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Abstract

This paper explores how some widely studied classes of nonexpected utility models could be used in dynamic
choice situations. A new “sequential consistency” condition is introduced for single-stage and multi-stage
decision problems. Sequential consistency requires that if a decision maker has committed to a family of models
(e.g., the multiple priors family, the rank-dependent family, or the betweenness family) then he use the same
family throughout. Conditions are presented under which dynamic consistency, consequentialism, and sequential
consistency can be simultaneously preserved for a nonexpected utility maximizer. An important class of appli-
cations concerns cases where the exact sequence of decisions and events, and thus the dynamic structure of the
decision problem, is relevant to the decision maker. It is shown that for the multiple priors model, dynamic
consistency, consequentialism, and sequential consistency can all be preserved. The result removes the argument
that nonexpected utility models cannot be consistently used in dynamic choice situations. Rank-dependent and
betweenness models can only be used in a restrictive manner, where deviation from expected utility is allowed
in at most one stage.
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In the past two decades, several nonexpected utility (nonEU) models have been presented
in the economic literature. These models permit empirically observed preference patterns
that are otherwise inconsistent with the classical expected utility theory. This paper ex-
plores how such nonEU models could be employed in dynamic choice situations. The
main focus of this paper is with decisions under uncertainty where probabilities are not
given. Throughout we will use the common term “expected utility” for both the cases of
risk (probabilities are given) and uncertainty.

An example of a dynamic choice situation will be discussed in Section 1. In the first
stage a production decision is to be made. In the second stage a marketing decision will
be made that is contingent on whether the unit production cost turns out to be high or low.
In dynamic choice, some decisions (marketing) are made only after the resolution of an
uncertainty (unit cost high or low). We can therefore compare the consistency of an initial
plan or decision strategy with the actual choices at subsequent decision nodes. Consis-
tency in dynamic choice situations has been a significant argument in favor of expected
utility models. This is because an expected utility maximizer’s planned choice at the
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88 R. SARIN/PP. WAKKER

beginning will coincide with the choices made upon arriving at intermediate decision
nodes. So an expected utility maximizer does what he plans and is therefore dynamically
consistent.

Whether consistency can be attained with nonEU models has been a topic of much
debate and controversy in recent years. It is clear that a naive implementation of nonEU
models results in inconsistent dynamic behavior (Hammond 1988). In response to this
potential criticism of nonEU models, several authors have suggested ways to implement
such models in dynamic choice situations. We discuss these suggestions after presenting
our results.

In our results, consistency principles need only be imposed on a particular decision tree
at hand. The principles may, but need not, hold in other trees involving other (orderings
of) events. This flexibility increases the applicability and mathematical generality of our
results. For example, the exact sequence of decisions and events can, but need not, be
relevant to the decision maker. Our results can be applied if dynamic consistency and
consequentialism are universally satisfied (as in Chew & Epstein 1989, Segal 1990, Luce
& Fishburn 1991, Grant, Kajii, and Polak 1998). They can also be applied if these two
conditions are not universally satisfied, but only in the decision tree under consideration.
The latter case is illustrated by the example of Section 1 (compare Figure 5 and endnote
1 in Section 8).

Folding back (other terms are backward induction or dynamic programming) is an
attractive procedure to evaluate dynamic decisions. The method recursively substitutes
certainty equivalents at chance nodes and optimal certainty equivalents at decision nodes,
starting at terminal nodes. (Substitution of certainty equivalents is one way of formulating
folding back, and is the formulation used throughout this paper.) Folding back is assumed
in the majority of works in the economics of temporal preference (Strotz 1956, Kreps and
Porteus 1979, Johnsen and Donaldson 1985, Chew and Epstein 1989, Epstein and Zin
1989, Karni and Safra 1990). Therefore we study the possibility of using folding back
with nonEU in specific decision situations

The new condition in this paper is sequential consistency, which ensures consistency in
application of a family of models to alternative representations of the same decision
problem. Sequential consistency requires that if a decision maker has committed to a
family of models (e.g., the rank-dependent family), then he should use that family of
models throughout. That is, he should use the same family of models both in an evaluation
of a two-stage tree using folding back and in a direct evaluation of associated strategies in
a single-stage tree. Sequential consistency is similar to the meta-principle employed by
Epstein and Le Breton (1993). Their condition requires a richer domain of decision trees
but does not require full-force folding back. A detailed discussion of related conditions
can be found in Section 8.

We obtain the following implications of sequential consistency and folding back in a
given decision tree. For one important class of nonEU models (multiple priors), these
conditions can be preserved in a same manner as for expected utility. Rank-dependent and
betweenness models can only be used in a restrictive manner, where in at most one stage
deviation from expected utility is allowed.
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DYNAMIC CHOICE AND NONEXPECTED UTILITY 89

In Section 1 we present an example of a dynamic choice problem and discuss sequential
consistency in the context of the example. We also discuss the relevant notions such as
dynamic consistency and consequentialism. In Sections 2, 3, 4, 5, and 6, results are
reported for the family of multiple priors models, rank-dependent models, the family of
betweenness models, the family of weighted utility models, and the general family of
transitive preferences. For simplicity, the results have been presented for two stage deci-
sion trees with two-branch event nodes. Section 7 demonstrates that the results immedi-
ately extend to multiple stages and events. Section 8 provides a discussion and a com-
parison of our results with the literature. Conclusions are presented in Section 9. All
proofs are contained in the appendix. The appendix also demonstrates that our theorems
can be reinterpreted as a study of separability in static nonEU models (e.g., Corollary
B.3).

1. The dynamic decision problem

An example of a dynamic choice problem is given in Figure la. A production decision is
made and the unit cost is observed. The unit cost could be high (E) or low (E®). Next a
marketing decision is made that is contingent on the observed unit cost. The marketing
decision involves the uncertainty that the market size could be big or small. We write s,
for (high unit production cost, big market size), s, for (high unit production cost, small
market size), sy for (low unit production cost, big market size), and s, for (low unit
production cost, small market size).

Suppose that in Figure la, at decision node 1, one may choose f which takes one to
decision node 3 if E occurs and to decision node 5 if E® occurs. At decision node 3 one
may choose g which yields $x, if s, (big market size) and $x, if s, (small market size).
Figure la depicts the dynamic choice situation where at nodes 3 and 5 choices are made
after resolution of the uncertainty concerning the unit cost.

The notation s,, ..., s, is chosen here for consistency with the formal analysis presented
later in the paper, where {s,, ..., s,} is a state space. Formally, the partitioning {s,,s,} of
E also applies if ¢ is chosen at node 3, although it then is of no interest to the decision
maker which of s,, s, is true. Similarly, the partitioning {s;,s,} of E also applies if d is
chosen at node 5 and similar partitionings apply if k is chosen at node 1.

We also study the single-stage choice situation that results from Figure la if the
decision maker must commit beforehand, before the uncertainty about the production cost
gets resolved, to choices at nodes 3 and 5. Then the decision maker chooses, beforehand,
between strategies. A strategy may be viewed as a set of instructions that can be given to
an agent and that unambiguously tell him what to do at each decision node. An example
is (choose f, if E choose g, if E° choose h), abbreviated (f,g,h). The single-stage choice
situation is illustrated in Figure 1b. Figure 1b should be interpreted as preserving the
information on the dynamic nature (exact sequence of events) of the choice situation,
including the timing of the resolution of uncertainty. The figure should therefore be
distinguished from a normal form tree in which the exact sequence of events does not
matter.
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Figure 1a; the dynamic choice
situation (two stages).
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Figure 1b; the single-stage choice situation.

Figure 1d; a no-history situation.

Figure 1. An example of a dynamic choice problem. Dynamic consistency: the choices in Figure 1a agree with
the choice in Figure 1b. Consequentialism: the choices in Figure 1a agree with the choices in Figures 1c and 1d.

The requirement that the choices in the dynamic (Figure la) and the single-stage
(Figure 1b) situation agree, is called dynamic consistency (Epstein 1992, Figure 1.6). So,
if the strategy (f,g,d) is preferred at node 7, then f is chosen at node 1, g is chosen at node
3, and d is chosen at node 5. Similarly, if g is preferred at node 3, then strategies (f,c,h)
and (f,c,d) are not chosen at node 7. For alternative models that permit changing prefer-
ences over time or allow for flexibility in future option see Strotz (1956) and Kreps and
Porteus (1979).
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DYNAMIC CHOICE AND NONEXPECTED UTILITY 91

Another condition for dynamic choices is consequentialism. It requires that a choice at
a decision node, such as node 3, is made independently of risks forgone in the past. So a
choice at node 3 agrees with that at node 12 and a choice at node 5 agrees with that at
node 14. This means that a choice at node 3 is independent of the values x5 and x,, and
a choice at node 5 is independent of the values x; and x,.

Summarizing, dynamic consistency requires agreement of choices in Figures 1a and 1b,
and consequentialism requires agreement of choices in Figures la and lc, 1d.

