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Abstract

Nonadditive expected utility models were developed for explaining preferences in settings where probabilities
cannot be assigned to events. In the absence of probabilities, difficulties arise in the interpretation of likelihoods
of events. In this paper we introduce a notion of revealed likelihood that is defined entirely in terms of
preferences and that does not require the existence of (subjective) probabilities. Our proposal is that decision
weights rather than capacities are more suitable measures of revealed likelihood in rank-dependent expected
utility models and prospect theory. Applications of our proposal to the updating of beliefs and to the description
of attitudes towards ambiguity are presented.
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It has long been recognized that there is a distinction between risk, where probabilities are
known, and uncertainty, where probabilities are unknown (Keynes, 1921; Knight, 1921).
In a seminal work, Savage (1954) argued that for a rational agent such a distinction is not
relevant. In his framework, probabilities measure the likelihood of events. A key idea in
Savage’s theory is that probabilities are revealed from preferences rather than from in-
trospection or verbal reports.

There is, however, a large body of empirical evidence that contradicts Savage’s sub-
jective expected utility model (Camerer and Weber, 1992). In particular, Ellsberg (1961)
showed that Savage’s method for revealing probability leads to inconsistencies, i.e., prob-
abilities cannot always be assigned to events in that manner. Ellsberg’s concerns about the
inadequacy of probability have been satisfactorily addressed by the nonadditive probabil-
ity model developed by Schmeidler (1989) and Gilboa (1987). This model is called
Choquet-expected utility (CEU) hereafter, and is assumed throughout our analysis. Our
analysis can also be applied to cumulative prospect theory developed by Starmer and
Sugden (1989), Luce and Fishburn (1991), and Tversky and Kahneman (1992). Cumula-
tive prospect theory generalizes CEU by permitting decision weights for gains to be
different than decision weights for losses and has a number of empirical advantages. Our
analysis can be applied to gains and losses separately.
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We propose a notion of revealed likelihood that corresponds with decision weights,
rather than capacities, of events. As will be demonstrated, the revealed likelihood of an
event thus depends on the “dominating” event, i.e., the event that yields superior conse-
quences. Our proposal introduces some, be it minimal, dependency of beliefs on tastes,
which may be the price to pay for giving up expected utility. Revealed likelihood sheds
new light on a number of issues in rank-dependent theories, such as a duality paradox, the
various definitions of null events and updating, and the interpretation of capacities as
belief. Let us emphasize that revealed likelihood is entirely based on preferences, i.e.,
refers to subjective perceptions in a Savagean sense.

In Section 1, we review the notion of likelihood in subjective expected utility theory.
Section 2 discusses the discrepancy between likelihood revealed from bets on and bets
against events that is commonly found in the Ellsberg examples. In Section 3, we argue
that in CEU, one needs to distinguish between revealed likelihoods derived from bets on
events and revealed likelihoods derived from bets against events. This distinction is al-
ready a first step towards the dependency of revealed likelihood on dominating events,
proposed later in this paper. Section 4 shows that in the derivation of CEU one may use
preference conditions in a consistent way so long as one employs the appropriate notion
of revealed likelihood. This solves a duality paradox noted in the literature. In Section 5,
we generalize revealed likelihood to the multiple consequences case. We argue that, if
revealed likelihood should “tell you where to put your money,” then decision weights are
the proper measure of revealed likelihood under CEU. Section 5 also sheds new light on
axiom P2 of Gilboa (1987). It shows how that axiom can be used to empirically elicit
orderings of decision weights, thus revealed likelihood as proposed in this paper.

An attractive property of expected utility is independence of beliefs from tastes. In
Section 6, we argue that to some degree independence of revealed likelihood from con-
sequences can be maintained in CEU so long as one specifies a dominating event. In
Section 7, we argue that decision weights have some distinct advantages over capacities in
measuring revealed likelihood. Section 8 illustrates an application of our measure of
revealed likelihood in defining null events which is an important issue for updating and for
the definition of Nash equilibrium in game theory. Several other properties of decision
weights as measure of revealed likelihood are discussed. For example, a new interpreta-
tion is provided for the case of probabilistic sophistication (Machina and Schmeidler,
1992; Epstein and Le Breton, 1993). Section 9 discusses updating if new information is
gathered. Several proposals for updating in the literature can be explained as different
choices of the dominating events introduced in Section 6. In Section 10, we discuss the
interpretation of revealed likelihood as a measure of belief. Revealed likelihood may
depend both on beliefs and on decision attitudes. Finally, Section 11 presents conclusions.
Proofs are presented in the appendix.

1. Subjective expected utility

In subjective expected utility (SEU), the likelihood of an event is measured by its sub-
jective probability. Thus,
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Event A is more likely than event B
if and only if

the probability of A is greater than the probability of B.

In the above statement the likelihood judgments are quantified by a probability mea-
sure. Thus, we write

A s B if only if P~A! . P~B!. (1)

Subjective probabilities are often interpreted as a measure of degree of belief, reflecting
the state of information of the decision maker. For the two consequence case, the likeli-
hood relation can be operationalized in either of the following two equivalent ways:

A is more likely than B if one prefers a bet on A to a bet on B (Figure 1a).
A is more likely than B if one prefers a bet against A less than a bet against B (Figure

1b).
Thus, “more likely than” judgments are revealed through preference comparisons be-

tween various “win-lose” bets. Implicit in the betting method for revealing likelihood is
the assumption that the likelihood comparison of events A and B is independent of the
pairs of consequences used. This independence is ensured through Savage’s axiom P4.

It is easy to verify that for an SEU maximizer either preferences in Figure 1a or Figure
1b would reveal the same likelihood relation. The preferences in Figure 1a reveal
P(A).P(B) and those in Figure 1b reveal P(Ac)51–P(A),P(Bc)51–P(B), each leading to
the conclusion that A is revealed to be more likely than B.

The desirability of eliciting likelihoods using bets on events or bets against events
depends on the decision context. In theoretical analyses, likelihoods have mostly been
inferred using bets on events, as in Figure 1a (Sarin and Wakker, 1992; Epstein and Le
Breton, 1993). They can, however, just as well be elicited using bets against events as in
Figure 1b. There is no prior reason to prefer one method over the other, though in practical
applications one of the two methods may be more convenient. A large part of our risky
decisions concerns avoidance of unfavorable events, in which case it is natural to think in
terms of bets against events. Examples are health care, safety measures, and insurance. In
the next section the choice of method will be more than a matter of practical convenience
and will lead to conceptual differences.

Figure 1a. Figure 1b.
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2. Revealed qualitative likelihood

Ellsberg (1961) showed that empirically the two ways of operationalizing likelihood as in
Figure 1 do not lead to the same result for some events. To illustrate this violation of SEU,
consider two urns, one containing 50 white and 50 black balls, and the other containing
a total of 100 white and black balls in unknown proportion (Figure 2). From each of the
two urns a ball is randomly drawn. People often prefer a bet on event K (white from
known urn) to a bet on event U (white from unknown urn), while preferring a bet on Kc

(black from known urn) to a bet on Uc (black from unknown urn).
The pattern of preferences in Figures 2a and 2b implies that event K is revealed more

likely than event U when one derives the likelihood relation from bets on events (Figure
2a), and event K is revealed less likely than event U when one derives it from bets against
events (Figure 2b). In Figure 2b, one loses (fails to win) on events K and U and the
inference that K is less likely than U is guided by the intuition that one should prefer to
lose on the less likely event.

