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ECONOMIC EVALUATION 

PETER WAKKER AND MARC P. KLAASSEN 
Medical Decision Making Unit, University of Leiden, The Netherlands 

SUMMARY 

The reduction of costs is becoming increasingly important in the medical field. The relevant topic of many clinical 
trials is not effectiveness per se, but rather cost-effectiveness ratios. Surprisingly, no statistical tools for analyzing 
cost-effectiveness ratios have been provided in the medical literature yet. This paper explains the gap in the 
literature, and provides a first technique for obtaining confidence intervals for cost-effectiveness ratios. The 
technique does not use sophisticated tools to achieve maximal optimality , but seeks for tractability and ease of 
application while still satisfying all formal statistical requirements. 
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The reduction of costs has become increas- 
ingly important in the medical field.'-' The 
relevant question is no more exclusively: 'Which 
treatment yields most effects?' but, more often, 
'Which treatment takes the least amount of 
money to yield an appropriate level of effective- 
n e ~ s ? ' ~  That is, the decisive quantity is not 
effectiveness per se, but rather the cost-effec- 
tiveness (C/E) ratio. 

Traditional investigations of effectiveness 
yield point estimates, surrounded by an assess- 
ment of the uncertainty comprised in the 
estimation. For uncertainty assessment, two 
techniques are relevant. The first is sensitivity 
analysis, demonstrating how sensitive the rele- 
vant quantities are to variations in inputs. 
Secondly, statistical analyses are adopted to 
assess the probabilistic uncertainty inherent in 
the data and thus in the conclusions. 

Recent studies of C/E ratios similarly provide 
point estimates, and assessments of uncertainty 
through sensitivity analysis; the latter has been 
recommended in several studies. 1*7-10 However, 

almost no statistical analyses of C/E ratios have 
been reported in the literature to date. There obvi- 
ously is a need for such analyses. A description of 
the level of confidence with which one can con- 
clude that some critical level for the C/E ratio will 
not be exceeded, is extremely relevant to optimal 
medical decision making and to the proper control 
of medical expenses. Further motivations for 
statistical analyses of C/E ratios have been pro- 
vided in the literature.6"'-'3 

Let us next suggest an explanation for the 
almost complete absence of statistical analyses of 
C/E ratios. This absence can be due to the compli- 
cated nature of the probability calculus of C/E 
ratios. Under the common assumption that costs 
and effects are normally distributed, C/E ratios are 
'Cauchy' distributed. Cauchy distributed variables 
can take very extreme values, i.e., 'they have 
heavy tails'. This phenomenon is mainly caused by 
the possibility of the denominator E getting close 
to 0. Therefore, means of Cauchy distributions 
turn out not to exist. Whereas for most common 
distributions the averages converge more and more 
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to a point value as the number of observations 
increases, and this is the everyday experience, 
such a convergence does not occur for averages of 
Cauchy distributed variables. Observed average 
values will not be stable but continue to exhibit 
extreme variations. It can be demonstrated that, 
paradoxically, the average C/E ratio over any 
number of observations exhibits the same degree 
of variation as one single observation!14 Thus the 
estimation of average C/E ratios is not possible. 
As the traditional methods for hypothesis testing 
and confidence intervals are based on average 
estimations, surrounded by a number of standard- 
deviations, these traditional methods cannot be 
invoked here. 

At this stage it might be concluded that C/E 
ratios are simply not suited to statistical analyses 
and indeed this idea may underly the absence of 
such analyses in the literature. This conclusion 
would imply a most inconvenient state of affairs, 
given the importance of statistical analyses. Hence 
this paper provides tools that do permit a statistical 
analysis of C/E ratios. While the estimation of C/E 
ratios is problematic indeed, we show that 
confidence intervals (and hence hypothesis tests) 
can still be developed. Even more, it is our intention 
to demonstrate that these tools can be obtained by 
elementary means, requiring few mathematical 
calculations. Thus, in a sense, our approach will be 
‘satisficing’ l5 in providing useful tools that can 
readily be applied, without yet seeking for maximal 
optimality that will be at the expense of accessibil- 
ity. The search for optimal but sophisticated 
techniques is a topic for future research. Let us 
emphasize that the confidence intervals derived in 
this paper do satisfy all formal statistical require- 
ments for confidence intervals, i.e. they are 
confidence intervals in every formal mathematical 
sense. 

