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Abstract. This paper introduces source theory, a new theory for decision under ambiguity. It 

shows how Savage’s subjective probabilities, with source-dependent nonlinear weighting 

functions applied to them, can be used to model Ellsberg’s ambiguity (unknown 

probabilities). It can do so in Savage’s framework of state-contingent assets, and does not 

need complex two-stage gambles, multistage optimization principles, expected utility for risk 

(descriptively problematic), or any linear algebra. Still the mathematical analysis is simple, 

with intuitive preference axioms, tractable calculations and prescriptive implementability, 

empirically realistic fittings and predictions, and convenient graphical representations of 

ambiguity attitudes. We provide new ways to compare weighting functions, not between 

persons as is common, but within one person and between sources. So-called p-matchers turn 

out to capture uncertainty attitudes well, giving Arrow-Pratt-like transformations, however, 

“within” rather than “outside” functions. Within-person-between-sources comparisons are the 

main novelty of ambiguity over risk, first demonstrated by Ellsberg’s paradox. 
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1. Introduction 

Decision analysis has traditionally been based on expected utility (EU). Whereas EU had been 

used for measuring uncertainty attitudes long before 1954 (reviewed by Arrow 1951), and its 

formal framework of state-contingent assets had already been introduced by Debreu (1953) 

and others, Savage (1954) provided the main contribution to its foundation. He did so by 

providing a preference foundation, revealing the critical empirical tests and, more 

importantly, clarifying its normative status. Only then EU became widely used in prescriptive 

decision analysis. However, criticisms were raised soon. 

 Ellsberg (1961) showed that Savage’s use of subjective probabilities is not only 

descriptively problematic (Trautmann & van de Kuilen 2015; l’Haridon et al. 2018), but, 

according to many, also normatively, due to ambiguity aversion (Gilboa & Marinacci 2016). 

Given the ubiquity of ambiguity in applications and everyday life, it may be surprising that 

ambiguity models, that had been available long before (Wald 1950) were not widely used in 

the first decades after 1961. Only when Gilboa & Schmeidler (1989) and Schmeidler (1989) 

provided preference foundations for these models, did the field of ambiguity take off, 

catching up with many urgent questions. Many non-Bayesian decision analysts use ambiguity 

models prescriptively nowadays, for instance, for climate change policies (Berger, 

Emmerling, & Tavoni 2017; Chandy et al. 2019). 

 Many ambiguity theories have been proposed (Gilboa & Marinacci 2016). However, 

they have as yet been based almost exclusively on Anscombe-Aumann’s framework, rather 

than Savage’s (1954). Savage’s framework has generally been considered too difficult to use 

for ambiguity. Karni, Maccheroni, & Marinacci (2022, p. 229) wrote: “Savage’s most brilliant 

measure-theoretic approach was not so easily extended beyond its original domain and this 

was a main reason why so little happened in the field for decades after his 1954 masterpiece.” 

Anscombe-Aumann’s framework simplifies the mathematical analysis but has to make re-

strictive assumptions. Further, many ambiguity models today are very general, making it hard 

to derive implications and predictions. Further discussion of related literature is in §9. 

 For fitting data on ambiguity, empirical studies often used the source method. Here, 

subjective probabilities are assumed and then source-dependent probability weighting 

functions are used.1 For instance, a different weighting function for the known than for the 

unknown Ellsberg urn can be used to accommodate the Ellsberg paradox. And a different 

 

1 See, for instance, Abdellaoui et al. (2011), Abdellaoui et al. 2021; Baillon et al. (2018), Bleichrodt, Grant, & 

Yang (2023), Grevenbrock et al. (2021), Kemel & Gutierrez (2023), and Spiliopoulos & Hertwig (2023). 
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weighting function for foreign stocks than for domestic stocks accommodates the home bias 

in finance. This method has been suggested since the origins of the ambiguity literature 

(Fellner 1961 p. 672; Kahneman & Tversky 1979 p. 289). It has as yet lacked any theoretical 

modeling or foundation, though. Therefore, it was never used in theoretical analyses, 

prescriptive applications, or critical empirical tests. Surveys of ambiguity theories did not 

mention it (Gilboa & Marinacci 2016). 

 It may be amazing that for a useful empirical method that has been around for decades, 

no theoretical model has ever been provided yet. The reason is the aforementioned (sugges-

ted) difficulty of the framework most suited for this method: Savage’s (1954).2 We will show 

that ambiguity can be analyzed in Savage’s framework after all. And, importantly, that it can 

be done in an intuitive and tractable manner, making it suited not only for empirical applicati-

ons but also for theoretical analyses and for non-Bayesian prescriptive applications.  

 This paper introduces source theory (ST). We, first, provide a formal framework for the 

source method. Second, we provide a preference axiomatization for ST and for the main 

attitudinal components of ambiguity. In general, besides showing theoretical soundness, em-

pirical testability, and the normative status of a model, preference foundations also show what 

the relevant concepts are to be measured and determined, such as Savage’s (1954) subjective 

probabilities or Gilboa & Schmeidler’s (1989) sets of priors. Our foundation shows that 

pmatchers, defined later, are the relevant concepts for uncertainty attitudes. 

 We will not only analyze aversion to ambiguity, but also a component called 

insensitivity. It captures ambiguity perception (Baillon et al. 2021) while adding dependence 

on cognitive ability, a subjective element. This dependence, while irrelevant for normative 

applications, is useful for descriptive applications, Insensitivity accommodates the prevailing 

four-fold pattern of ambiguity (Trautmann & van de Kuilen 2015). 

 Unlike with aversion, there are no standard tools from convex analysis or other 

mathematical disciplines available for analyzing insensitivity. This paper is even the first to 

define insensitivity formally.3 The analysis of insensitivity is, admittedly, complex, but is 

 

2 It provides a rich domain of events convenient for analyzing weighting functions. We will use Gilboa’s (1987) 

extension of Savage (1954) to ambiguity or, yet more precisely, a biseparable generalization of that. Hence, our 

results are valid under many ambiguity and risk theories (§2). 

3 Compare Tversky & Wakker (1995 Footnote 7) and Lewandowski (2017 Definition 7), which do not specify the 

logical status of their boundary events. Section 9 discusses a cavexity condition that has often been used in the 

literature. Insensitivity shows that two seemingly separate concepts in the literature, ambiguity perception and 

inverse-S probability weighting for risk, are two sides of the same coin. For the latter property, so widely 
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indispensable for empirical applications. Our Theorems 9 and 14 show that it is also indispen-

sable to fully capture ambiguity theoretically. The problems of insensitivity should be 

resolved rather than ignored. 

 ST’s use of weighting functions allows for convenient graphical representations of ambi-

guity attitudes. For instance, Figure 1 in §8 will completely capture the risk, uncertainty, and 

ambiguity attitudes of a given subject for the CAC40 stock index. This feature makes ST 

convenient for the practice of decision analysis. Decision makers can easily express their 

desired ambiguity attitude graphically. Extra aversion is captured by vertically moving the 

curve downward, and extra perceived uncertainty about probabilities by horizontally moving 

weight (“probability mass”) from the expected middle to the unexpected extremes, as-if 

increasing variance. 

 The outline of this paper is as follows. Standard concepts are in §2. Section 3 formalizes 

the theoretical framework underlying ST, including sources. We then define the well-known 

source preference and the new source insensitivity, both comparatively (§4) and absolutely 

(§5), as yet for uncertainty in general. Section 6 uses these concepts to obtain our first main 

result, Theorem 9, an axiomatization of ST. It captures the meaning of probabilistic 

sophistication directly in terms of ambiguity: ambiguity should be uniform across the source. 

Section 7 then assumes ST and shows that so-called pmatchers provide a proper tool to 

analyze uncertainty attitudes. They map subjective probabilities, formally called a-neutral, of 

one source into gambling-equivalent a-neutral probabilities of another source. Dimmock, 

Kouwenberg, & Wakker (2016 Theorem 3.1) showed that matching probabilities are well-

suited to analyze ambiguity attitudes. Our pmatchers generalize those matching probabilities 

to general uncertainty. Our second and third main results, Theorems 11 and 12 in §7, show 

that, under the specific ST, source preference is equivalent to a disliked (roughly, lower) 

pmatcher and insensitivity of sources (ambiguity perception) is equivalent to an insensitive 

(inverse-S shaped) pmatcher. This result further illustrates the tractability of ST because 

pmatchers can directly be derived from the a-neutral probabilities. Remarkably, based on 

intuitive arguments, Kemel & Gutierrez (2023) used pmatchers empirically and demonstrated 

their usefulness. We axiomatically justify their choice. The rest of §7 and §8 further illustrate 

the tractability of ST. Section 9 discusses related frameworks and Section 10 concludes. 

Proofs are in Appendix B. 

  

 

documented in empirical studies, it is extra remarkable that no fully formalized definition had been provided in the 

literature yet. 
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2. Basic Definitions 

𝑆 denotes a state space. Its subsets are events.4 Later assumptions will imply that 𝑆 is infinite. 

A weighting function 𝑊 is defined on all events and satisfies 𝑊(∅) = 0, 𝑊(𝑆) = 1, and 𝐴 ⊃

𝐵 ⇒ 𝑊(𝐴) ≥ 𝑊(𝐵). Probability measures 𝑃 are weighting functions that satisfy additivity. 

Following Savage (1954), we only impose finite additivity. 

 Γ denotes a set of consequences, or outcomes, and can be finite or infinite. We assume 

that all outcomes are gains, leaving reference-dependence to future studies. An act maps 𝑆 to 

Γ and is finite-valued. We denote acts by 𝑥 = (𝐸1: 𝑥1, … , 𝐸𝑛: 𝑥𝑛), mapping every 𝑠 ∈ 𝐸𝑗 to 𝑥𝑗. 

It is implicit in this notation that the 𝐸𝑗s partition 𝑆 and that the 𝑥𝑗s are outcomes. 𝛼𝐸𝛽 de-

notes (𝐸: 𝛼, 𝐸𝑐: 𝛽). A preference relation ≽ of an agent is given over acts, with ≼, ≻, ≺, and 

∼ as usual. We assume that ≽ is a weak order (transitive and complete). As usual, we identify 

constant acts with outcomes, so that ≽ also denotes a preference relation over outcomes. 