The example demonstrates that a revealed likelihood relation derived from bets on
events may differ from that derived from bets against events. To distinguish these two
notions of revealed likelihood we introduce the following notation. We write fq for
revealed likelihood derived from bets on events. That is, A fqB if there exist conse-
quences x s y such that

~A,x; Ac,y! f ~B,x; Bc,y! (2)

where f denotes weak preference and (A,x;Ac,y) denotes the act yieding x if A occurs
and y otherwise. (Conditions will later be studied that guarantee that (2) holds for all
x s y as soon as it holds for some x s y.) We write sq instead of fq if the preference
in (2) is strict.

Similarly, we write fQ for revealed likelihood derived from bets against events. That
is, A fQB if there exist consequences x s y such that

~Ac,x; A,y! d ~Bc,x; B,y!

where d denotes reversed preference (f d g meaning g f f). Again, sQ denotes strict
preference. Under SEU, fq and fQ coincide. In the elicitation of fq a superior con-
sequence is associated with events A and B, that is, A and B play the role of good-news
events. They describe the receipt of a consequence or anything better than that conse-

Figure 2a. Figure 2b.
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quence. In contrast, in the elicitation of fQ an inferior consequence is associated with
events A and B, hence these events play the role of bad-news events. They describe the
receipt of a consequence or anything worse than that consequence. The preference pattern
observed in the Ellsberg paradox implies K sqU but U sQK and thus constitutes a
violation of SEU. The pattern can be explained by pessimism with respect to unknown
probabilities (ambiguity aversion), where the likelihood of winning with unknown prob-
ability is downplayed and the likelihood of losing with unknown probability is exagger-
ated.

It is useful to note the following duality between fq and fQ:

A f↑ B ⇔ Bc f↓ Ac. (3)

The left-hand side says that a bet on A is preferred to a bet on B. As a bet on A is a bet
against Ac and a bet on B is a bet against Bc, this means that a bet against Bc is preferred
less than a bet against Ac, which is the right-hand side. In other words, both the left-hand
side and the right-hand side describe the preference in Figure 1a. The preferences are dual
ways for describing the same empirical phenomenon.

3. Choquet-expected utility

We assume that consequences are amounts of money and that preferences satisfy mono-
tonicity, i.e., higher amounts are preferred to lower amounts. S denotes the state space; S
may be finite or infinite. Events A, B, etc. are subsets of S. We restrict attention to simple
acts (i.e., acts that take only finitely many different consequences) throughout the paper.
In Choquet-expected utility, a “capacity” n is used instead of the additive probability
measure P of SEU. It is assumed that n assigns value 0 to the impossible event and value
1 to the universal event S, and that A . B implies n(A) $ n(B). The CEU value of an act
(A1,x1;•••;An,xn), with x1$•••$xn, is given by

(
i51

n

piU~xi! (4)

where U is the utility function as in SEU and the pis denote decision weights, defined by

pi 5 n~A1 ø ••• ø Ai! 2 n~A1 ø•••ø Ai 2 1!. (5)

Note that the decision weight of Ai depends on the rank-ordering of consequences or, at
least, on the “dominating” event A1ø•••øAi-1. That dependence is not expressed in
notation but should be kept in mind. Similar formulas are used for cumulative prospect
theory, except that the capacity for gains can be different than the capacity for losses. CEU
permits the preference patterns observed in the Ellsberg paradox by setting n(K) . n(U)
and n(Kc) . n(Uc). Under CEU the following results hold:
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(i) AfqB if and only if n(A) $ n(B).
(ii) AfQB if and only if 1-n(Ac) $ 1-n(Bc).

Thus, n(A) represents the fq ordering, derived from bets on events, and its dual 1-n(Ac)
represents the fQ ordering, derived from bets against events. For this reason, we write
nq(A) for n(A) and nQ(A) for 1-n(Ac). nq is the capacity for events in the role of
good-news events (i.e., an event describing the receipt of a consequence or anything
better) and nQ is the capacity for events in the role of bad-news events. In SEU,
nq5 nQ5 P. In CEU, however, nq and nQ need not be identical.

The previous discussion is based on a duality between good- and bad-news events. As
there has been confusion about this duality in the literature, and it is central for our
measure of likelihood, we discuss it in some detail. The duality has also been discussed for
Choquet integration. In the literature, an alternative way for defining Choquet integrals
that is dual to Formula (5) has been used. This dual Choquet integral is obtained by
defining

pi 5 n~Ai ø ••• ø An! 2 n~Ai 1 1 ø ••• ø An! (6)

instead of (5), and using the pis of (6) in Formula (4). The decision weight p1 in (6) now
is equal to 12 n(A2ø•••øAn) instead of n(A1) as it was in (5). Equivalently, one can order
consequences alternatively by x1 #•••# xn and then use Formula (5). Reversing the rank-
ordering of consequences and using Formula (5) gives the same result as keeping the
rank-ordering of this paper and using Formula (6).

The method of integration through (6) is called the lower Choquet integral, and simi-
larly the method of integration through (5) is called the upper Choquet integral. Clearly,
these may yield different orderings of acts. Thus the question arises which formula for
computing CEU is the “right” one and how the seeming inconsistency between (5) and (6)
can be resolved. There is no inconsistency, however, between (5) and (6) if the relevance
of the role of events is recognized. That is, (5) entails good-news events A1ø•••øAi

(receive xi or more) and therefore nq should be used there. Formula (6) entails bad-news
events Aiø•••øAn (receive xi or less) and therefore nQ should be used. In this manner, the
two methods for computing CEU yield identical results. Note that this consistency is
obtained in general and it does not impose restrictions on capacities such as “symmetry.”

Imagine now that a person uses the capacity nq, elicited from bets on events, but uses
Formula (6) to calculate CEU. In this case the capacity nq for good-news events is applied
to bad-news events in (6). For symmetric capacities (n(A)512 n(Ac), i.e., nq5nQ), the
scheme results in the correct CEU values after all. For non-symmetric capacities, this
mis-matching of capacity and integration will produce wrong results (Gilboa, 1989a). The
question of which capacity to use, nq or nQ, and the question of which method of
integration to use, (5) or (6), are not meaningful in isolation. They must be considered
jointly and applied consistently.

The following linguistic example may illustrate the idea of mis-matching. It is now
well-accepted that an author may use male-specific pronouns (he/his/him) or female-
specific pronouns (she/her) to designate an abstract person (decision maker, agent, defen-
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dant). There is no reason to prefer a choice of “he” to a choice of “she,” and there is no
reason to prefer a choice of “him” to a choice of “her.” These two choices, however, are
intertwined and cannot be made independently. An argument to the effect that “he” could
be replaced by “she” without recognizing the interdependence of the he/she choice with
the his/her choice would lead to anomalies such as “he maximizes her utility.” Clearly a
mis-match of the pronouns along the way yields an unintended implication of altruism.
The sentences “he maximizes his utility” and “she maximizes her utility” are truly dual to
each other and either one is acceptable.

The main point in the above discussion has been that the revealed likelihood ordering
(fq or fQ), the capacity (nq or nQ), and the manner of integration (upper or lower)
should be consistent with the role of events. For the good-news events fq, nq, and upper
integration should be used. For the bad-news events fQ, nQ, and lower integration should
be used. Good-news or bad-news events are dual in the same way as the male or female
gender are in the linguistic example. There is a complete freedom to choose the role of
events in CEU and the gender in the linguistic example, as long as consistency is main-
tained throughout.