Our paper builds on O’Brien, Drummond, and 
Labelle, ” who initiated the research on confidence 
intervals for C/E ratios, and Van Hout et a1.,13 
abbreviated [HI hereafter, who pointed out the 
problems in the probability calculus for C/E ratios 
and proposed a pragmatic alternative to confidence 
intervals. These studies are discussed in more 
detail below. 

Let us end this introduction by mentioning a 
remarkable list of papers from the forties and 
fifties, i.e. Fielleri6 and the references therein. 
(These references were pointed out to us by a 
referee.) These papers assume the ‘fiducial’ appro- 
ach to statistics, an interesting alternative to the 

Bayesian approach and the nowadays customary 
‘classical’ approach. The fiducial approach was 
initiated by Fisher17 but is rarely used today. For 
that approach, Fieller derives ‘ fiducial regions’ for 
quotients of means of normal distributions, for 
the special case where the distributions are inde- 
pendent. Fiducial regions are analogs of 
confidence intervals. 

THE BASIC QUANTITIES IN OUR ANALYSIS 

Because we want to convince the reader, beyond 
any ambiguity, that our confidence intervals 
satisfy all formal statistical requirements, we 
give a precise analysis. To that end it is useful to 
introduce some helpful abbreviations and nota- 
tions to simplify the exposition. The system is 
simple. The most important notions, treatments, 
costs, effects, numbers (of patients in the ran- 
domized clinical trial), ratios (of costs and 
effects) are abbreviated by their first letter. 
Observable values are denoted by regular Roman 
letters, the corresponding unknown parameters 
(‘population means’) that are not observable but 
one wants to estimate on the basis of the 
observed values, are denoted by the correspond- 
ing Greek letters. Finally, the values that were 
just introduced appear both in a traditional 
treatment, denoted by a subscript 0, and in a new 
alternative treatment that is indexed by a sub- 
script 1.  

Let us now describe these quantities in more 
detail. We assume that a decision must be made 
whether a new treatment T I  can replace a cus- 
tomary treatment To. To this effect, for No patients 
the costs and effects of treatment To have been 
observed, and for N ,  patients the costs and effects 
of treatment T, .  

C,: average cost of To; 
E,: average effect of To; 
C,: average cost of T I ;  
E,:  average effect of T I .  

Thus the total sum of observed effects over the 
group of patients that received the standard treat- 
ment To  is No *E,, the total sum of observed costs 
over the group of patients that received the alter- 
native treatment is N ,  * C,, etc. We make the 
common assumptions that all variables are nor- 
mally distributed. The means are given below; they 
can be interpreted as means and averages per 
patient over the entire population and determine 
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the sampling probabilities. 

yo: The mean cost of treatment To; 
c0: The mean effect of treatment To; 
y l :  The mean cost of treatment T I ;  
E ~ :  The mean effect of treatment T I .  

These are the (unobserved) parameter values. Thus 
the expectation of the total effect over the group 
of patients that received T I  is N I ~ I ,  etc. The 
belonging standard deviations are also unknown 
and relevant for the probability distribution, but 
we need not introduce symbols to denote them. 
The distributions of all variables are mutually 
independent, with the exception of the costs and 
effects within one patient. It is obvious that 
between these two variables there will be depen- 
dencies. Following [H],I3 we assume that these 
two variables have a joint normal distribution with, 
possibly, nonzero correlations. 

We assume that the relevant cost-effectiveness 
ratio in the analysis, denoted by p, concerns here 
the incremental costs and effects, i.e. it concerns 

Yl -Yo 
p=- 

El - Eo 

This is the quantity we want to know as precisely 
as possible. A natural notation for incremental 
quantities is obtained by dropping subscripts, i.e. 

C = C ,  - c,; 
E = E l -  Eo; 
Y =  YI - Yo; 
& = E l  - E o .  

Obviously, p = Y / E .  The observed ratio is: 
R = CJE.  

THE PROBLEM FOR C/E RATIO- 
CONFIDENCE INTERVALS, AND THE 

PRAGMATIC ALTERNATIVE SOLUTION BY 
VAN HOUT ET AL. 