 We assume biseparable utility: there exist a utility function 𝑈: Γ → ℝ and a weighting 

function 𝑊 such that preferences over binary acts 𝛾𝐸𝛽, with 𝛾 ≽ 𝛽, maximize 

 𝑊(𝐸)𝑈(𝛾) + (1 − 𝑊(𝐸))𝑈(𝛽). (1) 

An event is null if its outcomes never affect preference. We assume that ≽ satisfies strong mo-

notonicity: strictly improving an outcome of an act on a nonnull event strictly improves the act. 

 In Eq. 1, 𝑊(𝐸) is called the decision weight of event 𝐸 when ranked best, i.e., when 

yielding the best outcome(s). We interpret it as the share of the agent’s attention given to 

event 𝐸 if it is ranked best. We sometimes denote it as 𝜋𝑏(𝐸), or 𝜋𝑏 for short if 𝐸 is 

understood. The complementary share of attention, 1 − 𝑊(𝐸), is the decision weight of event 

𝐸𝑐 when ranked worst (yielding the worst outcome(s)), also denoted 𝜋𝑤(𝐸𝑐), or 𝜋𝑤 for short 

if 𝐸𝑐 is understood. For acts (𝐸1: 𝑥1, … , 𝐸𝑛: 𝑥𝑛) with more than two outcomes 𝑥1 ≻ ⋯ ≻ 𝑥𝑛 

there are “middle” events with neither best nor worst outcomes. The remaining share of 

attention is divided among them. Empirical studies usually find that the attention paid to a 

fixed event 𝐸𝑖 when ranked middle is more or less constant (even though theoretically it could 

depend on several aspects of the act). In informal interpretations we will, therefore, 

sometimes use the term “middle” attention/weight 𝜋𝑚(𝐸𝑖) without further specification, or 

𝜋𝑚. The preference conditions defined later will specify all comparisons between 𝜋𝑏, 𝜋𝑚, 

 

4 Our results do not change if we endow 𝑆 with an algebra or a -algebra of events and consider only measurable 

acts. 
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and 𝜋𝑤, and later theorems will confirm that these comparisons capture the relevant aspects 

for uncertainty and ambiguity attitudes. 

 Rank-dependent utility (RDU) (or Choquet expected utility), a special case of biseparable 

utility, holds if (𝐸1: 𝑥1, … , 𝐸𝑛: 𝑥𝑛), with 𝑥1 ≽ ⋯ ≽ 𝑥𝑛, is evaluated by ∑ 𝜋𝑗𝑈(𝑥𝑗)𝑛
𝑗=1  with 

𝜋𝑗 = 𝑊(𝐸𝑗 ∪ ⋯ ∪ 𝐸1) − 𝑊(𝐸𝑗−1 ∪ ⋯ ∪ 𝐸1); here, 𝜋1 = 𝑊(𝐸1) = 𝜋𝑏(𝐸1). Expected utility 

(EU) holds if, further, 𝑊 is a probability measure. EU holds if and only if the decision weight 

of a fixed event is the same for all acts, in particular, when ranked best or worst. This weight 

then always is the probability of that event. Deviations from EU are characterized by the way 

in which the decision weight of a fixed event varies over different acts. We will analyze 

uncertainty attitudes from this perspective. 

 For events 𝐴, 𝐵, we define 𝐴 ≽ 𝐵 (𝐴 is preferred to 𝐵) if 𝛾𝐴𝛽 ≽ 𝛾𝐵𝛽 for some 𝛾 ≻ 𝛽. 

Under biseparable utility, ≽ is represented by 𝑊. The event interval [𝐸, 𝐺] contains all events 

F with 𝑊(𝐸) ≤ 𝑊(𝐹) ≤ 𝑊(𝐺), i.e, 𝐸 ≼ 𝐹 ≼ 𝐺. 

 The function 𝜋𝑤(𝐸) = 1 − 𝑊(𝐸𝑐) is called the dual of 𝑊. Although duality is not 

needed in our formal analysis, it facilitates conceptual understanding. Insensitivity conditions 

defined later always involve two conditions that are in fact one condition but imposed both on 

the weighting function and its dual. 

 We assume Gilboa’s (1987) Savage-type richness: (i) there are at least three 

nonequivalent outcomes; (ii) convex-rangedness holds: for all events 𝐴 ⊂ 𝐶 and 𝑊(𝐴) ≤ 𝜇 ≤

𝑊(𝐶), there exists 𝐴 ⊂ 𝐵 ⊂ 𝐶 with 𝑊(𝐵) = 𝜇. The theorems in this paper can be turned into 

complete preference foundations by adding the necessary and sufficient preference conditions 

that Gilboa gave for RDU. For brevity, we do not repeat them. RDU, i.e., prospect theory for 

gains, is the primary model of interest for our analysis. Intuitive discussions that need specific 

models will be targeted to this model.  

 Our formal results are valid under all special cases of biseparable utility that, besides 

rank-dependent utility/Choquet expected utility for uncertainty (Gilboa 1987; Schmeidler 

1989; Tversky & Kahneman 1992 for gains), include various multiple prior models (maxmin 

EU; -maxmin: Ghirardato, Maccheroni, & Marinacci 2004). For risk, a special case of uncer-

tainty and part of our model, our results are valid under many models (Wakker 2010 Obser-

vation 7.11.1). ST generalizes Chateauneuf, Eichberger, & Grant’s (2007) neo-additive utility. 

 

3. Source Theory 

We first formalize the concept of a source. Formally, sources are algebras of events. 

Uncertainty attitudes may differ for different sources. For instance, Tversky & Fox (1995) 
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showed that basketball fans are ambiguity averse for Ellsberg urns but ambiguity seeking for 

basketball games. This illustrates that ambiguity theories have to reckon with source 

dependence. Our formal results will always assume that weighting functions satisfy convex-

rangedness when restricted to sources. That is, we only consider “rich”, infinite, sources. We 

sometimes use finite sources in illustrations. An act 𝑥 is from a source if it is measurable 

w.r.t. that source, i.e., 𝑥−1(𝛼) is in the source for each outcome 𝛼. 

 Our results can in principle be applied to any algebra of events, taking it as a source. In 

applications, people will usually specify sources that are of special interest to them, and then 

sources are exogenous. In Ellsberg’s paradox they are also exogenous, determined by infor-

mation about urns irrespective of preference. Therefore, sources will mostly be exogenous, 

similarly as commodities in consumer theory are, and this is our primary interpretation. Other 

authors have preferred endogenous interpretations of sources. Most of our results concern 

uniform sources (defined later), and they can be taken endogenous. Observation 17 will list 

the related results, valid both if sources are endogenous and if they are exogenous. Grant, 

Rich, & Stecher (2022) similarly adopted a flexible interpretation of sources. 

 Risk, denoted ℛ, is a special source of uncertainty for which the probabilities of its 

events 𝑅 are known, denoted 𝐾(𝑅). Risky acts are acts from that source. We throughout 

assume stochastic dominance, i.e., for 𝑃 = 𝐾 and all risky acts 𝑥, 𝑦: 

 [For all 𝛼 ∈ Γ: 𝑃(𝑥 ≽ 𝛼) ≥ 𝑃(𝑦 ≽ 𝛼)]    ⇒      𝑥 ≽ 𝑦. (2) 

It implies that risky acts that induce the same probability distribution over outcomes are 

indifferent (apply Eq. 2 both ways.) In other words, preferences over risky acts depend only 

on the probability distribution they induce over outcomes. We usually identify risky acts with 

their induced probability distributions. 𝑤 is a probability weighting function if 𝑤: [0,1] →

[0,1], 𝑤 is strictly increasing, 𝑤(0) = 0, and 𝑤(1) =1. Our assumptions imply: 

 

OBSERVATION 1. There exists a continuous probability weighting function 𝑤 such that, for all 

risky events 𝑅, 

 𝑊(𝑅) = 𝑤(𝐾(𝑅)) . (3) 

 Because 𝑅1 ≽ 𝑅2 ⇔ 𝐾(𝑅1) ≥ 𝐾(𝑅2) for risky events 𝑅1 and 𝑅2, we can rewrite Eq. 2 

for risky acts 𝑥, 𝑦 as: 

 [For all 𝛼 ∈ Γ: {𝑠 ∈ 𝑆: 𝑥(𝑠) ≽ 𝛼} ≽ {𝑠 ∈ 𝑆: 𝑦(𝑠) ≽ 𝛼}]      ⇒      𝑥 ≽ 𝑦. (4) 
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Cumulative dominance holds if Eq. 4 also holds for all acts 𝑥, 𝑦 that are not risky. We assume 

cumulative dominance throughout the paper. 

 

DEFINITION 2. Source theory (ST) holds for a source 𝒮 if, besides biseparable utility, local 

probabilistic sophistication holds for 𝒮. That is, there exists a probability measure 𝑃𝒮 on 𝒮 

such that Eq. 2 holds with 𝑃 = 𝑃𝒮 for all acts 𝑥, 𝑦 from that source. Such sources are called 

uniform. 

 

In the definition, 𝑃𝒮 may concern subjective probabilities, or it may merely be a mathematical 

device without any particular interpretation. Risk is a special case of local probabilistic 

sophistication. As with risk, preferences over acts from a uniform source 𝒮 are entirely 

determined by the probability distributions over outcomes induced by 𝑃𝒮 under ST (but they 

depend on the source 𝒮). Consequently, as for risk, we can define a continuous source-

dependent probability weighting function 𝑤𝒮 under ST such that: 

 For a uniform 𝒮:  𝑊 = 𝑤𝒮 ∘ 𝑃𝒮. (5) 

The proof is identical to Observation 1 and is omitted. We call 𝑤𝒮 the source function of 𝒮. 