4. Cumulative dominance

In Sarin and Wakker (1992), CEU is characterized by using a cumulative dominance
condition. Cumulative dominance states that act f is weakly preferred to act g whenever,
for all consequences x, the good-news event of receiving x or more under f is revealed at
least as likely as the good-news event of receiving x or more under g. As this formulation
employs good-news events, the revealed likelihood for good-news events (fq) should be
adopted. We display the condition:

f f g whenever, for all consequences x, @f $ x# f↑ @g $ x#. (7)

Next an equivalent dual formulation is given, in terms of bad-news events. Dual cumu-
lative dominance hold if

f f g whenever, for all consequences x, @g # x# f↓ @f # x#. (8)

The condition states that act f is weakly preferred to act g whenever, for all consequences
x, the bad-news event of receiving x or less under g is revealed at least as likely as the
bad-news event of receiving x or less under f. As this formulation employs bad-news
events, the revealed likelihood relation for bad-news events (fQ) is adopted. The proof of
the following observation illustrates the duality, hence is presented in the main text. It
shows that the two dominance conditions are not just logically equivalent in the presence
of other axioms but, moreover, the two conditions provide dual ways for describing
exactly the same empirical phenomenon.
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Observation 4.1 Cumulative dominance holds if and only if dual cumulative dominance
holds.

Proof In the dual formulation, the premise requires for every consequence x that
[g # x] fQ[f # x]. By (3), that is equivalent to [f # x]c fq [g # x]c, i.e., [f . x] fq

[g . x]. In view of the finite ranges of f and g, it is readily seen that the requirement is
equivalent to the requirement that for every consequence y, [f $ y] fq [g $ y]. (This
equivalence holds for general consequence sets, not just for the reals.) In other words, the
premises of the two dominance conditions describe the same empirical phenomenon. □

The important point to note in the preceding analysis is that the revealed likelihood
relation should be consistent with the role of the events. To further illustrate that point, we
discuss a variation of cumulative dominance in which the preference condition involves
bad-news events but the revealed likelihood-relation adopted is the one for good-news
events. In other words:

f f g whenever, for all consequences x, @g # x# f↑ @f # x#. (9)

Consider two-consequence acts f5(A,x; Ac,y) and g5(B,x; Bc,y), x . y. Clearly, f f g if
and only if A fqB. Condition (9), however, would require that f f g if Bc fq Ac, i.e.,
(by Formula 3) if A fQB. Thus, A fQB would imply A fqB which was precisely the
restriction we wished to relax to accommodate the Ellsberg paradox. In other words, the
mismatch of (bad-news) events and the (good-news) likelihood relation in (9) leads to
unwarranted implications (Nehring, 1994). This consitutes the same mis-matching as
described at the end of Section 3 and illustrated there by the linguistic example.

Next we demonstrate that cumulative dominance and dual cumulative dominance are
necessary conditions for CEU. The elementary proof (given in the appendix) further
clarifies the duality between the two dominance conditions and shows that this duality is
a qualitative analog of the duality between upper and lower Choquet integration.

Observation 4.2 Cumulative dominance and dual cumulative dominance are necessary
conditions for CEU. □

Cumulative dominance has a resemblance to stochastic dominance when probabilities
are given. Although this resemblance makes the condition transparent, it should be un-
derstood that cumulative dominance does not have the normative appeal of stochastic
dominance. This is because, unlike stochastic dominance, cumulative dominance cannot
be derived from a statewise monotonicity condition.

Let us summarize the discussion in Sections 2, 3, and 4. Section 2 discusses the duality
between “good-news” and “bad-news” events in CEU. In a quantitative setting, this du-
ality was discussed by Gilboa (1989a) and in a qualitative setting it was discussed by
Nehring (1994). Our discussion starts in the qualitative context of revealed likelihood
orderings and addresses the issue of whether these orderings should be inferred from bets
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on or bets against events. In Section 3, the same issue is discussed in its quantitative
version, i.e., whether a capacity or its dual should be used to measure revealed likelihood.
The same duality also underlies the discussion whether one should do Choquet integration
in the “upper” version or in the dual, “lower,” version. In Section 4, we present a pref-
erence condition, cumulative dominance, that was used to characterize CEU by Sarin and
Wakker (1992). The distinctin between cumulative dominance and its dual is analogous to
the distinction between upper and lower integration. Again, the good-news likelihood
ordering should be used for cumulative dominance and the bad-news likelihood ordering
should be used for dual cumulative dominance. Let us finally mention that the analysis of
Sections 2, 3, and 4 holds for general consequence sets and need not be restricted to
monetary consequences.

The approach developed so far boils down to a simple prescription: When defining
revealed likelihood and capacities, and applying these to preference conditions and
Choquet integration, one should be consistent regarding the role of events. This prescrip-
tion will be elaborated in the next part of the paper.

5. Events with intermediate consequences

So far we have discussed revealed likelihood of events when they are associated with best
or worst consequences. In the more general multiple-consequence case, some events have
intermediate consequences. We examine revealed likelihoods of such events.

REMARK. From now on, in the rest of the paper, we assume CEU. □

We will mainly consider “connected” events; these will turn out to be especially suited
for our interpretations of revealed likelihood. An event is connected if each state outside
the event either is lower in rank-ordering than all states of the event, or is higher in
rank-ordering than all states of the event, but never is in between the states of the event.
For example, for a given act f the event {s{S: x # f(s) # y] is connected. Every event that
has a constant consequence is connected. Throughout this paper, many notions depend on
the considered act or, more precisely, on the rank-ordering of states that is presupposed.
That also holds for the definition of connected events.

To illustrate the general idea of revealing likelihood for intermediate events, assume an
indifference

~A1,10; A2,2; A3,1! ; ~B1,12; B2,2; B3,0!.

In this case, events A2 and B2 are associated with an intermediate consequence and our
interest is in comparing the revealed likelihoods of A2 and B2. Suppose we ask the
question what is preferred, receiving an additional dollar under A2 or under B2. That is,
what is the preference between
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~A1,10; A2,3; A3,1! and ~B1,12; B2,3; B3,0!?

An intuitive reply may be that the additional dollar is preferred for the “more likely”
event. Thus, if the left act is preferred then A2 is “more likely” than B2. In this context,
A2 and B2 are neither good-news events nor bad-news events as they are associated with
intermediate consequences. An SEU maximizer will prefer the left act if and only if
P(A2) . P(B2). The initial indifference and the preference for the left act together imply
that the SEU increment for the left act, P(A2)(U(3)2U(2)), is higher than
P(B2)(U(3)2U(2)), the SEU increment for the right act. A CEU maximizer will prefer the
left act if and only if p(A2).p(B2), where p(A2) denotes the decision weight of A2 and
p(B2) the decision weight of B2. This is because the CEU increment for the left act,
p(A2)(U(3)2U(2)) is higher than p(B2)(U(3)2U(2)), the CEU increment for the right
act. Since decision weights reflect where one would stake the bet, they can be a plausible
measure of revealed likelihood.

We further discuss the issue of interpretation after stating a preference condition for
comparing revealed likelihoods through decision weights. The condition is based on
Gilboa’s (1987) condition P2* (see also Gilboa, 1989a)1 that contains an intuitive and
empirically valuable idea for CEU: It shows a way for comparing decision weights.

Suppose that b . a and

~A1,x1; •••; Ai21,xi21; Ai,a; Ai11, xi11; •••; An,xn!

