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STATE DEPENDENT EXPECIED UTILITY FOR 
SAVAGE'S STATE SPACE 

PETER P. WAKKER AND HORST ZANK 

This paper generalizes the Debreu/Gorman characterization of additively decomposable function- 
als and separable preferences to infinite dimensions. The first novelty concerns the very definition of 

additively decomposable functionals for infinite dimensions. For decision under uncertainty, our 
result provides a state-dependent extension of Savage's expected utility. A characterization in terms 
of preference conditions identifies the empirical content of the model; it amounts to Savage's axiom 

system with P4 (likelihood ordering) dropped. Our approach does not require that a (probability) 
measure on the state space be given a priori, or can be derived from extraneous conditions outside 
the realm of decision theory. Bayesian updating of new information is still possible, even though no 

prior probabilities are given. The finding suggests that the sure-thing principle, rather than prior 
probability, is at the heart of Bayesian updating. 

1. Introduction. Separability is one of the most important tools available for simpli- 
fying complex optimization, where several criteria have to be aggregated into one overall 
goal. Under some technical conditions, separability amounts to additive decomposability 
(Debreu 1960, Gorman 1968), and it has been used in many areas. Examples are decision 
under uncertainty (Savage 1954), consumer theory (Barten and Bohm 1982), interpersonal 
aggregation (Fleming 1952, Harsanyi 1955, Broome 1991), dynamic optimization (Strotz 
1956, Koopmans 1972), and many other areas (Krantz et al. 1971, Keeney and Raiffa 1976). 
Debreu's theorem, as well as its many variations, only consider finitely many criteria. In 

many areas, the restriction to finitely many criteria is undesirable. It is often preferable to deal 
with infinitely many states of nature in decision under uncertainty, infinitely many persons in 

group aggregation, etc. 
Whereas most preference representations in the literature are routinely extended from finite 

to infinite dimensions, no such extension has as yet been established for Debreu's result. 

Providing such an extension, for the special case of real-valued outcomes and monotonic 

preferences, is the purpose of this paper. The development of our new functional, additively 
decomposable on infinite-dimensional spaces, is similar to the definition of integrals and is 
also derived from approximations through step functions from above and below. 

The research of this paper started with the search for a state-dependent generalization of 

Savage's (1954) expected utility, and a characterization thereof entirely in terms of 

endogeneous preference conditions. Probability is then no longer identifiable and the result 
is an additively decomposable functional. The state-dependent generalization of Savage 
(1954) is presented in Theorem 11. In view of this application, the main text of the paper is 
formulated for the context of decision under uncertainty. It could also have been formulated 
for interpersonal or intertemporal or other aggregations. 

The outline of the paper is as follows. Section 2 surveys related literature on state- 

dependent expected utility. It also points out that this paper only deals with cardinal state 

dependence. Ordinal state independence is preserved because utility for money is assumed 

increasing in every state. For economic applications, this restriction seems natural. Section 3 
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discusses the absence of a general state-dependent expected utility functional in the literature 
thus far. In ?4, elementary results are described for finite dimensions. State-dependent utility 
then coincides with additive conjoint measurement. Section 5 describes the difficulties for 
infinite state spaces. In particular, Example 4 motivates the specific form of our functional 
and shows why we do not adopt a completely general additive functional for infinite state 

spaces. Section 6 describes some natural preference conditions for state-dependent expected 
utility. The new functional is derived from those preference conditions. Section 7 demon- 
strates that the functional can be written as an integral if a countable additivity condition is 
added. Section 8 describes applications of our functional to updating, the characterizations of' 
risk attitudes, and the elicitation of probability. Section 9 summarizes and concludes. 

Appendices A and B present mathematical modifications, and Appendices C-G, finally, 
present proofs. 

2. State-dependent expected utility. The most famous result in decision under 

uncertainty was provided by Savage (1954), who presented preference conditions for 

subjective expected utility. Savage assumed that outcomes have a meaning and value 

independent of the state of nature with which they are associated. In several applications, 
however, it is undesirable to disentangle the value of an outcome from the associated state. 
An example is health insurance, in which the value of money is dependent on sickness or 
health. Other examples are described by Karni (1985) and Dreze (1987, Chapter 8). 
Therefore, several papers have dealt with state-dependent generalizations of Savage's model, 
where the utility of an outcome is permitted to depend on the state of nature with which it 
is associated. 

A central issue in state-dependent expected utility is the nonidentifiability of probability. 
If utility can depend on the state of nature in any way, then probabilities are no longer 
uniquely determined. For identifying probability, most papers in the literature add exoge- 
neous assumptions, invoking information other than observable choice. Examples are 
influence of the decision maker on probabilities and states and "idempotent" acts (Dreze 
1961, 1987 Chapter 2), preferences between acts conditioned on different events (Luce and 
Krantz 1971, Fishbur 1973), hypothetical probabilities of states set by an experimentor 
(Karni, Schmeidler, and Vind 1983), lotteries with known probabilities over state-dependent 
outcomes belonging to different states (LaValle and Fishbur 1991, ?5), preferences and 
utilities conditional on null states (Rubin 1949, 1987), and availability of some state- 

independent outcomes (Karni 1993a, 1993b). 
This paper focuses on a stage prior to the identifiability of probability. A general 

state-dependent extension of Savage's (1954) expected utility form is presented that is based 
solely on choice making and exhibits the characteristic inseparability of probability and 
utility. Our aim is therefore not to "resolve" the inseparability of probability and utility, but 
rather to accept it and incorporate it into a decision-model. Such an inseparability has been 
recommended by Kreps (1988, Formula 7.13), and appears in Fishbum (1970, Theorem 
13.1), Rubin (1987), and Nau (1995). It has, however, not yet been presented for Savage's 
infinite-state model. It must be kept in mind that, without a given probability measure, no 
integration operation is available to define the functional form. To our knowledge, the only 
paper on state-dependent utility for infinite state spaces that does not invoke an integral is 
Rubin (1987). (A similar result for finite state spaces is Theorem 13.1 in Fishbum (1970).) 

The paper in the literature closest to our work is Grodal and Mertens (1976), where 
probability and utility are also inseparable. They assume that an underlying countably 
additive measure on the state space is given a priori, with respect to which an absolute 
continuity condition is imposed. Thus, their functional can still be written as an integral form, 
contrary to our Theorem 11. In our Theorem 12, their result is extended by deriving the 
countably additive measure endogeneously, i.e., entirely from preference. 

Let us come clean on one point. Our analysis also assumes an additional restriction. It 
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concerns, however, the most common and relevant special case for economic science: We 
assume monetary outcomes and monotonicity and continuity. These conditions are entirely 
defined in terms of preferences. They imply state independence in an "ordinal" sense, i.e., 
outcomes are ordered the same way for different states of nature. Therefore, the analysis of 
this paper only addresses state dependence of utility in a cardinal sense. Example 4 describes 
a case of ordinal state dependence and indicates some of its unwarranted implications which 
further motivate our restriction to ordinal state independence. 

There is another reason for the absence of a general state-dependent extension of Savage's 
expected utility in the literature. Many studies have restricted attention to linear utility. 
Whereas linearity sometimes refers to riskless outcomes themselves (Chateauneuf 1991, Nau 
1995), it mostly refers to probabilistic mixing (Dreze 1961, 1987, Fishburn 1970, Theorem 
13.1, Fishburn 1973, Karni, Schmeidler, and Vind 1983, Karni 1985, 1993a, Rubin 1987, 
LaValle and Fishbum 1991), in line with Anscombe and Aumann (1963). Under linear 
utility, the distinction between ordinal and cardinal state independence disappears: a linear 
function is an ordinal (increasing) transform of another linear function, if and only if it is a 
cardinal (linear) transform. Hence, if two linear state-dependent utility functions are ordinally 
equivalent, they are also cardinally equivalent. This explains how Anscombe and Aumann 
(1963) could obtain state-independence by only imposing an ordinal state-independence 
axiom (Assumption 1 there). 

In Savage's model, there is no linear utility and P3 implies only ordinal, not cardinal, state 
independence. As pointed out by Karni (1993b, p. 433), it is primarily P4 (likelihood 
ordering; the only axiom violated in our Theorem 11) which implies cardinal state 
independence. A partial weakening of Savage's P4, leading to a partial degree of state 
dependence, is studied by Karni and Schmeidler (1993). Wakker (1987) adapted Karni, 
Schmeidler, and Vind's approach (1983) to continuous, as opposed to linear, utility. In his 
model, ordinal and cardinal state independence were distinguished. 

In a mathematical sense, our analysis is related to Chew and Wakker (1996) and uses 
similar tools. There, an "outcome-dependent" capacity (nonadditive measure) was introduced 
that generalizes existing rank-dependent nonexpected utility theories by dropping the 
separation of utility and nonadditive probability. Similar rank-dependent forms appeared in 
Green and Jullien (1988), Quiggin (1989), and Segal (1993) for decision under risk. 

An alternative extension of additive conjoint measurement to infinite product sets was 
studied by Vind (1990). His functional shares with ours the additivity property. It need not 
satisfy pointwise monotonicity and thus need not be constructable from limits of simple acts; 
this is illustrated in Example 4. His assumptions on domain are more restrictive than ours. For 
details see Appendix A, Observation 15(g) and the subsequent discussion. 

The main characterizing preference condition in our model is the sure-thing principle. 
Other than that, only common preference axioms (weak ordering, monotonicity, continuity) 
are used. Our paper can, therefore, be considered a counterpart to Machina and Schmeidler 
(1992): They studied Savage's model in which, of the two critical expected-utility axioms, 
P4 (ensuring likelihood ordering) was kept and P2 (the sure-thing principle) was dropped. 
Under a strenghtening of P4, they then obtained a model for "probabilistic sophistication" 
that followed Savage in expressing uncertainties in terms of probabilities but, due to the 
dropping of P2, did not order probability distributions according to expected utility. Machina 
and Schmeidler's result was generalized by Epstein and LeBreton (1993), who used a weaker 
strengthening of Savage's P4 than Machina and Schmeidler in order to obtain an appealing 
interpretation as dynamic consistency. As compared to these works, we maintain Savage's P2 
and drop P4. In other words, we abandon the existence of subjective probabilities and a 
likelihood ordering. 

The preceding duality has a remarkable implication for updating, elaborated in ?8. 
Machina and Schmeidler (1992) preserve the probability calculus of Bayesian updating in a 
nonexpected utility framework where updated preferences then depend on what would have 
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TABLE 1. Existing and non-existing functionals 

Finite dimension General (infinite) dim. 