𝑤 = 𝑤ℛ is the source function for risk. The source 𝒮 is ambiguity neutral if it satisfies local 

probabilistic sophistication, the risky source ℛ is present in the domain of events, and 𝑤𝒮 =

𝑤. That is, the probabilities 𝑃𝒮 are treated as if objective. An agent is ambiguity neutral if the 

algebra of all events is ambiguity neutral. In general, for any uniform source 𝒮, we call 𝑃𝒮 the 

a-neutral probability measure because it would serve as a regular probability measure had the 

agent been ambiguity neutral (with unchanged risk attitude). It can be interpreted as the 

beliefs of a “Bayesian twin” of the agent. 

 Chew & Sagi (2008) demonstrated the importance of local probabilistic sophistication 

for ambiguity and, thus, “revived” the use of probabilities to analyze ambiguity. ST combines 

this insight with the classical idea of probability weighting for ambiguity. It, further, specifies 

the relevant phenomena and concepts with formalizations and axiomatizations. 

 Expected utility holds in a source 𝒮 if EU represents preferences over all acts from 𝒮. 

Then the source is uniform and 𝑤𝒮 is the identity function. EU for risk thus means that 𝑤 is 

the identity. We summarize the assumptions made so far. They are assumed explicitly in 

theorems, and implicitly elsewhere. 
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ASSUMPTION 3 [Structural Assumption]. 𝑆 is a state space, and Γ an outcome set. Acts 𝑥 =

(𝐸1: 𝑥1, … , 𝐸𝑛: 𝑥𝑛) are finite-valued maps from 𝑆 to Γ, endowed with a weak order ≽, the 

preference relation. Γ contains at least three nonindifferent outcomes. Sources are sub-

algebras of events. Biseparable utility holds, with a utility function 𝑈: Γ → ℝ, a weighting 

function 𝑊 on 𝑆, and a representation 𝑊(𝐸)𝑈(𝛾) + (1 − 𝑊(𝐸))𝑈(𝛽) over binary acts 𝛾𝐸𝛽 

(𝛾 ≽ 𝛽). 𝑊 is convex-ranged for every source. The relation ≽ is extended to outcomes via 

constant acts, maximizing 𝑈, and to events via bets on them, maximizing 𝑊. Strong 

monotonicity and cumulative dominance hold.   

 

4. Comparative Uncertainty and Ambiguity Attitudes 

This section analyzes the main novelty of uncertainty relative to risk: within-person-between-

sources comparisons. This was a big but not always sufficiently appreciated novelty in 

Ellsberg (1961). 

4.1. Introduction 

We take risk as a single source of uncertainty, partly for tractability reasons. The domain of 

ambiguity, however, is too rich to be taken as one single source, similarly as the domain of non-

monetary commodities is too rich to be taken as one. We will, therefore, distinguish between 

different sources of ambiguity. This leads to within-person between-sources comparisons. 

 We consider comparisons between two sources 𝒜 and 𝒞. Although our analysis is 

symmetric between the sources, an asymmetric presentation is more convenient. In 

elucidations, we take 𝒞 as an established source used for calibration, and 𝒜 as a new source 

to be compared with 𝒞. Ambiguity concerns the special case of 𝒞 = ℛ. Generic elements of 

𝒜 are 𝐴, 𝐴𝑖 , 𝐴𝑗 , and those of 𝒞 are 𝐶, 𝐶𝑖, 𝐶𝑗.  

 The preference conditions introduced next cover all comparisons between decisions 

weights: source dispreference will imply that 𝜋𝑏 loses more weight than 𝜋𝑤 (§4.2), and 

insensitivity that 𝜋𝑚 loses more than either 𝜋𝑏 or 𝜋𝑤 (§4.3). 

4.2. Source Preference 

 We first consider changes of decision weights for two-fold partitions (𝐴1, 𝐴2) and 

(𝐶1, 𝐶2) with 𝜋𝑏(𝐴1) = 𝜋𝑏(𝐶1).5  It means 𝜋𝑤(𝐴2) = 𝜋𝑤(𝐶2) so that the two partitions 

 

5 Following mathematical conventions, we denote partitions using brackets rather than braces here, to indicate that 

the ordering of the events may sometimes be relevant. 
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involve the same decision weights. We call such two-fold partitions matching. If 𝒞 = ℛ, then 

𝐾(𝐶1) is the matching probability of 𝐴1. It is the gambling equivalent objective probability of 

𝐴1. 

 

DEFINITION 4. (Source) preference for 𝒞 over 𝒜 holds, or 𝒞 is preferred to 𝒜, if for all 

partitions (𝐶1, 𝐶2) from 𝒞 and (𝐴1, 𝐴2) from 𝒜 we have  

  𝑊(𝐴1) = 𝑊(𝐶1)  ⇒  𝑊(𝐴2) ≤ 𝑊(𝐶2). (6) 

 

Thus if, in the two matching partitions, we change the ranks of 𝐴2 and 𝐶2 from worst to best 

then 𝜋𝑏(𝐴2) < 𝜋𝑏(𝐶2) may occur (whereas we had 𝜋𝑤(𝐴2) = 𝜋𝑤(𝐶2)), meaning that 𝐴2 

loses more weight than 𝐶2 (or gains less weight). There is less attention for favorable events, 

and more for unfavorable events, for source 𝒜 than for source 𝒞, leading to more dislike of 

𝒜. Formally, source preference (or preference for short) for 𝒞 over 𝒜 allows for such 

inequalities but precludes any reversed inequalities. 

 Source indifference means source preference both ways. We then also say that the two 

sources are equally preferred. Ambiguity aversion for source 𝒜 means source preference for 

ℛ over 𝒜. Within-person between-sources comparative results for ambiguity and uncertainty 

coincide: more ambiguity aversion for source 𝒜 than for source 𝒞 means source preference 

for 𝒞 over 𝒜. Ambiguity indifference for source 𝒜 means that there is both ambiguity 

aversion and ambiguity seeking for 𝒜. Then 𝒜 is equally preferred as ℛ. 

 Given the richness and monotonicity that we assume, source preference for 𝒞 over 𝒜 is 

equivalent to the following condition (Appendix A): 

 𝑊(𝐴1) ≥ 𝑊(𝐶1) ⇒  𝑊(𝐴2) ≤ 𝑊(𝐶2). (7) 

Similar conditions have been used in many models in the literature. 

 

4.3. Insensitivity 

Uncertainty attitudes include, besides source preference (including ambiguity aversion) which 

is a motivational component, also a cognitive component, insensitivity, which reflects (lack 

of) discriminatory power. The behavioral implication of insensitivity is extremity-
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orientedness, focusing on extreme events rather than middle events.6 Such focusing moves the 

linear perception of likelihood in expected utility in the direction of a flat default of “just 

don’t know,” where middle events become one blur. 

 Many ambiguity models in the literature contain a component of ambiguity perception, 

determined by perceived vagueness of information (Marinacci 2015). For instance, in the 𝛼-

maxmin model, the size of the set of priors can be interpreted this way. Increasing the set of 

priors increases insensitivity, with more weight for extreme events. Baillon et al. (2021) 

theoretically analyzed indexes of insensitivity. They showed that those indexes agree with 

popular indexes of perception in many ambiguity models (that, if taken normative, involve no 

cognitive limitations), e.g., sizes of sets of priors in several multiple priors models. 

 Our insensitivity component generalizes ambiguity perception by allowing dependence 

on the cognitive ability of the agent, a subjective element. Many studies have shown that, 

empirically, insensitivity does indeed depend on cognitive ability.7 Hence, for empirical work, 

this subjective generalization of ambiguity perception is desirable. For risk, where vagueness 

of probabilities does not play any role, insensitivity leads to inverse-S shaped probability 

weighting, and it is the prevailing empirical pattern (Fehr-Duda & Epper 2012). Gonzalez & 

Wu (1999) provided an excellent explanation of insensitivity for risk. Insensitivity is yet 

stronger under ambiguity (Trautmann & van de Kuilen 2015),8 being reinforced by the 

perceived uncertainty about the probabilities. Thus, our insensitivity component brings 

together ambiguity perception and inverse-S probability weighting. Henkel (2023) found 

strong empirical relations between these concepts. 

 For insensitivity, we compare middle events with extreme events. To consider middle 

events, we need threefold partitions (𝐴1, 𝐴2, 𝐴3) and (𝐶1, 𝐶2, 𝐶3). We consider partitions 

where 𝜋𝑏(𝐴1) = 𝜋𝑏(𝐶1) and 𝜋𝑤(𝐴3) = 𝜋𝑤(𝐶3). Then the remaining share of attention, 

informally denoted 𝜋𝑚 = 1 − 𝜋𝑏 − 𝜋𝑤, will also be the same for the two partitions, and the 

partitions involve the same decision weights. We, therefore, also call such threefold partitions 

matching. The following condition entails that changing middle weights 𝜋𝑚 to extreme 

weights 𝜋𝑏 or 𝜋𝑤 involves more gain of weight as there is more insensitivity. The 

 

6 Following Savage (1954), events in themselves carry no value. Their favorability and extremity is determined by 

the outcomes they yield, which depends on the act considered. This is implicitly understood throughout this paper. 

7 These studies include Choi et al. (2022), Dimmock et al. (2021), and Grevenbrock et al. (2021). 

8 In general, phenomena for risk also occur for ambiguity, but to a more pronounced degree. See Fellner (1961 p. 

684) and many other references in Wakker (2010 p. 292). More recent references include Kemel & Paraschiv 

(2013) and Maafi (2011). 
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insensitivity region below, discussed further after the definition, serves to ensure, through the 

inequalities in the premises, that middle events are really middle and not best or worst. For 

instance, when comparing 𝜋𝑚 with 𝜋𝑏, we ensure that 𝜋𝑚 is not 𝜋𝑤, and is neither close to it. 

This way we avoid comparisons between the two extremes. 