;

~B1,y1; •••; Bj21,yj21; Bj,a; Bj11,yj11; •••; Bm,ym!

where x1 $•••$ xi21 $ b . a $ xi11 $•••$ xn and y1 $•••$ yj21 $ b . a $ yj11

$•••$ ym.

Under CEU,

~A1,x1; •••; Ai21,xi21; Ai,b; Ai11, xi11; •••; An,xn!

f

~B1,y1; •••; Bj21,yj21; Bj,b; Bj11,yj11; •••; Bm,ym!

if and only if the decision weights satisfy p(Ai)$p(Bj).

In the condition, the incremental impact of Ai is equal to p(Ai)(U(b)2U(a)) whereas
the incremental impact of Bj is p(Bj)(U(b)2U(a)). One therefore prefers to stake an
additional amount of money on the event with the higher decision weight. It is in this
sense that one could interpret that the revealed likelihood of Ai is higher than that of Bj
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in this decision context. In the next two sections we elaborate on measuring revealed
likelihood through decision weights.

We end this section by discussing empirical evidence regarding the likelihood of inter-
mediate events. It has been observed that intermediate events have less impact than
extreme events. In other words, the revealed likelihood of an event is lower when it is
associated with intermediate consequences than when it is associated with extreme (best
or worst) consequences. This phenomenon has not yet been the subject of many theoreti-
cal investigations, but there is ample empirical evidence. The phenomenon is described by
“bounded subadditivity” for the uncertainty case (Curley and Yates, 1989; Tversky and
Fox, 1995; Tversky and Wakker, 1995; Fox, Rogers, and Tversky, 1996; Wu and Gonzalez,
1997) and by inverse S-shaped probability transformation for the risk case (Preston and
Baratta, 1948; Yaari, 1965; Cohen and Jaffray, 1988; Viscusi, 1989; Karni and Safra, 1990;
Birnbaum, Coffey, Mellers, and Weiss, 1992; Lattimore, Baker, and Witte, 1992;
Kachelmeier and Shehata, 1992; Tversky and Kahneman, 1992; Bernasconi, 1994; Cam-
erer and Ho, 1994; Wu, 1994; Tversky and Fox, 1995; Prelec, 1995; Wu and Gonzalez,
1996; Abdellaoui, 1998). Bounded subadditivity underlies the coexistence of insurance
and gambling. Counter-evidence has been provided by Birnbaum and McIntosh (1996)
and Birnbaum and Chavez (1997).

6. Independence of beliefs from tastes

A well-known property of SEU is the “independence of beliefs from tastes.” It means that
the likelihood of an event, i.e., its probability, is independent of the consequences that are
associated with the event, thus is independent of the particular acts. If one defines revealed
likelihood of an event through its decision weight, as we propose, then the revealed
likelihood of the event depends on the acts. More precisely, a revealed likelihood is
relevant in the evaluation of acts that generate, through their consequences, a given
rank-ordering over the state space. Such a subset of acts that generate the same rank-
ordering of states is called comonotonic. Some degree of independence from tastes is
achieved here because the decision weights do not depend on the exact magnitudes of
consequences so long as the rank-ordering of the consequences remains constant. In
particular, we note that CEU satisfies Savage’s P4. That is, if A fqB is revealed through
(x,A; y,Ac) f (x,B; y,Bc) for some x . y, then for all x' . y', (x',A; y',Ac) f (x',B; y',Bc),
confirming A fqB. Nevertheless, dependence of decision weights on the rank-ordering
of consequences may be considered excessively flexible. It entails a considerable depen-
dence of beliefs on tastes and makes it hard to think of revealed likelihood as a property
of events.

We now illustrate how the dependence of the revealed likelihood of events on the
rank-order of the consequences can be reduced to such a degree that it becomes better
possible to consider revealed likelihood as a property of events. To do so, we introduce the
following definition. Event D is a dominating event for event A if its states are rank-
ordered higher than those of A, and the remaining states are rank-ordered lower than A.

REVEALED LIKELIHOOD AND KNIGHTIAN UNCERTAINTY 233

Kluwer Journal
@ats-ss5/data11/kluwer/journals/risk/v16n3art2 COMPOSED: 08/26/98 2:33 pm. PG.POS. 11 SESSION: 7



Thus, given an act f, event D is dominating for event A if A ù D 5 [ and
f(t) $ f(s) $ f(t') for all t{ D, s{A, and t'{ (A ø D)c. Because the rank-ordering of states
with equivalent consequences can be chosen arbitrarily, we can choose a rank-ordering of
states that is compatible with f and is such that the states in D are ranked higher than the
states in A, and the latter are ranked higher than those in (A ø D)c. As we shall see, for
a large class of events, the revealed likelihood of A only depends on what the dominating
event D of A is. That is, the revealed likelihood is relevant for the subset of all acts for
which D is a dominating event for A. Of course, one could equivalently express depen-
dence of likelihood on the dominated, “inferior,” event I, i.e. the event yielding inferior
consequences, by substituting D 5 (AøI)c.

For simplicity, first think of the case in which A describes the receipt of a single
consequence. Then the decision weight of A is given by

n~A ø D! 2 n~D!, (10)

where D denotes the dominating event. The dependence of the decision weight of an event
A on the dominating event D can be expressed in notation by writing p(A,D). When no
confusion can arise, the event D is sometimes suppressed. Implicit in this notation is that
A and D are disjoint. The decision weight of an event A can vary depending on whether
the dominating event D is [, Ac, or some other event. Thus decision weight, as a measure
of revealed likelihood, is a two-argument-function, depending on two events — the event
itself and the dominating event. Interpreted thus, decision weights are to a high degree
independent of consequences and they depend only on events. We think that a desirable
feature of rank-dependent theories is that they obtain this high degree of independence of
revealed likelihood from consequences.

The observations just made also hold for connected events that yield more than one
consequence. For more general, nonconnected events, decision weights can still be used as
an index of revealed likelihood but their dependency on the rank-ordering of the other
events is more complex and cannot be described merely by one dominating event. Of
course, the decision weight of a nonconnected event can be derived from the decision
weights of the separate connected components through summation. We restrict most of the
discussion of revealed likelihood in this paper to the class of connected events. The class
is rich enough to cover the majority of cases in which likelihood is relevant.

In the Ellsberg example presented in Section 2, p(K,D) . p(U,D) when D 5 [ (Figure
2a) and p(K,D') , p(U,D") when D' and D" represent complementary events Kc and Uc

respectively (Figure 2b). The following example considers a variation of the three-color
Ellsberg paradox.

Example 6.1 Consider an urn containing 30 red (R) balls and 60 yellow (Y) and white
(W) balls in unknown proportion. Four bets are illustrated in Table 1.

One may prefer bet 2 over bet 1 and bet 3 over bet 4. The first preference shows that Y
is revealed more likely than R when the dominating event is W; i.e., p(Y,W) . p(R,W).
The second preference reveals the reverse ordering; i.e., R is revealed more likely than Y
when the dominating event is null (p(R,[) . p(Y,[)). □
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Figure 3 depicts the decision weight of an event E as a function of the dominating
event, for the case of bounded subadditivity. For the purpose of illustration, the dominat-
ing events are depicted as if they lie on one line. The decision weight of an event E is
largest when the dominating event is maximal (Ec), i.e., all other events are dominating.
Then E yields the minimal consequences and its role as compared to the other events is
salient. Similarly, the decision weight of E is also large when the dominating event is
minimal ([), i.e., no other events are dominating and E yields the best consequences.
Then again E’s role is salient. The decision weight of E is smaller when the dominating
event is neither maximal nor minimal, i.e., when E is associated with intermediate con-
sequences. In this case the role of E in comparison to the other events is less salient.