Expected utility 2 jn pjU(f(sj)) (al) fs U(f(s)) dP (bl) 
State-dep. expected utility ; ni p,Uj(f(sj)) (a2) f U,(f(s)) dP (b2) 
Additive decomposability 2;l Vj(f(sj)) (a3) ? (b3) 

happened outside the conditioning event. In our model, updating also results as a natural 
generalization of the traditional updating of expected utility, but the only point where it 
deviates is in the abandoning of prior probability. It preserves independence of updated 
preferences from counterfactual events, which is a foundation of the likelihood principle 
(Poirier 1988). According to the likelihood principle, the optimal estimate of an unknown 
parameter or the optimal decision to reject or accept a hypothesis is, given an observed value 
of a statistic, independent of what one would have done given other values of the statistic. 
The likelihood principle is central in Bayesian statistics and is preserved in our approach. In 
summary, our result suggests a central role for the sure-thing principle and a lesser role for 
prior probabilities in the normative debate on Bayesian updating. Prior probabilities simplify 
Bayesian updating but are not essential. 

3. Absence of general state-dependent expected utility in the literature. To explain 
the absence, hitherto, of a general state-dependent extension of Savage's model, we first 
assume, contrary to Savage's model, that the state space is finite. In this case, general 
state-dependent expected utility is well-understood. Assume that the state space S is 
{s1, ..., Sn }. Letf be an act, assigning outcomef(sj) E R to each state si. The expected 
utility formula off is given in Table 1, Formula (al), where pj is the probability of state sj 
and U denotes utility. A first version of the state-dependent generalization is given in 
Formula (a2), where the subscript in Uj indicates state-dependence. Any alternative 
state-dependent representation 

n 

(1) ' qjWj(f (sj)) 
j=1 

with pjUj = qjWj for all j represents the same preferences and thus is empirically 
indistinguishable from the original representation. Hence only the products pjUj are 
meaningful and it is preferable to rewrite the functional as in Formula (a3) where Vj = pjUj 
for all j. That summation provides the state-dependent generalization of expected utility. As 
pointed out by Kreps (1988, Formula 7.13), state-dependent expected utility therefore is a 
special case of "additive conjoint measurement," axiomatized by Debreu (1960), Gorman 
(1968), Krantz, Luce, Suppes, and Tversky (1971), and others. The factoring out of 
probability pj and utility Uj as in (a2) has little significance, i.e., probability is not identifiable 
under state-dependent expected utility. This point has often been discussed (Dreze 1961, 
1987; Karni 1985, 1993a, 1993b, 1996; Rubin 1987; Kadane and Winkler 1988; Schervish, 
Seidenfeld, and Kadane 1990; Karni and Schmeidler 1993; Nau 1995). An empirical method 
for eliciting the product of probability and state-dependent utility has been described by 
Wakker and Deneffe (1996, end of ?4). 

State-dependent utility is more complicated for infinite state spaces. For these spaces, 
expected utility reads as in (bl) in the table, where P denotes the probability distribution over 
S. State-dependent utility at first reads as (b2). Again, the same basic indeterminacy of 
probability and utility exists as in the finite state case, and alternative representations 
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(2) W,(f(s)) dQ 
s 

can be chosen that represent the same preferences. For instance, let Q have any positive 
density with respect to P, then divide Us by that density to obtain Ws. As for finite state 
spaces, one would like to drop the meaningless factorization into P and U,. However, a 
functional to drop the factorization from (b2) is not readily available in the literature, hence 
the question mark at (b3) in the table. Here, the analogy with finite state spaces stops. 

Introducing the extension of an additively decomposable functional for infinitely many 
states, i.e., filling in Formula (b3), is our first task. The extension is not very difficult given 
ordinal state independence, and is defined by enclosure from above and below by simple acts, 
completely analogous to the definition of integrals. The absence in the literature of the 
required functional, and the desirability of developing it, was pointed out by Hiibner and 
Suck (1993, p. 631 and concluding remarks). For related comments restricted to finite state 
spaces, see Fishbur (1970, Chapter 12). 

4. Definitions and preliminary results. S is a state space that can be finite or infinite. 
It is endowed with an algebra s. of subsets, that is, sM contains the universal event S, the 
complement Ac relative to S of each of its elements A, and, finally, the union A U B of each 
pair of elements A, B. Subsets of S contained in sM are called events. For any partition of S 
or of any subevent of S, it is always assumed without further mentioning that its elements are 
events. The outcome space is R. (Connected topological outcome spaces are discussed in 
Appendix B.) An act is a bounded function from S to the outcome space that is measurable, 
i.e., the inverse of every interval is an event. 9 denotes the set of all acts. Note that, without 
further mentioning, acts will be assumed to be bounded throughout this paper. A technique 
for dealing with unbounded acts is described by Wakker (1993). 

For actf and event A, fA denotes the restriction off to A. For acts f, g, and event A, fAg 
(abbreviating fAgA) denotes the act that agrees withf on A and with g on A . Constant acts 
are sometimes identified with their associated outcomes. We may thus write, for outcome x, 
fAx for the act that agrees with act f on event A and is constant x on AC; the notation xAf is 
similar. For event A, 1A denotes the indicator function of A. For a finite partition {A , ... . 
An} of S, IJnl xl,Aj denotes the act assigning xj to each s E Aj, for each j. Such an act, 
taking only finitely many values, is a simple act. 5s denotes the set of all simple acts. 

The preference relation is a binary relation > on i. It is a weak order if it is complete (f 
> g or g > f for all actsf, g) and transitive. The notation >, -, <, and < is standard, i.e., 

f> g iff> g andnotg >f,f- g iff > g andg >f,f< g if g >f, andf < g if g 
> f. If there exists a representing function V (i.e., V is a real-valued function on the set of 
acts 

; 
such thatf > g < V(f) - V(g) for all actsf, g), then > is necessarily a weak order. 

Let us now summarize the structural assumptions made in the main body of this paper. 

ASSUMPTION 1 (STRUCTURAL ASSUMPTION). Acts are bounded measurable maps from the 
state space S to the outcome space R. The preference relation > is a binary relation on the 
set 5 of acts. o 

Simple acts play an important role in our analysis and several intermediate results will be 
formulated for simple acts. We will also see that several preference conditions can be 
restricted to simple acts. Together with some technical conditions, they then imply the 
corresponding conditions for the nonsimple acts. Event A is null iffAg ~ g for all simple acts 
f and g. Strict monotonicity holds if xf > yAf for all nonnull events A, simple acts f, and 
outcomes x > y. 

The main condition of interest in our analysis is Savage's (1954) sure-thing principle. It 
requires 
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c,f > c,g < cf c;g 

for all acts c, c', f, g, and events I. The sure-thing principle holds on 9s if the condition is 
only imposed on all simple acts c, c', f, g. The condition is known under various names, 
such as (strong) separability in consumer choice theory (Barten and Bohm 1982), preferential 
independence in multiattribute utility theory (Keeney and Raiffa 1976), and (con)joint 
independence in conjoint measurement theory (Krantz et al. 1971). 

If S is finite, say S = { s, ..., s, }, then 9 can be identified with R" through the bijective 
mappingf -> (f(s ), ... , f(s,)). Continuity of > then means that, for each actf, { g : g 
> f} and g : g < f} are closed subsets of R" with respect to the Euclidean topology. 
Debreu (1960) proved the following result, formulated here for the context of decision under 
uncertainty. 

THEOREM 2 (DEBREU 1960, STATE-DEPENDENT EXPECTED UTILITY FOR FINITE STATE SPACES). Let 
the Structural Assumption 1 hold and let S = {s, ..., s.}, where at least three states are 
nonnull. Then the following two statements are equivalent: 

(i) There exist continuous functions Vj : R --> R, j = 1, ..., n, that are strictly 
increasing for all nonnull states and constant for all null states, and such that > is 
represented by 

n 

V(f) = Vj(f(sj)). 
j=1 

(ii) > is a continuous strictly monotonic weak order that satisfies the sure-thing principle. 
The following uniqueness holds for (i): W(f) = Zj%l Wj(f(sj)) represents > if and only 

if there exist real numbers T, ...,', T and a positive or such that Wj = j + (TVj for all j, 
implying that W = T + oV for T = 1T + * + Tn. E 

Strictly speaking, the uniqueness result in Theorem 2 may be considered slightly stronger 
than Debreu's (1960) because continuity of W has not been presupposed but instead follows 
as a consequence (Wakker 1988). This generalized uniqueness result is used in what follows. 
The case of exactly one nonnull state is trivial; then there is no uncertainty. For two states 
of nature, an additional condition must be added in Statement (ii), for instance, the "hexagon 
condition" or the "Thomsen condition" (Kari and Safra 1998). 

To obtain a. (state-independent) expected utility representation in Statement (i), and thus a 
finite-state version of Savage's (1954) result, the conditions in Statement (ii) must be 
strengthened. Such strengthenings have been provided by Grodal (1978), Wakker (1984, 
1989), Nakamura (1990), and Gul (1992). An essential intuitive step in attaining such a 
separation of probability and utility is an identification, in at least a cardinal sense, of 
outcomes contingent on different states of nature. For further discussion and a clarifying 
example of this point, see Kari (1996). 

5. Complications for infinite state spaces. Following Savage (1954), we now 
introduce a nonatomicity condition that implies infinity of S. An event A is an atom if, for 
every subevent B of A, either B orA\B is null. We will assume that S contains no atoms. That 
assumption is somewhat weaker than the "atomless" condition (see Appendix A) commonly 
adopted in the literature, but suffices for our purposes. 

A major complication in the extension to infinite state spaces concerns the topological 
restrictions to be imposed. Continuity with respect to the product topology is too restrictive 
for our purposes. Therefore a "finite-dimensional" simple-continuity condition is imposed on 
9s which requires that, for each finite partition {A,, ... , A } of S, the preference relation 
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over the finite-dimensional subspace of acts of the form ,j xj 1Aj is continuous. That is, for 
every (x, ... , Xn) E R", {(Yl, ..., Yn) E R" : j=I YjlA > jl Xjlaj} and {(Yl, ... 

Yn) E R" Ejn=1 YjlAj < jn= Xj1Aj} should be closed subsets of R". 

