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Abstract

A method is given to extend demand functions to new commodities under preservation
of the cycle number, i.e. the minimal length of a preference cycle revealed by the demand
function. Thus, Gale’s ( Economica, N.S., 1960, 27, 348—354) demand function that shows
that the weak axiom of revealed preference does not imply the strong axiom of revealed
preference for three commodities can be extended to more than three commodities. Also
Shafer’s (Journal of Economic Theory, 1977, 16, 293-309) result, that arbitrarily high
cycle numbers exist for three commodities, can now be extended to any number of
commodities larger than three. This completely settles a question raised by Samuelson
( Economica, N.S., 1953, 20, 1-9).

JEL classification: C60; D11
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1. Introduction

Samuelson (1938) showed that the weak axiom of revealed preference (WARP)
is necessary for the rationalizability of a demand function by a preference relation.
The WARP excludes cycles of length two in the revealed preferences. It has been
characterized by Clark (1959, Section 3), Kim and Richter (1986, Section 7), and
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Kehoe (1992, Section 2). An open question remained as to whether or not the
WARP was also sufficient for rationalizability. Ville (1946) and Houthakker
(1950) showed that the strong axiom of revealed preference (SARP), excluding
cycles of any length, was necessary and sufficient. Rose (1958) proved for two
commodities that the SARP is implied by the WARP. Gale (1960) demonstrated
that this does not hold for three commodities. Peters and Wakker (1994) extended
Gale’s counterexample to any higher number of commodities, showing that the
WARP does not imply the SARP for any number of commodities larger than two.

An open question, raised by Samuelson (1953), was whether exclusion of
cycles up to a certain length k would suffice to imply the SARP. A positive
answer to this question would give an upper bound to the minimal number of
observations needed to refute the SARP. This upper bound & might depend on the
number of commodities. For instance, the mentioned result of Rose (1958) shows
that for two commodities, & can be taken as equal to 2. For three commodities,
however, Shafer (1977) provided a negative answer to Samuelson’s question. That
is, he showed that, in that case, such an upper bound & does not exist.

The present paper provides a general method to extend a demand function to
more commodities while preserving cycles. Thus, it also preserves the ‘cycle
number’, i.e. the minimal length of a preference cycle revealed by the demand
function. As an intermediate tool, this method employs demand functions on
nonlinear budget sets, studied in Peters and Wakker (1991).

The method of this paper can be used to extend the counterexamples of Gale
(1960) and Shafer (1977) to more than three commodities. It follows that, for any
number of commodities higher than two, arbitrarily high cycle numbers can be
found, so that the answer to Samuelson’s question is negative.

2. Preparations

Let R be the set of commodity bundles, 3" the collection of budget sets B”
of the form:

B'={xeR’: p-x<a},

for some price vector p € R}, and income a >0, and D" a demand function
that assigns to each budget set the commodity bundle chosen from the budget set.
Choosing the budget set as the argument of the demand function, rather than the
vector of prices and income, is more convenient for the purpose of this paper.
Throughout, we assume that, for each commodity, there exists a budget set in
which a positive amount of that commodity is demanded. Otherwise, the commod-
ity would never be bought and could be suppressed, and the demand function
would essentially apply to fewer commodities.

R is the (directly) revealed preference relation, i.e. xRy if there exists a budget
set from which x is chosen, whereas y also is contained in the budget set. We
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write xPy if xRy and x# y. P is called the directly revealed strict preference
relation.
For a subset T of R” the set:

SE(T) = {x€T: thereisno y € T with y,>x, for all j, y # x},

is the (strongly) efficient subset of T. Throughout, D" is assumed to satisfy
efficiency, i.e. D"(B") € SE(B") for every budget set B”.

D" satisfies the SARP if there does not exist a cycle x°Px'P,..., Px*=x",
where k> 0 is the length of the cycle. D" satisfies the WARP if there do not exist
cycles of length two.

For a demand function D" that reveals cycles, the ‘cycle number’ is the
minimal length of those cycles. That is, if the cycle number is &, then D" reveals
a cycle of length %, but does not reveal cycles of length smaller than k. Thus, at
least k& choices must be observed to refute the SARP for D". The WARP means
that the cycle number is at least three. If the demand function does not reveal
cycles, i.e. if it satisfies the SARP, then we say that the cycle number is infinite.