If dynamic consistency and consequentialism are satisfied, then dynamic decisions can
be determined through the folding back procedure. An application of this procedure to the
decision tree in Figure la will require transporting oneself to chance node 4 and substi-
tuting there a certainty equivalent; next at decision node 3 the highest available certainty
equivalent (the other being ¢) is chosen and substituted for this decision node. Similarly,
working backwards from the certainty equivalent at node 6, the certainty equivalent for
node 5 is computed (the higher of d and the certainty equivalent at node 6). At node 2, the
certainty equivalent of the lottery is substituted which yields the certainty equivalent
computed at node 3 if E occurs and the certainty equivalent computed at node 5 if E°
occurs. Finally, at node 1 a choice is made between k and the certainty equivalent at
node 2.

For the evaluation of decision trees, we propose a new condition, sequential consis-
tency. It is a meta-principle for the folding back procedure. Suppose the decision maker
commits himself to using a family of models M, say the rank-dependent family. Thus he
uses the family M to evaluate certainty equivalents in the folding back procedure. The
meta-principle requires that he use this family M to evaluate decision strategies in the
single-stage tree as well. In other words, it requires that the evaluation of a strategy
obtained by using a family M through the folding back procedure should coincide (in the
sense of giving the same certainty equivalents) with a direct evaluation of the same
strategy in the single-stage tree using the same family M. This means that, if at nodes 6,
4, and 2 in Figure la, certainty equivalents are obtained through a form from M, then
similar things hold at nodes 8, 9, 10, and 11.

Sequential consistency is normatively appealing once folding back is assumed. If a
decision maker accepts the axioms of a model M then, while he might use different
members of the family at different stages, the preference functionals should always be
from M. For example, assume the decision maker considers comonotonic independence
and the other axioms of rank-dependent models as normatively convincing. He therefore
uses rank-dependent forms to derive certainty equivalents at nodes 6, 4, and 2. It would
then be undesirable if violations of comonotonic independence or the other rank-
dependent axioms were generated in Figure 1b.

A pragmatic reason for accepting sequential consistency can be that a functional form
dictated by M is often used to derive results and explain economic behavior such as risk
aversion and portfolio preference. It is convenient if these results and explanations can be
applied at all decision nodes regardless of how we formulate the decision problem.

For the presentation of our formal results, we focus on the evaluation of strategy (f,g,h)
in Figure 1. This strategy has been depicted in Figure 2, with Figure 2a corresponding to
Figure la and Figure 2b corresponding to Figure 1b. This strategy (f,g,h) is also denoted
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Figure 2a; strategy (f,g,h) in two Figure 2b; strategy (f,g,h) in
stages. single stage.

Figure 2. Depicting one strategy.

as (x,,*",X4), which is taken as a generic notation for strategies. The outcome space is
denoted by €, where € is an interval. The set of strategies is ¢*. By > we donate
preferences over strategies. So for the domain of >, s, *,s, are fixed and the outcomes
Xy, *,X, vary over 6. The term “event tree” could be used to express that in our domain
only the events in the tree are kept fixed but the outcomes are still varied. Trees are to be
interpreted in that sense in this paper. Strong monotonicity means that increasing any
outcome of a strategy leads to a strictly preferred strategy. It implies that there are no null
states. The following assumption is made throughout the paper (except in Appendix F).

Assumption 1.1. The preference relation > satisfies transitivity, completeness, continuity,
and strong monotonicity. L]

The assumption implies strictly increasing and continuous utility functions in all mod-
els throughout this paper. We assume that the person has decided that evaluations of
choice alternatives should be described by a specific class of nonexpected utility (nonEU)
models, denoted M. For instance, we consider hereafter the cases where M is the class of
the multiple priors forms, the rank-dependent forms, or the betweenness forms. M should
be rich enough to contain evaluation forms for all strategies (x,,**,x,) and also for all
relevant substrategies such as pairs (x,,X,) and (X3,X,). We will not pursue a formalization
of the family M, which would require tools from logic. In the theorems in this paper, M
and its domains will be specified, at which stage the analysis becomes fully formalized.

It turns out to be most convenient for our analysis if we let the evaluating forms in M
be expressed in terms of certainty equivalents. For instance, if M is the expected utility
(EU) family, then a form from M for evaluating strategies (x,,"**,X,) adopts probabilities
P, P4 for sy,---,s, and a4 utility U, and then evaluates the strategy (x;,-*-,X,) by its

certainty equivalent U~ '( p;U(x)). A form from that same family M for evaluating
= :

J N
substrategies (X;,X,) at node 4 in Figure la uses probabilities q,,q, and a utility U, and
assigns to (x,,X,) the certainty equivalent U~ '(¢,U(x,) + ¢,U(x,)). In general, U may be
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DYNAMIC CHOICE AND NONEXPECTED UTILITY 93

different than U, but in our main results U will always coincide with U, due to the
assumptions made there. In agreement with Assumption 1.1, the models in M are assumed
to satisfy continuity and monotonicity throughout this paper.

We assume that strategies are evaluated by means of a folding back procedure in Figure
2a, as follows. At node 4 the decision maker replaces (x;,x,) by a certainty equivalent
Vi(x;,X,), at node 6 he replaces (x5,x,) by a certainty equivalent Vp«(x5,X,), next these
values are substituted at nodes 3, 5, and, finally, at nodes 2 and 1 he replaces the pair
(V(x,x,),Vie(x3,x4)) by a certainty equivalent V(V(x,,x,),V(x3,x4)). Further, Vi, Ve, and
V are forms from M. The procedure just described, folding back with respect to the family
M, is displayed in (1.1).

Strategies (x,,+*,x,) are evaluated by V(Vy(x,,x,), Vi(x3,x4)),
where Vi, Vi<, and V are forms from M. (1.1)

We write W(x,,"*-,x,) for the certainty equivalent of strategy (x;,'*,x,) in Figure 2b.
Because of consequentialism and dynamic consistency, the procedure for evaluating strat-
egies as in (1.1) provides certainty equivalents of strategies both in Figures 2a and 2b, and
therefore V(Vy(x,,x,),Vp(x3,x,)) = W(x,, +,x4). Sequential consistency requires that this
functional, when considered a functional on quadruples, should be an element of M. In
other words, sequential consistency requires that (1.1) implies:

W (x,,%5,X3,X4) is a form from M. (1.2)

For example, if M is the rank-dependent family, then sequential consistency requires that
W satisfies comonotonic independence and the other axioms of the rank-dependent fam-
ily. We call (1.2) the single-stage evaluation approach (with respect to M).

EU preferences satisfy (1.1) anal (1.2) with respect to the set M of EU forms. For
instance, if W(x;xyx5x,) = U (D p;Ux)), then Vi(x,x,) = U g, Ux)) + q,U(x,))
=y for conditional probabilitiesl _qll =p/(p, + P, 4y = /Py + Do), Vieldyxy) = U™
(q3U(x;) + q4U(x,)) = z for conditional probabilities g5 = py/(p3 + pa), 44 = Pa/(p5 +
pa), and V(v.2) = U~ (p, + p)U) + (ps + pUC).

Let us emphasize that the dynamic information of the decision situation is preserved in
the single-stage evaluation and that therefore W can depend on the order of the resolution
of uncertainty. If that order were changed (e.g., as in Figure 5 hereafter), then another
function W* might possibly be adopted to evaluate quadruples (x,,...,X,). In other words,
we do not assume normal-form equivalence.

Dynamic consistency and consequentialism, thus the folding back procedure, imply for
the single-stage choices in Figure 1b that the events E (={s;,s,}) and E° (= {s;,8,}) are
separable. Separability of {s,,s,}, i.e., event E, means that W(x,,-*-,x,) can be written as
F(Vg(xy,x,),%3,x4), Where F is strictly increasing in Vg(x,,X,). Separability of other events
is defined similarly. Separability of preferences means separability of all events. Separa-
bility of E and E° with respect to the single-stage choices is the only implication of the
dynamic choice conditions (consequentialism and dynamic consistency) used in our math-
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94 R. SARIN/PP. WAKKER

ematical theorems. Therefore our results could be reinterpreted as an analysis of separa-
bility for single-stage nonEU models. For rank-dependence, further comments are pro-
vided at the end of Appendix B.

In the next sections we explore whether (1.1) and (1.2) can be simultaneously satisfied
for other classes M of models for decision under uncertainty and risk than expected utility.

2. Multiple priors

This section shows that the multiple priors family can satisfy sequential consistency
without reducing to expected utility at any stage. Decision under uncertainty assumes a
state space () and an outcome space €. () is assumed to be {s;,...,8,} up to Section 7.
Acts f map states to outcomes and the preference relation > is over acts. The multiple
priors model holds if there exists a set P of probability measures on the state space and
a utility U : € — IR, such that

S minpey [ Utw))dp
Q

represents =. The family M of multiple priors forms contains all such representations for
all state spaces and outcome spaces. The model has been used by Wald (1950). A char-
acterization in terms of preference conditions has been provided by Gilboa and
Schmeidler (1989). The model is compared to Choquet expected utility by Klibanoff
(1995) and Ben-Porath, Gilboa, and Schmeidler (1997).