 

DEFINITION 5. There is more insensitivity for source 𝒜 than for source 𝒞 (or 𝒜 is more 

insensitive than 𝒞) with insensitivity region [𝐵, 𝐷], if for all partitions (𝐶1, 𝐶2, 𝐶3) from 𝒞 and 

(𝐴1, 𝐴2, 𝐴3) from 𝒜: 

  𝑊(𝐴1) = 𝑊(𝐶1) & 𝑊(𝐴3
𝑐 ) = 𝑊(𝐶3

𝑐) ≤ 𝑊(𝐷)   ⇒  𝑊(𝐴2) ≥ 𝑊(𝐶2) (8) 

and 

  𝑊(𝐵) ≤ 𝑊(𝐴1) = 𝑊(𝐶1) & 𝑊(𝐴3
𝑐 ) = 𝑊(𝐶3

𝑐)   ⇒  𝑊(𝐴2
𝑐 ) ≤ 𝑊(𝐶2

𝑐) . (9) 

Thus, for 𝒜 there is more focus on extreme events, i.e., more insensitivity. Eq. 9 is Eq. 8 but 

applied to the dual of 𝑊. A verbal statement of Definition 5: Assume two threefold matching 

partitions. If a middle event changes rank with an extreme event, where they are safely boun-

ded away from the other extreme, then the more weight is gained as there is more insensitivity. 

 The inequality 𝑊(𝐶3
𝑐) ≤ 𝑊(𝐷) in Eq. 8 precludes cases such as 𝐶3 = 𝐴3 = ∅ , in which 

case 𝐶2 and 𝐴2 would actually be ranked worst in the matching partitions and not be genuinly 

middle. We would then in fact have twofold partitions and would be observing source preference.  

 In the insensitivity region [𝐵, 𝐷], there will be less discriminatory power with 𝑊 

shallower for 𝒜 events than for 𝒞 events. The above definition is the more restrictive and 

informative the larger [𝐵, 𝐷] is. Empirically, we can usually take the events 𝐵 and 𝐷 with 

matching probabilities 0.05 and 0.95, which is strong enough for most applications. We can 

often even take 𝐵 empty. 

 Again, definitions of absolute and relative ambiguity attitudes readily follow. Thus, 

ambiguity-generated insensitivity, or a-insensitivity for short, holds for a source if it is more 

insensitive than ℛ. Comparative results for ambiguity and uncertainty again coincide: more a-

insensitivity for 𝒜 than for 𝒞 is the same as more insensitivity. 

 

5. Absolute Uncertainty Attitudes 

Absolute conditions follow from comparative conditions by choosing a neutrality point. The 

following proposition, which readily follows from substitution, suggests that EU is a natural 

neutrality point for uncertainty. 
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PROPOSITION 6. If EU holds for two sources, then they are equally preferred, and equally 

insensitive with the maximal insensitivity region [∅, 𝑆]. 

 

We thus obtain the following definitions. 𝑊 is liked if always 𝑊(𝐸) ≥ 1 − 𝑊(𝐸𝑐). If there is 

a source available on which EU is maximized, then 𝑊 is liked if and only there is source 

preference for 𝑊’s entire domain over the EU source, as follows from substitution. This 

illustrates how the (not directly observable) EU model can serve as neutrality point with no 

need to actually specify or measure it. Disliked results from the reversed inequality. 𝑊 is 

insensitive with insensitivity region [𝐵, 𝐷] if for all partitions (𝐸1, 𝐸2, 𝐸3): 

 𝑊(𝐸2) ≥ 𝑊(𝐸1 ∪ 𝐸2) − 𝑊(𝐸1) whenever 𝑊(𝐸1 ∪ 𝐸2) ≤ 𝑊(𝐷)  (10) 

and 

  1 − 𝑊(𝐸2
𝑐) ≥ 𝑊(𝐸1 ∪ 𝐸2) − 𝑊(𝐸1) whenever 𝑊(𝐸1) ≥ 𝑊(𝐵) . (11) 

The inequalities compare the decision weight of 𝐸2 when ranked middle and when ranked 

extreme, safely bounded away from the other extreme. The conditions ensure that 𝑊 is 

shallow and “insensitive” for events between 𝐵 and 𝐷, i.e., on the insensitivity region [𝐵, 𝐷]. 

Again, if there is a source available on which EU is maximized, then 𝑊 is insensitive if and 

only if its entire domain is more insensitive than the EU source. And, again, our definitions 

need not specify the EU model. Eq. 10 (and similarly 12 below) without the boundary 

restriction is sometimes called subadditivity. Insensitivity amounts to imposing subadditivity 

and its dual, and imposing boundary conditions to avoid that the two conditions “bite” each 

other. 

 Similarly, for risk, 𝑤 is liked if 𝑤(𝑝) ≥ 1 − 𝑤(1 − 𝑝) for all 𝑝 and disliked if the 

reversed inequality holds. Further, 𝑤 is insensitive with insensitivity region [𝑏, 𝑑] (0 ≤ 𝑏 <

𝑑 ≤ 1) if, for all probabilities 𝑝1, 𝑝2, 𝑝3 summing to 1: 

  𝑤(𝑝2) ≥ 𝑤(𝑝1 + 𝑝2) − 𝑤(𝑝1) whenever  𝑝1 + 𝑝2 ≤ 𝑑  (12) 

and 

  1 − 𝑤(𝑝1 + 𝑝3) ≥ 𝑤(𝑝1 + 𝑝2) − 𝑤(𝑝1) whenever  𝑝1 ≥ 𝑏 . (13) 

For 𝑤, the insensitivity region [𝑏, 𝑑] is a subinterval of the reals. If risk is available as a 

source with objective probability measure 𝐾, then 𝐸[𝑏, 𝑑] denotes the corresponding event 

interval [𝐵, 𝐷], i.e., 𝐾(𝐵) = 𝑏 and 𝐾(𝐷) = 𝑑. In other words, it contains the events with 

matching probabilities between 𝑏 and 𝑑. 
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6. Preference Conditions to Axiomatize Source Theory and Its Main 

Attitudinal Comparisons 

Preference conditions to capture the aforementioned comparative properties readily follow 

because all conditions were in terms of inequalities and equalities for 𝑊 that immediately 

translate into preferences and indifferences between events. We, therefore, use the same 

terms. Source preference holds for 𝒞 over 𝒜 if, for all partitions (𝐴1, 𝐴2) from 𝒜 and 

(𝐶1, 𝐶2) from 𝒞: 

  𝐴1 ~ 𝐶1 ⇒ 𝐴2 ≼ 𝐶2 . (14) 

There is more insensitivity for source 𝒜 than for source 𝒞 (or 𝒜 is more insensitive than 𝒞) 

with insensitivity region [𝐵, 𝐷], if for all partitions {𝐶1, 𝐶2, 𝐶3} from 𝒞 and {𝐴1, 𝐴2, 𝐴3} from 

𝒜: 

 𝐴1 ~ 𝐶1 & 𝐴3
𝑐  ~ 𝐶3

𝑐 ≼ 𝐷   ⇒  𝐴2 ≽ 𝐶2 (15) 

and 

  𝐵 ≼ 𝐴1 ~ 𝐶1 & 𝐴3
𝑐  ~ 𝐶3

𝑐   ⇒  𝐴2
𝑐 ≼ 𝐶2

𝑐 . (16) 

 

The following result follows immediately from substitution. 

 

OBSERVATION 7. 𝑊 shows more source preference (or insensitivity) for one source over 

another if and only if preferences do. 

 

 We further have: 

 

OBSERVATION 8. The source preference and source insensitivity relations are transitive. For 

insensitivity, the new insensitivity region is the intersection of the other two. 

 

 Two sources are equally preferred, or equally insensitive, if the comparative relations 

hold in both directions. In several results presented later, insensitivity regions should be large 

enough to avoid triviality. An insensitivity region [𝐵, 𝐷] is regular for source 𝒮 if for every 

threefold partition (𝐶1, 𝐶2, 𝐶3) of 𝑆 from 𝒮 we have 𝐶𝑗 ≽ 𝐵 and 𝐶𝑗
𝑐 ≼ 𝐷 for at least one 𝑗. 
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Intuitively, the region should capture at least the middle 1/3 of the event domain. If we take 𝒮 

uniform and 𝐵 and 𝐷 from 𝒮, then 𝑃𝒮(𝐵) ≤
1

3
≤

2

3
≤ 𝑃𝒮(𝐷) follows (take 𝑃𝒮(𝐶𝑗) =

1

3
 for all 

𝑗). Empirically, insensitivity regions are commonly found to be larger. 

 Under the assumption of EU for risk (or another source), commonly made in the literature on 

ambiguity, the absolute conditions can readily be axiomatized by applying Observation 7 to 

comparisons with those EU preferences. 

 

 We need one technical condition. The Archimedean axiom holds for source 𝒮 if there is 

no infinite sequence of disjoint nonnull event 𝐸1, 𝐸2, …  in 𝑆 with 𝐸𝑖 ~ 𝐸𝑗 for all 𝑖, 𝑗. The 

axiom is, in the presence of the other axioms, necessary and sufficient to ensure that 

probabilities are real-valued. 

 

THEOREM 9. Under Structural Assumption 3, [source theory (Def. 2) holds for a source 𝒮] if 

and only if [𝒮 is equally preferred and insensitive to itself w.r.t. a regular insensitivity region 

and the Archimedean axiom holds]. 

 

 There have been several axiomatizations of general probabilistic sophistication (Chew & 

Sagi 2008; Grant, Rich, & Stecher 2022 Theorem 5). Buchak (2013) axiomatized 

probabilistic sophistication combined with rank-dependent expected utility, an important 

special case of our model. The main feature of our axiomatization is that it captures the 

meaning of probabilistic sophistication (within one source) directly in terms of ambiguity 

attitudes: the source must be equal to itself regarding ambiguity aversion and a-insensitivity. 

This observation suggests that our two components capture the essence of 

ambiguity/uncertainty attitudes. 

 

7. Pmatchers to Capture Uncertainty Attitudes under Source Theory 

This section provides comparative uncertainty/ambiguity results for ST. 

 

ASSUMPTION 10 [for this section]. ST holds for sources 𝒞 and 𝒜 with generic events 

𝐶, 𝐶1, 𝐶2, … and 𝐴, 𝐴1, 𝐴2, …, a-neutral probability measures 𝑃𝒞 and 𝑃𝒜, and source functions 

𝑤𝒞 and 𝑤𝒜. 