PROPOSITION 3. Assume that S contains no atoms and that > is a simple-continuous 
strictly monotonic weak order that satisfies the sure-thing principle on 9s. Then for each 
event A there exists a continuous and either strictly increasing or constant function VA 
R -> R such that > is represented on 9s by 

/ n n 

V XjlAj = VAj(Xj). 
\= j=l =1 

The following uniqueness holds: W(j" =1 Xjl A) = 2?=1 WAj(Xj) represents > on 9s if and 

only if there exist real numbers TA for each event A and a positive o such that WA = TA 

+ orVAfor all A, where TAUB = TA + TB for all disjoint events A, B and W = Ts + aV. [ 

The uniqueness result, up to multiplication by a positive "scale" factor a and addition of 
a signed bounded finitely additive measure T is characteristic of state-dependent utility, and 
will return in later theorems. 

Proposition 3 can be interpreted as a state-dependent extension of Savage's (1954) result 
for simple acts. Next we consider the extension to nonsimple acts. It turns out that, in the 

presence of weak ordering and the sure-thing principle, the technical conditions in the 

proposition, i.e., strict monotonicity and simple-continuity, do not suffice to ensure the 
desired representation. Loosely speaking, the sure-thing principle and strict monotonicity 
only impose restrictions within finite-dimensional subspaces of i. Different finite-dimen- 
sional subspaces of 9 that share only the origin can be entirely unrelated. These claims are 
illustrated by the following example. 

EXAMPLE 4. Assume that S = [0, 1], endowed with the regular Borel o-algebra (the 
smallest a-algebra containing all intervals) and the Lebesgue measure (assigning to each 
interval its length). The functional V that represents > is linear. On 9;, V is expected value. 
First a description is given of the extension of V from 9s to some, but not all, nonsimple acts, 
for three different versions of the example. Then it is explained how V can be extended to 
all nonsimple acts for each of the three versions. Finally, the example is discussed. 

(VERSION A) Forf(s) = s + 1, V(f) = -1. 

(VERSION B) Consider the partition wr = {[0, 1/n), [ ln, 2/n), ..., [1 - 1/n, 1), [1]}. 
Let ;* contain all acts that are 0 at all points jln and are linear on each interval of the 

partition. 9;* is a linear space that intersects 9s only at the origin (the constant 0 act). Let P* 
be any arbitrary probability measure on [0, 1] and U* any continuous function from IR to IR 
such that U*(0) = 0; U* need not be increasing. Let V be expected utility with respect to 
P* and U* on 5;*. 

(VERSION C) Let i* and ;** be two linear subspaces of 9 such that the linear space 
spanned by any two of ;', i*, and S** intersects the third only at the origin. Let P* and 
P** be arbitrary probability measures on [0, 1] and U* and U** any continuous functions 
from IR to R such that U*(0) = 0 = U**(0). Let V be expected utility with respect to P* 
and U* on ;*, and expected utility with respect to P** and U** on ;**. 

In each of the three versions we can extend V to a linear functional on all of 9 by the 
Hahn-Banach extension theorem (Dunford and Schwartz 1958). Linearity of V implies the 

sure-thing principle because 
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V(c,f) - V(c,g) = V(c)) + V(O,f) - (V(cAO) + V(Og)) = V(Of) - V(Og) 

= V(cO) + V(O,f) - (V(cO) + V(O,g)) = V(cf) - V(c;g). 

Therefore, V(c,f) - V(c,g) and V(c'f) - V(c'g) have the same sign and the preference 
between c,f and c,g is the same as between c/f and c\g. Because V(x,f) - V(yAf) = (x 
- y)V(1A) > 0 for x > y and A nonnull, strict monotonicity also holds for the nonsimple 
acts. 

A phenomenon occurs in (a) that is unwarranted from a decision theoretical viewpoint: f(s) 
> 0 for all states s, but still V(f) < 0 and f is strictly less preferred than 0. Another 
unwarranted phenomenon occurs in both (b) and (c): the restrictions of V (and, correspond- 
ingly, of >) to several subparts of its domain are completely unrelated. All three cases (a), 
(b), and (c) illustrate that V on 9s does not restrict V on other parts of its domain to a 
satisfactory degree. o 

A natural condition for preference functionals V in decision under uncertainty, violated in 
(a) of the example, is pointwise monotonicity: iff(s) > g(s) for all s, then V(f) 2 V(g). 
Similarly, pointwise monotonicity for > requires thatf > g iff(s) > g(s) for all s (compare 
Rubin 1987, Axiom 0). 

We next turn to the extension of additivity. A functional V : i -> R is additively 
decomposable over disjoint events, or additive for short, if for each event A there exists a 
functional VA on the set of restrictions fA of acts f to A such that for each finite partition 
{A,,... An} of S, 

n 

(3) V() = VAj(j). 
j=l 

It is important to note that VA(fA) does not depend on the partitioning of Ac and neither on 
the part of f outside of A. Linear functionals are additive (define VA(fA) = V(fAO)). 
Also, the expected utility functional (Formula (bl) in Table 1) is additive (define VA 
= fA U(f(s)) dP). Additive functionals were previously studied by Vind (1990). 

Additivity of V immediately implies that the functionals VA are also additive in the sense 
that VBuc(fBuc) = VB(fB) + Vc(fc) for all disjoint events B, C. The following lemma 
shows that additivity on 9"s is in agreement with the functional described in Proposition 3 
(that imposes (3) only when the fAj are constant). 

LEMMA 5. V: YS --> is additive if and only if there exists, for each event A, a function 
V* : R -> R such that V(Jn 1 XjlAj) = jn=I V*(xj). n 

Because of its importance, the following observation is displayed and its, elementary, 
proof is presented in the main text. 

OBSERVATION 6. If > can be represented by an additive functional then it satisfies the 
sure-thing principle. 

PROOF. Writing R ("relevant") for the complement of event I ("irrelevant"), we get 

V(cf) - V(c,g) = V,(c) + VR(fR) - (V,(c) + VR(gR)) 

and 

V(c'f) - V(c,g) = V,(c,) + VR(fR) - (V,(c) + V(gR)). 
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Dropping the terms VI(cI) in the first equality and the terms V,(c') in the second, the same 
right-hand sides result. Hence the left-hand sides are also equal. Then they surely have the 
same sign, and that implies that the preference between c,f and c,g is the same as between 
c Jf and c'g. m 

Additivity does not preclude the phenomena described in Example 4 because the 
representing functional there was linear and thus additive. For infinite-dimensional exten- 
sions of additive conjoint measurement, there may be interest in general functionals, as in 
Example 4, that do not satisfy a pointwise monotonicity condition (Streufert 1995). For 
economic applications of decision under uncertainty with monetary outcomes, however, we 
think there is little empirical interest in such general functionals. Therefore, the following 
section follows a different route, avoiding the complications of Example 4. 

6. State-dependent expected utility for infinite state spaces. In our extension of 

state-dependent expected utility to all acts in 9, the empirically most important conditions of 

additivity and the sure-thing principle will not be extended to all of 9; from the start, but will 

initially only be imposed explicitly on 59. Instead, continuity will be extended to all of i. 
That ensures that the functional V can be extended from 5Vs to S in the same way as integrals: 
Each nonsimple act is enclosed between dominating and dominated simple acts that converge 
to that act in supnorm. Because of continuity, the value of the nonsimple act is the limit of 
the values of the converging simple acts. Thus, V is a "natural" extension of integrals. A 
crucial implication of supnorm continuity, underlying this procedure, is pointwise monoto- 

nicity (Lemma 9). We subsequently find, as a "bonus," that additivity and the sure-thing 
principle, imposed only on 

is 
, do hold on all of i; after all. Thus, a satisfactory version of 

state-dependent expected utility has been obtained. 
Under the supnorm, the distance between two acts f, g is sup,sslf(s) - g(s)l. V is 

supnorm-continuous if 
{ 

f E : V(f) -' A} and { f E 
i 

: V(f) - A are supnorm-closed 
for all A E 1R. Similarly, > is supnorm-continuous if, for all acts f, the sets { g E : 

g > f} and { g E : g < f} are supnorm-closed. It is well-known that supnorm-continuity 
is equivalent to the common continuity on Rn, and thus supnorm-continuity implies 
simple-continuity. That supnorm-continuity is not overly restrictive may be further accen- 
tuated by its equivalence to continuity of utility under expected utility and also under the 
more general Choquet expected utility, introduced by Schmeidler (1989). This equivalence 
was demonstrated by Chew and Wakker (1996, Observation 2); it should be kept in mind 
here that our acts are assumed to be bounded. 

A number of steps in the derivation of the main result, Theorem 11, are made explicit in 
the text. These steps make it clear that the state-dependent expected utility functional 

proposed here generalizes integrals in a natural manner. Henceforth, up to Theorem 11, it is 
assumed that: 

ASSUMPTION 7. S contains no atoms and > is a strictly monotonic supnorm-continuous 
weak order that satisfies the sure-thing principle on 95. o 

This assumption implies that Proposition 3 can be applied, yielding an additive represent- 
ing functional V on ;S". The functional V is first extended to all of 9, through "certainty 
equivalents." Next, the required conditions are derived for V. y E IR is a certainty equivalent 
for act f if y ~ f. 

LEMMA 8. Under Assumption 7, there exists a certainty equivalent for each actf. 
f 

Because of strict monotonicity (applied to the constant acts), there exists at most one 

certainty equivalent for each act. We extend the functional V of Proposition 3 to the 

nonsimple acts by defining V(f) = V(y) where y is the certainty equivalent off. This 
functional obviously represents preferences and, as shown in Lemma 19 in the Appendix, is 
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FIGURE 1. Enclosing f from above and below by simple functions aJ and bj. 

continuous. It obviously agrees with the definition on 9;. An important observation is the 
following. 

LEMMA 9. Under Assumption 7, the functional V as just defined satisfies pointwise 
monotonicity. o 

Because of this lemma, the V value of a nonsimple actf results from V values of simple 
acts in a similar fashion as an integral value off would. This can be seen as follows. It is 
well-known that there exist two sequences of simple acts aJ and bj (a abbreviating "above" 
and b "below") such that 

f(s) + 1/j 
- 

ai(s) > aj+l(s) f(s) 2 bj+'(s) > bj(s) f(s) - l/j, 

for all s and j (see Figure 1). Then, because of pointwise monotonicity, V(f) is enclosed 
increasingly tightly by V(b') - V(f) s V(a'). Because of supnorm-continuity (Lemma 19), 
V(b') and V(a') indeed converge to V(f). The definition of the functional is similar to the 
construction of the Lebesgue integral. It does not invoke any structure on the state space other 
than measure-theoretical and in this sense is more general than the Riemann integral. 