As the precise meaning of a confidence interval is 
not elementary, let us briefly repeat it here. A 95% 
confidence interval for the C/E ratio is a prescrip- 
tion that describes, for all possibility observed 
costs and effects, an interval of C / E  values satis- 
fying the following condition: For all population 
means yI,  yo, e0, (this similarly applies to all 
standard deviations and correlations between costs 

and effects), there is at least a 0.95 probability that 
the observed costs and effects are such that the 
interval, prescribed for these costs and effects, 
contains the true ratio p = (yl - - E ~ ) .  Note 
here that the probability refers to the sampling 
variability in the observed costs and effects. The 
important point to note for the sequel is, however, 
that the probability refers to events that describe 
whether: 
- The true ratio p = (yl - - E ~ )  is con- 

tained in an interval. 

Let us next, briefly, describe the traditional way 
for obtaining confidence intervals. We consider the 
case of interest in this paper, i.e. a one-sided 
confidence interval, bounded from above, for p. 
The traditional approach could be applied if 
expectation and variance of p were to exist, and if 
R = C / E  were a proper (e.g., unbiased) estimator 
for p. Then one would take the observed value R 
as a starting value, and next take an interval 
(t, R + x] (bounded from above, unbounded 
from below), where x > O  has been chosen 
sufficiently large to ensure the right level of 
confidence; further x is chosen sufficiently small to 
guarantee that the confidence interval is not so 
wide as to provide no useful information. The size 
of x traditionally depends on the standard devia- 
tion of R ,  e.g., if R were normally distributed 
then x could be 1.65 times the (estimated) standard 
deviation of R to obtain a 95% confidence inter- 
val. In general, if R were not exactly normally 
distributed, but it at least had finite expectation and 
standard deviation, then by the 'central limit 
theorem' normal approximations could be invoked. 
After a sufficient number of observations, 
confidence intervals could then still be obtained in 
the way described above. 

O'Brien, Drummond, and Labelle," who 
initiated the discussion of C / E  ratio confidence 
intervals, stay close to the classical approach. They 
use a method based on the Taylor approximation 
that, at least for many probability distributions, 
gives estimations for means and variances; based 
on these estimations, confidence intervals can be 
formulated in the usual manner. The method can 
be used as soon as means and variances of C / E  
ratios do exist. 

[H]13 pointed out, however, that means and 
variances of C / E  ratios do not exist under the 
common distributional assumptions for costs and 
effects, and introduced a pragmatic alternative 
approach for constructing intervals for C / E  ratios. 
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We do not describe the pragmatic approach of 
[H]I3 in detail here. In short, it is as follows. First, 
from the actually observed costs and effects, 
estimates are obtained for the true values of costs 
and effects (as well as standard deviations and 
correlations); these estimates can be obtained by 
well-known methods. Next an interval, a C/E 
acceptability curve, is constructed that satisfies the 
following condition: If the population means were 
identical to the estimated values, and the random- 
ized clinical trial (RCT) were repeated with the 
same number of patients, then the probability that 
the newly sampled average cost C' and the newly 
observed effect E' would yield a ratio C'/E' 
contained within the constructed C/E-acceptability 
curve, is at least 95%. 

The procedure proposed by [HI l 3  is a pragmatic 
alternative to the traditionally derived confidence 
intervals. It provides an index for the degree of 
precision with which the C/E ratio can be esti- 
mated, and thereby it provides a tool for deciding 
on acceptance or rejection of a new treatment. It 
should, however, be understood that acceptability 
curves are not confidence intervals in a formal 
statistical sense, and the 95% level is not a 
confidence level. For instance, the probability of 
95% does not refer to the event that the true ratio 
is contained in the 'curve', but it refers to an event 
where an observed ratio in a repeated RCT would 
be contained in the 'curve'. Therefore, the 95% 
level must be interpreted differently than the 
traditional 95% confidence levels, and [H]I3 use 
different formulations. They write: 'One may 
conclude that the C/E ratio . . . is acceptable with 
95% certainty when a limit to cost effectiveness is 
used of 42,000.' 

Acceptability curves satisfy desirable conditions; 
for instance, the acceptability curve will be tighter 
around the true value as the number of observed 
patients increases. Therefore acceptability curves 
can be useful alternatives to confidence intervals. A 
detailed discussion, and comparison to confidence 
intervals, lies beyond the scope of this paper. 