We concede that decision weights as measures of revealed likelihood in the CEU model
are not as elegant as probabilities in the SEU model. For a comonotonic class (fixed
rank-ordering), however, decision weights share some common features with probabili-
ties. For example, decision weights sum to one. As a result, if in an n-fold partition of the
universal event all decision weights are the same then one immediately concludes that

Table 1.

R Y W

bet 1 90 0 100
bet 2 0 90 100
bet 3 90 0 0
bet 4 0 90 0

Figure 3. Decision weight of an event E as a function of the dominating event.
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they are all 1/n. For a subset of acts for which the dominating event D associated with an
event A remains the same, the decision weight of A does not change. Clearly, in com-
parison to SEU, where the probability of A is independent of what goes on outside of A,
revealed likelihood in CEU is more complicated. In CEU, willingness to bet on an event
A depends on the dominating event. Since revealed likelihood is elicited from preferences,
there seems to be no escape from dependence on dominating events.

To further underscore the analogy between decision weights and probabilities, consider
an act (A1,x1;•••;An,xn) with x1 .•••. xn and define U(xi) 5 ui. The act can be repre-
sented as (A1,u1;•••;An,un), u1 .•••. un. In SEU, with U the SEU value of an act,
dU/dui 5 pi 5 P(Ai). In a similar manner, dU/dui 5 pi 5 p(Ai) in CEU, where U repre-
sents the CEU value of an act. This observation illustrates once more that decision weights
in CEU are the analogs of probabilities in many respects.

7. Capacities versus decision weights

In this section we argue that decision weights have some distinct advantages over capaci-
ties in measuring revealed likelihood. We begin with the simple Ellsberg example given in
Section 2 to illustrate our viewpoint.

Example 7.1 The capacity-interpretation and the decision-weight interpretation agree on
the preference in Figure 2a suggesting a higher revealed likelihood for K than for U.
However, the conclusion that K be revealed more likely than U cannot be made in general
and is not appropriate in Figure 2b. The preference in Figure 2b illustrates that one prefers
to lose on event K rather than on event U. Therefore, event K is revealed less likely than
event U. The decision weight of K in Figure 2b is indeed smaller than the decision weight
of U. As pointed out at the beginning of this example, the capacity of K is larger than the
capacity of U. Therefore the decision weight seems a better measure of revealed likelihood
than the capacity. From our perspective, capacities measure revealed likelihood only for
events in the role of good-news events and not otherwise. □

In Figure 2b one could use the dual capacity to compare the revealed likelihood of K
and U because it so turns out that the dual capacity is indeed the decision weight. In the
multiple-consequence case, however, neither the capacity nor its dual will suffice as an
index of revealed likelihood. This is illustrated by the following example.

Example 7.2 Consider the preferences in Table 2. Suppose that in the first indifference
situation the person is asked if he prefers to receive an additional dollar on event A2 or on
event B2. Suppose that the person prefers the extra dollar on B2, as shown in preference
2. Such a preference reveals that the person considers B2 to be more likely than A2.

Indeed, the decision weight of B2 is higher than that of A2. The capacity, however,
produces the reverse ordering of revealed likelihood as shown in preference 3. If the
decision situations in preferences 1 and 2 are relevant to us, where A2 and B2 play the role
of intermediate event, then we think that B2 is revealed more likely than A2. For such
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multiple-consequence cases the capacity is not an appropriate index of revealed likeli-
hood. It may be noted that in this example the dual capacity would not be an appropriate
index of revealed likelihood either, because of preference 4. Losing on A2 is less preferred
than losing on B2 which implies that A2 is revealed more likely than B2 when they are
both bad-news events.

Preferences as described occur when the overweighting of low likelihoods and the
underweighting of high likelihoods is more pronounced for the A-events than for the
B-events. Then the A-events receive relatively more decision weights than the B-events
when they are associated with extreme consequences, and they receive relatively less
decision weights when they are associated with intermediate consequences. This phenom-
enon was characterized by Tversky and Wakker (1995), and is commonly found if the A
events are ambiguous and the B events are unambiguous (see Tversky and Wakker, 1998,
and the references therein). □

The next example considers null events.

Example 7.3 See Table 3. Here the capacity-interpretation of revealed likelihood sug-
gests, according to the first indifference, that Y is null, which agrees with the decision-
weight interpretation for good-news events. We think, however, that the claim that Y be
null cannot be accepted in the second preference, where the person strictly prefers re-
ceiving an additional dollar on Y if it is the worst event. The decision weight of Y is indeed
positive in this case. The preferences in the table result for an extremely ambiguity averse
person, where the proportion of R is 1/3 and the proportions of Y and W are unknown
(Gilboa and Schmeidler, 1993, example in the introduction). □

Capacities resemble probabilities because they preserve independence of beliefs from
tastes. In CEU, however, using capacities as a measure of likelihood introduces arbitrari-
ness. From our perspective, it means that events are implicitly assumed to be good-news
events. The capacity has a seductive appeal as a measure of likelihood since it does not
depend on the rank-ordering of consequences. In CEU, insisting on a measure of revealed
likelihood that is entirely independent of the rank-ordering of consequences (or a domi-

Table 2.

A1 A2 A3 B1 B2 B3

pref. 1 10 2 1 ~ 12 2 0
pref. 2 10 3 1 a 12 3 0
pref. 3 0 1 0 s 0 1 0
pref. 4 10 1 10 a 10 1 10

Table 3.

R Y W R Y W

pref. 1 0 1 0 ; 0 0 0
pref. 2 9 1 9 s 9 0 9
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nating event) is akin to throwing out the baby with the bath water. This is because, in CEU,
preferences depend on the rank-ordering of consequences and if the revealed likelihood is
derived solely through preferences, there seems to be no escape from revealed likelihood
to depend on the rank-ordering as well. Our three examples have demonstrated this
dependence of revealed likelihood on rank-ordering through the dominating event.

8. Restrictions on decision weights

We have observed that, under CEU, revealed likelihood of an event measured by its
decision weight depends on the dominating event, whereas under SEU, the revealed
likelihood of an event is entirely independent of the dominating event. This section
describes a number of cases that are intermediate between CEU and SEU in restricting the
dependence of revealed likelihood on the dominating event.

We first demonstrate the application of decision weights as measure of revealed like-
lihood in defining null events. Loosely speaking, a null event is equally likely as the
impossible event. In our interpretation it means that an event is null if its decision weight
is 0. Null events are important for updating (Gilboa, 1989a; Klibanoff, 1995) and for the
definition of the support of a distribution, which is central in some problems in game
theory (Dow and Werlang, 1994; Eichberger and Kelsey, 1994; Epstein and Wang, 1994;
Lo, 1995; Groes, Jacobsen, Sloth, and Tranaes, 1998). Haller (1995) proposed three
different definitions of support, depending on how null events are interpreted, and pointed
out that different definitions of equilibria in games with nonadditive measures can be
explained by different definitions of support.