 

We next present the second and third main result of this paper, illustrated in Figure 1 in §8. 



 16 

 

THEOREM 11. Under Structural Assumption 3 and Assumption 10,  [𝒞 is preferred to 𝒜]  if 

and only if  [there exists a disliked transformation 𝜑 such that 𝑤𝒜 = 𝑤𝒞 ∘ 𝜑].   

 

THEOREM 12. Under Structural Assumption 3 and Assumption 10, [𝒜 is more insensitive 

than 𝒞] if and only if [𝑤𝒜 = 𝑤𝒞 ∘ 𝜑 for an insensitive transformation 𝜑]. Furthermore, if the 

insensitivity region for the preference condition is [𝐵, 𝐷] where the boundary events are from 

source 𝒜, then the insensitivity region for 𝜑 is [𝑃𝒜(𝐵), 𝑃𝒜(𝐷)].  

 

In the above theorem, for a general insensitivity region [𝐵, 𝐷], we can always take 𝐵´ and 𝐷´ 

from 𝒜 (take 𝐵´ ~ 𝐵 and 𝐷´ ~ 𝐷) and then the insensitivity region for 𝜑 is [𝑃𝒜(𝐵´), 𝑃𝒜(𝐷´)].  

 The theorems identify as central tool for analyzing uncertainty the transformation 𝜑, 

which satisfies 

 𝜑 = 𝑤𝒞
−1 ∘ 𝑤𝒜   and   𝑤𝒜 = 𝑤𝒞 ∘ 𝜑 . (17) 

By solvability and strong monotonicity, 𝜑 is well-defined, continuous, and strictly increasing. 

It calibrates, for every a-neutral probability 𝑝 in source 𝒜, the gambling-equivalent a-neutral 

probability 𝜑(𝑝) in source 𝒞. That is, we take 𝐶~𝐴 and then, for 𝑃𝒜(𝐴) = 𝑝, we have 

𝑃𝒞(𝐶) = 𝜑(𝑝). We, therefore, call 𝜑 the pmatcher from 𝒜 to 𝒞. We henceforth use this 

notation 𝜑.  𝜑 can readily be obtained empirically if the a-neutral probabilities of the sources 

are available. Dimmock, Kouwenberg, & Wakker (2016 Theorem 3.1) showed that matching 

probabilities conveniently capture ambiguity attitudes. This concerns the special case where 

source 𝒞 is risk. Thus, our Theorems 11 and 12 have generalized their result to general 

uncertainty, showing that pmatchers are suited to analyze uncertainty attitudes in general. For 

easy reference, we display a result essentially just demonstrated. 

 

OBSERVATION 13. Under Structural Assumption 3 and Assumption 10,  𝜑(𝑃𝒜(𝐴)) = 𝑃𝒞(𝐶)  

if and only if  𝐴 ~ 𝐶.  Consequently, 𝜑(𝑃𝒜(𝐴)) > 𝑃𝒞(𝐶)  if and only if  𝐴 ≻ 𝐶  and  

𝜑(𝑃𝒜(𝐴)) < 𝑃𝒞(𝐶)  if and only if  𝐴 ≺ 𝐶. 

 

  The following theorem shows that we fully capture ambiguity and uncertainty attitudes 

through the two components of preference and insensitivity. We do not impose Assumption 

10 in the following theorem because it is implied by the other conditions. 
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THEOREM 14. Under Structural Assumption 3, sources 𝒜 and 𝒞 are equally preferred and 

insensitive with a regular insensitivity region and satisfy the Archimedean axiom if and only 

if both are uniform and 𝑤𝒜 = 𝑤𝒞. 𝒜 and 𝒞 then are equally insensitive w.r.t. the maximal 

insensitivity region [∅, 𝑆]. 

 

 Ambiguity concerns comparisons of uncertainty with risk, i.e., 𝒞 = ℛ. Hence, our results 

for general uncertainty immediately imply the following results for ambiguity. 

 

COROLLARY 15. Assume 𝒞 = ℛ. Under Structural Assumption 3 and Assumption 10, the 

pmatcher 𝜑 is the matching probability function. Ambiguity aversion holds if and only if 

matching probabilities are disliked. A-insensitivity holds if and only if matching probabilities 

are insensitive. Ambiguity neutrality holds for source 𝒜 if and only if it is equally preferred9 

and insensitive as risk (with a regular insensitivity region). They are then equally insensitive 

with the maximal insensitivity region [∅, 𝑆]. Ambiguity neutrality holds for all events if and 

only if the source of all events is equally preferred and insensitive as risk. 

 

 The following example shows that aversion/source preference alone is not enough to 

capture ambiguity and uncertainty attitudes. 

 

EXAMPLE 16. Suppose an agent behaves according to EU for a known urn (risk), but has an 

insensitive, symmetric10 but nonlinear, source function 𝑤𝒜 for an unknown urn. Then 

𝛾𝐴𝛽 ~ 𝛾𝑝𝛽 ⇒ 𝛾𝐴𝑐𝛽 ~ 𝛾1−𝑝𝛽  so that ambiguity indifference holds. This has often been 

defined as ambiguity neutrality in the literature. However, the agent is less sensitive to the 

unknown urn and ambiguity greatly impacts the agent. 

 

The example underscores a new insight we obtain from analyzing insensitivity: we have to 

distringuish between ambiguity indifference and the, strictly more restrictive, ambiguity 

neutrality. This distinction is usually not made in the literature. 

 As announced before, sources can be taken endogenous in our analysis. An endogenous 

uniform source is any algebra of events that is uniform, with convex-rangedness of the 

restriction of 𝑊. All results of this section can then be applied. 

 

9 Being equally preferred as risk is also called ambiguity indifference. 

10 That is, 𝑤𝒜(𝑝) + 𝑤𝒜(1 − 𝑝) = 1 for all 𝑝, for instance if 𝑤𝒜(𝑝) =
𝑝2

𝑝2+(1−𝑝)2. 
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OBSERVATION 17 [Endogenous results]. Observation 13, Theorems 11, 12, 14, and Corollary 

15 remain valid if 𝒜 and 𝒞 are endogenous uniform sources. 

 

 

8. Tractability of Source Theory 

Besides being empirically tractable, ST also provides tractable calculations. The formula 

  ∫ 𝑤𝒮
∞

0
(𝐺𝑓,𝑈(𝛼))𝑑𝛼 (18) 

captures the rank-dependent utility value of an act 𝑓 from a uniform source 𝒮, assuming 

nonnegative outcomes and utilities. Here, with 𝑃𝒮 the a-neutral probability measure on 𝒮, 𝐺𝑓,𝑈 

denotes the dual of the distribution function that 𝑓 induces over outcome utilities by 𝑃𝒮, and 

𝑤𝒮 denotes the source function. The mere addition of the transformation 𝑤𝒮 to Bayesian 

expected utility is straightforward and, we think, easier than, for instance, adding higher-order 

distributions and calculating double integrals as in the smooth model, or solving extra 

maximization and minimization problems as in multiple prior models. Alternative formulas 

for rank-dependent utility require a ranking of outcomes and authors have complained about 

that (Spiliopoulos & Hertwig 2023 Footnote 12). However, again, ranking outcomes is easier 

than carrying out integrations or solving optimization problems. 

 Because of their mathematical tractability the functionals that we use, nonlinear 

transformations of subjective additive probabilities, provide the most popular risk measures 

nowadays (Artzner et al. 1999), called law-invariant or distorted risk measures. There is 

extensive literature on these measures, including Liu, Schied, & Wang (2021) and Wang, 

Wei, & Willmot (2020). Hence, this paper also serves as a preference foundation of those risk 

measures, and provides new tools for analyzing them. 

 The analysis of the preceding section shows that we can easily manipulate uncertainty 

attitudes analytically and numerically, by inserting the bold transformation 𝜑𝒜 in Eq. 19 to 

capture how 𝒜 deviates from the calibration source 𝒞. In particular, it has to be inserted to the 

right of 𝑤𝒞, and not to the left as has been commonly done with Pratt-Arrow type utility 

transformations:  

 ∫ 𝑤𝒞
∞

0
∘ 𝝋𝓐(𝐺𝑓,𝑈(𝛼))𝑑𝛼 (19) 
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Adding more source dislike or insensitivity can readily be done by adding 𝜑𝒜 accordingly. 

Ambiguity is handled by taking 𝒞 = ℛ. Then ambiguity aversion is added by adding a 

disliked 𝜑𝒜, as we proved axiomatically; and so on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 An attractive feature of ST is that we can apply it graphically. Figure 1 shows the ease 

with which uncertainty attitudes can be completely captured and compared visually under ST. 

It shows the data of subject 2 of Abdellaoui et al. (2011, Figure 10).11 Source 𝒜 is the CAC40 

stock index, which passed a test of uniformity. Source 𝒞 is risk. Fig. 1a shows the source 

functions 𝑤𝒜 and 𝑤. Risk is disliked (𝑤(𝑝) + 𝑤(1 − 𝑝) ≤ 1) and also exhibits insensitivity. 

Dislike and insensitivity are reinforced by the extra uncertainty about probabilities due to the 

ambiguity of CAC40. Fig. 1b shows that the pmatcher (𝑤−1 ∘ 𝑤𝒜), i.e., the matching 

probability function, indeed has the corresponding properties, so that the comparative 

conditions of Theorems 11 and 12 hold. 

 A non-Bayesian decision analyst who wants to use ambiguity theory, does not have to 

consider any formula but can directly work with graphs as in Figure 1. Extra uncertainty 

about the a-neutral probabilities due to perceived ambiguity is captured by graphically 

shifting weight to the tails, thus reckoning more with deviations from standard expectations.12 

 

11 Abdellaoui et al. have 𝑤𝒜 = 𝑒𝑥𝑝(−1.14(−ln(p)0.15) and 𝑤 = 𝑒𝑥𝑝(−1.06(−ln(p)0.47). By Eq. 17, the pmatcher is 

𝑒𝑥𝑝(−1.17(−ln(p)0.32). The maximal insensitivity regions are [0, 0.9993],  [0, 0.965], and [0, 0.975], respectively. 

