Dc. As above but with A1 and A3 inter
changed and C1 and C3 too.

By symmetry of E and F, we also get F ∪H � E ∪H; 
that is, we get E ∪H ~ F ∪H in the above three cases. If 
E ≻ F, then we take E ⊃ E′ ~ F and apply the above cases 
with E′ instead of E, and by monotonicity (E�E′ is non
null), E ∪H ≻ E′ ∪H ~ F ∪H. Similarly, F ≻ E implies F ∪
H ≻ E ∪H. Thus, in cases (1)–(3), we have E � F � E ∪
H � F ∪H.

Finally, assume none of cases (1)–(3). Define G � (E ∪
F ∪H)c. By regularity, the fourfold partition (E, F�E, G, H)
implies G � B (also, G � Dc). By case (1), with G ∪H for H, 
we have E � F � E ∪ (G ∪H)� F ∪ (G ∪H). By case (1), 
with G for H, E ∪ G for E, and F ∪ G for F, we have 
E ∪ (G ∪H)� F ∪ (G ∪H)� E ∪H � F ∪H. We get E � F � 
E ∪H � F ∪H for all cases. Q.E.D.

By Lemma B.1, weak ordering of � , event solvability, 
and Krantz et al. (1971, theorem 5.2.2; their axiom 5 
follows from event solvability), there exists a unique prob
ability measure P on source S that represents the prefer
ence relation � on events. (As an aside, so does W, and 
hence, W � wS ◦P for a strictly increasing wS , continuous as 
in Observation 1.) Cumulative dominance implies Equation 
(2) w.r.t. P � PS for all x, y from S (i.e., uniformity of S). w

Proof of Theorem 2. Assume matching partitions (C1, C2), 
(A1, A2) with a-neutral probabilities p1, p2 and q1, q2, 
respectively. We have φ(q1) � p1. The implication A2 � C2 is 
equivalent to φ(q2)≤p2 � 1� p1 � 1�φ(q1) � 1�φ(1� q2). 
Preference for C over A is equivalent to a disliked 
pmatcher from A to C. For ambiguity, take C �R. w

Proof of Theorem 3. Assume matching partitions (C1, 
C2, C3), (A1, A2, A3) with a-neutral probabilities p1, p2, p3 
and q1, q2, q3, respectively. Consider Equations (8) and 
(13). (C1, C2, C3) is matching with (A1, A2, A3) iff φ(q1) � p1 
and φ(q1 + q2) � p1 + p2. Then, A2 � C2 if and only if 
φ(q2) ≥ p2 � (p1 + p2)� p1 � φ(q1 + q2)�φ(q1): The boundary 
condition Ac

3 � D means q1 + q2≤PA(D). The q probabilities 
are the arguments of φ. Hence, the worst-rank bound (d) 
for φ is PA(D). In general, if B, D are from a source S, 
then the worst-rank bound for φ is m(D), where m is the 
pmatcher from S to A.

Equations (9) and (14) are similar (above case for dual 
of W). For ambiguity, take C �R. w

Proof of Observation 4. The definition of φ gives the first 
iff. For the second iff, A ≻ C implies the existence of A′ ⊂
A with A′ ~ C and φ(PA(A′)) � PC(C). The second iff now 
mainly follows from monotonicity and transitivity. The 
third is similar. w

Proof of Theorem 4. We derive uniformity and wA � wC 

from the other conditions. (The reversed implication is 
direct.) R abbreviates source preference or source insensi
tivity. CRA, ARC, and transitivity (Observation 3) imply 
CRC, similarly with A. Hence, by Theorem 1, both sources 
are uniform. With φ, the pmatcher from A to C, by two
fold source preference, C ~ A⇒ Cc ~ Ac (i.e., φ(PA(A)) �
PC(C) ⇒ φ(1�PA(A)) � 1�PC(C)); that is, φ(p) +φ(1�
p) � 1. Hence, φ(12) �

1
2, and we need to prove equality of 

the source functions only on 0, 1
2

� �
.

Because A is more insensitive than C, φ(ε) ≥ φ(p+ ε)�
φ(p) for every p > 0 and (“small”) ε > 0 if p+ ε is below 
the upper bound of the insensitivity region, which by reg
ularity, exceeds 1

2. Hence, it holds on the entire 0, 1
2

� �
. 

Because C is more insensitive than A, φ�1(ε) ≥ φ�1(p+ ε)�
φ�1(p) for every p > 0, and (“small”) ε > 0 as long as p+ ε 
is below the upper bound of the insensitivity region, 
which by regularity, exceeds 1

2. Hence, it holds on the 
entire 0, 1

2
� �

. The two inequalities can only hold if φ is lin
ear on 0, 1

2
� �

(Online Appendix A). Because φ(12) �
1
2 , φ

must be the identity on 0, 1
2

� �
and then, on 0;1[ ]. By substi

tution, the insensitivity region can be taken maximal. w

Endnotes
1 Our results do not change if we endow S with an algebra or a 
σ-algebra of events and consider only measurable acts.
2 We write partitions as ordered n-tuples using round brackets 
because the ordering of events may sometimes be relevant. In what 
follows, events are ranked from best to worst.
3 Following Savage (1954), events in themselves carry no value. 
Their favorability and extremity are determined by the outcomes 
they yield, which depends on the act considered. This is implicitly 
understood throughout this paper.
4 In general, phenomena for risk also occur for ambiguity but to a 
more pronounced degree. See Fellner (1961, p. 684) and many other 
references in Wakker (2010, p. 292).
5 Formally, we also use here transitivity established in Observation 
3 below.
6 Being equally preferred as risk is also called ambiguity 
indifference.
7 That is, wA(p) +wA(1� p) � 1 for all p: for instance, if 
wA(p) � p2

p2+(1�p)2
.

8 Abdellaoui et al. (2011) have wA � exp(�1.14(�ln(p)0.15) and w � exp 
(�1.06(�ln(p)0.47). By Equation (18), the pmatcher is exp(�1.17(�ln(p)0.32). 
The maximal insensitivity regions are [0, 0.9993], [0, 0.965], and [0, 0.975], 
respectively.
9 We assume a fixed outcome set. Violations have been found for 
events and outcomes inducing particular emotions (e.g., if referring 
to complex arithmetic (Armantier and Treich 2016) or particular 
familiarities (Chew et al. 2008)).
10 They used the term two-stage model of Fox and Tversky (1998), 
but this model uses a decomposition w(P), where w is the risk- 
probability weighting function and ambiguity is captured solely 
through a nonadditive, P, usually based on introspective 
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measurements. Spiliopoulos and Hertwig (2023) instead used w to 
capture ambiguity attitudes. That is, they used the source method.
11 Dean and Ortoleva (2017), Hill (2019), and Wang (2022) allowed 
violations of EU for risk, sacrificing tractability.
12 See Camerer and Weber (1992, p. 361): “There are diminishing 
returns to studying urns!” Ellsberg (2011, p. 223) stated that “these 
urn experiments … it is long overdue to perform experiments that 
test for other forms of ambiguity.” See also Gilboa (2009, section 
3.3.3): “Real life is not about balls and urns.” Many other examples 
are in Online Appendix D.4.
13 The model of Kontek and Lewandowski (2018) can accommodate 
extremity orientedness.
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