It will next be demonstrated that V inherits additivity on ; from additivity on ;s. By 
Observation 6, this also ensures the sure-thing principle for all acts. 

LEMMA 10. Under Assumption 7, V as just constructed satisfies additivity. o 

At this point, the main theorem of this paper can be given. 

THEOREM 11 (STATE-DEPENDENT EXTENSION OF SAVAGE 1954). Let the Structural Assump- 
tion 1 hold and assume that S contains no atoms. Then the following two statements are 
equivalent: 

(i) > is represented by a functional V: 9 -> R that satisfies (1) additivity, i.e., there exist 
functionals VA defined on the restrictions of acts to A such that 

n 

V(f) = > VA(fA) 
j=l 

for each finite partition {A1, ... , An of S; (2) supnorm-continuity; (3)for each A, VA(x) 
(for outcome/constant act x) is either constant or strictly increasing in x. 
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(ii) > satisfies: (1) weak ordering; (2) strict monotonicity; (3) supnorm-continuity; (4) the 
sure-thing principle. 

Furthermore, (i) implies pointwise monotonicity of V and (ii) implies pointwise monoto- 
nicity of >. In (i), VA(X) is continuous in x for each A. 

The following uniqueness holds for (i): W is additive (W(f) = jni WAj(fAj) for any finite 
partition {A1 ... , An } of S) and represents > if and only if there exist real numbers TA for 
each event A and a positive o such that WA = TA + oVA for all A, where TAUB = TA 
+ TB for all disjoint events A, B and W = Ts + o V. 

The theorem provides a state-dependent extension of Savage's expected utility. It does not 
provide a separation of probability and (state-dependent) utility, but instead it provides a 
decision-model where these factors are inextricably joined together. 

7. Deriving an integral form under countable additivity. This section demonstrates 
that our functional can be written as an integral with respect to a countably additive measure 
jL, under a stronger continuity condition. The result is given here for its mathematical 
convenience, not for its empirical content. The convenience results because the well-known 
integration techniques can now be invoked. The measure ,u and the accompanying state 
dependent utility function Us are, however, only mathematical devises and do not represent 
additional empirical content. All relevant empirical information is contained in the general 
additively decomposable functional, without any measure ,u or utility Us specified. 

It is assumed in this section that the algebra si is a a-algebra on S, i.e., it is closed under 
countable (instead of just finite) unions. Note that, in the special case of Theorem 11 where 
the functional V can be decomposed into a probability measure P and a utility function U, 
our axioms only imply finite additivity of P. The following continuity condition reinforces 
supnorm continuity to the effect of also implying countable additivity. 

> satisfies pointwise continuity if a sequence of "uniformly bounded acts that converge 
pointwise to an act also converge preference-wise to that act." A sequence of acts fJ is 
uniformly bounded if there exist outcomes x, y such that x > f'(s) > y for allj and s, and 
it converges pointwise to f if limj,, f'(s) = f(s) for all s. It converges preference-wise to 
f if, for each act g, g > f implies existence of a J E IN such that g > f' for all j > J and 
g < f implies existence of a J E IN such that g < f for all j > J. Pointwise continuity of 
the functional V is defined likewise: If a sequence of uniformly bounded acts converge 
pointwise, then their V value also converges to the V value of their limit. Pointwise continuity 
implies supnorm continuity (Lemma 20) and countable additivity (Lemma 22). It is weaker 
than (i.e., implied by) continuity of the state-dependent utility functions Us in (i) in the 
theorem (Lemma 27), hence is not overly restrictive. 

THEOREM 12 (STATE-DEPENDENT EXPECTED UTILITY UNDER COUNTABLE ADDITIVITY). Let the 
Structural Assumption 1 hold and assume that S contains no atoms. Then the following two 
statements are equivalent: 

(i) There exists a countably additive measure AI on S and for each state s a strictly 
increasing (state-dependent utility) function Us : OR -> R such that > is represented by the 

pointwise continuous integral 

f Us(f(s)) dtx. 
'S 

(ii) > satisfies: (1) weak ordering; (2) strict monotonicity; (3) pointwise continuity; (4) the 
sure-thing principle. 

The following uniqueness holds for (i): JL, (U,)sEs can be replaced by , t*, (U*)ses if and 
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only if t, and Lu* have the same null events and U* = r(s) + o8(s))Us for all s except on 
a ,L null event, where r is a measurable function from S to R, cr is a positive constant, and 
8 is the Radon-Nikodym density function of u with respect to ,I*. o 

The integral in (i) is well-defined and real-valued for each act f. It is crucial for the 

uniqueness result regarding ,u that each state-dependent utility is required to be strictly 
increasing. That excludes the case in which ,L(A) > 0 but A is null because of constant 

utility at A. Hence, AI identifies null events (Lemma 26). Statement (i) obviously implies 
pointwise monotonicity of V, and Statement (ii) of >, as in Theorem 11. Theorem 12 
deviates from Grodal and Mertens' (1976) result mainly because the measure AI is not given 
a priori but is determined endogeneously, completely in terms of preferences. 

8. Applications. This section presents some applications of Theorem 11. We first 
demonstrate, on the basis of suggestions by Karni, Schmeidler, and Vind (1983) and Karni 
(1996), that updating through adjusted likelihoods ratios, the corer stone of Bayesian 
statistics, is still possible. Thus, Bayesian updating is extended from expected utility to 

state-dependent expected utility. 
As a preparation, the classical updating from Bayesian statistics, which will be generalized 

hereafter, is described within the expected utility model. Let f - fs U(f(s)) dP represent 
the prior preferences over acts, for a subjective probability measure P and a (subjective) 
utility function U. Assume that we observe a value X of some "statistic." The probability 
(density) for this observation is different for different states of nature, i.e., it is a function of 
the state of nature. This function is the likelihood function. 

To avoid some technical complications, the likelihood function is assumed to take only 
finitely many values and is further assumed to be constant on each element Aj of a partition 
{A, ..., An}. In other words, the observation of X helps to distinguish between the 
"hypotheses" A1, ..., An; conditional on any Aj, however, the observation X does not 
provide further information. Say the likelihood of the observation is Aj for each Aj. Then, 
after the observation the probability for any Aj is changed by a factor proportional to Aj 
according to the formula of Bayes. The updated preference relation, denoted >, can be 
represented byf -> , Ai f A U(f(s)) dP; note here that normalization is not necessary for 
the representation of preferences. 

The previously-discussed method for updating preference is first extended to state- 
dependent utility when prior probabilities are known. Let the prior preferences be represented 
by f -S f Us(f(s)) dP. With prior probability P given, we can still apply Bayes' formula 
in the classical manner, and posterior preferences are represented by 

n I 

(4) f > Ah Us(f(s)) dP. 
j=l ? Aj 

This manner of updating can be inferred from Karni, Schmeidler, and Vind (1983, Lemma); 
see also Karni (1996, ?3.3), Kari and Schmeidler (1993), and Nau (1995, ?7). Karni, 
Schmeidler, and Vind also demonstrate that an alternative equivalent state-dependent 
representation f ~ fs Ws(f(s)) dQ for prior preference can be similarly updated into 

n e 

(5) f - 
AY Ws(f(s)) dQ. 

j=l A, 

This updated form represents the same posterior preferences as the updated form in (4). In 
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other words, alternative representations for state-dependent expected utility remain indistin- 
guishable under updating. From that observation, only one further step is required to extend 
the updating to our functional in which there is no factorization into probability and utility. 
If prior preferences are represented by an additive functional V(f), then updated preferences 
are represented by 

n 

(6) f E AjVA(fA). 
j=1 

Normalization can be obtained by letting the functional assign value 0 to the act that is 
constant 0 and value 1 to the act that is constant 1. The sure-thing principle is at the heart of 
this updating method, and prior probabilities play no role. 

Our updating method is characterized for state-dependent expected utility with a subjective 
likelihood function. Likelihood is not objective and given a priori but is determined in terms 
of the decision maker's preferences. A topic for future research is under what conditions such 
subjective likelihoods coincide with objective likelihoods if the latter are available. 

The preference relation > again designates "prior" preferences, relevant before the receipt 
of information. Posterior preferences are indicated by a wiggle. Thus, , >, <, and < relate 
to posterior preferences and are derived from > as the related symbols are from >. An 
observation is informative with respect to a partition {A,, ..., A n if, for eachj, either Ai 
is a null event for > ("impossible a posterior"), or fAc > gAjc if and only if fAjc gAjC, 
for all acts f, g, c. This means that the information does not distinguish between subevents 
of any Aj. In other words, given any Aj nothing changes. The information only concerns the 
mutual likelihoods ratios of the different events ("hypotheses") Aj in the partition. A case in 
which the condition is satisfied is when, given Aj, the true state of nature in Aj is determined 

by a random mechanism (such as repeated coin tosses) unrelated to the observation. 

THEOREM 13. Assume that the prior preferences are denoted by > and that preferences 
are updated into > after some observation. Assume that both preference relations satisfy the 
conditions and statements of Theorem 11 (for the same state and act space). Then the 

following two statements are equivalent for a partition {A, ... , An} of the state space: 
(i) There exist nonnegative numbers Aj such that the representation of Theorem 11 holds 

for >, andf -> 2j= AXjVAj(fAi) represents the updated preferences >. 
(ii) The observation is informative with respect to the partition {A,, ..., A}. n 

The theorem has demonstrated that Bayesian updating is possible even if a convenient 

decomposition VAj = P(A) U is not available. Prior probability, the target of much criticism, 
apparently is not crucial for Bayesian updating. 

We next turn to a study of risk attitudes. For finite state spaces, similar result were 

presented by Miyamoto and Wakker (1996). Constant risk aversion holds if f - x < f 
+ e ~ x + E whenever e> 0, for all acts f, outcomes x, and positive e. 