Now consider the decision tree in Figure la. Assume that for node 2 a family %, of
probability measures over {s,,...,s,} is given, for node 4 a family P, of probability
measures over {s;,s,}, and for node 6 a family %, of probability measures over {s;,s,}.
Assume that the decision maker does folding back according to the multiple priors model.
Consider the model in Figure 1b. In determining the family of prior probabilities at node
7, we will assume probability multiplication. Hence the family % at node 7 consists of all
probability distributions that result from taking one element of %, one element of %, and
one element of P, and then using probability multiplication. The family % is called the
reduced family of probability measures. It suggests a stochastic independence of the
separate chance nodes in Figure la, where the probability measure at any chance node
does not affect the probability measures at the other nodes. That allows for the preferential
separability needed for sequential consistency.

Theorem 2.1. Suppose that Assumption 1.1 holds, that folding back (Formula 1.1) holds
with respect to the family M of multiple priors forms, and that the same utility function
is used at nodes 2, 4, and 6. Then sequential consistency holds with respect to M if the
multiple priors form W in (1.2) uses the reduced family of probability measures and the
same utility function. [l
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DYNAMIC CHOICE AND NONEXPECTED UTILITY 95

3. Rank-dependent utility

In rank-dependent utility (RDU), nonadditive or nonlinear measures are used. For deci-
sion under uncertainty, the model considered here, RDU is usually called “Choquet
expected utility.” The state space (), the outcome space 6, and acts are as before. A
capacity v is a function on the subsets of () that satisfies v(J) = 0, v({)) = 1, and that is
monotonic with respect to set inclusion, i.e., 4 D B [0 v(4) = v(B). Choquet expected
utility (CEU) holds if a capacity v on ) and a utility U : € — IR exist such that

[ fv{weﬂ: Uf (w)) = T}dt + f[v{meﬂ: Uf (w)) =T} —1]dr

IR IR~

represents =. The integral is the Choquet expected utility (CEU) of f and is also denoted
as [oUdv. If v is additive, then CEU reduces to the classical expected utility (EU), as
one verifies by partial integration. For the state space {s;,**,s,}, as considered in the
single-stage evaluation, CEU of an act (“strategy”) x with x; = --- = x, can be rewritten
as the sum

4
ijU(x,-), (3.1)
~

where the decision weights ; are defined as v ({s,"**,s;}) — v({sy,"**,s; 1 }). For the state
space {s,,s,}, considered in the folding back procedure at node 4 of Figure 2a, CEU of an
act (“subact”™) (x,,x,) with x, = x, is 7({s,)U(x,) + (1 — ({s,))U(x,), where 9,0 may be
different from v,U as used in the single-stage evaluation (3.1).

The family M of rank-dependent forms, i.e., the RDU family, contains all CEU repre-
sentations for all state spaces and outcome spaces. A special case of decision under
uncertainty is decision under risk, where probabilities are given on () so that acts can be
identified with the probability distributions over outcomes (Wakker 1990). Thus, the RDU
family includes the models for decision under risk introduced by Quiggin (1981).

A characterization in terms of preference conditions of CEU with continuous utility, the
model considered here, has been provided by Wakker (1989). Now we present the impli-
cation of sequential consistency for folding back with the RDU family.

Theorem 3.1. Suppose that Assumption 1.1 holds and that folding back (Formula 1.1)
holds with respect to the family M of rank-dependent forms. Then the following three
statements are equivalent:

(i) Sequential consistency holds with respect to M.
(i1) V is an expected utility form and V, Vi, and V. use the same utility.
(i) There exist a utility U : € — IR, probabilities P(E) and P(E®) (P(E) + P(E°) = 1),
and capacities vg on {s;,s,} and vge on {s3,s,}, such that > can be represented by
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96 R. SARIN/PP. WAKKER

(X1, xy) = P(E)CEUR(x,x;) + P(EY)CEUg(x3,x,),

where CEUy denotes Choquet expected utility with respect to U and vg, and CEUge
denotes Choquet expected utility with respect to U and vpe.
[

We briefly describe the proof, elaborated in the Appendix, of the most interesting
implication, i.e., that (i) implies that V is an EU form. The key step is to show that the
decision weights of s; and s, do not depend on the outcomes x5 and x,. To see this, note
that an indifference (x,x,,x3,x,) ~ (x; + €,x, — 8,x3,x4), for x, + e >x;, >x, >x, =0 >
X3 > x, should, be separability of {s,,s,}, be kept if x5 is replaced by x;' such that
X, > x3' > Xx,. In the CEU formula (3.1), this replacement does not affect the decision
weight of state s,. Therefore, to preserve the indifference, the decision weight of s, should
neither be affected by the replacement. By similar reasonings for other cases it follows
that the decision weights of s, and s, are indeed independent of the outcomes x5 and x,.
We define P(E) = v(E) = 1 — P(E°),vy = v/P(E),v = v/P(E), and the representation in
(ii1) follows from substitution.

We display the most important implication of Theorem 3.1:

Corollary 3.2. If folding back and sequential consistency hold with respect to the family
of rank-dependent forms, then the decision maker is free to use a nonadditive capacity in
the second stage but must maximize expected utility in the first stage. ]

The corollary may be useful when first stage events are (“roulette wheel”) events that
do not involve ambiguity and those in the second stage are (“horse race”) events that do
involve ambiguity. Consistent with other authors, e.g. Schmeidler (1989), a person may
maximize EU with respect to unambiguous events and deviate from EU for horse race
events. Schmeidler’s paper, which introduced CEU, assumes that the unambiguous events
are in the second stage and the horse-race events are in the first stage. Our result suggests
a reversal of the stages to maintain sequential consistency (compare Corollary F.2 in
Appendix F). Eichberger and Kelsey (1996) assumed dynamic consistency but not con-
sequentialism and considered choices conditional on an event E by fixing outcomes given
E°. Under some nontriviality assumptions, they showed that CEU with “strict uncertainty
aversion” in the single-stage situation excludes CEU for the choices conditional on E.
Following Schmeidler, they assumed that outcomes are probability distributions over
“prizes” and that with respect to these the decision maker maximizes EU. In a mathemati-
cal sense this comes down to linearity of utility in outcomes.

Finally, we give an example in which all conditions of Theorem 3.1 are satisfied but EU
does not hold.

Example 3.3. Suppose that U is the identity, P(E) = P(E°) = 1/2, and vg(s;) =
Vi($,) = ve(s3) = vi(s,) = 0.4. Suppose x; > -+ > x,. The value of strategy (X, **,X4)
is
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1 1 1 1
5><0.4><x1+5><0.6><x2+§><0.4><x3+5><0.6><x4.

If, for example, x, > x, and X, > Xj, then the value of the strategy is

1 1 1 1
EX0.4XXZ+EX0.6XXI +EXO.4XX4+EX0.6XX3.
Note that the outcomes have different decision weights in the second evaluation than in

the first. Under EU, the decision weights would have to be identical in the two cases.
Therefore, EU does not hold in this example. [l

4. Betweenness

For decision under risk the family of betweenness models has been extensively studied
(Fishburn 1988). If two probability distributions are indifferent, then in the betweenness
models all distributions obtained by a convex combination of these distributions are
indifferent as well. Thus, in a probability simplex all indifference curves are linear but not
necessarily parallel. This means that each indifference class of a betweenness model is
also an indifference class of an EU model.

For decision under uncertainty no one, to our knowledge, has characterized the be-
tweenness preferences in general. For the purpose of this paper, it is sufficient to note that
betweenness holds if for each indifference class there exists an EU model such that the
indifference class is also an indifference class of that EU model. For alternative indiffer-
ence classes the implied EU models may differ from one another. We next give a formal
definition of betweenness, extending it from decision under risk to the more general
context of decision under uncertainty.

Monotonicity is assumed throughout this paper. For betweenness models, monotonicity
may be problematic if outcomes are unbounded. Therefore we restrict the domain and
assume that the outcome set is [0,M] for some fixed M > 0. Let W denote a strictly
monotonic continuous function that represents >. For a number k in the range of W,
W !(k) is a preference indifference class. We often use k as a superscript; k does not
designate an exponent. Betweenness holds if for every k in the range of W, there exist
probabilities pt,---pf and a strictly increasing continuous utility U* such that
w (k) ={(x,X,X3,X4) € [0,M]4:plka(x1) + ot pljUk(x4) = k'} for some constant k'.
The constant k' can be chosen arbitrarily by rescaling UK. For instance, suppose we let k'

be 0 for each k. Then W(x,,"*-,x,) = kif and only if 2 pj Uy(x;) = 0. Therefore the value
k of the strategy can also be obtained as the solutlon in k of the implicit equation
2 P Uk(xl-) = 0. Such an implicit way of describing the betweenness family was given by
= :

Dekel (1986) and Chew (1989) for decision under risk. Folding back (1.1) with respect to
the betweenness family has been discussed, in a more complex dynamic setup, by Epstein
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98 R. SARIN/PP. WAKKER

and Zin (1989, “Class 3”) and Chew and Epstein (1989, Theorem 2). Epstein (1992,
Section 3.4) gives a normative argument for folding back with respect to the betweenness
family.

