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 T his paper discusses the history and interrelations of three central ideas in preference theory:

 the independence condition in decision under risk, the sure-thing principle in decision

 under uncertainty, and conjoint independence for multiattribute decisions and consumer theory.

 Independence was recognized as an important component of decision under risk in the late

 1940s by Jacob Marschak, John Nash, Herman Rubin, and Norman Dalkey, and first appeared
 in publication in Marschak (1950) and Nash (1950). The sure-thing principle can be credited

 to Savage (1953, 1954). Conjoint independence for consumer theory was introduced by Sono

 (1943) and Leontief (1947a, b); a form of it can also be recognized in Samuelson (1947),

 presented earlier in Samuelson (1940).

 Independence and the sure-thing principle are equivalent for decision under risk, but in a

 less elementary way than has sometimes been thought. The sure-thing principle for decision

 under uncertainty and conjoint independence are identical in a mathematical sense.

 The mathematics underlying our three preference conditions has an older history. The in-

 dependence condition for decision under risk can be recognized in the characterization of "as-

 sociative means," and conjoint independence for multiattribute decisions in solutions to the

 "generalized associativity functional equation."

 (Expected Utility; Independence Condition; Conjoint Independence; History of Utility Theory)

 1. Introduction
 The most important idea in the theory of decision under

 risk and uncertainty is the "independence condition"

 that requires separability of preferences across disjoint

 events. Its basic idea is illustrated by the following in-

 formal example for decision under uncertainty sug-

 gested by Savage (1954, p. 21). Suppose that a busi-

 nessman would prefer buying a piece of property if the

 Republican candidate wins the next election, and also

 if the Democratic candidate wins. Then independence

 asserts that the businessman should buy the property

 even though he does not know who will win the elec-

 tion. At first sight, the condition seems compelling as a

 normative principle. Nevertheless, the famous Allais

 and Ellsberg paradoxes have called it into question. In-

 dependence has been staunchly defended by some and

 severely criticized and modified by others, but it is sel-

 dom ignored.

 Our discussion of independence begins in the context

 of decision under risk, then expands into decision under

 uncertainty and consumer preferences. We reconstruct

 the history of their introductions and explore relation-

 ships among them that will facilitate a deeper under-

 standing of their origins.

 For decision under risk, independence originated as

 a supplement to the utility theory in von Neumann and

 Morgenstern (1944, 1947, 1953; henceforth vNM1).

 The condition was not mentioned explicitly in vNM,

 and its absence caused great confusion. This confusion

 ' All citations are taken from the third edition of 1953; this edition

 still did not mention independence explicitly.
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 Independence Coniditioni for Preferences

 was resolved by Malinvaud (1952). He observed that

 independence is automatically satisfied in the vNM for-

 mulation because von Neumann and Morgenstern ap-

 plied probabilistic mixing to indifference classes rather

 than to single lotteries. Independence then follows from

 a standard mathematical principle of transferring op-

 erations from elements (lotteries) to equivalence classes

 (indifference classes of lotteries). This had been pointed

 out earlier, in Dalkey (1949), but his contribution went

 largely unnoticed.

 Independence, in all its simplicity and subtlety, has

 been the most central idea in risk theory since mid-

 century. It underlies expected utility and the decision

 analysis technologies based on expected utility (Keeney

 and Raiffa 1976, Howard and Matheson 1984, Lau et

 al. 1983, von Winterfeldt and Edwards 1986, Clemen

 1991). These technologies can be justified only if in-

 dependence can be justified.

 Opponents of expected utility often direct their crit-

 icism toward independence and base alternative models

 on weakenings of the independence condition. For ex-

 ample, the betweenness models in nonexpected utility,

 developed by Chew (1983) and Fishburn (1983), im-

 pose independence only within each indifference class;

 the rank-dependent models initiated by Quiggin (1982)

 and Schmeidler (1989, 1982) impose independence only

 within rank-ordered subsets. Variations on indepen-

 dence have also led to new approaches for dynamic

 decisions. Luce and Narens (1985), Machina (1989),

 McClennen (1990), Luce (1990), Segal (1990), Epstein

 (1992), Karni and Safra (1990), and Sarin and Wakker

 (1993a, b) split up independence into a few dynamic

 principles and then discard the principle that seems least

 tenable. The alternatives to expected utility have been

 developed primarily for descriptive rather than nor-

 mative purposes because of widespread demonstrations

 of the fallibility of independence as a behavioral pre-

 dictor. General surveys of nonexpected utility include

 Machina (1987), Fishburn (1988), and Camerer and

 Weber (1992). The normative status of nonexpected

 utility models that violate independence is the central

 theme in Edwards (1992). We will not describe in fur-

 ther detail the recent developments and variations of

 independence but will concentrate on its origins.