THEOREM 14. Assume that the conditions and statements of Theorem 11 hold. Then 
constant risk aversion holds if and only if expected utility holds and U(x) = a + bex for some 
constants a, b, c with bc > 0, or U(x) = a + bx for some constants a, b with b 
> 0. o 

Similar results can be proved for positive outcomes and proportional ("relative") risk 
aversion. They follow from Theorem 14 through the replacement of all outcomes by their 

logarithms. We conjecture that Theorem 14, with state-dependent utility assumed but 

state-independent utility implied (and, of course, more general utility functions), holds true 
if we weaken constant risk aversion to decreasing risk aversion. That conjecture can be 

proved if Wakker (1989, Conjecture VII.6.10) is true. 
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Theorem 14 and the results subsequently suggested are negative for state-dependent 
expected utility because common assumptions regarding risk attitude are simply not possible 
under state dependence. The model necessarily reduces to expected utility. Apparently, the 
common conditions for risk attitude need to be redefined for state-dependent utility. 
Alternative definitions were proposed by Kari (1983). 

We finally discuss an idea of Kari (1993a, 1993b), for identifying probability. Assume 
that acts a, b are given and suppose that, on the basis of prior assumptions, the 
state-dependent utility of b must be 0 and the state-dependent utility of a must be 1, for all 
states. Then probabilities are directly identified in Theorem 11 through P(A) = (V(aAb) 
- V(b))/(V(a) - V(b)) for each event A. Note that the information on utilities of a and b 
is not derived from preference but is exogeneous. The identification of subjective probability 
just described is related to the method of Dreze (1987, ?2.8.3), where moral hazard and 
"idempotent" acts are used to identify constant-valuation acts, Kami (1993a, 1993b, 1997), 
where the range (thus the highest and lowest value) of utility across different states is 
assumed identical, Nau and McCardle (1991) and Nau (1995), where avoidance of arbitrage 
implies the existence of "risk-neutral probabilities" which are defined relative to the market 
currency, the method of Karni and Schmeidler (1993), where the assumption is reduced to a 
differential form, i.e., the utility of 0 is 0 for all states, and has the same derivative at 0 for 
all states, the method of Maher (1993, Chapter 8) where two outcomes with state-independent 
utility are assumed, and, finally, Klibanoff (1995), who justifies the assumption of 
equally-valued outcomes in a dynamic setup with opportunity sets as outcomes. 

The derivation of a state-dependent utility function from the preceding assumptions is a 
topic for future research. It requires measure-theoretical axioms regarding the role of null 
events and adaptation of the Radon-Nikodym theorem to finitely additive measures, subjects 
that are outside the scope of this paper. 

If only two outcomes are given instead of a continuum as in our analysis, then the 
additively decomposable functional reduces to a finitely additive measure. For that case, 
many advanced results have been obtained (Fishbum 1986, 1992). 

This paper has used the framework of decision under uncertainty, in which the functional 
represents state-dependent expected utility. The functional can be used in other areas as well. 
In dynamic optimization (Strotz 1956, Koopmans 1972), it generalizes discounted utility by 
allowing utility to depend on time. In welfare theory, it permits utilitarianism where utility 
depends on the individual (Harsanyi 1955), but no lotteries over income need be invoked. It 
thus extends Fleming (1952), an appealing but not very well-known predecessor of Harsanyi 
(1955) and Debreu (1960), to infinite populations. 

9. Conclusion. This paper has presented the following new results. 
(1) Additive utility theory (Debreu 1960, Krantz et al. 1971) has been extended to infinite 

dimension. 
(2) By means of (1), a state-dependent extension of Savage's (1954) expected utility has 

been obtained. We have not invoked additional restrictions such as assumptions outside the 
decision theoretical domain or a measure on the state space. 

(3) By means of (2), it has been argued that the sure-thing principle, rather than prior 
probability, is at the heart of Bayesian statistics. 

(0) The extension of Debreu's (1960) additive utility requires an additional innovation that 
should precede Step (1): The appropriate functional has to be introduced. It generalizes 
integration naturally, with pointwise monotonicity excluding anomalies. With that functional 
available, state-dependent utility can be studied without invoking additional structure outside 
the realm of decision theory. 
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Appendix A. Extensions and further comments. In this appendix, mathematical 
extensions of our theorems are provided. 

OBSERVATION 15. The following additions and modifications are possible in Theorem 11. 

(a) The sure-thing principle in (4) of Statement (ii) need only be imposed on 5s. 
(b) The VAs in (i) are supnorm-continuous. 
(c) In (i), additivity of V need only be imposed on is and then implies additivity on all 

of 9. 
(d) If (i) or (ii) holds, then for a null event A, gAf - hAffor all acts f, g, h (including 

the nonsimple ones). 
(e) If (ii) holds, then strict monotonicity holds on all of i, i.e., XAf > YAf whenever x 

> y and A is nonnull, also if the acts are nonsimple. 
(f) The nonatomicity condition can be weakened by only requiring the existence of three 

disjoint nonnull events. 
(g) The domain of preference need not be the entire set 9 but can be any set between ; 

and 9s such that, for each element f and event A, also fAO is contained. c 

The results in (a), (c), (d), and (e) illustrate conditions that, when only imposed on the 

simple acts, extend to the nonsimple acts. In particular, the result in (d) shows that our 
definition of null events, which only concerns simple acts, is equivalent to the common 
definitions of null events that concern all acts. 

The generalization in (f) covers not only the finite case considered in Theorem 2 but also 
infinite state spaces with atoms. We chose the nonatomic case in our main result because it 
is closest to Savage's model, the model that has received most attention in the literature. In 

Savage's (1954) expected utility model, a somewhat stronger condition was implied, i.e., that 
the finitely additive probability measure should be atomless: for each event A and each 0 
< x < P(A) there should exist a subevent B of A with P(B) = x. If P is countably additive, 
that condition is equivalent to our nonatomicity condition. 

The domain restriction described in (g) generalizes the requirement of Grodal and Mertens 
(1976) and Vind (1990) that the domain be an "independent mixture" and contain all constant 
acts, which in particular generates all simple acts. Their connectedness condition implies (by 
Vind's Theorem III.1.1) our simple-continuity and boundedness conditions (by Vind's 
Remark following Corollary V.3.4). The extension of our results to nonreal outcomes is 
described in Appendix B. 

Appendix B. Connected topological outcome spaces. This appendix demonstrates how 
the outcome set can be generalized to any connected topological space. This generalization 
is similar to Appendix 2 in Wakker (1994) and Appendix B in Chew and Wakker (1996). 
Also Grodal and Mertens (1976) consider outcomes more general than monetary. In their 

approach, the outcome set should be a separable metric space and connectedness is imposed 
directly on the preference topology. 

jI= xjlAj still denotes the simple act assigning outcome xj to Aj for each j. The natural 

ordering - on outcomes is replaced by the preference relation > restricted to the constant 
acts, for instance in the definitions of strict and pointwise monotonicity and in the definition 
of strictly increasing functions. Consequently, equalities x = y are sometimes replaced by 
equivalences x - y. f from S to the outcome set is bounded if there exist outcomes x, y such 
that [Vs E S : x < f(s) < y]. Our definition of bounded can be somewhat more restrictive 
than the common term bounded, for instance if the outcome set is ]0, 1[. Measurability now 

requires that the inverse of each "preference interval" is an event. A preference interval is a 
subset of the outcome set that contains, for each x < z, also each element y such that x 
< y < z. Our measurability condition is ensured, in the presence of continuity of >, by 
measurability with respect to any algebra containing the topology on the outcome set. If S is 
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endowed with a o-algebra, then it suffices that all inverses under f of { x : x > y } and { x 
: x < y } are events. f from S to the outcome set is an act if it is bounded and measurable. 

Certainty equivalents need no longer be uniquely determined. Throughout the following 
analysis, it will never matter which of several certainty equivalents is chosen. Supnorm- 
continuity cannot be defined in this general setting. The implications of supnorm-continuity, 
used in the analysis, must therefore be imposed explicitly. First, simple-continuity is 
required, which is similarly defined as in the main text (endowing each finite product of 
outcome spaces with the product topology). Second, pointwise monotonicity is required. 
Third, the existence of a certainty equivalent is imposed for each act. Fourth and finally, a 
"simple-act denseness" condition is imposed to guarantee that the V-value of an act is indeed 
the infimum of the V-values of pointwise dominating simple acts, as well as the supremum 
of pointwise dominated simple acts: Simple-act denseness holds if, for all acts f > h, there 
exists a simple act a such thatf > a > h, where a dominates h pointwise, and a simple act 
b such thatf > b > h where b is pointwise dominated byf. The same condition is defined 
correspondingly for the representing functional V. 

THEOREM 16. Let the Structural Assumption 1 hold, with the following modification: The 
outcome set need not be DR but can be any connected topological space. Assume that S 
contains no atoms. Then the following two statements are equivalent. 

(i) > is represented by afunctional V: 9 --> R that is additive, i.e., there exist functionals 
VA defined on the restrictions of acts to A such that 

n 

v(f) = VAjfAj) 
j=1 

for each finite partition {A1, ... , An} of S. For each A, VA(x) (for outcome/constant act 
x) is continuous in x and either constant or strictly increasing in x, and V satisfies pointwise 
monotonicity and simple-act denseness. 

(ii) > is a strictly monotonic weak order that satisfies pointwise monotonicity, simple- 
continuity, the existence-of-certainty-equivalent condition, simple-act denseness, and the 
sure-thing principle. 

The uniqueness for (i) is the same as in Theorem 11. The modifications of Observation 15, 
except (b), also hold true for this theorem (in (g), let any nonmaximal outcome P play the role 
of zero). o 

The similar adaptation of Theorem 12 is more easily formulated because pointwise 
continuity can still be defined. The result refers to the order topology on the outcome set, and 
additionally needs topological separability. 

THEOREM 17. Theorem 12 also holds true for general outcome sets with a connected 
separable order topology. [ 

Ordinal state independence is entailed by strict monotonicity and pointwise monotonicity. 
We argued in the main text that in the case of monetary outcomes there is little interest in 
violations of ordinal state independence. This is different for general outcomes. If outcomes 
are commodity bundles, for instance, then ordinal state dependence may be economically 
meaningful (Karni 1993a, ?4.2). The extension of our representation to that case, in a way 
that avoids the generality of Example 4, is a topic for future research. 

Appendix C. Proofs of results in ??1-6. 