Theorem 4.1. Suppose that Assumption 1.1 holds and that folding back (Formula 1.1)
holds with respect to the family M of betweenness forms. Then the following two state-
ments are equivalent:

(i) Sequential consistency holds with respect to M.

(i1) The preference relation can be represented by a betweenness form W(x, -+, x,) =V
(V(x1,%5),Ve(3,x4)) such that Vi and Ve are EU forms. Further, the EU models
(pt,-+ ph, U for which W'(k) is an indifference class, are such that the conditional
probabilities p’l‘/(p][ + p’z‘) and pg/(p][ + p’z‘) as well as pé‘/(pé‘ + p’j) and pﬁ/(pé‘ + p’j) are
independent of the indifference class parameter k. The utilities U = U are also
independent of k. Vi, and V. use the same utility U.

]

In the theorem, the decision maker maximizers EU given event E with utility U (the
index k can be omitted) and conditional probabilities p/(pt + p5) and p5/(p% + pt). Simi-
larly, the decision maker maximizes EU given event E® with utility U and conditional
probabilities pé‘/(pé‘ + plj) and pﬁ/(p;‘ + pﬁ). All conditional probabilities are independent
of k. The only deviation from EU is that the probability p* + p! for event E and the
probability p% + p& for event E° depend on the indifference class that is assigned value k.

We display the most important implication:

Corollary 4.2. If folding back and sequential consistency hold with respect to the family

of betweenness forms, then the decision maker can use a betweenness model in the first

stage but must maximize expected utility in the second stage. ]
An example illustrates Theorem 4.1.

Example 4.3. Suppose that U is the identity function. The conditional probabilities of
both s, and s,, given E, are 1/2, and so are the conditional probabilities of s and s, given
E°. Define the form V as

” 2z, + z,

(i ——TTS
Finally, each (x,,"**,x,) is evaluated by V((x, + x,)/2, (x; + x,)/2)). This form agrees with
(1.1) (rewrite as

V(U_I(U(xl) + Uy ) Ulxs) + Ulxy)

2 > ) N etC.).
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DYNAMIC CHOICE AND NONEXPECTED UTILITY 99

It is not an EU form and neither is it an ordinal transform thereof. Its indifference curves
V(z,,2z,) = k are straight lines of the form

(1 + k)= (k— 2)z, + 3kM

that all pass through (—M,2M). They correspond with an indifference class of the EU
model where utility is the identity and probabilities are (1 + k)/3 and (2 — k)/3 respec-
tively. Finally, preferences are represented by

2x; + 2x, + x5 + x4
X Fx, = xy;—x, +6M°

(15772 xg) > WX x0,05,%,) +

5. Weighted utility

Weighted utility is a special form of implicit utility. As implicit utility, it has been studied
mainly for decision under risk (Chew 1983). Hazen (1987) studied it in a model in which
the first stage deals with decision under uncertainty. In the second stage he assumed
decision under risk. See also Eichberger and Grant (1997) and Lo (1996). For decision
under uncertainty with a state space {s;,**,s,} and acts being functions from {s;,**,s,} to
[0,M], weighted utility is defined as follows. First, the decision maker chooses subjective
probabilities p,,---,p, for the states and a strictly increasing continuous utility U: [0,M] —
IR, similarly to EU. Next, the decision maker chooses a “weighting function” w: [0,M] —
IR, . An act (x;,"**,X4), assigning outcome x; to state s;, is evaluated by a convex combi-
nation of its outcome utilities U(x;), using the following formula:

4
p jW(x j) Ulx j)

4 (5.1)
‘gl pw(x;)

Jj=1

EU is the special case where the function w is constant. An indifference class of weighted
utility is a set of acts where (5.1) is a constant k. In other words, if we replace the U (x;)'s
in the convex combination by U(x;) — &, the resulting value should be zero. That does not
change if we delete the denominator and thus indifference classes are described by

4
 ppen)(UE) = = 0.
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100 R. SARIN/PP. WAKKER

This is indeed the indifference class of EU form, i.e., the one with probabilities pjl»C =p;
and utility U"(xj) = w(x)(U(x;) — k). So weighted utility is an implicit utility model,
where the EU models that describe indifference classes have varying utilities but all use
the same probabilities. We found, however, that the folding back model in Theorem 4.1
does not permit EU descriptions of indifference classes that have varying utilities. This
proves that folding back with weighted utility cannot be reconciled with the sequential
consistency condition of this paper; that is, it must then reduce to EU.

Theorem 5.1. Suppose that Assumption 1.1 holds and that folding back (Formula 1.1)
holds with respect to the family M of weighted utility forms. Then the following two
statements are equivalent:

(i) Sequential consistency holds with respect to M.
(i1) The preference relation maximizes EU.

6. General transitive forms

Next we consider the family M of all strictly monotonic continuous forms. In other words,
preferences should only satisfy transitivity, completeness, continuity, and monotonicity
(Assumption 1.1). We saw before that sequential consistency imposes some specific re-
strictions when M is the RDU family or the betweenness family. Sequential consistency
does not impose any further restrictions, other than those of separability as immediately
imposed by the folding back assumption (1.1), for the family of monotonic continuous
forms. So any general monotonic continuous forms Vg, Ve, V can be used in folding back
(1.1), and in the single-stage evaluation (1.2) any functional W of the form V
(Vg(x1,x,), Vie(x3,x4)) can be used. This is immediate and requires no proof.

Remark 6.1 Suppose that Assumption 1.1 holds and that folding back (Formula 1.1)
holds with respect to the family M of monotonic continuous forms. Then sequential
consistency is satisfied. []

7. Arbitrary finite numbers of events and stages

For simplicity of the exposition we have presented the main results for two stages and
two-branch nodes. These results readily extend to more than two stages and more than two
branches per node. A case with many branches is depicted in Figure 3a. There the state
space is a set of the form S X T where S contains any finite number n = 2 of events and
T contains any finite number m = 2 of events. We shall deal with a slightly more general
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Figure 3a

Figure 3b *nm

Figure 3.

case, illustrated in Figure 4a. There are n first-stage events B,,---,B,,, there are m; second-
stage events Byy,-**,By,, .+, and there are m, second-stage events B, **,B,,, . In the
folding back approach a representation of the form

Figure 4a

Figure 4b n

Figure 4.
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102 R. SARIN/PP. WAKKER

V(Vl(xll""7xlml)7.“’Vn(xnlan'axnmn)) (71)

is imposed, where V and each V; are taken from the family M. Note that this only imposes
a weak form of separability. Each B; is separable, but separability of other subsets of
{By,"--,B,}, such as {B;,B,}, is not imposed. We note that for the rank-dependent family
it will follow, as a consequence of the other assumptions, that each subset of {B,, --,B,}
is separable nonetheless. In the single-stage evaluation with respect to M, a representation
of the form W(X, 1,"**, X »"**»Xn 15" Xym ) 18 imposed, where W is an element of M. Again,
sequential consistency requires that, if folding back holds with respect to M, then the
single-stage evaluation is also with respect to M.

The extension to multiple events is straightforward for the general transitive forms
(Theorem 5.1). The other models are described in more detail in the following theorem.

Theorem 7.1. Suppose that Assumption 1.1 holds and that folding back (Formula 7.1) and
sequential consistency hold with respect to a family M, and that n = 2 and m; = 2 for each

J-

(1) If M is the multiple priors family, then sequential consistency is satisfied if all forms
V and V; use the same utility function and W uses the reduced family of probability
measures (treating probabilities at different nodes as independent and multiplying
them) and the same utility function.

(i) If M is the rank-dependent family, then V is an EU form and all CEU forms V; use
the same utilities as V.

(iii) If M is the betweenness family, then each V; is an EU form, the utilities UX for > are
independent of k (U* = U for all k), and each V; uses the same utility U. V can be
any form satisfying betweenness and using the same utility U in all EU descriptions
of indifference classes.

(iv) If M is the weighted utility family, then V and all V;'s are EU forms.

[l

Appendices D and F comment on the case of infinitely many branches. We next turn to
the case of multi-stage trees. For multiple priors, the extension is straightforward again.
The set of probability measures in the single-stage evaluation is now the reduced family
of the sets in all intermediate chance nodes in the decision tree, i.e., the reduced forms of
all combinations of probability measures at intermediate chance nodes. Also the general
transitive forms (Theorem 5.1) readily extend to multiple stages. The other cases are
described in detail in Appendix E. For the rank-dependent family, the conclusion is that
only in the last stage can one deviate from EU, for the betweenness family the deviation
from EU can only take place in the first stage, and for weighted utility no deviation from
EU is possible.
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DYNAMIC CHOICE AND NONEXPECTED UTILITY 103

8. Discussions and related literature

Consistency in dynamic choice situations has long been of interest in economics and
decision analysis. With the advent of nonEU models, a renewed interest in dynamic
consistency has arisen, as the application of nonEU models to dynamic settings poses new
challenges. We have shown that a nonEU model (multiple priors) can be applied in
dynamic settings much the same way as EU is applied. Some other nonEU models
(rank-dependent and betweenness) can only be applied in a restrictive way. We now
compare our results to those in the literature.