 Our exposition of the history of independence begins

 in ?2 with its absence from vNM. Sections 3 and 4 out-

 line the history of independence for decision under risk

 in so far as we have been able to reconstruct it from

 published and unpublished materials, correspondence

 between principals at the time it arose, and conversa-

 tions with those who are still with us. These sections

 concentrate on 1948-1952, a period whose history with

 regard to independence is not well known. Section 3

 focuses on 1948-1950, when the independence con-

 dition for decision under risk came into being. Section

 4 describes events in 1950-1952, when Paul Samuelson

 and L. J. (Jimmie) Savage entered the scene, and Savage

 developed his sure-thing principle that adapts inde-

 pendence to decision under uncertainty.

 Because the independence condition for risk overlaps

 similar ideas from other contexts, including a separa-

 bility condition from consumer demand theory, our ac-

 count of the origin of independence requires consid-

 eration of those ideas and their origins. The discussion

 of interrelationships begins in ?5, which describes the
 sure-thing principle for decision under uncertainty. It

 is shown that this principle does not imply expected-

 utility maximization unless additional conditions are

 assumed. Section 6 applies the sure-thing principle to

 decision under risk and demonstrates there that it is

 tantamount to independence and thus to expected-

 utility maximization.

 Section 7 describes conjoint independence in con-

 sumer demand theory and multicriteria decisions. This

 version of independence is best known from the con-

 tributions of Debreu (1960) and Luce and Tukey (1964)

 but had important precursors in Samuelson (1940,

 1947), Sono (1943), and Leontief (1947a, b). It has

 been called "preferential independence" (Keeney and

 Raiffa 1976) and "strong separability" and "coordinate

 independence" (Wakker 1989), among other things. We

 refer to this type of independence as "conjoint inde-

 pendence" because it concerns choice alternatives that

 consist of several coordinates, attributes, or components.

 Conjoint independence says that preference between

 two choice alternatives that have common values on

 some coordinates should not depend on the levels of

 those common values. We relate conjoint independence

 to independence conditions of previous sections and

 sketch its history. As we shall see, conjoint indepen-

 dence is the oldest of our three versions and encom-

 passes the others as special cases.
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 The mathematics underlying the above results had

 been developed earlier in characterizations of the

 "generalized associative functional equation" and of

 "associative generalized means." For instance, the

 expected-utility result of von Neumann and Morgen-

 stern (1944) can already be recognized in Nagumo

 (1930) and Kolmogorov (1930). We discuss the math-

 ematical background in the appendix.

 2. The Absence of Independence in
 vNM's Utility Analysis

 Decision science terminology had not yet been stan-

 dardized when von Neumann and Morgenstern pre-

 sented their utility theory. In the terminology of vNM

 (3.3.3) "events . . . were used . . . as the substratum

 of preferences," i.e., events are what we call conse-

 quences or lotteries. Utilities in the vNM sense are not

 real numbers but have a one-to-one correspondence

 with indifference classes of lotteries. When utilities in

 the vNM sense are identified with indifference classes,

 the vNM theory can be readily understood from the

 modern perspective. Several authors have discussed

 whether a vNM numerical utility should be interpreted

 as "the" cardinal utility, long searched for by econo-

 mists, that measures strength of preference, or whether

 it should be considered a new type of utility. We avoid

 this issue here but note recent discussions in Fishburn

 (1989) and Wakker (1994, ?2).
 Part of the intuition of independence is found in

 vNM, p. 18, lines 3 and 4, where "alternatives" des-

 ignate lotteries P and Q in a probabilistic mixture XP

 + (1 - X)Q:

 We stress that the two alternatives are mutually exclusive, so

 that no possibility of complementarity and the like exists.