PROOF OF PROPOSITION 3. A partition of S is essential if it contains at least three nonnull 
events. Note that any refinement of an essential partition is again essential because a partition 

23 



P. WAKKER AND H. ZANK 

of a nonnull event must itself contain at least one nonnull event. Obviously, an essential 
partition exists because of nonatomicity. To any essential partition Tr = {A,, ... , A }, we 
can apply Theorem 2 to obtain a continuous additive representation Ei1 xjl A, 

EJ= ( Vj(xj). For all essential partitions rT, we can set VAj(O) = 0 for all Aj and 2'=i VA(1) 
= 1. (Dependence of n on rr is not expressed in the notation.) By considering, for any two 
essential partitions, the common refinement, it now follows from the uniqueness result of 
Theorem 2 that the additive representations of different essential partitions coincide on 
common domain. This also implies that, for each event A, the function V[ is the same for 
every essential partition Tr: VA(x) is the value of x A in any (other) essential partition that 
contains A or a number of events Aj whose union is A. Hence, we can drop the superscript 
TT in VA and write VA. njI Xj1 1-> j"_ i VAj(Xj) represents >, first only for simple acts that 
are measurable with respect to a same essential partition of S, next for all simple acts because 
for each pair of simple acts there is an essential partition with respect to which both acts are 
measurable. 

By Theorem 2, all functions VA are continuous. Obviously, if A is null, then VA is constant. 
If A is nonnull, then strict monotonicity of > implies that VA is strictly increasing. 

For the uniqueness result, it is obvious that any W as described can be substituted for V. 
Next, it is assumed that W is additively decomposable as described and represents >. By 
Wakker (1988), W and each WA are continuous. We can replace each VA by VA - VA(O) and 
each WA by WA - WA(O), that is, it can be assumed that VA(O) = 0 = WA(O) for each event 
A. We can divide each VA by V(1) and each WA by W(1), i.e., it can be assumed that V(1) 
= 1 = W(1). It can be inferred from the proof that WA = VA for all events A. In particular, 
W = V. For completeness, explicit expressions are given for the parameters ao and r that 
result from the preceding operations and that imply additivity of r: 

W(1) - W(O) 
r = 

V(1) - V(O) ' 
= WA(O) - oVA(O). QED 

PROOF OF LEMMA 5. Additivity of V immediately implies the form described in the 
lemma. We now assume the form in the lemma and derive additivity. In order to do so, the 
definition of V* is extended from the acts that are constant on A to arbitrary, nonconstant, 
restrictions of simple acts to A. For any simple act f and event A, there exists a partition 
{ B, ... , Bm } of A such thatf is constant and is equal to, say, f, on each Bj. Define VA(fA) 
= - j~l V*j(fj). VA extends V* to nonconstant simple acts on A. o 

PROOF OF LEMMA 8. First an immediate corollary of the representation in Proposition 3 is 
noted. 

COROLLARY 18. On s, V and > satisfy pointwise monotonicity. o 

Take anyf E J. Because all acts are bounded in this paper, there exist outcomes x, y such 
that x> f(s) > y for all states s. Note that there is no monotonicity assumption to guarantee 
that x > f > y. Instead, we derive these preferences from supnorm-continuity in conjunction 
with strict monotonicity. It is well known that Fs is supnorm dense in ;, and that we can find 

sequences of simple acts g' and h' such that both sequences converge in supnorm to f and 
gi(s) > g'+ (s) - f(s) - h'+ (s) > hi(s) for all states s. We can "truncate" every gi at the 
outcomes above x and every hj at the outcomes below y, i.e., it can be assumed that x > g'(s) 

hj(s) - y for all states s. According to Corollary 18, x > g' > hj > y for all j. As a 

consequence of supnorm-continuity, x > f > y follows. Consequently, the sets { z E R : 
z > f} and { z E R : z < f} are nonempty. They are closed by supnorm-continuity. Because 
of connectedness of R, their intersection must contain at least one element. (Because of strict 

monotonicity, the intersection can contain at most one element.) The element in that 
intersection is the certainty equivalent of f. o 
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LEMMA 19. V, defined after Lemma 8, satisfies supnorm-continuity. 

PROOF. Consider { f E : V(f) > a } for some real a. It will be shown that the set is 
closed. That is obvious if a is larger or smaller than any value in V(;). In the other case, 
there exists a constant act / such that V(,A) = a because, by Lemma 8, V(9) = V(R) and 
the latter is connected by continuity (Proposition 3). Now {f E 9 : V(f) a ae} = {f 
E : f > ,L }, which is closed because of continuity of >. Similarly, { f E : V(f) a } 
is closed. Continuity of V follows. o 

PROOF OF LEMMA 9. Pointwise monotonicity on 9s follows from Proposition 3. Assume 
f(s) > g(s) for all s, for two general (possibly nonsimple) actsf, g. It is proved thatf > g. 
Take a sequence aj of simple acts converging pointwise from above to f such that f(s) 
+ 1/j > a'(s) > aj+'(s) > f(s) for all s andj. Similarly, take a sequence b' of simple acts 
converging pointwise from below to g, i.e., g(s) - bj+'(s) - bj(s) - g(s) - 1/j for all s 
andj. We have a'(s) - bj(s) for all states s, therefore, because of pointwise monotonicity 
on 9s as previously established, V(ai) > V(b') for all j. Because of supnorm-continuity, 
V(f) = lim V(aj) and V(g) = lim V(bJ), therefore V(f) > V(g). o 

PROOF OF LEMMA 10. Assume that VA is defined on the restrictions of all simple acts to 
A (as VA. in Lemma 5). Thus, V is additive on 9;. Note that V(f) - V(O) = 2'jl (VAj(fAj) 
- VAj(OAj)) for all simple actsf and partitions {Ai, ... , A,}. Therefore, we can define WA 
= VA - VA(OA) for all events A and restrictions of simple acts to A, and W = V - V(0) 
for all acts including the nonsimple ones. Then W inherits all the relevant properties of V, in 
particular additivity on 9;, and in addition W and all WAs assign 0 to the act that is constant 
0. The definition of WA is extended to restrictions of nonsimple acts by defining WA(fA) 
= W(fAO) for all acts f. Note that this definition agrees with the original one on ;s. It is 
shown that with these definitions, W also satisfies additivity for the nonsimple acts. Letf be 
an arbitrary nonsimple act, {A , ... , An } an arbitrary finite partition of S, andf' a sequence 
of simple acts converging to f in supremum norm. Taking limits for j -> oo, and explaining 
the equalities later, 

n n n 

W(f) = lim W(f') = lim WA(fi) = lim WA,(f)A) lim W(fj0) 
i=1 i=l i=l 

n n 

= E W(fA,) = WA,(fA,) results. 
i=1 i=1 

Here the first equality follows from supnorm-continuity of W, the second from additivity of 
W on S", the third mainly from boundedness of acts, the fourth from the definition of WA,, 
the fifth because fa,0 converges to fA0 in supnorm (implied by convergence of f tof) and 
W is supnorm-continuous, and the final equality by definition of WA,. Thus, additivity of W 
has been established. Finally, additivity of V is established. We already have V = W + V(0) 
for all acts and VA = WA + VA(OA) for all simple acts. Define VA similarly for all nonsimple 
acts. Additivity of V now follows from additivity of W. o 

PROOF OF THEOREM 11. The implication (i) = (ii) is elementary (the sure-thing principle 
follows from Observation 6). Next suppose (ii) holds; (i) is derived. Supnorm-continuity of 
> implies simple-continuity because for each n the supnorm topology coincides with the 
Euclidean topology on R". Therefore, the representation in Proposition 3 is obtained, with 
each VA(x) continuous in x. By Lemma 5, V is additive on ;s. V is extended to all of ; as 
described after Lemma 8. It represents the preference relation, is supnorm-continuous by 
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Lemma 19, and is additive by Lemma 10. VA is constant if A is null and, because of strict 
monotonicity, VA(x) is strictly increasing in outcomes/constant acts x if A is nonnull. This 
proves the implication (ii) => (i). By Lemma 9, V in (i) satisfies pointwise monotonicity. If 
(ii) holds, then (i) holds with V pointwise monotonic, which implies that > is pointwise 
monotonic. Continuity of VA(x) is ensured by Proposition 3 and its uniqueness result. 

Finally, the uniqueness result is discussed, which is similar to the result of Proposition 3, 
the main exception being that the functions VA and WA apply not only to outcomes/constant 
acts on A but also to nonconstant restrictions of acts to A. The proof is similar to the proof 
of the uniqueness result in Proposition 3. Note that, once the normalized functionals V and 
W agree on all simple acts, they also agree on the nonsimple acts through their certainty 
equivalents. o 

Appendix D. Proofs of results in ?7. 

PROOF OF THEOREM 12. For a countably additive measure, the integral of a positive 
function over a nonnull set is positive. Further, if the integral of one function over every 
nonnull set dominates the integral of a second function, then the first function dominates the 
second almost everywhere. These two givens are applied on a number of occasions without 
further mention. 

We first assume Statement (i) and prove Statement (ii). Weak ordering is immediate and 
the sure-thing principle follows from additivity of the representation, as in Observation 6. For 
strict monotonicity, assume that x > y and that A is not null. The latter implies, by the 

integral representation, that ,u(A) > 0 must hold. For each s E A, Us(x) > Us(y). Because 
of countable additivity, fA Us(x) dL - fA Us(y) d/x > 0. This implies that xAf > YAf for 
all acts f, in particular those which are simple. Strict monotonicity holds. Finally, it is 
well-known that continuity of a representing function implies the same continuity of >. 
Statement (ii) has been proved. 

In the rest of this proof, Statement (ii) is assumed and (i) and the uniqueness results are 
derived. 

LEMMA 20. > satisfies supnorm continuity. 

PROOF. If a sequence of acts converges to a limiting act in supnorm, then it also 

converges pointwise. The boundedness of all acts in our analysis and therefore of the limiting 
act in particular, as well as the supnorm convergence of the sequence, imply that the sequence 
is uniformly bounded. By pointwise continuity, the sequence of acts converges preference- 
wise, which is what supnorm continuity requires. QED 

By the lemma, all conditions of Statement (ii) of Theorem 11 are satisfied. Thus Statement 
(i) of that theorem is also satisfied, yielding the additive representation V. 

LEMMA 21. V satisfies pointwise continuity. 