12 It reinforces both the ambiguity seeking and aversion that are present. In the literature, authors often focus on 

universal ambiguity aversion, and then insensitivity/perception only reinforces that aversion. 
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FIGURE 1. Attitudes of subject 2 of Abdellaoui et al. (2011) 
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Fig. 1a. Source functions for 
CAC40 and for risk 

Fig. 1b. Matching 
probabilities for CAC40 
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The distance between the graph and the diagonal can be taken as a (utility independent) 

measure of insensitivity (Baucells & Borgonovo 2014). 

  

 

9. Discussion 

Risk as one source. Following Tversky & Fox (1995 p. 271), we assumed one fixed 𝑤 for all 

objective probabilities. We let parsimony prevail over fit here for tractability reasons. The 

assumption holds approximately for emotion-neutral risky events and outcomes and we focus 

on those.13 Objective probabilities served as the neutrality benchmark for ambiguity attitudes. 

 

Insensitivity versus cavexity.Inverse-S shapes are usually described informally as cavexity; 

i.e., concave up to an inflection point and convex after. This definition requires prior 

specification of the inflection point similarly as our definition of insensitivity requires prior 

specification of the insensitivity region. We next discuss pros and cons. 

 We take insensitivity as cognitive/informational, moving perfect sensitivity (𝑤 linear) in 

the direction of perfect insensitivity with a flat 𝑤 in the middle suggesting a simple three-

valued logic. Insensitivity concernes a global phenomenon of steepness at extremes versus 

shallowness in the middle, and not a local development of curvature as with cavexity. Further, 

under cavexity the exact location of the inflection point is theoretically critical (a change leads 

to opposite requirements in-between) whereas empirically it is noncritical and volatile, 

weighting functions being approximately linear in the interior (Baucells & Villasís 2015). 

Different insensitivity regions do not impose opposite requirements but only differ on the 

region where they impose the (same!) requirements. For applications, insensitivity regions 

only have to be “big enough” and their exact size can be taken flexibly. 

 Another problem for cavexity concerns the location of the inflection point relative to the 

diagonal (Lewandowski 2017 pp. 305-307).14 Empirically, it will not be exactly on the 

diagonal. If it is too far above or below the diagonal then cavexity does not capture 

insensitivity. The main drawback of cavexity is that it is not easily extended to uncertainty, 

 

13 We assume a fixed outcome set. Violations have been found for events and outcomes inducing particular 

emotions, e.g., if referring to complex arithmetics (Armantier & Treich 2016) or particular familiarities (Chew et 

al. 2008). 

14 The logical status of the inflection point and the intersection with the diagonal was never formalized. 
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especially for nonuniform sources. We are not aware of a link of cavexity with ambiguity 

perception. 

 

Related literature. Many studies on ambiguity used the Anscombe-Aumann (AA) framework. 

Here, acts do not assign outcomes to states but probability distributions over prizes. They are, 

thus, two-stage. EU is assumed for risk15, and a backward induction evaluation is applied to 

the two-stage acts. This framework makes it possible to use linear algebra to analyze ambigui-

ty, which greatly facilitates the mathematical analysis and, thus, has propelled the ambiguity 

field. Multistage optimization should be studied for applications anyhow, and is nontrivial for 

ambiguity. Yet, there is also interest in studying ambiguity in a single-stage framework such 

as Savage’s (1954). Multistage stimuli are complex for tests and applications. Regarding 

backward induction and, in general, multistage optimization, as unproblematic and self-

evident as they are under classical EU, so problematic and controversial they are under ambi-

guity and nonEU.16 Many studies have, thus, criticized backward induction in the AA frame-

work.17 Further, especially for empirical work, it is desirable to allow for violations of EU. ST 

introduces its ambiguity concepts while avoiding dynamic complications and while allowing 

violations of EU for risk. As a price to pay, our results had to be derived without resorting to 

linear algebra as a tool to simplify the mathematics. As we have shown, our tools still remain 

tractable, while their validity is immune to violations of backward induction or EU for risk. 

 ST provides a specification of Choquet expected utility (Gilboa 1987; Schmeidler 1989) 

and prospect theory (Tversky & Kahneman 1992). Those theories use nonadditive measures. 

However, it has often been argued that nonadditive measures are too general to be tractable 

beyond the simplest state spaces.18 Basu & Echenique (2020) showed that this holds even 

more for multiple prior models. Second-order distributions, as used in the smooth model 

(Klibanoff, Marinacci, & Mukerji 2005), are of yet higher cardinality and have this problem 

even more. This problem is yet bigger for various generalizations of these theories provided 

in the literature (Cerreia-Vioglio et al. 2011). Spiliopoulos & Hertwig (2023) discussed this 

 

15 Hill (2019) and Wang (2022) allowed violations of EU for risk, sacrificing some tractability. 

16 Normative criticisms include Epstein & Le Breton (1993 p. 4), and Machina (1989). Empirical criticisms are 

referenced next. 

17 See König-Kersting, Kops, & Trautmann (2023 pp. 2-3) and Schneider & Schonger (2018). 

18 See Basu & Echenique (2020) and Tversky & Kahneman (1992 p. 311). 
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problem for their extensive empirical study and, hence, used the source method because of its 

tractability.19 Chew, Bin, & Zhong (2017) also pointed out this problem. 

 The aforementioned ambiguity models, using high-dimensional parameters, have been 

used in empirical studies, but then strong parametric assumptions had to be added, especially 

if the underlying models were very general. Then those extra assumptions drove the results 

more than the underlying model (Abdellaoui, Bleichrodt, & l’Haridon 2008 p. 246). ST uses 

nonadditive weighting functions but adds uniformity restrictions and, thus, achieves better 

parsimony. Abdellaoui et al. (2011) and Dimmock, Kouwenberg, & Wakker (2016) showed 

that the source method is tractable enough to even allow for nonparametric measurements, 

i.e., without any parametric assumption added. The source method outperformed other 

ambiguity theories in prediction tests (Georgalos 2019; Kothiyal, Spinu, & Wakker 2014), 

underscoring its good parsimony. It provided a better fit than the smooth model in Abdellaoui 

et al. (2021). 

 Gul & Pesendorfer (2015) did not need the Anscombe-Aumann framework. However, 

their requirement that all ideal events (interpreted as unambiguous) should be elicited, needed 

to determine their inner and outer measures is intractable. Further, their assumption that 

diffuse events exist, which involve extreme unrealistic decision attitudes violating 

monotonicity (Grant, Rich, & Stecher 2022 p. 10), is unrealistic. 

 In many ambiguity theories, ambiguity attitudes depend mainly on the set of outcomes 

and not on the events. Examples include Chew et al. (2008), Grant, Rich, & Stecher (2022), 

and Kontek & Lewandowski (2018). The latter proposed to use subjective (a-neutral) 

probabilities as in ST (their p. 2818). The most well-known theory of this kind is Klibanoff, 

Marinacci, & Mukerji’s (2005) smooth model. Such theories cannot accommodate the 

fourfold pattern of ambiguity, or insensitivity (König-Kersting, Kops, & Trautmann 2023).20 

Like Machina (2009 p. 390), we think that ambiguity attitudes are mainly event-driven rather 

than outcome-driven. Chew, Bin, & Zhong (2017) found that event-driven models fit data 

better than the smooth model. Chateauneuf, Eichberger, & Grant’s (2007) neo-additive model 

is a popular and efficient special case of ST that focuses only on overweighting infimum and 

 

19 They used the term two-stage model (Fox & Tversky 1998), but this model uses a decomposition 𝑤(𝑃) where 𝑤 

is the risk-probability weighting function and ambiguity is captured solely through a, nonadditive, 𝑃, usually based 

on introspective measurements. Spiliopoulos & Hertwig (2023) instead used 𝑤 to capture ambiguity attitudes. That 

is, they used the source method. 

20 Kontek & Lewandowski (2018)’s model can accommodate extremity orientedness though. 
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supremum values, as does -maxmin EU. This ignores attitudes towards intermediate values, 

relevant for instance in values at risk and their generalizations in finance. 

 This paper extends concepts, source preference and insensitivity, of Tversky & Wakker 

(1995), the theoretical counterpart to Tversky & Fox (1995). Tversky & Wakker used 

traditional between-subjects comparisons (except their §7, discussed further below). 

Nascimento & Ng (2021) extended their results to conditions on weighting functions and 

derived advanced comparative results. We, to the contrary, focussed on the main novelty of 

uncertainty: within-subject between-sources comparisons. Observation 7, our, trivial, starting 

result, was given by Tversky & Wakker (1995 §7). Other than that, our results are new. In 

particular, we compare the same function in different subdomains. All preference-

axiomatizations of Pratt-Arrow-type transformations in the literature, including Lewandowski 

(2017 Result 11), Nascimento & Ng (2021), Tversky & Wakker (1995), and Wang (2022) 

compared different functions on the same domain and applied transformations to images of 

functions (“outside”). We instead apply transformations to arguments of functions (“inside”), 

formalizing and justifying Kemel & Gutierrez’s (2023) empirical implementation. Wakker 

(2004) axiomatized a simple version of an “inside” transformation.   

 

10. Conclusion 

For modeling uncertainty and ambiguity attitudes through different probability weighting 

functions, an idea that has been alluded to for decades because of its plausibility, and that has 

been informally used in many empirical studies, we have provided the first formal framework 

and axiomatization. In particular, we have shown what the right formulas are (e.g., Eq. 19). 

No formal theory or foundation had been provided before because the proper framework for 

it, Savage’s (1954), was considered too difficult to handle. We showed that it can be made 

tractable through source theory. A pro of Savage’s framework, relative to the popular one of 

Anscombe-Aumann, is that we need no multistage stimuli and we can allow for violations of 

expected utility under risk. Source theory is specific enough to allow for measurements and 

predictions, even without parametric assumptions. Now ambiguity and uncertainty can be 

analyzed tractably, both analytically and graphically, and empirically realistically.  