 Independence can indeed be interpreted as the exclusion

 of any effect of complementarity, or its opposite, sub-

 stitutability.2 The crucial lines are at the beginning of

 vNM ?3.4.2, where independence is introduced implic-
 itly by transferring the probability mixture operation

 2 Complementarity occurs, for instance, if the value of a number of

 left shoes increases (up to a point) as the number of right shoes in-

 creases; substitutability occurs if the value of a number of apples

 decreases as the number of pears increases.

 from lotteries ("events") to indifference classes of lot-

 teries ("utilities"):

 . . . We have assumed only one thing-and for this there is

 good empirical evidence-namely that imagined events can

 be combined with probabilities. And therefore the same must

 be assumed for the utilities attached to them,-whatever they

 may be.

 Von Neumann and Morgenstern compare this to well-

 established physical quantities. For example, mass can

 be endowed with an addition operation corresponding

 to a physical joining of objects. A necessary prerequisite

 for the meaningfulness of addition for masses is that

 mass (A-joined-with-B), which is to be equal to mass (A)

 + mass (B), does not change if object A is replaced by

 an object A' that has the same mass as A. This is not

 trivial or a priori true, but has been established empir-

 ically and is beyond dispute. However, things are quite

 different for the mixture operation on utilities. To ex-

 plain this, we denote indifference classes of lotteries by

 square brackets so that [P] is the class of all lotteries

 indifferent to lottery P. For the mixture operation on

 indifference classes of lotteries to be meaningful, it is

 necessary that [XP + (1 - X)Q], which is to be equal

 to X[P] + (1 - X)[Q], does not change if lottery P is

 replaced by a lottery P' that is from the same indifference

 class. In other words, for all lotteries P, P', Q, and
 O < X < 1,

 P P'== XP+ (1 - X)Q - XP'+ (1 - X)Q, (2.1)

 where - denotes indifference. This substitution prin-

 ciple is one version of the independence condition. It

 lacks the empirical status of the analogous condition

 for addition of masses as current literature in the field

 of risk amply demonstrates. Related versions of inde-

 pendence are, for 0 < X < 1,

 P >= P' == XP + ( 1 - X)Q

 > XP' + (1-X)Q, and (2.2)

 P >- P'==> XP + (1 - X)Q >- XP' + (1 - X)Q, (2.3)

 where >= denotes preference-or-indifference and >- is

 the strict preference relation. Our use of independence

 for decision under risk refers to any or all of (2.1)-

 (2.3), which are equivalent to one another in the pres-

 ence of suitable ordering and continuity conditions.
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 However, in the present section and the next, "inde-

 pendence" refers primarily to (2.1).

 The substitution condition for mass and condition

 (2.1) for indifference are special instances of a general

 mathematical principle. The principle refers to a set of

 objects endowed with an operation and an equivalence

 relation. The operation can be transferred from objects

 to equivalence classes only if a compatibility condition

 of the following sort is satisfied: if the operation is ap-

 plied to a number of elements, then replacing any ele-

 ment by an equivalent one should not affect the equiv-

 alence class resulting from the operation. In risk theory

 the objects are lotteries, the operation is probabilistic

 mixing, and the equivalence relation is indifference. In-

 dependence condition (2.1) is the described mathe-

 matical principle for our particular application.

 In the preface to the third edition of 1953, vNM points

 out on page viii:

 In particular our discussion and selection of "natural opera-

 tions" in those sections covers what seems to us the relevant

 substrate of the Samuelson-Malinvaud "independence axiom."

 Part of the idea of independence reappears in Condi-

 tions 3:B:a* and 3:B:b* of vNM where "quasi-

 concavity" and "quasi-convexity" of preferences with

 respect to probability mixtures are imposed. These con-

 ditions are weaker than independence but convey some

 of its intuition. vNM justifies the two conditions by ref-

 erence to the exclusion of complementarity and substi-

 tutability, as cited above.

 We emphasize that the analysis of vNM is mathe-

 matically correct. However, as recognized in Marschak

 (1950, end of 44.1), the choice of indifference classes

 ("utilities") as primitive in their axiomatic system is un-

 fortunate because lotteries, and not indifference classes

 of lotteries, are the natural empirical primitives.

 3. Independence for Expected
 Utility: The Early Years

 The independence condition for preference in decision

 under risk emerged at the end of the 1 940s, when people

 became aware that independence was a necessary con-

 sequence of expected-utility maximization. Arrow

 (1991a) writes:

 My understanding was derived from various discussions in the

 corridors of Rand (including Dalkey) and also with Herman

 Rubin and Jimmie Savage.