3. The main result

This section describes a general method for extending demand functions that
satisfy the WARP to more commodities. That is, a continuous efficient demand
function D" on X" is extended to a continuous efficient demand function D™ on
3™ (n < m) with preservation of the cycle number, which is assumed to be at
least three. Subsequently the following theorem can be proved.

Theorem 1. For any number of commodities greater than two:
(a) the WARP does not imply the SARP;
(b) There exist arbitrarily high but finite cycle numbers.

The demand functions D" and D™, as well as their cycles, are related in a special
way: each cycle of the lower dimensional demand function D" generates a cycle
of the same shape for the higher dimensional demand function D™ (for details, see
Observation 10 in Appendix A). Conversely, every cycle of D™ generates a lower
dimensional, ‘projected’ cycle of D"

Next, we describe the construction of D™ from D", which involves a number
of steps. Proofs are given in Appendix A, as is a small generalization of the
construction.

Step 1. In this step, m-dimensional (linear) budget sets are mapped to non-linear
n-dimensional ‘budget sets’ by combining commodities # up to m into a sin-
gle new commodity, as follows. We fix a function #:R,— R, that is sur-
jective, strictly increasing, strictly concave, and continuously differentiable;
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eg. h(1)=1In(r+1). We define f:R7—->R, by f:(x,...,x,)~
(xp,.oooox,_y, x, +h(x,, )+ ... +h(x,)). The interpretation is that units of the
new commodities n + 1,...,m are exchanged for units of commodity n at a

decreasing exchange rate, described by the function A.
Now to each budget set B” € 3" the lower dimensional set f(B™) CR” is
assigned. The set f(B™) is convex and compact.

For Steps 2 and 3, we fix a budget set B" € 3.

Step 2. In the set f(B™), a unique element, denoted D"( f(B™)), can be found, and
a linear budget set B", such that:

(i) B" contains the set f(B™);

(i) D(B™")=D"(f(B™)).
Note that B" is tangential to f{B") at D"( f(B™)). The uniqueness of the element
D"(f(B™)) follows from the WARP. The proof of this step invokes Brouwer’s
fixed point theorem, and is given in Appendix A.

Step 3. In this step, the demand vector D™(B”™) is constructed. Its first n— 1
coordinates are taken to be identical to those of D"( f(B™)). Then the function f,,
ie. x,+h(x,,. )+ ... +h(x,), is maximized over the points in B™, with the
first n ~ 1 coordinates fixed at D"(f(B™)),,..., D"(f(B™)),_,. The maximizer
is uniquely determined (see Lemma 4 in Appendix A). D™(B™) is defined as this
maximizer.

The definition of D™ has now been completed. Next, we state its relevant
properties; these will be derived in Appendix A.

Theorem 2. The demand function D™ as constructed above is efficient, continu-
ous, and has the same cycle number as D".

Now we can extend the results of Gale (1960) and Shafer (1977) to more than
three commodities, i.e. we can prove Theorem 1.

Proof of Theorem 1. For three commodities, (a) was demonstrated by Gale (1960)
and (b) by Shafer (1977). By Theorem 2, these results can be extended to any
number of commodities. O

4. Conclusion

This paper has presented a method to extend demand functions to larger
numbers of commodities, while preserving cycles. In this way, a complete answer
is obtained to a question raised by Samuelson (1953). This question was whether
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or not exclusion of revealed preference cycles up to a certain length k (possibly
depending on the number of commodities) would suffice to imply the SARP. Rose
(1958) showed that we can take k=2 for the case of two commodities. Shafer
(1977) showed that, for three commodities, no such % exists. Using Shafer’s
examples, we have shown that, for any number of commodities larger than two, no
such & exists. This provides a generalization of earlier results by Gale (1960),
Shafer (1977), and Peters and Wakker (1994).

Appendix A

This appendix contains proofs of the results of Section 3. For convenience of
presentation, the construction described there will be considered here only for the
case m=n+ 1. The general case follows from repeated application of the
construction. The argument generalizes that of Peters and Wakker (1994). For the
results of the present paper, the number of commodities is assumed to be arbitrary,
and the demand function D" need not be surjective. The main additional compli-
cation for our generalization lies in the application of Brouwer’s theorem: here, a
different mapping must be used compared with that of Peters and Wakker (1994).