For the purpose of the following discussion we define invariance. Compare Figure 2a
with Figure 5. In Figure 5, the order of events has been reversed, but corresponding
strategies can be defined in the sense of assigning the same outcomes to the same states.'
Invariance requires an identical evaluation of corresponding strategies in the two figures.
When folding back is assumed both in Figure 2 and in Figure 5, together with invariance,
then complete separability of preference over strategies is implied, which is the main
condition leading to expected utility (Hammond 1988, Sarin & Wakker 1994). For the
context of risk, invariance and weaker versions thereof are studied by Segal (1993). He
uses the term “general order indifference” for invariance and points out that this condition
is somewhat weaker than the reduction of compound lotteries axiom.

There is an abundance of research papers that delineate the assumptions under which
independence or EU holds in dynamic choice situations (Hammond 1988, Chew and
Epstein 1989, Karni and Schmeidler 1991, Sarin 1992, La Valle 1992). In our framework
the assumptions that imply independence boil down to a universal commitment to dy-
namic consistency, consequentialism, and invariance. Therefore nonEU models must es-
chew a universal commitment to at least one of these three assumptions. Our results apply
when any of these three assumptions is relaxed.

We first turn to the case where consequentialism and dynamic consistency hold uni-
versally (thus folding back can be employed throughout) but preferences are influenced by
the order and timing of events and invariance is violated. For this case we have shown that

E 5
(]

55 3

)
X

NC

E 5 %
k

Figure 5. E* = {s,83}; (E’)° = {8,,84}
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104 R. SARIN/PP. WAKKER

dynamic choice can be evaluated using folding back and sequential consistency much the
same way as in EU if one uses the multiple priors model. We agree with Kreps (1990, p.
114) that “The timing of resolution of uncertainty can be important for “psychological”
reasons as well, even if the consumer has no particular use for the information in the sense
that it could change some decisions he must make.” Violations of invariance have been
studied by Chew and Epstein (1989), Grant, Kajii, and Polak (1998), Kreps (1979), Luce
and Narens (1985), Luce and Fishburn (1991), Luce and von Winterfeldt (1994), and
Segal (1987, 1990). Grant, Kajii, and Polak (1997) obtained a result that is remarkably
similarly to ours. They explain violation of invariance by means of an intrinsic value of
information and their conditions, though quite different than ours, also imply that for
rank-dependent and betweenness models, deviations from EU can only occur in one stage.
Empirical support for folding back has been given by Kahneman and Taversky (1979),
Starmer and Sugden (1991), Bernasconi (1994), and others.

Second, our results extend the work of Machina (1989) and McClennen (1990) (see also
Strotz 1956, p. 165, “precommit”) by showing that nonEU maximizers can achieve dy-
namic consistency while employing folding back or backward induction in evaluating
alternative plans in some scenarios, but not necessarily in all. This non-universal folding
back is analogous to preferences for commodity bundles that are not universally (“com-
pletely”) separable. Yet, some subsets of commodities can be separable. For example,
commodities {X,,X,} and {x5,x,} may be separable whereas {x,,x5} and {x,,x,} are not.
Folding back is analogous to Strotz's (1957) scheme of two-stage budget allocations,
where in the first stage the budget is allocated between the two commodity groups that are
separable, i.e., {X;,X,} and {X5,x,}. In the second stage, inter-group budget allocations are
determined; see also Gorman (1968). For nonseparable commodity groups {x;,x;} and
{x,,X,}, this two-stage budget allocation procedure (folding back) cannot be used because
the allocation to a group depends on the distribution of budget within the other group.

Third, interest has also been expressed in the literature for violations of dynamic
consistency. For instance, in the approach of Karni and Safra (1990), consequentialism
and invariance are assumed to hold universally but dynamic consistency is relaxed. Jaffray
(1994) presents an updating method and shows that dynamic consistency must be aban-
doned to implement the method. Strotz (1956) was perhaps the first modern economist to
discuss a violation of dynamic consistency: “our present answer is that the optimal plan
of the present moment is generally one which will not be obeyed, or that the individual's
behavior will be inconsistent with his optimal plan” (p. 166). Allais’ (1953) arguments for
deviating from EU are also based on a violation of dynamic consistency. He argues that
choices made “ex ante,” i.e., prior to the revelation of uncertain information, need not
conform to choices made “ex post,” i.e., posterior to the revelation of uncertain informa-
tion. Similar to the example where universal consequentialism was relaxed, relaxation of
dynamic consistency does not imply that dynamic consistency is inappropriate in all
decision trees. In those trees where it is appropriate, our results can be applied.

To summarize, our results are useful in two ways. The first case occurs when a natural
order decision tree representing a decision problem is to be evaluated using folding back,
as in the product development example in Figure 1. In this case, the multiple priors model
can achieve sequential consistency while permitting folding back. Second, our results
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DYNAMIC CHOICE AND NONEXPECTED UTILITY 105

show that one need not abandon consequentialism or dynamic consistency universally to
be able to use a nonEU model.

Dynamic choice problems have mostly been studied in the context of decision under
risk, where uncertainties are described by probabilities rather than by events. Let us
emphasize that sequential consistency does not assume or imply reduction of compound
lotteries. Risk is a special case of uncertainty (Wakker 1990), so our results are applicable
to risk as well (for infinitely many outcomes, see Remark D.1 in Appendix D). Our results
imply again that, for RDU, deviations from EU are only possible in final stages and for
betweenness deviations are only possible in first stages.

The main point of our approach is that a decision maker may not universally commit to
any of the principles of dynamic consistency, consequentialism, or invariance, but may
violate each of them in certain specific situations. The flexibility of exploiting separability
whenever possible but permitting nonseparability of preferences in other cases is the
strength of our approach.

We now discuss related literature. Luce and Narens (1985) and Luce and Fishburn
(1991) derive several nonEU models by relaxing various “accounting postulates.” Ac-
counting postulates mean that the sequence and the timing of events do not matter to a
decision maker, and thus a relaxation of accounting postulates means a relaxation of
invariance (Luce and von Winterfeldt 1994, p. 267). Luce’s approach, however, involves
other primitives such as a joint receipt operation and independent repetitions of events.
“Recursive utility,” surveyed in Epstein (1992), is similar. Again, the sequencing of events
is relevant, i.e. the timing of the resolution of uncertainty may matter to the decision
maker. Recursive utility applies to decision under risk and means that folding back is
applied using the same forms V' = V; = V. in both the first and the second stage.

Epstein and Le Breton (1993) have derived probabilistic sophistication from dynamic
consistency and some other assumptions, generalizing an earlier result of Machina and
Schmeidler (1992); see also Grant (1995). Probabilistic sophistication means that beliefs
can be quantified by additive probabilities. Epstein and Le Breton use all of Savage’s
(1954) axioms except the sure-thing principle but drop consequentialism. Therefore, in
their approach folding back cannot be applied. Another difference between their approach
and ours is that they impose their conditions universally, i.c., for all events, whereas we
impose our conditions only for fixed first- and second-stage events. For those events, we
preserve both dynamic consistency and consequentialism. In our results, it is possible to
use nonadditive probabilities (see Theorem 3.1) that do not conform to probabilistic
sophistication while still satisfying dynamic consistency. Analogous to our sequential
consistency, Epstein and Le Breton also use a meta-principle to the effect that the same
general family of models should be applicable at several decision points. Lo (1996) and
Eichberger and Grant (1997) demonstrated that quadratic utility can satisfy the meta-
principle of Epstein and Le Breton. Again, their forms do not satisfy consequentialism or
sequential consistency and cannot be used in folding back.

A meta-principle can also be recognized in the conjugateness condition for prior prob-
abilities in Bayesian statistics. Conjugateness of a family of probability distributions (e.g.,
the beta family) means that if the prior probability belongs to that family, then so does the
posterior after updating (Winkler 1972).
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Backward induction and other rationality principles for dynamic choice situations have
been studied extensively in game theory (van Damme 1983, Kohlberg and Mertens 1986,
Elmes and Reny 1994). Sequential consistency can be compared to subgame perfectness
from game theory, introduced by Selten (1965). A commonly accepted assumption for
extensive games was that all essential information is contained in the normal form of the
game and that the normal-form solution should be a member of the family M of Nash
equilibria. Selten argued that, given universal commitment to Nash equilibrium, it is
equally appropriate for a solution that the prescriptions in each decision node in the
extensive form, and the subgame emanating therefrom, be members of M.