 Samuelson (1952, footnote on p. 673) mentions "Mar-

 schak, Nash, Dalkey, and others" in connection with

 independence, and Arrow (1991b) assigns a consider-

 able role to Rubin and Chernoff. We describe contri-

 butions of Marschak, Nash, Rubin, Dalkey, and Cher-

 noff in this section, and of Samuelson, Savage, and

 Malinvaud in the next.

 The first published statements of the independence

 condition for lotteries appeared in Marschak (1950,

 Postulate IV) and Nash (1950) in the same issue of

 Ecolornetrica. Both used (2.1), and Nash extended this

 to include general substitution of indifferent lotteries in

 preference statements. Marschak's paper neither ref-

 erences another source for the independence idea nor

 lays claim to its originality. This suggests that the con-

 dition's necessity was common knowledge among Mar-

 schak and his colleagues. Moreover, it could hardly have

 been foreseen that this supplement to the theory in vNM

 would play such a central role in the future of decision

 under risk. Marschak (1950, Part VII) came close to

 understanding how vNM implicitly subsumed inde-

 pendence, but did not pin it down precisely. Marschak

 (1951) also discussed independence and showed its ne-

 cessity for expected-utility maximization.

 Nash (1950), a classic in game theory, presented the

 independence condition (item 5, p. 156) as a general

 substitution principle that includes (2.1). Like Mar-

 schak, Nash does not refer to another source for inde-

 pendence and does not claim novelty. He announces

 without proof the use of a numerical utility "of the type

 developed in Theory of Games" and does not mention

 the absence of independence in vNM.

 Rubin (1949a, p. 1051, 1. 6/7; 1949b, Axiom IV)

 introduced independence condition (2.2) in the stronger

 "if and only if " form. These two papers had a different

 and more premature status than the papers of Marschak

 and Nash in that Rubin (1949a) was an abstract of a

 lecture and Rubin (1949b) was a working paper. It

 should be noted that the first version of Marschak's

 paper appeared as a working paper in 1948 and that

 Marschak (1949) is an abstract of his work; see Footnote
 1 in Marschak (1950). The published version of Mar-

 schak's paper refers to Rubin (1949b) as an alternative

 approach. After nearly 40 years, Rubin published an
 elaborated and generalized version of his earlier ideas

 (Rubin 1987). In this paper the independence axiom is
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 reformulated for choice functions rather than for pref-

 erence relations as in his earlier two papers. Remarkably,

 Rubin not only considered probability distributions over

 consequences, but also incorporated "states of nature,"

 as in the basic model of ?5 below. Rubin's approach
 considers "acts" as functions that assign to each state

 of nature a probability distribution over consequences

 and derives a predecessor of the well-known theorem

 of Anscombe and Aumann (1963).

 Dalkey (1949) may have been the first to understand

 how independence was subsumed in the analysis of

 vNM. We give two citations from Dalkey's page 3:

 Hence, the utilities of TG3 must be abstract entities. A possible

 interpretation-adopted in the following-is that utilities are

 the indifference classes of objects or commodities.

 Strictly speaking, this interpretation of utilities would require

 further axiomatization; in particular, it would require an axiom

 to the effect that if two different objects A, B have the same

 utility, then the options [A, C, a],4 [B, C, a] with a third object
 C, also have the same utility (belong to the same indifference

 class).

 These citations clearly explain "utility" as used in vNM,

 make independence explicit, and show how it is in-

 volved behind the scenes in the vNM formulation. On

 page 4 Dalkey cites the argument of vNM that two

 "possibilities" (lotteries) in an option (mixed lottery)

 are exclusive and that there could be no complemen-

 tarity between them. This is the argument for indepen-

 dence advanced later by Samuelson. (1952). Marschak

 (1951, ?3.5) also invoked the argument.
 We mention here the work of Chernoff although it

 deals with decision under uncertainty, the topic of ?5.
 Chernoff (1954, first version 1949; see also Chernoff

 1950) assumed that utility, to be maximized according

 to the expectation principle, was given in advance. He

 then derived maximization of expected utility for equally

 likely states for the decision-under-uncertainty context.