We propose another, more formal, approach. 
Our approach is less pragmatic and more conserva- 
tive than the one by [H],I3 but in return provides 
intervals that do satisfy all formal statistical 
criteria; therefore, these intervals are confidence 
intervals in the traditional statistical sense, and the 
associated confidence levels can be given the 
according probabilistic interpretations. The basic 
idea of our approach is elementary, and easy to 
implement. 

CONFIDENCE INTERVALS FOR C/E RATIOS 

It was already observed in the literature that for a 
decision, based on C/E ratios, some cases should 
be distinguished, depending on whether costs and 
effects are positive or negative. 1 ~ 1 1 ~ ' 3  Following this 
observation, we propose that decisions are taken in 
the following manner, based on the estimates of 
y, the true difference in costs between the two 
treatments, and of E ,  the true difference in effect 
between the two treatments. Note here that the 
statistical analysis of the difference of two normal 
distributions (the observed effect E, estimating E ,  
is such a difference, and so is the observed cost C, 
estimating y )  is well-known; it is used below 
without further discussion. 

Case I 
The data do not suffice to conclude if E is 

positive, negative, close to 0, or remote from 0. 
Then a reliable decision is not available (unless y 
would very clearly be extremely positive or nega- 
tive). In particular: the decision should not be 
based on the C/E ratio. 

Case 2 
The data suffice to reliably conclude that E is 

close to 0. Then, again, the decision should not be 
based on the C/E ratio. Now the decision should 
be based on the cost estimate, and the new treat- 
ment should be accepted only if it is clearly less 
expensive ( y < 0). 

Case 3 
The data suffice to reliably conclude that E is 

positive and not very close to 0. Then the decision 
can be based on the C/E ratio. The new treatment 
should be accepted if p falls below some critical 
values. 

Case 4 

The data suffice to reliably conclude that E is 
negative and not very close to 0. Then the decision 
can be based on the C/E ratio. The new treatment 
should be accepted if p exceeds some critical 
value. 

We think that in Cases 1 and 2 above, if the 
effects cannot be clearly separated from 0, then 



CONFIDENCE INTERVALS FOR C/E RATIOS 377 

CIEratios are not proper tools for decisions. For 
effects close to 0, the behaviour of the C / E  ratio 
becomes unreliable and can be massively affected 
by minor errors. Therefore we consider only the 
Cases 3 and 4. Case 3 is analyzed in detail below. 
For Case 4, similar observations hold. Therefore 
we assume henceforth: 

Assumption 

rejected at a significance level lower than 2.5%. 
The statistical null hypothesis H,: E s 0 can be 

In this case we propose a simple device for obtain- 
ing a 95% confidence interval for p. Formally, 
confidence intervals should be defined for all pos- 
sibly observed values of costs and effects, hence 
also for those not satisfying the above assumption, 
i.e. also for cases 1 , 2  above. For these, we formally 
define the associated confidence intervals as the 
‘noninformative confidence set’, i.e., the entire real 
line. Such confidence intervals correspond to ‘no 
decision’ as it was described in the text, which 
seems the rational conclusion from C/E ratios if 
effects are small. This construction maximally meets 
any restriction to levels of confidence and does not 
affect the reasoning in the next section. A similar 
formal definition is used in the end of Section 5 in 
Fieller.I6 Existence of a positive e in Step 2 below 
is guaranteed by the above assumption, as will be 
explained shortly. 
STEP 1. Take a 97.5% confidence interval (6, c ]  

STEP 2. Take a 97.5% confidence interval [ e ,  +) 

STEP 3. (c, c / e ]  is a 95% confidence interval for 

for y. 

for E ,  where e>O. 

P- 

DERIVATION OF CONFIDENCE LEVEL 

This section proves the confidence claim of 95% 
made in Step 3 of the above section, and can be 
skipped without interrupting the flow of the paper. 
Note that by the above assumption there must exist 
a strictly positive value e such that H,: E S  e can 
be rejected at the 2.5% level. Then indeed [e,-+) 
can be taken as a 97.5% confidence interval for E .  

Next let us explain the claim in Step 3, that (t, c/ 
e]  is a 95% confidence interval. 
( la)  For each set of population means, the 

(‘sampling’) probability that the confidence 

interval [t, c) does not contain y is at most 
2.5%: this property defines the 97.5% 
confidence interval [t, c). 

( lb)  For each set of population means, the 
probability that the confidence interval 
[e,+) does not contain E is at most 2.5%: 
this property defines the 97.5% confidence 
interval [e, +). 