 Our axiomatic analysis brought many new insights: 

• Matching partitions are a useful tool to compare general uncertainty attitudes. They 

generalize Dimmock, Kouwenberg, & Wakker’s (2016) matching probabilities (§4). 

• Pmatchers capture uncertainty attitudes quantitatively (Theorems 11 and 12 and Eq. 

19). They, again, generalize Dimmock et al.’s matching probabilities.  
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• Eq. 19 shows the proper formula for using pmatchers. 

• Probabilistic sophistication and uniform sources can be characterized directly in terms 

of ambiguity attitudes (Theorem 9). 

• Insensitivity is admittedly complex to analyze, but empirical reality imposes it upon 

us (Trautmann & van de Kuilen 2015). Insensitivity is needed for completely 

capturing uncertainty and ambiguity (explained at end of §4.1, and confirmed by 

Theorems 9 and 14). 

• Theorem 12 directly connects ambiguity perception and inverse-S probability 

weighting of the pmatcher, showing their equivalence. They are two sides of the same 

insensitivity coin. 

• Distinguishing between ambiguity indifference and ambiguity neutrality is important 

(Example 16). 

All our concepts coherently fit together in source theory, supporting the properness of our 

new definitions (including insensitivity). Uncertainty and ambiguity can be tractably analyzed 

in the Savage-Gilboa framework.  
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Appendix A. Reformulations Using Weak Preferences 

We give reformulations of some conditions using weak preferences instead of indifferences in 

the premises. They would give less powerful axiomatizations, but are better suited for 

empirical tests when indifferences are not easy to obtain. 

 

LEMMA 18. Eq. 6 is equivalent to Eq. 7. 

PROOF. Eq. 7 immediately implies Eq. 6. Next assume Eq. 6. Assume 𝑊(𝐴1) ≥ 𝑊(𝐶1). By 

convex-rangedness, we can move part of 𝐴1 to 𝐴2 so that the premise of Eq. 6 follows. The 

resulting conclusion in that equation and set-monotonicity of 𝑊 imply Eq. 7.  □ 

 We next give the corresponding reformulations of insensitivity. 

LEMMA 19. Eq. 8 is equivalent to: 

 𝑊(𝐶1) ≥ 𝑊(𝐴1) & 𝑊(𝐶3
𝑐) ≤ 𝑊(𝐴3

𝑐 ) ≤ 𝑊(𝐷)  ⇒ 𝑊(𝐴2) ≥ 𝑊(𝐶2) . (20) 

Eq. 9 is equivalent to: 

  𝑊(𝐶3
𝑐) ≤ 𝑊(𝐴3

𝑐 ) & 𝑊(𝐶1) ≥ 𝑊(𝐴1) ≥ 𝑊(𝐵) ⇒  𝑊(𝐴2
𝑐 ) ≤ 𝑊(𝐶2

𝑐) . (21) 

Eq. 14 is equivalent to: 

For all partitions (𝐴1, 𝐴2) from 𝒜 and (𝐶1, 𝐶2) from 𝒞: 

  𝐴1 ≽ 𝐶1 ⇒ 𝐴2 ≼ 𝐶2 .  (22) 

Eq. 15 is equivalent to: 

For all partitions (𝐶1, 𝐶2, 𝐶3) from 𝒞 and (𝐴1, 𝐴2, 𝐴3) from 𝒜: 

 𝐶1 ≽ 𝐴1 & 𝐶3
𝑐 ≼ 𝐴3

𝑐 ≼ 𝐷   ⇒  𝐴2 ≽ 𝐶2 . (23) 

Eq. 16 is equivalent to: 

For all partitions (𝐶1, 𝐶2, 𝐶3) from 𝒞 and (𝐴1, 𝐴2, 𝐴3) from 𝒜: 

  𝐵 ≼ 𝐴1 ≼ 𝐶1 & 𝐴3
𝑐 ≽ 𝐶3

𝑐   ⇒  𝐴2
𝑐 ≼ 𝐶2

𝑐 . (24) 

PROOF. Eq. 20 immediately implies Eq. 8. Next assume Eq. 8. For Eq. 20, assume 𝑊(𝐶1) ≥

𝑊(𝐴1) and 𝑊(𝐶3
𝑐) ≤ 𝑊(𝐴3

𝑐 ). By convex-rangedness, we can move part of 𝐶1 to 𝐶2 to get 

𝑊(𝐶1) = 𝑊(𝐴1). Similarly, 𝑊(𝐶3
𝑐) = 𝑊(𝐴3

𝑐 ) by moving part of 𝐶3 to 𝐶2. (The move of part 

of 𝐶1 to 𝐶2 did not affect 𝐶3
𝑐.) Eq. 8 and set-monotonicity of 𝑊 imply Eq. 20. The equivalence 

of Eqs. 9 and 21 follows similarly. It in fact is dual to Eqs. 8 and 20. The remaining results in 

terms of preferences follow from the corresponding results on 𝑊.  □ 

 

Appendix B. Proofs 

PROOF OF OBSERVATION 1. We define 𝑤(𝑟) = 𝑊(𝑅) for event 𝑅 with 𝐾(𝑅) = 𝑟. It is well-

defined because 𝐾(𝑅) = 𝐾(𝑅´) = 𝑟 implies, by stochastic dominance,  𝑊(𝑅) = 𝑊(𝑅´) =

𝑤(𝑟). Convex-rangedness readily implies that 𝑤’s domain is the entire [0,1]. 𝑤 is strictly 
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increasing (Online Appendix). So, Eq. 3 for all risky events 𝑅. We have 𝑤(0) = 0, 𝑤(1) =

1. Surjectivity, implied by convex-rangedness, implies that 𝑤 is continuous.  □ 

 

PROOF OF OBSERVATION 8. If 𝜋𝑏 (𝜋𝑚) loses more weight, relative to 𝜋𝑤 (𝜋𝑏 and 𝜋𝑤)  under 

𝒜 than under ℬ, and more under ℬ than under 𝒞, then it loses more under 𝒜 than under 𝒞.  □ 

 

PROOF OF THEOREM 9. The proof will be stated in terms of preference conditions. Through-

out, all events assumed to be from the source 𝒮. By convex-rangedness, boundary events can 

be assumed to be from 𝒮. We write 𝑃 for 𝑃𝒮 throughout. We first show that the axioms are 

necessary. For source preference, assume 𝐴1~𝐵1. Then 𝑃(𝐴1) = 𝑃(𝐵1), so, with subscript 2 

indicating complements: 𝑃(𝐴2) = 𝑃(𝐵2); 𝑊(𝐴2) = 𝑊(𝐵2); 𝐴2~𝐵2 so 𝐴2 ≽ 𝐵2, as required 

by source preference. For insensitivity, consider threefold partitions as before. 𝐴1~𝐵1  and 

𝐴3
𝑐 ~𝐵3

𝑐 imply 𝑃(𝐴1) = 𝑃(𝐵1) and 𝑃(𝐴3) = 𝑃(𝐵3), so, 𝑃(𝐴2) = 𝑃(𝐵2) and hence, both  

𝐴2~𝐵2 and 𝐴2
𝑐 ~𝐵2

𝑐. We have 𝐴2 ≽ 𝐵2 and 𝐴2
𝑐 ≼ 𝐵2

𝑐 , as required by more insensitivity. The 

boundary conditions were not needed here. This shows that the insensitivity region can be 

taken maximal: [∅, 𝑆]. The Archimedean axiom follows directly. It can also be directly seen 

that cumulative dominance is implied by biseparable utility and probabilistic sophistication. 

 We next consider the reversed implication. We assume the Archimedean axiom, and that 

𝒮 is equally preferred and insensitive to itself w.r.t. a regular insensitivity region. We use 

cumulative dominance. We throughout use the reformulated conditions of Appendix A. By 

source preference: 𝐴 ≽ 𝐵 ⇒ 𝐴𝑐 ≼ 𝐵𝑐. The reversed implication, 𝐴𝑐 ≼ 𝐵𝑐 ⇒ 𝐴 ≽ 𝐵 follows 

by taking complementary events. Hence: 

  𝐴 ≽ 𝐵 ⇔ 𝐴𝑐 ≼ 𝐵𝑐  (25) 

within the a-uniform source 𝒮. Assume a regular insensitivity region [𝐵, 𝐷]. 

 

LEMMA 20. Assume 𝐸 ∩ 𝐺 = 𝐹 ∩ 𝐺 = ∅. Then 𝐸 ≽ 𝐹 ⇔ 𝐸 ∪ 𝐺 ≽ 𝐹 ∪ 𝐺. 

 

PROOF OF LEMMA 20. 

CASE 1. First assume 𝐸 ≽ 𝐹. We derive 𝐸 ∪ 𝐺 ≽ 𝐹 ∪ 𝐺. Define 𝐴1 = 𝐹, 𝐴2 =

(𝐹 ∪ 𝐺)𝑐 , 𝐴3 = 𝐺, and 𝐶1 = 𝐸, 𝐶2 = (𝐸 ∪ 𝐺)𝑐 , 𝐶3 = 𝐺. 

CASE 1.1. Assume 𝐴3
𝑐 ≼ 𝐷. By Eq. 23, 𝐴2 ≽ 𝐶2, by Eq. 25 implying 𝐴2

𝑐 ≼ 𝐶2
𝑐, i.e., 𝐸 ∪ 𝐺 ≽

𝐹 ∪ 𝐺. 

CASE 1.2. Assume 𝐴1 ≽ 𝐵. By Eq. 24, 𝐴2
𝑐 ≼ 𝐶2

𝑐, i.e., 𝐸 ∪ 𝐺 ≽ 𝐹 ∪ 𝐺. 



 27 

CASE 1.3. Assume 𝐴1 ≺ 𝐵 and 𝐴3 ≺ 𝐷𝑐 (so that 𝐵 ≻ ∅ and 𝐷 ≺ 𝑆). Then, by regularity, 𝐺 

exceeds all these events. By convex-rangedness, there exists 𝐺1 ⊂ 𝐺 such that 𝐴1 ∪ 𝐺1~𝐵. 