Convexity and compactness of f(B"*!) (cf. Step 1) can be proved similarly to
Peters and Wakker (1994).

For x=(x,....x,), y={(y,,....y,), we write xzy if x,>y for i=
I,....,n; x<y is similar. We write x>y if x;>y, for i=1,...,n; x<y is
similar. For a subset T of R” the set:

WE(T) = {x€T:thereisno ye T with y>x},

is the weakly efficient subset of T.
Lemma 3. For each budget set B"*' € 3", WE(f(B"*')) = SE(AB"*")).

Proof. Let x€f(B"*"), and x<x', x#x for some x €f(B""'), ie. x¢&
SE(f(B"*')). Suppose x> x;. We show that x € WE(f(B"*')), by constructing
a yeB""! with f(3)>x. Let X, ¥ €B"*! be such that f(¥)=x,f(¥)=x"
We distinguish two cases.

In the first case, j <n. Then let y be such that X; <Yy; <X}, and, for all i # j,
¥ > X

In the second case, j=n. Then ¥,>X, or X,,, >X,,,. Take y€B"*' such
that x, =f(X) =%, + i(%,, ) <3, + i(3,, ) =£(3) <f(¥) and ¥, <X} for
k=nn+1,and y,> X, > X, for all k<n. Then y is as required. O

The proof of the next lemma is similar to the proof of Lemma 1 in Peters and
Wakker (1994), so is omitted.
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Lemma 4. Let B"™" '€ 3" 7., Z,,....7,_, €R,, and suppose that the set
{zeB™" z,=3%,, 25=23,--12y—1 = Z,_1} is non-empty. Then f, attains its
maximum over that set at a unique point.

As in Steps 2 and 3 of Section 3, we now fix a budget set B"*'e 3"*!
determined by prices (p,,..., p,, ), and income a. For every x € SE(f(B"*"))
let (x,,...,x,_, X,, X,,,) €B""! be the unique f original of x, cf. Lemma 4.
It is also denoted by f~'(x). An explicit expression for the vector f~'(x) can be
inferred from the proof of Lemma 6 below.

Lemma 5. f~'(x) is continuous.

Proof. Let x* - x in SE(A(B"*!)). By compactness of B"*'! we may assume
that £~ '(x*) converges to, say, y. By continuity of f, f(f~'(x*)) - f(y), that is,
x* converges to f(y). Because x* also converges to x, f(y)=x, which, by

Lemma 4, uniquely determines y as f~'(x). Thus, ' is continuous. O

Let the map N:SE(AAB"*')) = R" be defined by

pn+l
N = veevs Py, I ,— .
(x) (”' Pa-i "““{”" h’(x"+.)})

Lemma 6. For every x € SE(f(B"*")), N(x) is a normal vector of a hyperplane
supporting f{B"* ') at x.

Proof. For every x € SE(f(B"*")), let o(x)=a— L2 'p,x,.

First, suppose #(0) <p,. ,/p,. In this case, for every x€ SE(A(B"*"), X, =
o(x)/p, and X, , =0, because these values maximize f, given (x,,..., x,_ ).
In words, the marginal contribution to f, of the nth commodity is larger than that
of the (n + 1)th commodity. Therefore, we have

) =(x,x,00, c(x)/p,, 0),

and

f(Bn+l)={‘xER: :(xl""’xn)’(pl“‘"pn)sa}'

The desired result now follows, because p,,,/H(X,,,)=p,. /K0 >p, for
every x € SE(f(B"*")).

Next, suppose #(0) > p,,,/p,. We distinguish two cases.

In the first case, consider x € SE(AB"*")) with H(c(x)/p,+ ) > Pus1/Pn-
Then, given (x,,..., x,_,), f, is maximized by X, =0 and X,,,=c(x)/p,. .
In words, the marginal contribution to f, of the (n + 1)th commodity is larger
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than that of the nth commodity, even if the remaining ‘income’ ¢( x) is completely
spent on the (n + Dth commodity. Therefore, in this case, we have

S = (5 x,010 0, 6(X) /s )

Such points x satisfy the equation G(x) =0 with G(x)=p,, h~'(x,) — c(x).
The gradient of G at x is the vector (p,,..., p,_,, p,+./H(h~'(x,))), which is
equal to N(x), since p,, ,/H(h " (x)=p,,,/H(X,, ) <p, Since the equa-
tion G(x) = 0 locally describes SE(f(B"*')), the convexity of f(B"*') implies
that N(x) is normal to a supporting hyperplane of f(B""') at x.