PROOF. Let ft be uniformly bounded and converge to f pointwise. First assume, for 
contradiction, that for a subsequence of the f's, the V value would always exceed V(f) 
+ e for a fixed positive e. Because of continuity, we can find a constant act x with V(f) < V(x) 
< V(f) + e. Pointwise continuity of >, and f > x for all f from the subsequence, imply that 
f > x, contradicting V(f) < V(x). Hence, no such subsequence can exist. Similarly, no 

subsequence can exist for which the V value would always be below V(f) - e for a fixed positive 
e. Hence, V(f') must converge to V(f) and V is pointwise continuous. QED 

V is normalized by subtracting VA(O) from all functions VA, then dividing all those 
functions by the positive scale factor V(1). In other words, it is assumed henceforth that 
VA(0) = 0 for all events A and V(1) = 1. Define uL(A) = V(1A) for all A. It was just as 

possible to take any other outcomes a > 13, and define an alternative /t' by ,u'(A) 
= (V(alA - 131Ac))/(V(a) - V(,3)). The choice of a = 1 and 3 = 0 was arbitrary. 
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LEMMA 22. For any act f, ALf(A) = V(flA) (with flA = fAO) is a countably additive 
signed measure. In particular, ,(A) = V(1A) is a countably additive measure. 

PROOF. Lf is finitely additive because V is additive (hence, /,(0) = 0). For countable 
additivity, let (Aj),l be a sequence of disjoint events and let A be their union. Thenfl u, IA 

converges toflA pointwise. The sequence is also uniformly bounded becausef is bounded. 
The V values of the sequence must converge, because of pointwise continuity (Lemma 21). 
This means that J,=l /f(Aj) converges to i(/A), and countable additivity holds. ,. is a 
measure because pointwise monotonicity implies that it is nonnegative. (Note that also ,L(S) 
= 1.) QED 

The following lemma immediately follows from strict monotonicity. 

LEMMA 23. ,u(A) = 0 if and only if A is null. QED 

Because of this lemma, "null" event can equivalently refer to the preference definition as 
well as to the measure ,. In the remainder of this proof, a.e. (almost everywhere) means that 
a condition holds up to a null event. 

We next turn to the most complicated part of the proof, the derivation of the state- 
dependent utility Us. On the basis of Lemma 23 and Observation 15(d), each /f is absolutely 
continuous with respect to /. According to the theorem of Radon-Nikodym, we can define 
a density Sf, unique up to a null event, such that VA(f) = fA 8(s) d,u for all A. 

First a brief preview of the proof. We will relate the definition of state-dependent utility 
U,(a) to the constant act a by defining U,(a) = 8,(s), for all s, a. It then remains to be 
verified that also for the nonconstant acts f, f(s) = U,(f(s)). That is, 8S should satisfy a 
kind of "separability" (= sure-thing principle) in the sense that 8f(s) depends on f only 
through f(s), and is independent off on {s c'. That "state-wise" separability is ensured for 
simple acts by the "event-wise" separability induced by the additive representation, as will 
be demonstrated in Lemma 25. An additional complication can arise for nonsimple acts. This 
complication is illustrated in Example 24. Following the example, state-dependent utilities 
are defined such that the complication is avoided. Only after that will the integral 
representation be established, first for simple acts, then for general. 

At this point an explanation of the previously mentioned complication is in order. Each 8f 
is only defined a.e. Therefore, 6f can be considered an equivalence class of functions 
differing only on a null event. An appropriate representative from each such equivalence 
class will have to be chosen with some care when nonsimple acts are involved. 

EXAMPLE 24. Assume that S = [0, 1] and that > maximizes expected value. For each 
real a a representative 8a(s) = a has been chosen, with the only exception being that for 
each 0 < a < 1 we have 8,(s) = 0 for s in the null event {a}. Then U,(at) = 0 for a 
= s and the actf(s) = s would be assigned the state-dependent expected utility value 0, even 
though f is strictly preferred to the constant 0 act. Thus, state-dependent expected utility 
would not represent preference. In addition, each Us would not be strictly increasing. QED 

For each real a >- j and each event A, fA 8a(s) d,u = VA(a) > VA(3) = fA 8a(S) dtL, 
hence 

(7) a > 13 > ,(s) > S8(s) a.e. 

We first ensure that the implication in (7) holds everywhere. There are countably many 
pairs of rational numbers, hence there is one null event (the union of countably many) such 
that outside that event, (7) holds everywhere for all pairs of rational numbers. We can 
therefore choose the bps for rational numbers p such that (7) holds everywhere for the rational 
numbers. (For example, we can redefine Sp(s) = p on the previously mentioned null event.) 

For each real number a, there is one null event (the union of countably many) such that 
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(7) holds outside the null event for all rational 3. Hence, we can choose each 8, such that (7) 
holds for all real a and rational 3. Similarly, we can let (7) hold for all rational a and real 
/3 as well. Given that for each real a > 3 we can find a rational number between them, we 
conclude that (7) now holds everywhere for all real numbers a, f3. 

For each s and outcome a, we define Us(a) = 8,(s). By (7) as just extended, this function 
is nondecreasing in a for each s. We prove that the function is strictly increasing a.e. by 
showing that a violation would translate into a violation of the same condition for VA for a 
nonnull event A. V being nondecreasing is often used in the following reasonings. 

To prove that Us is strictly increasing a.e., consider, for any rational p > p', A = {s 
E S: U,(p) = U(p')). Then VA(p) = VA(p'), which implies thatA must be null, VAbeing 
strictly increasing for each nonnull A. As there are only countably many pairs of rational 
numbers p > p', Us is strictly increasing in the rational numbers, hence in the real numbers, 
a.e. We may assume that Us is strictly increasing for all s. 

LEMMA 25. If g is simple, then for each A, VA(g) = fA Us(g) d,l. 

PROOF. For g, A, there is a partition {A , ... , An of A such that glA = 2j I gjlAj for 
outcomes gj. Now VA(g) = J=I VAj(gj) = jl fAj 6gj(S) dI = IZj=l fAj U,(gj) dpL 
= 

fA Us(g) dIx, which is what should be proved. QED 
Finally, consider a general act f. For each event A and simple act g that is pointwise 

dominated by f, 

8f(S) dt- 
= VA(f) VA(g) = 6g(S) d- = U,(g(s)) dpl. 

?A A ' A 

Because each Us is strictly increasing and because of pointwise dominance, also 
fA UU(f(s)) dpL > SA U( g(s)) dt. Reversed inequalities hold both for Jf 8/s) dA and for 
fA Us(f(s)) dLk if g pointwise dominatesf. Because of supnorm continuity of VA, the upper 
and lower bounds derived from pointwise dominating/dominated simple acts g are tight and 
hence, for each event A, fA Us(f(s)) dp. and fA 6/() dtp are bounded by the same upper 
and lower bounds, i.e., they are identical. This implies that 8/s) = Us(f(s)) a.e., that is, 
8f(s) = U,(f(s)) can be chosen for all s, and V(f) = fs U,(f(s)) d,u holds for all actsf. 
Statement (i) has been proven. 

Finally, the uniqueness results of the theorem are established. It is obvious that (Us)ses, 1X 
can be replaced by (U*),,s, /x* as described in the theorem. Let us now explain that no other 
substitutions are possible. Assume that (US,)ES and ,/ can be replaced by (U*),5s and /*. 
Absolute continuity follows from the following lemma, which extends Lemma 23 to general 
,x*, not just the special ,L as constructed in this proof. 

LEMMA 26. Iu*(A) = 0 if and only if A is null. 

PROOF. If p/*(A) = 0 then A is nufl. Assume therefore that * (A) > 0. It is shown that 
A is nonnull. Take outcomes x > y. Because U* must be strictly increasing for each s and 
because of countable additivity, fA U*(x) d,* > fA U*(y) dl* and A is nonnull. QED 

Lemmas 23 and 26 imply that Lt and ,* have the same null events and are, therefore, 
absolutely continuous with respect to each other. Next we turn to the uniqueness result 

regarding U. Let 8 be the Radon-Nikodym density function of ,t with respect to uL*. We can 

replace ,L* by / and divide U* by 8(s), that is, it can be assumed that /x* = ,L; note that 6 
is zero only on a null set which can be ignored. The constant U,(O) can be subtracted from 
Us(') and the constant U*(O) from U*( ) for each s, i.e., it can be assumed that Us(O) = 0 
= 

U*(O) for all s. We can divide each U, by the positive scale factor fs U,(1) d,u and each 
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U* by the positive scale factor fs U*( 1) d,u, i.e., it can be assumed that these positive scale 
factors are 1. 

It suffices to show that Us and U* agree a.e. after the preceding modifications. Consider, 
for any A such that both A and A" are nonnull, the two-dimensional set of acts of the form 

xlA + ylAC. Here, fA Us(x) dpL + fAC Us(y) dtl = VA(x) + VA(y) provides an additive 
and continuous representation of preference. Such a representation also results with U* 
instead of U. Because the two representations have been renormalized to agree at the constant 
0 and 1 acts, they must agree by the common uniqueness results of additive conjoint 
measurement (Karni and Safra 1998). Hence, the integrals of Us and U* over all such events 
A agree. A similar conclusion holds for nonnull events A for which Ac is null (e.g., partition 
A into two nonnull events, etc.). It follows that Us and U* must coincide a.e., which 

completes the proof of the theorem. E 

The following lemma demonstrates that pointwise continuity is not overly restrictive 
because continuity of each state-dependent utility implies pointwise continuity. Whether the 
reversed implication holds, i.e., whether continuity of the functions Us in Statement (i) of 
Theorem 12 holds (after appropriate modification on null events), is an open question to us. 

LEMMA 27. Replacing in (ii) the pointwise continuity of the integral by continuity of each 
Us implies pointwise continuity of preference (which is equivalent to that condition for the 

integral) and, thus, all of (i) and (ii). 

PROOF. Assume that x > fj(s) > y for allj and s and that fj(s) converges tof(s) for all 
s. Then also Us(fj(s)) converges to Us(f(s)) for all s. Us(x) and Us(y) are integrable upper 
and lower bounds, hence fs Us(fj(s)) d,l converges to fs Us(f(s)) d,L by the dominated 

convergence theorem of Lebesgue (Dunford and Schwartz 1958, Corollary I.III.6.16). That 
is, the representing integral satisfies a pointwise continuity condition that implies pointwise 
continuity of >. o 

Appendix E. Proof of Observation 15. 
(a) The proof of (ii) > (i) in Theorem 11 never used more of the sure-thing principle. 
(b) This follows from the equality VA(fA) = V(fAO) - k for the constant k = VAC(OAC), 

and from supnorm continuity of V. 
(c) With additivity of V only on 9s, Statement (i) still implies Statement (ii), in particular 

because Statement (ii) requires the sure-thing principle only on 9s (see (a)). Statement (ii), 
in turn, implies all of Statement (i), in particular additivity of V (mainly established in 
Lemma 10). 