9. Conclusion

Several papers in the literature have shown that when one makes a universal commitment
to consequentialism, dynamic consistency, and invariance, then expected utility (indepen-
dence) is implied. Those who are sympathetic to nonexpected utility find that implication
overly restrictive because in their view violations of expected utility occur precisely
because people do not universally satisfy all of the mentioned principles simultaneously.
In order to give nonexpected utility models a fair shake, we do not impose these principles
universally. Instead, we assume that the evaluation of a decision tree be carried out by
folding back and that the same class of nonexpected utility models be used throughout the
tree, and we do not impose restrictions on trees with other (orderings of) events. We have
shown that the multiple priors model can preserve dynamic consistency, consequential-
ism, and sequential consistency for a general multiple stage tree. For a given tree, the
multiple priors model can be applied much the same way as the expected utility model.
Rank-dependent and betweenness models cannot be applied in that way. To the degree that
the implications of sequential consistency for nonexpected utility models are considered
undesirable, the condition can be considered an argument in favor of expected utility.

The implication of sequential consistency can be studied for alternative nonexpected
utility models such as cumulative prospect theory (Tversky and Kahneman 1992), the
a-Hurwicz (1951) criterion where a convex combination of minimal and maximal ex-
pected utility is taken, Jaffray’s (1989) belief function theory, Gul’s (1991) disappointment
theory, or any other nonexpected utility model.

Sequential consistency can be used to develop new nonexpected utility models. For
example, one can define the smallest sequentially consistent family that contains all
Choquet expected utility forms for the folding back approach, or all betweenness forms.
Thus, for each family of decision models, sequential consistency poses two research
questions. First, what restrictions does sequential consistency impose on the family, sec-
ond, what is the smallest family of models containing the original family that satisfies
sequential consistency? This opens new research questions for studying dynamic choice
under nonexpected utility.
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Appendix A. Proof of Theorem 2.1

Assume that in the folding back procedure in Fig. 2a, probability measure P,' minimizes
expected utility at node 4, P.' at node 6, and then P,' at node 2. Next consider the
minimization at node 7. Every probability measure P, from %, results from choosing a
probability measure P, from &,, P, from P, and P, from %, and multiplying probabili-
ties. The resulting EU at node 7 is a convex combination of the EU values at nodes 4 and
6, hence is monotonic in the EU values at nodes 4 and 6. Whatever fixed probability
measure P, is chosen at node 2, the minimal EU results if at nodes 4 and 6 the probability
measures P,' and P' are chosen. Given that, the probability measure P, at node 7 that
minimizes expected utility is obtained by taking P," at node 2 and using P,', P,' and P' to
obtain P,". ]

Appendix B. Proofs and comments for Theorem 3.1

Proof of Theorem 3.1. We assume folding back and sequential consistency, and derive
statement (iii) in the theorem. The other implications then are straightforward. It is also
easily seen that Statement (iii) actually implies folding back.

Assume that U and v are the utility and capacity used by the CEU form W in (1.2).

Remark B.1. The only implication of (1.1) used in the proof is that £ = {s,,s,} is separable
for preferences over strategies.

Separability of {s;,s,}, also implied by (1.1), is not used in the proof. The main part of
the proof will consist of deriving:

v(B) = WBUC) — v(C) (B.1)

for either B C {s,,s,} and C C {s3,54} or B C {s3,5,} and C C {s,s,}. This will be done
at the end. It shows, loosely speaking, that subsets of {s;,s,} and of {s;,s,} do not affect
each other’s decision weights.

Suppose now that (B.1) has been proved. (B.1) implies the equality v(s;,s4) =
v(sy,7+,84) — v(s1,5,), which implies that v(E) + v(E°) = 1, i.e., v is additive with respect
to E,E°. Define “probabilities” P(E) = v(s,s,) and P(E°) = v(s;,s,). Define the capacity
v over {s;,s,} as the normalized restriction of v, i.e., v; = v/P(E). Similarly, define v
on {s3,8,} by v = v/P(E°). For a strategy x, x denotes the conditional act assigning x,
to s, and X, to s,, and xpe denotes the conditional act assigning X, to s; and X, to s,.

Letting U be the utility used by CEU in the single-stage approach, define CEUg(Xg) as
the Choquet expected utility of the conditional act xi over {s;,s,} with respect to the
capacity vg and the utility U; CEUp«(Xge) is defined similarly. It is straightforward from
substitution and (B.1) that CEU(x) = P(E)CEUg(xg) + P(E°)CEUg(xg), which is what
Statement (iii) in the theorem requires.
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We finally derive (B.1). We many assume that the range of U, which is an interval
because of continuity, contains 0 in its interior. For simplicity of the notation, assume that
outcomes are utilities, i.e., U is the identity. To avoid triviality, assume that B and C are
nonempty. We first assume that B C {s,s,} and C C {s;,s,} and treat the three cases
B = {s,}, B = {s5,,5,}, and B = {s,} separately. Case 4 then considers the case where B C
{s3,84} and C C {s,,s,}. We use a notation for strategies as displayed for instance in (B.2).
There the strategy to the left of the ~ indifference sign assigns outcome o to event C,
outcome to o to s;, outcome —T to s,, and outcome —7 to .

Case 1. B = {s,}. Write | = {s5,5,}\C and choose o > 0 > —7 such that

Cos, 8 I~ C,sy, 8y, 1
LLoL LLoL oL (B.2)
o0—T—T g0 O0-—71

Because of strong monotonicity and because the range of U contains an interval around
0, such outcomes can be found. By separability of {s,s,},

s, C,o85, I~  5,C, 85, [
Ll Lol (B.3)
o 0—-7—7 00 0-71

In each indifference, we wrote the events in the order in which they appear in the CEU
formula. The indifferences imply

V({s,}UC) = w(C) = wls,), (BA4)

because these are the two decision weights associated with outcome o for the left strat-
egies, which should outweigh the negative term in the CEU form provided by s,. The latter
is the same in both indifferences. (B.1) has been established for B = {s,}.

In words, the indifferences (B.2) and (B.3) show that the decision weight of s, is not
affected if C “crosses over” s, in the rank-ordering.

Case 2. B = {sy,,}.
We choose ¢ > 0 > —r as before, so have (B.2) and (B.3). Another application of
separability of {s,,s,} gives

S1,8, C, I~ sy, 85, C, 1
Ll Lyl (B.5)
O—T—T—T 00 —7—7

The indifferences (B.3) and (B.5) imply
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v({s1}UCU s }) = ({5} UC) = v(s1,8,1) — v({s1}) (B.6)

because these are the two decision weights associated with outcome —T given state s, for
the left strategies, which should outweigh the positive term provided by s, that is the same
in both indifferences. Adding up the equalities (B.4) and (B.6) gives
v({s;}UCU{s,}) — v(C) = v({s,5,}), 1.e., (B.1) follows for B = {s,,s,}.

In words, the indifferences (B.3) and (B.5) showed that the decision weight of state s,
is not affected if event C crosses over that event in the rank-ordering. We found in Case
1 that the decision weight of state s, is not affected if C crosses over that event in the
rank-ordering. So C can cross over {s,,s,} without affecting the decision weights of s; and
S5, thus of {s;,s,}.

Case 3. B = {s,}. This case is similar to Case 1.

(B.1) has now been proved whenever B C {s;,s,} and C C {ss,s,}. Case 4 can be proved
similarly b invoking separability of {s;,s,} instead of {s;,s,}. In order to prove Remark
B.1, another short derivation is given.

Case 4. B C {s3,54} and C C {5s,,5,}. (B.1) can be rewritten as v(C) = v(BUC) — v(B)
and then follows from the preceding cases.

The derivation of (B.1) essentially used the nonatomicity of {s;,s,}, which made non-

trivial tradeoffs between s, and s, possible. In view of strong monotonicity that is assumed

throughout this paper, nonatomicity of an event simply means that it is not singleton.[ ]
The following result follows from Remark B.1 in the preceding proof.

Corollary B.2. If, under CEU and Assumption 1.1, a nonatomic event is separable, then
so is its complement.

Proof- The general case follows similarly to the case of event E in the preceding proof for
any two-fold partitioning {E,,E,} of E with E, and E, nonempty so nonnull, instead of
{s1,8,}. In the preceding proof, only separability and nonatomicity of E, and not of E°,
were used to derive Statement (iii). That in turn implies separability of E°. ]

An interesting implication of the corollary is that, under CEU, minimal separability
assumptions, together with Gorman’s (1968) result, imply separability of all events and
then by Wakker (1996) subjective expected utility. The following corollary slightly
strengthens Theorem 7.1.(ii) because it does not assume separability of A,.

Corollary B.3. If, under CEU and Assumption 1.1, (A,,...,A,) is a partition of the state
space, n =3, and for all j = 1, ..., n — 1, event A, is separable and nonatomic, then the
capacity is additive on the algebra generated by A,,...,A,.
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110 R. SARIN/PP. WAKKER

Proof. Separability of A;, j =1, ...,n — 1 implies, by Corollary B.2, separability of all
complements of these events. By Gorman (1968), all events measurable with respect to
the partition are separable. By Wakker (1996, Theorem 3) the capacity is additive for those
events. ]

Appendix C. Proofs and comments for Theorem 4.1

Proof of Theorem 4.1 The implication (ii) [J (i) is straightforward, hence we assume
folding back and sequential consistency and derive (ii). Define D= {(Cey,xy):
(x,X0,x3,x4) € W l\(k) for some X3,X4}, Which can be rewritten as {(x;x,):
W (x,,%,,M,M) = k = W (x,x,,0,0)}.