In the second case, consider x € SE(A(B"")) with 4 (c(x)/p,. ) <Pps1/Pn-
Then }n-&- 1 SO]VCS h,(}n+ ]) =pn+ l/pn and .;C” = (C(X) - pn+ 1 }nﬁ- ))/pn' SUCh
points x satisfy G(x)=0 where now G(x)= —c(x)+p,x, + P, Xpns) —
p,h(X, . ). The gradient of this function G is (p,,..., p,), which equals N(x),
because p,=p,.,/H(x,, ). Therefore, also in this case, N(x) is normal to a
supporting hyperplane of AB"*!)at x. O

Next we describe the construction of D"*! from D” in detail. Recall that D"
satisfies the WARP. The construction described here is slightly more general than
that in Section 3. By this generalization, cycles of D" give rise to cycles of D"*!,
where positive amounts of each commodity, in particular of the new commodity,
are bought. This precludes trivial cases that are essentially lower-dimensional.
Further, it enables us to adapt our results to R}, and RY, instead of R} and
R7; the interest of this has been discussed in Peters and Wakker (1991). For the
method described in Section 3, one can take u =0 below, and make minor
adaptations in the subsequent analysis.

To allow restriction to positive coordinates, we assume that there exists ©> 0
such that all commodity bundles that occur in cycles of D" have all coordinates
greater than or equal to w. If this assumption is violated, then D" is transformed
to D' as follows. A value p >0 is chosen. Then, if a budget set B" has a
non-empty intersection B’ with [ u, %]”, then

D'(B")Y=D((B = (pr--n ) NRL) + (s, p);

otherwise, D'(B") is the intersection of B" with the line segment that connects
the origin and (u,...,u). Then D' contains all cycles of D" shifted by
(p,-..,m), and D' does not contain other cycles. This is similar to footnote 1 in
Peters and Wakker (1994).

Let x € SE(f(B"*')), and let H(x) denote the budget set in 3" determined
by the hyperplane supporting f(B"*') at x with normal N(x). In view of Lemma
6, H(x) is well defined; H depends continuously on x, since N does, in view of
Lemma 5. Let ¢ denote projection on SE(f(B"*1)); i.e. 4 assigns to each point
the nearest point of SE( f(B"*')), according to Euclidean distance. Obviously, ¢
is continuous, so the map ¢ e D"« H:SE(f(B"*")) - SE(A(B"* ")) is continu-
ous. Since, as a consequence of Lemma 3, the set SE( f(B"*')) is homeomorphic
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to a compact convex set (e.g. the projection on the plane x, = 0), we can invoke
Brouwer’s theorem and obtain the existence of a point x* € SE(A(B"*")) with
x" = oD"e H(x"). (The budget set H(x") is the set B” in Step 2 of Section
3.) We use the fact that, for all x€ H(x™): ¢(x)=x" & x=x", applied to
x=D"(H(x")), to conclude that D"(H(x"))=x". By the WARP of D", this
fixed point x* is unique. Therefore, we can define D"(f(B"*')) = x". Finally,
for each B"*' € 3771 we let

D"+1(Bn+l):=‘f‘_l(D"(f(B"+l))). (])
This completes the derivation of Steps 2 and 3 in Section 3.
The following three lemmas prove Theorem 2.

Lemma 7. D"*' is efficient and continuous.

Proof. It is obvious that D"*' is efficient. For continuity, let B"*', Br*!
B;*',..., be asequence in 3"*' with lim; , B/*'=B""" Peters and Wakker
(1994, Section 4) show that f is continuous with respect to the Hausdorff metric;
hence, f(B* ') converges to f(B"*'). Each set f(B*') is supported at the point
D"(f(B]™" {)) by a hyperplane with positive normal, determining a budget set B/’
in 3. By compactness, we may assume that the points D"(f(B;" ")) and sets B}
converge to a point y and a budget set B" respectively. It straightforwardly
follows that B” supports f(B"*') at y. By continuity of D" on X", y=D"(B").
By the definition of D"(f(B"*')), y must be this point D"(f(B"*')). Thus,
D"(f(B]'"")) converges to D"(f(B""")).