Combining the above two statements we see: 

(2) For each set of population means, the prob- 
ability that either c <  y or e> E or both, is at 
most 2.5% + 2.5% = 5%. 

(3) For each set of population means, the prob- 
ability that both c> y and e<  E is at least 
95%. 

(4) For each set of population means, the prob- 
ability that c/e  2 p is at least 95%. 

(5) (t, c/e] is a 95% confidence interval for p. 

DISCUSSION 

The above procedure has provided, in an element- 
ary manner, a confidence interval that satisfies all 
the formal statistical requirements. The method 
can easily be extended to other distributions for 
costs and effects than the normal distribution, and 
is applicable irrespective of the correlation 
between costs and effects. In return for its sim- 
plicity and general validity, however, the method 
is conservative. That is, it ‘gives up power’ by 
taking large confidence intervals. If much data is 
available, little is lost. In other cases, however, 
refinements of the procedure may be warranted. 
This is a topic for future research. 

One obvious way to refine our procedure is as 
follows. To obtain a 95% confidence interval for 
the C / E  ratio, one can take other confidence levels 
than 97.5% for the ( t , c ]  interval and for the 
[e, +) interval. For instance, one can, on the basis 
of prior knowledge, take a 99% confidence level 
for the (t, c] interval and a 96% confidence level 
for the [ e , ~ )  interval. Thus one can find the 
optimal level of distributing the 5% 
‘unconfidence’ over costs and effects, where 
optimal means that the most tight confidence 
interval with the lowest upper bound c / e  is 
obtained. This is discussed further in the simu- 
lation below (see Table 1). 

First we show that our method is conservative, 
in particular for the case of few data containing 
much variation. Such a case was analyzed by 
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[H].13 [HI l 3  studied the cost-effectiveness ratio for 
data collected in a phase I1 trial addressing the 
value of IL-lra in treating sepsis. As usual, costs 
and effects relate here to incremental costs and 
effects. Both treatments, To the ‘placebo treat- 
ment’, and T I  the ‘high-dose treatment’, 
concerned groups of 25 ( = N o = N , )  patients. 
These numbers are quite small, and in addition the 
distance of averages from 0, measured in standard 
deviations, were large (approximately 2.27 for 
costs and 0.24 for effects, i.e. number of lives 
saved). Although the number of patients is rather 
small, the results suffice to significantly distinguish 
effects from 0, so a C / E  analysis can be meaning- 
ful. The 95% confidence interval that results from 
our method is (c, 224,5141, which is much more 
prudent (i.e., wider) than the C/E acceptability 
curve ( t ,42,000]  obtained in [V].’3 Our method 
requires more data before high levels of accuracy 
are claimed. 

SIMULATION 

To further illustrate the features of our method, 
and show that it provides good accuracy if more 
data is available, we present the results of a simu- 
lation, illustrated in Tables 1 and 2. 

The default values in the simulation are: N ,  = 40, 
No = 60, y1 = 40,000, yo = 30,000 (hence 
y =  lO,OOO), = 60, E~ = 50 (hence E = 10). Further 
we assume that o1 = 5500/62 and oo = 5000/62 are 
default standard deviations for costs, zI = 1.2/62 
and zo= 1/62 are default standard deviations for 

Table 1. 

effects, and the correlations between costs and 
effects are ill = -0.2, A, = -0.3. In all cases consid- 
ered, the true C/E ratio is 10,000/10= 1,000. 
Deviations from the default values have been 
indicated in the left columns of the tables. 

In the tables, the ‘95%-CI-ub’ column describes 
the upper bound of the confidence interval that our 
method provides for the C / E  ratio, i.e. the interval 
is (t, c/e] where c/e  is the value in the column. 
Obviously, for the true C / E  ratio 1,000 to be 
contained in the confidence interval, c/e  should be 
greater than 1,000. The closer c / e  is to 1000, the 
more accurate is the estimate. 

The columns %C and %E describe the allo- 
cation of unconfidence liberty over costs and 
effects. For instance, in the first row in Table 2, 
describing the default values, we used 96% as the 
level of confidence for (c, c], and for [e, +) the 
level of confidence was 99%. These numbers are 
further discussed below, and still yield a 95% level 
of confidence for the C / E  ratio. 