Folding back implies separability of event E. We write > for the preference relation
induced over pairs (x,,X,). Suppose, for a given indifference class W™ '(k), that p]f;“,p'j,
UK give the associated EU model for which W™ !(k) is an indifference class. For k and
(X1,X,) € DX, (X1,X,) ~ 5(y,.y,) if and only if also (y,,y5.X3.x,) € W '(k), which holds
if and only if pU(x,) + pAU(x,) = p*U (y,) + AU (y,). We conclude for each k in the
range of W and x,,X,,y,.y, that, if (x,,"-*,x,) € W~ '(k) for some x5,x,, then

(15) ~ 5 (11n) = PiUx) + piUNGy) = piUM o) + psUM (). (C.1)

The rest of the proof can, unfortunately, not be presented in a very accessible manner. The
reason is that it is based on several advanced results from additive conjoint measurement
theory that have been presented in different papers. Therefore we first present a special
case that illustrates the gist of the proof. Consider the set K = {k: for each x,,x, there
exist X3,X, such that (x,,---,x,) € W~ !(k)}. For such k, (C.1) holds for all (x,,x,) and
(Y,,¥,). Then, by monotonicity and continuity of >, increasingness and continuity of U¥,
and comparisons to certainty equivalents,

(x1%) Zg (12) = PllcUk(xl) +P§l]K(x2) EpllcUk(Vl) +P§l]k(V2)~ (C2)
Defining
. n . P
A o 2T i
it 1t

we see that ¢%,¢5 and U¥ provide an EU representation for >, for all k € K. By standard
uniqueness results (Wakker 1989, Observation 1V.2.7"), this means that ¢% and ¢4 are
uniquely determined and that the U* differ only by scale and location. Then we can, and
will, choose such U identical. It means that we can suppress the superscript k in U~ and
qt, q’z‘ for k € K.

We have obtained an EU representation for > if K is nonempty. But we have also
found:
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There exists a utility U such that UX = U can be chosen for all k € K. The proportion
p'{/p’zC is independent of k € K.

We next turn to general k; actually, the above set K may be empty. (It can be seen that
K is empty if and only if (M,M,0,0) < (0,0,M,M).) Here we invoke advanced results from
additive conjoint measurement. Take any (x,,X,) and set k = W(x,,x,,z,z) for any 0 <
z < M. There exists an open neighborhood S of (x,,x,) such that for all (y,,y,) € S there
exist (y3,y,) such that (y,,--,y,) € W~ '(k). Then g%, g5, U* provide an EU representation
on S by a reasoning similar to the derivation of (C.1) and (C.2). In other words, for >
there exist “local” representations. This implies the existence of a (“global”) EU repre-
sentation, as follows. First, by Chateauneuf and Wakker (1993, Corollary 2.3 —note that
[0,M]? is an open subset for the topology restricted to [0,M]* — and Lemma C.1 and the
text above that lemma), there exists a global additive representation for >. Then, looking
at the diagonal elements (a,a) € [0,M]? their local EU representations, and standard
uniqueness results, we find that the additive representation for > on [0,M]? is actually an
EU representation. Let us display this:

There exist q,,q, and U giving an EU representation for > on [0,M]*.

We next turn to the EU representations on sets D¥ through ¢%, ¢%, U*. These EU repre-
sentations represent the same preferences as the EU representation through q,,q,,U. The
standard uniqueness results claim uniqueness of probabilities and uniqueness of utility up
to scale and location on its domain, but these uniqueness results are only given on full
product sets. The domain D is not a full product set. It is connected, as can be proved
similarly to Chew, Epstein, and Wakker (1993, Lemma), and then it can be seen that the
uniqueness result as above still holds (suggested by Wakker 1993, Section 2.2, discussion
of “Second flaw”). We can conclude that ¢, = ¢} and ¢, = ¢% for all k, and U* = U can
be taken by proper choice of scale and location for each k and U* as defined through the
domain D, Outside the domain D* (so for real numbers not appearing as first or second
coordinate of elements of D¥) the choice of U is only limited by strict increasingness and
continuity, thus all U*’s can be chosen identical to U. We conclude:

U* can be chosen independently of k and plf/plﬁ is independent of k. (C.3)

The proof so far has used no other implication of folding back than separability of E. That,
together with betweenness of >, apparently suffices to reduce the > representation to
EU, giving (C.3). Similarly, using separability of E¢, we obtain an EU representation for
Zpe. In the latter step, independence of utility from the superscript need no more be
derived because it was already established in (C.3). (ii) follows. ]

Appendix D. Proof and comments for Theorem 7.1

Proof of Theorem 7.1. For Statements (i), (iii), and (iv) in Theorem 7.1, the proofs of
Theorems 2.1, 4.1, and 5.1 require no substantial modifications. For (ii), note that in the
proof of Theorem 3.1 it was actually shown that, under CEU, separability of an nonatomic
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event E implies that the decision weights of subevents of E are not affected by outcomes
outside of E. This result is applied here to B,,---,B,, and then similarly implies Statement
(ii). [

Let us consider Theorem 7.1 without the assumption m; = 2 for all j. Then Statement
(i), dealing with the multiple priors model, remains true; it requires no adaptation. The
other statements, however, need no more be true. For example, if m; = 1 for all j, then
folding back (1.1) reduces to monotonicity and has no further implications, and State-
ments (ii), (iii), and (iv) are no more true. It can be seen that (ii) remains true if only one
m; is one but is no more valid if two or more m;’s are one. In the latter case one can,
however, restructure the tree by grouping those m;’s together into one chance node from
which the m; branches emerge as subsequent branches. To this newly constructed tree, our
result again applies. (The event belonging to the newly constructed chance node is sepa-
rable indeed, as follows from Corollary B.3.)

Remark D.1. The extension to infinitely many branches is straightforward, by restrictions
to simple acts (acts taking only finitely many values). The case where S X T = [0,1] X
[0,1], incorporating all two-stage probability distributions if S and T are endowed with the
uniform probability distribution, is included. ]

Appendix E. Multi-stage trees

We briefly describe how Theorem 7.1 can be extended to multi-stage trees. Assume a fixed
non-terminal node B in a complex multi-stage tree, with n branches emerging from B,
leading to “daughter”-nodes B,,--,B,,. Assume that these nodes B; are not terminal nodes
and from each B; there emerge nodes B;;, = Bjm,- These nodes B;y, -, Bj,, are arbitrary.
They may be terminal nodes, but also subtrees of any degree of complexity may emerge

from them. In each of the following cases, we further assume:

(1) For each 1 =j =n, 1 =i=m, the outcomes associated with terminal nodes of all
paths emerging from B; are the same outcome, the generic notion for which is x;.
(2) Outcomes associated with other terminal nodes, emerging from paths that do not pass

through B, are fixed at some level p.

Under these two assumptions, the resulting structure is isomorphic to the two-stage de-
cision tree depicted in Figure 4a. With a slight abuse of terminology, we call the isomor-
phic two-stage structure a subtree. Dynamic consistency and folding back with respect to
a family M in the multi-stage tree imply the same for the subtree and will be assumed
henceforth (for the appropriate M in each case). The extension of the single-stage evalu-
ation from the multi-stage tree to the subtree is considered for the following four cases.

(1) The extension of the multiple priors results is straightforward, still a reduced family
of probability measures and the same utilities are used.
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DYNAMIC CHOICE AND NONEXPECTED UTILITY 113

(i) For the RDU family considered in Theorem 7.1(ii), one more restriction is imposed
on the x; outcomes in (1): we only consider the cases where x; = p for all j,i. Thus,
the fixed outcome p does not interfere with the rank-ordering of the other outcomes,
comonotonicity in the multi-stage tree corresponds to comonotonicity in the subtree,
and the single-stage evaluation in the subtree is also from the RDU family. Now we
can apply Theorem 7.1(ii) to the subtree and conclude that, under the appropriate
nontriviality conditions (at least two branches from each chance node; see also the
remark on the restructuring in Appendix D), the decision maker maximizes EU at
node B with the same utility U as at all daughter-nodes B ,---,B,. The same can be
concluded for every node B that is at least two steps away from terminal nodes.

(iii) For the betweenness family considered in (iii) of Theorem 7.1, we recall that be-
tweenness means that each indifference class in the multi-stage tree is an indifference
class of an EU form. Such an indifference class reduces to a corresponding EU
indifference class in the subtree, implying a single-stage evaluation with respect to
the betweenness family there also. Again, we can now apply Theorem 7.1(iii) under
the appropriate nontriviality conditions and conclude that EU holds at all daughter-
nodes B;. This can similarly be derived for all non-beginning nodes B,'. Therefore
deviation from EU is only possible at the beginning node. Also the other results of
Theorem 7.1(iii) readily extend.