Define 𝐺2 = 𝐺 − 𝐺1 and 𝐴3
′ = 𝐴3 ∪ 𝐺2. Now 𝐴3

′ 𝑐
= 𝐴1 ∪ 𝐺1~𝐵 ≼ 𝐷. Therefore, by Case 1.1 

applied to {𝐴1, 𝐺1, 𝐴3
′ }  and {𝐶1, 𝐺1, 𝐶3

′ } with 𝐶3
′ = 𝐶3 ∪ 𝐺2, we have that 𝐴1 ≽ 𝐶1 implies 

𝐴1 ∪ 𝐺1 ≽ 𝐶1 ∪ 𝐺1.  

 Now define 𝐴1
′ = 𝐴1 ∪ 𝐺1, 𝐶1

′ = 𝐶1 ∪ 𝐺1. By Case 1.2 applied to {𝐴1
′ , 𝐺2, 𝐴3}  and 

{𝐶1
′ , 𝐺2, 𝐶3} we have that 𝐴1 ∪ 𝐺1 ≽ 𝐶1 ∪ 𝐺1 implies 𝐴1 ∪ 𝐺1 ∪ 𝐺2 ≽ 𝐶1 ∪ 𝐺1 ∪ 𝐺2, i.e., 𝐸 ∪

𝐺 ≽ 𝐹 ∪ 𝐺. Case 1 is done. 

CASE 2. Next assume 𝐸 ≻ 𝐹. We derive 𝐸 ∪ 𝐺 ≻ 𝐹 ∪ 𝐶. By convex-rangedness, there exists 

𝐴1 ⊂ 𝐸 with 𝐴1~𝐹. By Case 1, 𝐴1 ∪ 𝐺 ≽ 𝐹 ∪ 𝐺.  𝐴2 ≔ 𝐸 − 𝐴1 is nonnull. By monotonicity, 

𝐸 ∪ 𝐺 ≻ 𝐴1 ∪ 𝐺. Transitivity gives  𝐸 ∪ 𝐺 ≻ 𝐹 ∪ 𝐺.   𝑄𝐸𝐷 

By Lemma 20, weak ordering of ≽, convex-rangedness, and Krantz et al. (1971 Theorem 5.2.2), 

there exists a probability measure 𝑃 on source 𝒮 that represents the preference relation ≽ on 

events. So does 𝑊 and, hence, 𝑊 = 𝑤𝒮 ∘ 𝑃 for a strictly increasing 𝑤𝒮. Cumulative dominance 

implies Eq. 2 w.r.t. 𝑃 = 𝑃𝒮 for all 𝑥, 𝑦 from 𝒮, i.e., local probabilistic sophistication for 𝒮.  □ 

 

PROOF OF THEOREM 11. Assume matching partitions (𝐶1, 𝐶2), (𝐴1, 𝐴2) with a-neutral 

probabilities 𝑝1, 𝑝2 and 𝑞1, 𝑞2, respectively. We have 𝜑(𝑞1) = 𝑝1. The implication 𝐴2 ≼ 𝐶2 

is equivalent to 𝜑(𝑞2) ≤ 𝑝2 = 1 − 𝑝1 = 1 − 𝜑(𝑞1) = 1 − 𝜑(1 − 𝑞2). Preference for 𝒞 over 

𝒜 is equivalent to a disliked pmatcher from 𝒜 to 𝒞. For ambiguity, take 𝒞 = ℛ.  □ 

 
PROOF OF THEOREM 12. Assume matching partitions (𝐶1, 𝐶2, 𝐶3), (𝐴1, 𝐴2, 𝐴3) with a-neutral 

probabilities 𝑝1, 𝑝2, 𝑝3 and 𝑞1, 𝑞2, 𝑞3, respectively. Consider Eqs. 8 and 12. (𝐶1, 𝐶2, 𝐶3) is 

matching with (𝐴1, 𝐴2, 𝐴3) iff 𝜙(𝑞1) = 𝑝1 and 𝜑(𝑞1 + 𝑞2) = 𝑝1 + 𝑝2. Then 𝐴2 ≽ 𝐶2 if and 

only if 𝜑(𝑞2) ≥ 𝑝2 = (𝑝1 + 𝑝2) − 𝑝1 = 𝜑(𝑞1 + 𝑞2) − 𝜑(𝑞1). The boundary condition 𝐴3
𝑐 ≼

𝐷 means 𝑞1 + 𝑞2 ≤ 𝑃𝒜(𝐷). The 𝑞 probabilities are the arguments of 𝜑. Hence, the worst-rank 

bound for 𝜑 is 𝑃𝒜(𝐷). In general, if 𝐵, 𝐷 are from a source 𝒮, then the worst-rank bound for 

𝜑 is 𝑚(𝐷) where 𝑚 is the p-matcher from 𝒮 to 𝒜. 

 Eqs. 9 and 13 are similar (above case for dual of 𝑊). For ambiguity, take 𝒞 = ℛ.  □ 

 

PROOF OF OBSERVATION 13. The definition of 𝜑 gives the first iff. For the second iff, 𝐴 ≻ 𝐶 

implies the existence of 𝐴′ ⊂ 𝐴 with 𝐴′~𝐶 and 𝜑(𝑃𝒜(𝐴′)) = 𝑃𝒞(𝐶). The second iff now 

mainly follows from monotonicity and transitivity. The third is similar.  □  
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PROOF OF THEOREM 14. We derive uniformity and 𝑤𝒜 = 𝑤𝒞 from the other conditions. (The 

reversed implication is direct.) R abbreviates source preference or source insensitivity. 𝒞𝑅𝒜 

and 𝒜𝑅𝒞 and transitivity (Observation 8) imply 𝒞𝑅𝒞, similarly with 𝒜. Hence, by Theorem 

9, both sources are uniform. With 𝜑 the pmatcher from 𝒜 to 𝒞, by twofold source preference, 

𝐶~𝐴 ⇒ 𝐶𝑐~𝐴𝑐, i.e., 𝜑(𝑃𝒜(𝐴)) = 𝑃𝒞(𝐶) ⇒ 𝜑(1 − 𝑃𝒜(𝐴)) = 1 − 𝑃𝒞(𝐶); that is, 

𝜑(𝑝) + 𝜑(1 − 𝑝) = 1. Hence, 𝜑 (
1

2
) =

1

2
 and we need to prove our result only on [0,

1

2
]. 

 Because 𝒜 is more insensitive than 𝒞, 𝜑(𝜀) ≥ 𝜑(𝑝 + 𝜀) − 𝜑(𝑝) for every 𝑝 > 0 and 

(“small”) 𝜀 > 0 if 𝑝 + 𝜀 is below the upper bound of the insensitivity region which, by 

regularity, exceeds 
1

2
. Hence, it holds on the entire [0,

1

2
]. Because 𝒞 is more insensitive than 

𝒜, 𝜑−1(𝜀) ≥ 𝜑−1(𝑝 + 𝜀) − 𝜑−1(𝑝) for every 𝑝 > 0 and (“small”) 𝜀 > 0 as long as 𝑝 + 𝜀 is 

below the upper bound of the insensitivity region which, by regularity, exceeds 
1

2
. Hence, it 

holds on the entire [0,
1

2
]. The two inequalities can only hold if 𝜑 is linear on [0,

1

2
]. Because 

𝜑 (
1

2
) =

1

2
, 𝜑 must be the identity on [0,

1

2
] and, then, on [0,1]. By substitution, the 

insensitivity region can be taken maximal.  □ 
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ADDITION TO PROOF OF OBSERVATION 1 

We assume 𝑤 well-defined as in Observation 1. We first show that the domain of 𝑤 is 

entire [0,1]. This proof would be easy if 𝐾 were countably additive and defined on a 

sigma algebra. However, 𝐾 is only finitely additive and defined only on an algebra. 

Assume, for contradiction, that the 𝑤-range 𝑅𝐾 of 𝐾 is a strict subset of [0,1]. We can 

standardly define w well on 𝑅𝐾 as indicated above, and it is nondecreasing. By 

convex-rangedness of 𝑊, the image 𝑤(𝑅𝐾) is the entire [0,1]. So, 𝑅𝐾 is uncountable. 

For each “small” 𝜖 > 0 there exist probabilities 𝑝 < 𝑞 in 𝑅𝐾 with 𝑞 − 𝑝 ≤ 𝜀. Take 

event 𝐴 with 𝐾(𝐴) = 𝑞. By convex-rangedness, there is a subset 𝐵 ⊂ 𝐴 with 𝑊(𝐵) =

𝑤(𝑝), i.e., 𝐾(𝐵) = 𝑝. So, 𝐾(𝐴 − 𝐵) < 𝜀. Using convex-rangedness of 𝑊, we can 

keep on extending a disjoint array 𝐴1 , …,𝐴𝑖 with 𝐾(𝐴𝑖) = 𝐾(𝐴 − 𝐵) as long as 

𝐾(𝐴1 ∪ ⋯ ∪ 𝐴𝑖)𝑐 ≥  𝐾(𝐴 − 𝐵) so that also 𝑊(𝐴1 ∪ ⋯ ∪ 𝐴𝑖)𝑐 ≥  𝑊(𝐴 − 𝐵). Such 

standard sequences for smaller and smaller 𝜀 readily show that 𝑅𝐾 is dense in [01]. 

Now, if a 𝑝 is missing from 𝑅𝐾, then we must have 0 < 𝑝 < 1, and 𝑤([0, 𝑝)) and 

𝑤(𝑝, 1) provide a partition of [0,1] of two open nonempty sets, violating 

connectedness of [0,1]. This shows that 𝑤’s domain is the entire [0,1]. 

  We next show that 𝑤 is strictly increasing. If 𝑤 is constant on [𝑞, 𝑞 + 𝜀] for 𝜀 >

0, then an event with 𝐾 value 𝑝 = 𝜀 is null, but then so is every event with 𝐾 value 

1

𝑛
< 𝜀, but then so are all their finite unions including the entire [0,1]. Then all 

outcomes are equivalent, and we have a contradiction.  □ 