One more aspect must be explained. Our simu- 
lation results are not based on single simulations, 
but in each case on 10,000 independently repeated 
simulations, and the c/e values in the 95%-CI-ub 
column are averages over those 10,000 repetitions. 
We also give the standard deviations over those 
10,000 repetitions of the c / e  values in the adjac- 
ent column. Finally, the column Err.% (‘error 
percentage’) gives the percentage of cases in those 
10,000 repetitions of the simulation where the 
confidence interval was distorted to such a degree 
that the true C / E  ratio 1,000 was not contained in 
the confidence interval. For a 95% confidence 

non-default %C %E 95%-CI-~b S.D. Inacc. Err.% 

99.5% 
99.0% 
98.0% 
97.5% 
97.0% 
96.0% 
95.5% 
99.5% 
99.0% 
98.0% 
97.5% 
97.0% 
96.0% 
95.5% 

tl = 5.5 162, to = 5/62 
tl = 5.5 162, r0 = 5 162 
tI = 5.5 162, to = 5 162 
tl = 5.5 162, r0 = 5 162 
Z, = 5.5 162, r0 = 5 142 
tl = 5.5 162, r0 = 5 142 
t, = 5.5 162, r0 = 5 162 

95.5% 
96.0% 
97.0% 
97.5% 
98.0% 
99.0% 
99.5% 
95.5% 
96.0% 
97.0% 
97.5% 
98.0% 
99.0% 
99.5% 

1232.12 
1213.71 
1195.00 
1189.09 
1184.75 
1179.84 
1180.34 
1386.73 
137 1.64 
1363.53 
1364.8 1 
1369.59 
1392.62 
1420.96 

87.09 
86.77 
86.57 
86.56 
86.60 
86.87 
87.22 

170.28 
169.87 
171.27 
172.68 
174.71 
181.59 
188.98 

1.232 0.31% 
1.214 0.58% 
1.195 1.02% 
1.189 1.22% 
1.185 1.40% 
1.180 1.71% 
1.180 1.71% 
1.387 0.34% 
1.372 0.44% 
1.364 0.61% 
1.365 0.62% 
1.370 0.61% 
1.393 0.45% 
1.421 0.36% 
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Table 2. 

non-default %C %E 95 %-CI-ub S.D. Em.% 

96.0% 
t, = 5.5142, to = 5/42 98.0% 

N, =N0=200 96.0% 
N, = 10, No= 15 96.0% 
1, = 10 = -0.95 96.0% 
1, = a, = 0 96.0% 
a,  = a, = +0.95 96.0% 

std/8 95.5% 

99.0% 
97.0% 
99.5% 
99.0% 
99.0% 
99.0% 
99.0% 
99.0% 

1179.84 
1363.53 
102 1.57 
1087.60 
1368.15 
1180.23 
1179.29 
1177.31 

86.87 
171.27 
10.36 
41.63 

190.11 
100.85 
81.91 
63.04 

1.71% 
0.61% 
1.85% 
1.47% 
2.24% 
3.30% 
1.38% 
0.29% 

interval, this number should never exceed 5%; 
indeed it never does in the simulations. 

The first row in Table 2 describes the results for 
the default parameters in our simulation. The error 
percentage is 1.71%, which is clearly below the 
upper bound of 5%. The interpretation and discus- 
sion of the percentage is somewhat subtle, and is 
as follows. The value of 1.71% may suggest that 
our method is too prudent, i.e. that a level of 
confidence higher than 95% could have been 
claimed, possibly even 100 - 1.71% = 98.29%. 
Such a claim cannot, however, be based on the 
simulation. It should be kept in mind that in prac- 
tice the confidence interval is derived solely from 
the observed costs and effects, without knowledge 
of the true parameters (population averages), in 
particular of the true C / E  ratio 1000. The 
confidence restriction should not only be satisfied 
for one set of parameters as verified in our simu- 
lation, but for all possible values of the 
population averages. Therefore the error percen- 
tage 1.71% only yields an upper bound of 98.29% 
to the true level of confidence, and the latter may 
necessarily be lower. The error percentage 3.3% in 
the column with 1, = A o =  -0.95 shows that in 
general not much more confidence can be claimed 
for the confidence intervals than 95%. 