Whether an event is null can be inferred from preferences as follows.
Suppose that a.b. Then

p~A,D! 5 0 if and only if ~D,a; A,a; I,b! ; ~D,a; A,b; I,b!, (11)

where I 5 (A ø D)c. Substitution of CEU shows that the indifference in (11) holds if and
only if

~A1,x1; •••; Ai21,xi21; Ai,a; Ai11, xi11; •••; An,xn! ;

~A1,x1; •••; Ai21,xi21; Ai,b; Ai11, xi11; •••; An,xn!

for any a . b, Ai 5 A, D 5 A1ø ••• ø Ai21, I 5 A111ø ••• ø An, and x1 $ ••• $ xi21

$ a . b $ xi11$ ••• $ xn. The simpler condition (11) is used in the following analysis.
Under general CEU, A can be null for some dominating event D but nonnull for

another. As an example, for maximin behavior (n(A) 5 0 whenever A is not the universal
event), p(A,D) is 1 if D 5 Ac and A is nonempty but p(A,D) is 0 whenever D Þ Ac.
Therefore an event A is called D-null if p(A,D) 5 0. We next discuss invariance of null
events with respect to the dominating event D.
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If it is assumed that events should be null only if they are logically impossible, then it
is unsatisfactory that the logical (im)possibility of an event would depend on which other
event were to yield better consequences in an act. One may want to ensure that an event
A is null regardless of the dominating event. It must then be required that the decision
weight p(A,D) be zero for all dominating events D as soon as it is for one. In terms of
preferences, this means that

~D,a; A,a; I,b! ; ~D,a; A,b; I,b! ⇒ ~D',a; A,a; I',b! ; ~D',a; A,b; I',b! (12)

for all a . b, I, D, I', D'. We call this condition null-invariance. It rules out phenomena
such as in Example 7.3. It can be derived elementarily that the union of two null events
is again null under null-invariance. Schmeidler (1989, Remark 4.3) shows that null-
invariance can be characterized by a condition similar to Savage’s P3.

The formulation in terms of dependence on dominating events gives clarifying alter-
native interpretations of several properties of capacities that have been studied in the
literature. We list a number of them, leaving the proofs to the reader. In the following
conditions, the terms increasing and decreasing refer to set-inclusion.

n is symmetric if and only if p~A,B! 5 p~A,Ac! for all events A. (13)

n is convex ~n~A! 1 n~B! # n~A ø B! 1 n~Aù B!! if and only if p~A,D!

is increasing in D. (14)

n is concave ~n~A! 1 n~B! $ n~A ø B! 1 n~A ù B!! if and only if p~A,D!

is decreasing in D. (15)

Condition (14) illustrates pessimism, where a higher decision weight is assigned to an
event as the event is lower in the rank-ordering. Similarly, condition (15) illustrates
optimism. Conditions (14) and (15) are reminiscent of the characterization of convex
functions through increasing derivatives and concave functions through decreasing de-
rivatives. Note that the decision weight p(A,D) describes the increase of n if A is added
to D.

Tversky and Wakker (1995) proposed the following conditions to reflect bounded
subadditivity, stated here in a somewhat informal manner. n satisfies bounded subaddi-
tivity if

(i) p(A,[) $ p(A,B) whenever AøB is “sufficiently remote” from certainty.
(ii) p(A,Ac) $ p(A,B) whenever B is “sufficiently remote” from impossibility.

The conditions imply that decision weights with respect to intermediate dominating events
are less than with respect to the extreme dominating events and have been illustrated in
Figure 3.

We finally turn to the characterization of probabilistic sophistication for the context of
CEU. In a general setting, probabilistic sophistication was characterization by Machina
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and Schmeidler (1992). They argued for a normative status of probabilistic sophistication.
A generalization was provided by Epstein and Le Breton (1993). In the case of probabi-
listic sophistication, the ordering of revealed likelihoods of events remains invariant with
the dominating event D. It turns out that, under some richness conditions, that condition
is also sufficient for probabilistic sophistication under CEU. Invariance of likelihood
orderings holds if:

p~A,D! $ p~B,D! ⇒ p~A,D'! $ p~B,D'! (16)

for all events A, B, D, D'. In the proof of the following theorem we will show that
condition (16) is equivalent to a well-known condition of qualitative probability theory,
stating that the ordering between two events is not affected when the same disjoint event
is added to both of them. In the next theorem, solvability of n (introduced by Gilboa
(1987) under the name convex-rangedness) means that for all events A , C and
n(A) # b#n(C) there exists an event B such that A , B , C and n(B) 5 b. We now state
a theorem that uses condition (16) to relate capacities to probabilities in the sense that
capacities are transforms of probabilities. A similar result was provided by Epstein and Le
Breton (1993, Formula 2.5), under the assumption that the capacity is the minimum of a
set of dominating probability measures.

Theorem 8.1 Let the collection of events be a sigma-algebra and let CEU hold. There
exists a countably additive atomless probability measure P and a strictly increasing con-
tinuous transformation f such that n 5 foP if and only if the following conditions hold:

(i) n satisfies solvability;
(ii) (set-continuity) If Anq A (i.e., An11 . An and øAn 5 A) then limjR`n(Aj) 5 n(A).

(iii) Invariance of likelihood orderings (16) holds. □

Note that invariance of likelihood orderings, characterized through probabilistic sophis-
tication, has only obtained an independence of beliefs from tastes at an ordinal level, and
only so for events with a common dominating event.

9. Updating revealed likelihood

We assume in this section that the decision maker updates preference in a dynamically
consistent manner, i.e., in agreement with prior preference (Machina, 1989; Epstein and
Le Breton, 1993). Then the definition of revealed conditional likelihood is straightforward
if, as proposed in this paper, decision weights are taken as indices of revealed likelihood.
Consider two events A and B and assume that the rank-ordering of the state space has
been fixed, so that also dominating events are determined. The revealed conditional like-
lihood of A given B is simply defined by
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p~A.B! 5
p~A ù B!

p~B!
. (17)

The resulting number is always between 0 and 1. The definition of revealed conditional
likelihood in (17) invokes the rank-ordering of states, thus is applicable within a given
comonotonic domain of acts. This point is in line with the observation of Eichberger and
Kelsey (1996), that with CEU preferences it is not possible to update beliefs indepen-
dently of consequences. For two cases, that are sufficiently general to cover most appli-
cations, revealed conditional likelihood requires only partial information on the ranking of
events. In the first case, A ù B and B are connected events; this case is discussed in most
of this section. In the end we briefly discuss a second case, in which A ù B and B\A are
connected.

Let us now consider the first case, with A ù B and B connected. In contrast to the
additive probability case, we require the specification of a dominating event D for A ù B
and D' for B. Thus revealed conditional likelihood is written as p(A,D.B,D'); when no
confusion may arise, D and D' are suppressed. For consistency of rank-ordering, D . D'.
We propose the following definition of revealed conditional likelihood.

p~A.B! 5 p~A,D.B,D'! 5
p~A ù B,D!

p~B,D'!
5

n~~A ù B! ø D! 2 n~D!

n~B ø D'! 2 n~D'!
. (18)

In this definition we further assume that p(B,D') Þ 0. Consequences outside the condi-
tioning event B are relevant in this formula because they determine what the dominating
events are. This relevance of forgone consequences is the price one has to pay for giving
up the separability of disjoint events that is characteristic for SEU, while still adhering to
dynamic consistency (Machina, 1989).