(iv) For the weighted utility family in Theorem 7.1(iv), first note that this is a subfamily
of the betweenness family. Therefore we can apply the results just established for
betweenness and conclude, under appropriate nontriviality conditions, EU for all
nodes except possibly the beginning node. The proof that also at the beginning node
EU is maximized, is similar to the reasoning in Section 5: Weighted utility is an
implicit utility model, where the EU models that describe indifference classes have
varying utilities but all use the same probabilities. By the extension of Theorem
7.1(iii), however, such variations of utility are excluded and EU results also for the
beginning node.

Appendix F. Solvability of events

In this section we assume a state space of the form S X T and a general outcome set 6,
containing at least three nonindifferent outcomes. We adapt the results for the rank-
dependent family to the case of infinitely many event-branches at the second-stage nodes
of the decision tree, assuming Gilboa’s (1987) solvability condition there. This adaptation
makes it possible to discuss Schmeidler’s (1989) two-stage approach. Given the infinite
state space, null states are permitted hence we do not assume the strong monotonicity
condition of Assumption 1.1 in this appendix. Given the possibly finite outcome set, we
also drop the continuity condition of Assumption 1.1. The weak ordering condition of
Assumption 1.1 is implied by the quantitative representation in folding back assumed in
Theorem F.1.

In the folding back approach, we assume that the decision maker maximizes CEU with
respect to the space T. More precisely, consider a preference relation > on the set of
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“conditional acts,” i.e., functions from T to ‘6. Assume that a capacity v is given on T and
a utility U on @, such that > is represented by CEU, the Choquet expected utility with
respect to v and Uy. In this section the richness assumption concerns the space T, instead
of the outcome set 6. We assume that vy satisfies solvability, i.e., for all subsets A C C
of T and any v(4) = b = v(C), there exists A C B C C with v(B) = b. Gilboa (1987) used
the term convex-ranged for this condition.

Now strategies are functions from S X 7 to ‘6. For simplicity, we assume that S is a
finite set {s,;,"",s,}, for n = 2. We display the folding back assumption and the single-
stage evaluation, for this setup:

(F.1) (folding back). There exists a Choquet expected utility representation CEU} for >
with a solvable capacity vy and a Choquet expected utility from V such that > is repre-
sented by

x> V(CEUxy),*,CEU(x, ))
where X, denotes the conditional act assigning to each t € T the outcome x(s;,t).
(E2) (single-stage evaluation). There exists a representation

x+— CEU(x)

for =, where CEU is a Choquet expected utility form.

Again, sequential consistency with respect to the rank-dependent family requires that
(F.1) imply (E.2). Schmeidler (1989) considered the special case of folding back where the
second-stage representation CEU . is actually an expected utility form. The conclusion of
the following theorem, however, is expected utility maximization at the first stage rather
than at the second.

Theorem F.1. Suppose that folding back (F.1) holds and that there are at least three
nonindifferent outcomes. Then sequential consistency with respect to the rank-dependent
family holds if and only if there exist probabilities p;,**+,p,, and Choquet expected utility
functional CEU and CEUy, such that

CEU(x) = X p,CEUx,)
j=1 !
represents preferences.

Proof. For the “if” part, suppose that the representation in the theorem holds. For As-
sumption (F.2), we take the utility as in the CEU representation. For the capacity v, let
ECSXT. Define E; C T such that £ N {s; X T} =s; X E; for each j and set v(E) =

> pvi(E). These definitions of U and v give a CEU representation for (F.2).
j=1
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Next assume folding back (F.1) and sequential consistency, which implies (F.2). We
proceed to derive the representation in the theorem. Let v and U be the capacity and
utility, respectively, adopted by CEU in (F.2). We fix three nonindifferent outcomes a <
B < v and assume for now that € = {a,[3,y}. Restrict attention to the set of strategies that
assign « to each state (s;,t) for j = 2, and «, B, or 1y to states (s;,t). Both CEUy and CEU
give a Choquet expected utility representation for > (the latter with normalized capacity
v' = v/v(s; X T)). By Gilboa’s (1987) uniqueness result, v' and v are identical capacities
on T. Because this can be done for each s; instead of s;, we obtain the following
solvability-like implication:

For each s; X B and each 0 = = v(s; X B) there exists a B; C B with v(s; X B)) = u
(E3)

Another implication of Gilboa’s (1987) uniqueness result is that we may assume that CEU

and CEU; use the same utilities for o,3,y. (This holds for any triple o« < B < v, from

which it can be derived that CEU and CEU use the same utility on the entire set 6.)
The main part of the proof will consist of showing:

w(s; X B) = v((s; X B) U 4) — v(4) (F.4)

for all B C T and A C S\{s;} X T, and this will be done at the end. ((F.4) is similar to
(B.1).) Let us now assume that (F.4) has been proved. This means for a subset A C S X
T that, if we define 4,:=A4N(s; X T),thenv(4) = [v(4, U---U4,) — v(4,,
U-UA)] + [v(A4,_U--UA4)) — v(4,_,U--UA)D] + - + v(4,) = v(4,) + - + v(4,)).
Define, for each s.p;:= v(s; X T) and define the capacity v; over T by v(B) = v(s; X

J

B)/p; if p;> 0 and vj is an arbitrary capacity if p; = 0. CEUj(x, ) denotes the Choquet
expected utlhty of the conditional act x; over T with respect to the capacity v; and the

utility U. (F4) means that the decision welghts of subevents of s; X T are 1ndependent of
events outside of s; X T. From that and substitution we get CEU(x) = E PCEU(x, )

As conditional on each s;, the same preferences (represented by CEUT) are induced
over conditional acts, by standard uniqueness results all CEU; must be the same functional
as CEUr for positive p;’s (remember they all adopt the same utility U) and can, and from
now on will be the same functional as well for the p;’s that are zero. That functional is
denoted as CEU;. Note that it coincides with the functional CEU when restricted to
strategies assigning the same conditional act to each s;.

In the remainder of the proof, (F.4) will be derived, for i = 1. We may assume that
values ¢ > 0 > —r are contained in the range of U. For simplicity of the notation, let us
assume that outcomes are utilities, i.e., that U is the identity. Define I := (s, X
T\B) U ({s5,"",s,} X T)\A. Hereafter, the outcome associated with I will be kept constant
at a minimal level —, so that the event I can be ignored for the choices and calculations.
By (F3), we can split s;, X B up into s, X B, and s, X B,, such that ov(s; X B)) =
(v(s; X B) — v(s; X B)))t. This implies the indifference (with the notation of strategies
explained above (B.2))
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sy X By, s X By, A, 1 ~ s XB|,sXBy, 4,1
! Lo | Lol (F.5)
o -T —T—T 0 0 —7—71

The folding back representation (F.1) implies that replacements of the common outcome
for event A do not change the indifference, so that

sy X B, 4,5y X By, ~ s XB,A4,5 XB,, [
T | T (F.6)
o 0 -1 -7 0 0 0 —

and

A, 5y X B, s X By, ~ A, 5 XB|,s, XB,, [
Lol Lo Lo Lo (F.7)
o o T -7 o 0 0 -7

In each indifference, we wrote the events in the order in which they appear in the CEU
formula. The indifferences (F.6) and (F.7) imply, by the single-stage representation, that
v(s; X B)) = v((s; X B;) U 4) — v(4), because these are the two decision weights asso-
ciated with outcome o for the left strategies, which should outweigh the negative term in
the CEU form provided by s; X B,. The latter is the same in both indifferences. Similarly,
the indifferences (F.5) and (F.6) imply v(s; X B) —v(s; X B)) = v((s; X B)U 4) — v
((s; X B,) U 4), because these are the two decision weights associated with outcome —7
given event s; X B, for the left strategies, which should outweigh the positive term in the
CEU form provided by s, X B, that is the same in both indifferences. Adding up the two
equalities yields v(s; X B) = v((s, X B) U 4) — v(A4), i.e., (F4) follows.

Repeating the derivation of (F.4) in words, (F.5) and (F.6) show that the decision weight
of s; X B, is not affected if A “crosses over” the event in the rank-ordering. (F.6) and (F.7)
show that the decision weight of s, X B, is not affected if A “crosses over” the event in
the rank-ordering. Thus the joint decision weights of s; X B, and s; X B,, i.e., the decision
weight of s; X B, is not affected if A “crosses over” the event in the rank-ordering. []

The following corollary was given, without proof, in Sarin and Wakker (1992). The
expected utility model for probability distributions over prizes, assumed in the second
stage of Schmeidler’s (1989) model, can be considered a special case of a CEU model for
random variables from the [0,1] interval, endowed with the Lebesgue measure, to the set
of prizes. [0,1] is the state space in Gilboa’s (1989) sense and the Lebesgue measure
provides the solvable capacity.

Corollary F.2. The model of Schmeidler (1989) satisfies sequential consistency only if the
capacity is additive and expected utility holds. ]
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Notes

1. In the context of our product development example, switching the order of events leads to a hypothetical and
less natural tree. The decision maker may therefore want to adopt folding back in Figure 2 but not in Figure
5. This example illustrates the desirability of a flexible domain as considered in our analysis. The invariance
condition is more natural if the temporal order of events is flexible.
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