(d) Because of the sure-thing principle, the preference between gAf and hAf is the same 
as the preference between gAO and hAO. Because of boundedness of acts, we can take 
outcomes x, y such that x 2 g(s) - y and x - h(s) - y for all s E A. Then xAO > gAO 

> YAO and xAO > hAO > yAO, because of pointwise monotonicity. But also xAO - 
yAO, 

because both acts are simple and therefore this indifference follows from event A being null. 
It also follows that gAO and hAO must be indifferent to these two simple acts and hence to 
each other. This is likewise true of gAf and hAf, because of the sure-thing principle. 

(e) This follows from xAO > YAO and the sure-thing principle. 
(f) The proofs require no modifications for this result. (In particular, the proof of 

Proposition 3 has been written so that it also applies to this case.) 
(g) When the domain under consideration is a subset of 9, then the definition of the 

various conditions such as the sure-thing principle are obviously restricted to the domain 
under consideration. Note that, by (a) of Observation 15, the sure-thing principle is only 
needed on 9;s. The proofs require no other modifications for this case. n 
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Appendix F. Proof of Theorems 16 and 17 (connected topological outcome spaces). 
In this appendix, the proofs of the preceding results for connected topological outcome 
spaces are presented. 

PROOF OF THEOREM 16. The implication (i) = (ii) is straightforward, the existence of 
certainty equivalents following from continuity and pointwise monotonicity of V, and 
connectedness of the outcome set, as in the proof of Lemma 8, (x > f > y there follows 
immediately from pointwise monotonicity of V). Next (ii) is assumed and (i) is derived. This 
is demonstrated in a similar manner as the implication (ii) = (i) in Theorem 11 and goes 
through a number of steps. 

(STEP 1) Theorem 2 needs no modification. Note, however, that Debreu (1960) also 
assumed topological separability of the outcome space. It was pointed out by Krantz et al. 
(1971) that this assumption can be dropped (their proof was supplemented by Wakker (1988) 
and by Wakker (1989, Theorem III.6.6 and Remark A3.1). 

(SEP 2) In the case of Proposition 3 and the subsequent results, one difference is that no natural 
0 and 1 outcomes are given. The remedy is easy: take any outcomes a > (3, then "normalize" V 
by setting VA(3) = 0 for all A and V(a) = 1. Subsequently, 3 plays the role of the 0-outcome, 
a the role of the 1-outcome. Other than that, the results in ?5 need no modification. 

(STEP 3) The result of Lemma 8 is now assumed explicitly, and Lemma 9 immediately 
follows from the similar assumption for preference. 

(STEP 4) The proof of Lemma 10 requires a more elaborate revision, concerning additivity of 
the functional W constructed there. We cannot invoke supnorm continuity at this point, and 
instead must invoke simple-act denseness and the other assumptions. Letf be a nonsimple act and 
{A,,..., A,} a partition of S. It is shown that W(f) = - =, WA,(fA,). Let y be a certainty 
equivalent of f First, sequences a', b of simple acts are constructed such that (1) with W the 
normalized version of V that satisfies WA(3) = 0 for all A and W(a) = 1, the result is 

W(f) - l/j - W(bj) < W(f) = W(y) ? W(aj) - W(f) + l/j, 

for all j, (2) f dominates each b' pointwise, and (3) each aj dominates f pointwise. The 
construction of the aJs is described in detail. Iff is maximal, i.e., no act g is strictly preferred 
tof (this case can occur for general connected topological outcome spaces), then the certainty 
equivalent y off must be a maximal outcome and we simply take each aj equal to y. Note 
that this dominates f pointwise. Iff is not maximal, then there exists a strictly preferred act 
and the certainty equivalent thereof is also strictly preferred to f and y. Because of 

simple-continuity on 9s and connectedness, the W image of outcomes is an interval. Hence, 
there must exist, for eachj, a constant act c' which is between the certainty equivalent strictly 
preferred tof, and y, such that W(y) = W(f) < W(cj) - W(f) + l/j. Now simple-act 
denseness is invoked, which implies the existence of a simple act aj that dominates f 
pointwise and satisfies W(f) < W(aj) < W(c') < W(f) + l/j. The acts bi are constructed 

similarly. We have now achieved the same kind of enclosure off between simple acts, from 
above and below, as under supnorm continuity for real outcomes. 

Taking limits for j -> oo, we get (explaining the equalities later) 

n n n 

W(f) = lim W(a') = lim > WA,(a,) = lim WA,(aj) = lim W(afi,) 
i=l i=l i=1 

n n 

= W(fMA,) = WAi(), 
1=l i=1 

establishing additivity of W. 
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The first equality follows from the definition of the acts aj, the second follows from 
additivity of W on 9s (Lemma 5), the third is elementary because of boundedness, the fourth 
follows from the definition of WAi, the fifth is explained later, and the sixth follows from the 
definition of WAi. For the fifth equality it is shown that limj_ W(ai43) = W(fAi3) for each 
i. This follows from the inequalities 2/j > W(a,,3) - W(fAij3) ' 0 for all j, which is 
derived from the following inequalities, explained thereafter: 

2 
-- W(aj) - W(bj) > 

W(aj,i) - W(b,3fi) 
> 

W(a,fI) 
- 

W(fAIB) 
> 0 

for all . First, note that all differences in the inequality are nonnegative because the left act 
always dominates the right act pointwise. The first inequality follows from the construction 
of the simple acts a1 and b', which both differ by less than 1/j fromf in W units. For the 
second inequality, we invoke the additive representation on 9S with respect to the partition 
{A, ..., A }). The term corresponding to event A, is the same for the left- and right-hand 
side, for all other events the terms for the left-hand side are nonnegative, for the right-hand 
side they are 0. The third inequality follows because fAi,j dominates bfAi pointwise. The 
fourth inequality follows because (a'j,) dominates fAi, pointwise. 

Thus, additivity of the functional W has been proven. Other than that, the proof needs no 

adaptation. 
(STEP 5) Next we turn to the completion of the proof of the implication (ii) = (i) in 

Theorem 16, by adapting the related proof in Theorem 11. Pointwise monotonicity and 
simple-act denseness are equivalent for preferences and for V. Supnorm continuity is not 
even defined now. This establishes the implication. 

(STEP 6) The uniqueness results in Theorem 16, and the extensions provided in Observation 
15 are proved in the same manner as in Theorem 11 (where again any a > , play the role 
of the outcomes 1 and 0). o 

PROOF OF THEOREM 17. The implication (i) = (ii) is again straightforward, hence we 
assume (ii) and derive (i). Pointwise continuity implies simple-continuity, hence we can 
invoke Theorem 2 and Proposition 3. For the proof of the following lemma, it is crucial that 
the outcome set is endowed with the order topology. 

LEMMA 28. Simple-act denseness holds. 

PROOF. Let Y denote a countable dense subset of the outcome space; such a subset exists 
because of topological separability. We may assume that it contains a maximal and minimal 
outcome if such exist. For each act f we can construct dominating simple acts aJ and 
dominated simple acts b', respectively, that converge to f pointwise, as follows. Write Y 
= Y1, Y2, . }. Let z0 E Y satisfy zo > f(s) for all s. Such a z0 exists becausef is bounded 
and Y contains a maximal outcome if such exists. Let { zl, ..., zj be a reordering of 
{y , ..., yj such that z > * > zj. Then a1 = jo Zi A where A = {s E S : zi 
> f(s) > zi+ } for all i j - 1, Aj = {s E S : z > f(s)}. Each aj dominates a+1 
pointwise and they all dominatef pointwise. They converge to f pointwise because for each 
s and x > f(s), some Yk will come between x andf(s) implying x > Yk > ai(s) > f(s) for 
allj > k. The bis are defined similarly. Both sequences of simple acts are uniformly bounded 
(the a1s are bounded by z0 and the lower bound off), hence pointwise convergence implies 
preference-wise convergence due to pointwise continuity. That implies simple-act dense- 
ness. QED 

The proof of Lemma 8 can now be adapted in a straightforward manner, using pointwise 
continuity instead of supnorm continuity, and using Lemma 28. Thus, for every act a 
certainty equivalent exists (possibly more). By pointwise continuity, the simple acts that 
converge to an act pointwise also converge in preference. Hence, V (defined through certainty 
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equivalents as in the main text) inherits pointwise monotonicity for all acts from pointwise 
monotonicity on the simple acts, i.e., Lemma 9 also holds. Now all conditions in Statement 
(ii) of Theorem 16 hold, therefore Statement (i) there also holds. From this point on, the proof 
of Theorem 12 from Lemma 21 onwards can be followed by fixing any a > (3 instead of 1 
> 0, taking a countable dense subset Y instead of the rational numbers, and applying 
pointwise continuity instead of supnorm continuity. n 

Appendix G. Proof of results in ?8. 

PROOF OF THEOREM 13. If (i) holds, then for all Ai equal to 0, Aj is posterior-null. For all 
positive Aj, the posterior preference relation conditional on Ai is represented by VAj, i.e., it 
is identical to the prior preference relation conditional on Aj. Hence (i) implies (ii). Next 
assume (ii). Assume that the posterior preference relation, satisfying all requirements of 
Theorem 11, is represented by f - 2,=j WAj(fAj). We may assume that, for each event A, 
VA(O) = 0 and WA(O) = 0. If A, is posterior-null then WAj = 0 and we set Aj = 0. Next 
assume Aj is not posterior-null. In this case, the prior and posterior preference relation, 
conditional on Aj, are the same. The crucial point in this proof is based on consideration of 
this preference relation on its own, and applying Theorem 11 to it. Thus S' = Aj is 
considered to be a state space. Note that it contains no atoms. The preference relation satisfies 
all conditions in Theorem 11, and VAj and WAj are additive representations of it. From the 

uniqueness result in Theorem 11 and the scaling VA(O) = 0 and WA(O) = 0 for all events 
A C Aj, it follows that there exists a positive factor Ai such that WAj = A1VA,. ? 

PROOF OF THEOREM 14. Take any finite partition {A1, ..., A } containing at least two 
nonnull events. Then the claim of the theorem, including expected utility representation, 
holds for acts that are constant on each element of the partition, by Miyamoto and Wakker 
(1996, Example l.c). If expected utility holds on every finite partition, then in the presence 
of the other assumptions, it must hold for all acts (Wakker 1993, Corollary 2.14; Wakker's 

assumption of truncation-continuity is vacuously satisfied in our context where all acts are 
bounded). o 
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