Several definitions of revealed conditional likelihood have been proposed in the litera-
ture. Gilboa (1989a) proposed the following rule (see also Gilboa, 1989b, p.3, for non-
additive measures that are not directly related to decisions)

p~A.B! 5
n~A ù B!

n~B!
5

p~A ù B,B!

p~B,B!
. (19)

Gilboa and Schmeidler (1993) suggested that this rule corresponds with an optimistic
decision maker who assumes that the event B, of which he has been informed, corre-
sponds with the “best of all possible worlds.” In our terminology that means that B is
taken as a good-news event. In addition, given the information B, A ù B is in turn treated
as a good-news event. In other words, both D' 5 [ and D 5 [, and the belonging
rank-ordering of events is A ù B f B\A f Bc. In updating, the case of null-conditioning
events is usually excluded. As the conditioning event is taken as a good-news event,
meaning that the dominating event D' is empty, it seems appropriate that the conditioning
event should not be D'-null for D' 5 [. This was indeed the definition adopted by Gilboa
(1989a).
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The following updating rule was proposed by Dempster (1967) and Shafer (1976) for
belief functions (a special case of capacities). It was characterized and advocated by
Gilboa and Schmeidler (1993) and used by Dow and Werlang (1992). This rule was also
used by Lo (1995) for the multiple priors model.

p~A.B! 5
n~~A ù B! ø Bc!2n~Bc!

12n~Bc!
5

p~A ù B,Bc!

p~B,Bc!
. (20)

Gilboa and Schmeidler (1993) suggested that this rule corresponds to a pessimistic de-
cision maker. It indeed results from our proposal if D'5Bc is taken. Thus, the received
information is taken as bad news. In addition, AùB is assigned the highest-possible
rank-ordering within B. Hence, D does not contain more than Bc. The corresponding
rank-ordering of events is Bc f A ù BfB\A.

The following example illustrates our updating method.

Example 9.1 Assume that a die with six numbered sides yields j if side j shows up,
j 5 1,•••,6. Our interest is in computing the revealed conditional likelihood of receiving 5
given the information that the prize is 3 or more. The dominating event D for {5} is {6}
and the dominating event D' for 3 or more is the empty set. That specifies a rank-ordering
of events [6} f {5} f {3,4} f {1,2}. Now

p~$5%. j $ 3! 5 p~$5%,$6%. j $ 3,B! 5
p~$5%,$6%!

p~$3,4,5,6%,B!
5

n~5,6! 2 n~6!

n~3,4,5,6!
.

This is an example in which the event for which the revealed conditional likelihood is to
be determined is neither the best nor the worst event given the conditioning event, which
is a case that has not yet been considered in the literature.

We assume that n(A) depends only on the number of elements in A and is given by
Table 4. Thus, for example, n(1) 5 •••5 n(6) 5 0.25, n(1,2) 5 n(5,6) 5 0.40,
n(1,2,5) 5 0.50, n(3,4,5,6) 5 0.60, etc. A singleton event has decision weight 0.25 if it is
extreme in the rank-ordering (0.25 5 0.2520 if it is best, 0.25 5 120.75 if it is worst),
decision weight 0.15 if it is second-best (0.15 5 0.4020.25) or second-worst
(0.15 5 0.7520.60), and decision weight 0.10 if it has a middle position
(0.10 5 0.5020.40 if it is third in ranking, 0.10 5 0.6020.50 if it is fourth in ranking).
This capacity n is symmetric and satisfies bounded subadditivity.

Formula (19) gives

Table 4.

,A, 0 1 2 3 4 5 6

n 0 0.25 0.40 0.50 0.60 0.75 1
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p~$5%. j $ 3! 5
n~5!

n~3,4,5,6!
5

0.25
0.60

5 0.42,

and the Dempster-Shafer update rule (20) gives

p~$5%. j $ 3! 5
p~$5%,$1,2%!

p~$3,4,5,6%,$1,2%!
5

0.10
0.60

5 0.17.

Our update rule (18) gives

p~$5%. j $ 3! 5 p~$5%,$6%. j $ 3,B! 5
p~$5%,$6%!

p~$3,4,5,6%,B!
5

0.15
0.60

5 0.25.

The dominating event for {5} is {6} and our update rule (18) assigns the weight n{5,6}
2 n{6} 5 0.4020.25 5 0.15 to event {5}. Formula (19) assumes that no event dominates
{5} and thus it overweights {5} by assigning a decision weight n{5} 5 0.25.
The Dempster-Shafer Formula (20) treats {1,2} as the dominating event for {5} and
thereby underweights {5} by assigning a decision weight n{1,2,5} 2 n{1,2}
5 0.50 2 0.40 5 0.10 to {5}.

Both (18) and (19) treat {3,4,5,6} as a good-news event, i.e., take an empty dominating
event and assign decision weight 0.60 to {3,4,5,6}. Formula (20) takes {3,4,5,6} as a
bad-news event, which differs from our interpretation but, by symmetry, assigns the same
decision weight 0.60 as our method does. □

The central aspect of Bayes theorem is to derive the probability of B given A from the
probability of A given B. That is, in our case, p(A,D.B,D') is to be related to p(B,D̄.A,D̄'),
where the dominating events are discussed next. There cannot be expected to be a simple
relation between the two conditional likelihoods if D ÞD̄, i.e., if in one case A ù B has
a different dominating event than in the other. However, as soon as D 5 D̄, we obtain the
following extension of the Bayesian calculation:

p~A,D.B,D'!p~B,D'! 5 p~AùB,D! 5 p~A ù B,D
−

! 5 p~B,D
−

.A,D
−

'!p~A,D
−

'!

whenever p(B,D') and p(A,D̄') are nonzero. This analysis shows that the inverse relation
for revealed conditional likelihood also holds for (19), because here all dominating events
in the conditionalization are chosen empty, but the inverse relation will not hold for the
Dempster-Shafer update rule (20) because in p(A.B) the dominating event for A ù B is
Bc, in p(B.A) it is Ac.

We briefly mention a second case in which Formula (17) yields a tractable result
requiring only a partial specification of the rank-ordering of events. It concerns the case
in which A ù B and B\A are connected. Again, we only need to specify two dominating
events, D for A ù B and D' for B\A, and (17) results in
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p~A.B! 5
p~A ù B,D!

p~A ù B,D! 1 p~B\A,D'!
. (21)

The case in which D5[ and D'5(B\A)c has received much attention in the literature
(Jaffray, 1992; Denneberg, 1994). In this case, AùB is a good-news event but the other
part of the conditioning event, B\A, is a bad-news event, and B is not connected. Bc is
connected and contains the intermediate states. The belonging rank-ordering of events is
A ù B f Bc f B\A. If the capacity is convex (“pessimism”), for instance if it is a
Dempster-Shafer belief function, then the decision weight of A ù B is minimal if the
event is good news and the decision weight of B\A is maximal if it is bad news. Hence
these choices of D and D' minimize p(A.B), thus maximize pessimism. The formula also
results if one identifies the capacity with the set of dominating probability distributions
and applies conditionalization to each dominating probability measure separately.

An alternative method for updating nonadditive measures has been proposed by Lehrer
(1996). He considers the more general notion of conditional expectation. His conditional
expectation of a function h (e.g., h(s) may be U(f(s)) for an act f), given a sub-sigma
algebra, is a function measurable with respect to that sub-sigma algebra that satisfies some
requirements (e.g., it should have the same expectation as h and nowhere exceed maximal
and minimal values of h). Given those requirements, it should minimize the quadratic
distance with respect to h.

The various notions of revealed conditional likelihood that have been discussed can be
tested empirically. Some work along this line has begun (Cohen, Gilboa, Jaffray, and
Schmeidler, in preparation). Specifically, it will be interesting to examine the role of
dominating events in the revision of beliefs.