Table 1 illustrates different allocations of the 
5% ‘unconfidence’ over costs and effects. It shows 
that for the default values the optimal allocation, 
giving optimal accuracy, is obtained under a 96/99 
allocation, where most of the unconfidence liberty 
is assigned to costs. The table also presents differ- 
ent allocations of ‘unconfidence’ if other, larger, 
standard deviations z, and to are taken for effects. 
The ‘true’ average costs y and average effects E are 
now both at a distance of two standard deviations 
from 0. It turns out that the optimal allocation is 
now 98/97, i.e. somewhat more unconfidence 

liberty is allocated to the effects. 
In general, it can be expected that most 

unconfidence liberty should be allocated to the 
variable (cost, effect) that is closest to 0 in terms 
of standard deviation units. The reason is that 
small absolute distortions have the largest relative 
effects for that variable, and the relative effect is 
relevant in the quotient C/E.  This might suggest 
that 97.5/97.5 would be the optimal allocation for 
the z values that deviate from the default values. 
However, it is optimal to assign some more liberty 
to effects, because their critical levels concern 
underestimations, and for those absolute errors 
generate larger relative errors than for overestima- 
tions as leading to critical values for costs. This 
explains the 98/97 finding above where it was 
optimal to allocate some more unconfidence liberty 
to effects. 

In Table 2, only the optimal allocations of 
unconfidence liberty have been given, and these 
have been given for some deviations from the 
default parameter values. Pn the row indicated by 
std/8, all the standard deviations o,, u0, z,, zo 
have been divided by 8, so that costs and effects 
are farther remote from 0, when measured in 
standard-deviation units. It means that there is less 
relative variation in the data, and the upper bound 
of the interval is more accurate (1,022 instead of 
1,180). The effect of sampling variability is also 
reflected in confidence intervals based on different 
numbers of observed patients. This may be seen 
by taking N ,  = No = 200 (see again Table 2). The 
greater number of observations can be expected to 
give more reliable information, and indeed the 
upper bound then is more accurate, i.e. it is 1,088. 
If we take a smaller number of observations 
( N ,  = 10 and No = 15 in Table 2) then the upper 
bound is 1,368, so it is larger and hence worse. 
The change in standard deviation and the change in 
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number of observations have a smaller effect on 
the error percentage. 

The last rows in Table 2 illustrate variations of 
correlations between costs and effects. The correla- 
tions chosen represent extremes. Results from other 
combinations in the range -0.95 to 0.95 would give 
results between those shown. The changes in corre- 
lation do not affect the accuracy, but determine the 
error percentage. The most critical case for the error 
percentage occurs for highly negative correlation. 
This can be explained as follows. If the correlation 
between costs and effects is negative, then high 
costs go together with low effects. Both higher costs 
and lower effects lead to an increase of the C / E  
ratio. That is, their effects on the C / E  ratio reinforce 
each other. Thus sampling variability then favours 
an increase in the C / E  variability due to negative 
correlation. This is reflected in the error percen- 
tages, that are larger as correlations are more 
negative. Note that for the very negative correla- 
tions, -0.95, the observed error percentage is 3.3%, 
which is not very far from 5%. This is relevant to 
the question of whether our method is overprudent. 
It illustrates that, in general, without further infor- 
mation about correlations etc., the maximal level of 
confidence that can be claimed is not much higher 
than our 95%. It also suggests that, based on estima- 
tions of the correlations, our method could be 
refined. If the estimates of correlations are positive, 
higher levels of confidence may be claimed, or 
lower upper bounds to the confidence intervals 
taken. Obviously, the described refinement would 
make our method less tractable, and is a topic for 
future research. 

Summarizing: 
The optimal accuracy (most narrow interval) 
is obtained if most of the ‘unconfidence’ 
liberty is allocated to the variable that, in 
terms of units of standard deviations, is 
closest to 0 (where somewhat more 
unconfidence liberty can be given to effects). 
The accuracy is improved i f  
(i) The number of patients is increased; 
(ii) The standard deviations are decreased. 
The error probability decreases i f  
(iii) The correlation between costs and effects 

becomes more positive. 

intervals for cost/effectiveness ratios. The method 
is conservative if few data are available, but is 
elementary and easy to apply. Our paper also 
suggests that cost/effectiveness ratios are useful 
quantities only if it can be reliably concluded from 
the data whether the effects of a new treatment are 
strictly more positive than the effects of a tra- 
ditional treatment, or whether the effects are 
strictly more negative. 
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