We must show that f~'(D"(AAB™ ") -/~ (D"(f(B" ")) as j— . Note
that the function f', used above, is different for different sets B ', or B"*'.
This dependence is not expressed in the notation. For this reason, we cannot
invoke Lemma 5. Therefore, we use the explicit expressions for f~' given in the
proof of Lemma 6. As the sets B/ *! converge to B"* ', so do the associated price
vectors, and incomes «. Therefore, if #(0)<p,, ,/p,. then the desired conver-
gence follows. If H(0)>p,,,/p, and K (c(y)/p,.\)> p,. /P, then, for j
sufficiently large, the same case applies for the sets B'" ! and the desired
convergence follows. Similarly, if #(0)> p,. ,/p, and H(c(¥)/Py. 1) <Pns1/Pns
then, for j sufficiently large, the same case applies again for the sets B/ *1 and the
desired convergence again follows. Finally, if #(0)>p,. ,/p, and A (c(y)/p,. )
=p,+1/P, then both the formulas for the first case in the proof of Lemma 6 and
for the second case there can be used, leading to the same result. The desired
convergence again follows, both for the sets BJ"‘r ' for the first case there, and for
the second case there. Thus, we conclude lim; ,, D"*'(B*')=D"*'(B""") in
all cases. 0O

Lemma 8. The cycle number of D"* ' is greater than or equal to the cycle number
of D".
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Proof. Let x°,...,x* be a cycle revealed by D"*' through the budget sets
B, ...,BM" (x°=x%). Then, in view of (1), f(xV)PAXP... PAx") is
revealed by budget sets supporting f(B!™"),..., AB! ") at Ax%),..., fx*" 1)
This yields a cycle of length % or smaller for D" (the length may be smaller if
points coincide). O

The following lemma extends Lemma 3 in Peters and Wakker (1994).

Lemma 9. The cycle number of D"*"' is smaller than or equal to the cycle number
of D".

Proof. Fix z,., > 0 so small that h(z,, ;) < u, where > 0 is a lower bound for
coordinates of commodity bundles that occur in cycles of D". Let f. be the
restriction of f to R%x{z,, }; it is an affine bijection from R’%x{z,, } to
R%+(0,...,0, A(z,, ). Let the constants #,., and 4, ,(0) be such that
By (x, . )=H,  x,. +h, (0)is the affine function tangential to % at z,.,.

Let f:(x,,....x,, )=>(x\,....x,_, x, +h,.(x,,)); this function is affine.
Let x'Px® be revealed by a linear budget set B" C R", with all coordinates of x'
and x? at least u.

Let(p,,...,p,) and « be the price vector and income that correspond to B”".
Then

(xlau~:x,,+1) ER1+IIPIX1 +... +pnxn+pnhn+l(xn-+-l) <a}
(XX, ) ERY ipyxy 4o 4o, x, o, H X,

Sa‘pnhn#’l(o)}'
On R2x{z,,}, f=f=f..s0 f7'(x"), 7' (x*)e(f)"(B"); note that f;'(x")

and f;'(x?) exist because A(z,, ) is smaller than x) and x2. Elsewhere, f> f.
Hence, for each ye (f)"'(B"), f(y) > f(y); since f(y) is an element of B”, so
is f(y); thus, f(()~'(B") cB". Because f((f)~'(B")) contains f(f. '(x') =
x', it contains D"(B") = x'. Therefore, by the WARP, x' = D"(A(f)"'(BH). It
follows by (1) that D"*'((f)~'(B") = f. '(x'). Therefore, the linear (n + 1)-
dimensional budget set (f)~'(B"), which also contains f; '(x?), has revealed
f:l(xl)sz‘l(x?.)'

It follows that cycles of D" are mapped by f?l to cycles of the same shape and
length for D"*'. O

The above proof has also demonstrated the following isomorphism between
cycles of D" and of D"*".
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Observation 10. Let x°Px'P ... Px* be a revealed preference cycle of D". Take
any z,,, such that x} > h(z, . ) for all j. Then we obtain an isomorphic revealed
preference cycle y°Py'P ... Py* of D"*', where, for each j:

yjz(xj"-wx:{—lv X5 =h(2,01)s Zn+1)-

The proof also shows that the price vectors used in the two revealed preference
cycles are closely related. It can be demonstrated that the adopted budget sets are
also isomorphic in a special way. Details are omitted.
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