10. Revealed likelihood and beliefs

In SEU, revealed likelihood can be interpreted as a measure of belief. This interpretation
is appealing because probabilities that measure revealed likelihoods are independent of
tastes. In nonadditive models, revealed likelihoods are measured by decision weights.
Decision weights are, however, not independent of the rank-ordering of consequences.
Therefore, if decision weights are interpreted as measures of belief then independence of
beliefs from tastes cannot be entirely maintained. It is quite possible that capacities and
decision weights reflect not only beliefs but also decision attitudes (e.g., ambiguity aver-
sion).

Capacities and decision weights may be different than likelihood elicited through in-
trospection. Some may regard that beliefs are best captured by an extraneous notion
(introspection, verbal report) of likelihood that precedes preferences. In this view, beliefs
depend only on the degree and extent of information that a decision maker possesses.
Even under SEU, revealed likelihood through bets may not represent beliefs (Kadane and
Winkler, 1988; Karni, 1996). Shafer’s (1976) belief functions provide an example of
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beliefs that precede preferences. Ellsberg (1961, p. 659) wrote: “[One] can always assign
relative likelihoods to states of nature. But how does he act in the presence of his
uncertainty? The answer to that may depend on another sort of judgement{” Future
studies may be able to disentangle beliefs and decision attitudes in the analysis of decision
weights (Jaffray, 1989; Tversky and Fox, 1995; Wu and Gonzalez, 1997; Epstein and
Zhang, 1998; Tversky and Wakker, 1998).

11. Summary and conclusion

In decision under uncertainty, there is often a difficulty in assigning probabilities to
events. Ellsberg’s examples demonstrated these difficulties convincingly. In recent years,
Choquet-expected utility (CEU) has been introduced to describe the observed violations
of expected utility as in the Ellsberg examples. In the context of CEU, we propose that
decision weights be interpreted as a measure of revealed likelihood. Under this interpre-
tation, the revealed likelihood of an event depends on the dominating event.

Several applications of our measure of revealed likelihood are illustrated. The definition
of null events and supports is clarified, new interpretations are given for convexity, con-
cavity, bounded subadditivity, and probabilistic sophistication. We define revealed condi-
tional likelihood in the context of CEU and dynamic consistency, and show several
implications for existing rules of updating if new information is gathered.

In CEU, capacities resemble probabilities and therefore are often treated as measures of
belief. We have raised two objections against this customary interpretation of capacities.
First, this interpretation, arbitrarily, considers events only in the role of good-news events.
Events may as well play the role of bad-news events, in which case the dual capacity
should be considered. Indeed, a number of papers have pointed out that the dual capacity
is just as valid a measure of belief as the capacity (Gilboa, 1989a) or, similarly but in
qualitative terms, that bets against events provide as valid an ordering of likelihood as bets
on events (Nehring, 1994). We have argued that, more generally, events may also play the
role of intermediate events and that in many respects (such as the study of bounded
subadditivity) decision weights are relevant, rather than capacities or their duals. Second,
capacities, their duals, and decision weights, all may comprise not only a belief compo-
nent but may also be affected by decision attitudes. To avoid commitment to a pure
belief-interpretation, we used the term revealed likelihood rather than likelihood through-
out the paper.

We realize that our interpretations are subject to counter viewpoints and that better
arguments for (or against) defining revealed likelihood in CEU may yet emerge. We do
hope that the interpretation of capacities as degrees of belief, and bets on events as
elicitations of likelihood ordering, will no longer be accepted without any qualification in
CEU.
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Appendix

Proofs

Proof of Observation 4.2 First cumulative dominance is derived for CEU. To do so, we
use the following formula, where we write nq for n.

CEU~ f ! 5 *
IR1

n↑@Uof $ t#dt 1 *
IR2

~n↑@Uof $ t# 2 1!dt (22)

It is well-known, and can be derived by partial integration, that (22) provides an alterna-
tive manner for writing the upper Choquet integral of Uof with respect to the capacity nq,
i.e., for calculating CEU(f). To prove cumulative dominance, assume that
[f $ x] fq[g $ x] for all x. Because nq represents fq, for all t the integrand in (22) is
at least as large as the integrand when g is substituted for f. Hence, the CEU value of f
exceeds that of g and f f g follows. Cumulative dominance has been demonstrated.

The derivation of dual cumulative dominance now follows from Observation 4.1. We
prefer, however, giving an independent derivation, so as to further illustrate the duality of
good- and bad-news events. We use the following formula, where nQ denotes the dual of
n.

CEU~ f ! 5 *
IR1

~1 2 n↓@Uof # t#!dt 2 *
IR2

n↓@Uof # t# dt (23)

It is also well-known, and can be derived by partial integration, that (23) provides an
alternative manner for writing the lower integral of Uof with respect to the capacity nQ;
this also yields CEU(f) (Gilboa, 1989a). To prove dual cumulative dominance, assume that
[f # x] dQ[g # x] for all x. Because nQ represents fQ, nQ[Uof # t] in (23) is less than
or equal to nQ[Uog#t], for all t. Therefore the CEU value of f exceeds that of g and f f g
follows. Dual cumulative dominance has been demonstrated.

To further clarify the duality between good-news and bad-news events in (23) and (24),
note that (23) is equal to

CEU~ f ! 5 *
IR1

~1 2 n↓@Uof , t#!dt 2 *
IR2

n↓@Uof , t# dt. (24)

The nondecreasing integrands in (23) and (24) can have at most countably many discon-
tinuities and therefore differ at most at countably many t. Those t provide a Lebesgue 0 set
and do not contribute to the integrals. After substitution of the definition of nQ in (24),
(22) results. □
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Proof of Theorem 8.1 First assume that the conditions (i), (ii), and (iii) hold. We prove
the existence of P and f as described in the theorem. We write A f B for events A, B
whenever n(A) $ n(B). No confusion with the preference relation f on acts will arise.
First we derive the properties of a qualitative probability ordering for f.

Obviously f is a weak order; the notation s is as usual. We have S f Af [ for all
events A and S s [. Finally, assume that event D is disjoint from events A,B. Then the
following six statements are equivalent: (1) A f B; (2) n(A) $ n(B); (3)
p(A,[) $ p(B,[); (4) p(A,D)$p(B,D); (5) n(AøD) $ n(BøD); (6) AøD f BøD. The
equivalence of (3) and (4) holds because of invariance of likelihood orderings. The
equivalence of (1) and (6) is the well-known additivity condition of qualitative probability
theory. Thus, f is a qualitative probability ordering (Villegas, 1964).

Solvability of n implies that no atoms exist and Condition (ii) implies monotone
continuity of Villegas (1964). Therefore, by Villegas' Theorem 4.3, there exists a unique
countably additive atomless probability measure P on the sigma algebra of events that
represents the qualitative probability ordering f. Hence there exists a strictly increasing
transformation f such that n5foP. By solvability of n, the range of f is [0,1], hence f
must be continuous.

For the reversed implication, solvability of n is implied because P is atomless and f is
continuous, Condition (ii) is implied by sigma-additivity of P and continuity of f, and
invariance of likelihood orderings follows from additivity of P.

Our proof has been based on the qualitative probability result of Villegas (1964), which
implies countably additivity measures. Finite additivity can be obtained by using different
qualitative probability results, such as Savage’s (1954). Then, however, the fineness con-
dition is more complicated (Gilboa, 1985). □
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