 The verbal description of his Postulate 8 (for which he

 credits Rubin) is close to independence. Its formal de-

 scription, however, mixes consequences instead of

 probabilities and concerns maximization of expected

 value. Chernoff 's strong assumption that utilities are

 3That is, our vNM: TG = "Theory of Games."

 4[A, C, a] denotes "A with probability a, C with probability 1 - a."

 known in advance obliterates the difference between

 the verbal and formal description of his Postulate 8.

 4. Independence for Expected
 Utility: Samuelson and Savage

 Samuelson and Savage made important contributions

 to the idea of independence but entered the scene a bit

 later. Samuelson (1991) credited Marschak for being

 the first to point out to him the independence axiom.

 This occurred in 1950. Samuelson himself proposed the

 phrase "strong independence," probably in analogy to

 a similar condition that leads to additive utilities in con-

 sumer demand theory (Samuelson 1947, p. 174-180).

 The latter condition was stated in terms of a representing

 function rather than in terms of preferences. A

 preference-based version will be discussed in ?7.
 In an ensuing correspondence with Savage in 1950,

 Samuelson convinced Savage that the independence

 condition was needed in full strength to imply expected-

 utility maximization and that, contrary to a claim in

 Friedman and Savage (1948), quasi-concavity and

 quasi-convexity of preferences alone was insufficient.

 Savage (1951, footnote 3 on p. 57) credits Samuelson

 for this. In return, Savage convinced Samuelson, at first

 by means of a book-making argument, that expected-

 utility maximization and the independence axiom were

 normatively appealing. Samuelson credits Savage for

 this in several places, including the Postscript to Sam-

 uelson (1950) as added in Stiglitz (1966, Chapter 12).

 Samuelson subsequently found an argument for inde-

 pendence based on mutual exclusiveness of disjoint

 events that he considered more convincing than the

 book-making argument. This took place in the summer

 of 1950. We cite from Samuelson (1952, p. 672):5

 Prior to 1950, I hesitated to go much farther. But much brooding

 over the magic words "mutually-exclusive" convinced me that

 there was much to be said for a further "strong independence

 axiom." . . . This is simply a version of what Dr. Savage calls

 the "sure-thing principle."

 As mentioned above, the "mutually-exclusive" qualifier

 had been used previously in vNM. Shortly thereafter,

 and certainly by 1952, Savage transformed the inde-

 5 See also Samuelson (1953, p. 130).
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 pendence condition into its purest and most salient form

 as the "sure-thing principle."

 The contribution of Samuelson first appeared in

 Samuelson (1952, 1953), and that of Savage6 in Weyl

 and Bell (1952, Condition 2 on p. 3), Savage (1953,

 Axiom 5), and partly in Friedman and Savage (1952,

 p. 469). Both Weyl and Bell (1952) and Savage (1953)

 are based on Savage's presentation at the international

 Colloquium on the Foundations and Applications of the

 Theory of Risk, held from May 12 to May 17, 1952, in

 Paris.

 It appears that Savage was not influenced by the log-

 ically equivalent condition of conjoint independence or

 separability in consumer demand theory, a condition

 with an older history as discussed below in ?7. Savage
 credits de Finetti as influential; Postulate 4 of ?13 of de
 Finetti (1931a) introduces an additivity axiom for qual-

 itative probability that is identical to the sure-thing

 principle when there are only two consequences.

 The paper of those days that has drawn the most

 attention is Samuelson's (1952) contribution in the

 Econometrica discussion on independence, which was

 actually written after Samuelson (1953). Several au-

 thors have subsequently and incorrectly ascribed the

 invention of independence to Samuelson (1952). One

 reason may have been that the editorial note in Econ-

 ometrica (1952, p. 661) attributed the condition to Sam-

 uelson, and Samuelson (1952) himself described in-

 dependence as arising from discussions with others

 without explicitly referring to the 1950 papers of Mar-

 schak and Nash. This applies also to Samuelson (1953),

 which along with Samuelson (1952) named Dalkey,

 Marschak, and Nash. Perhaps their papers were not

 referenced in Samuelson's Econometrica discussion be-

 cause Manne (1952) had already cited Marschak

 (1950). Savage (1954) also did not refer to Marschak

 or Nash, but Arrow (1951, p. 424) cited Marschak

 (1950) as a "simplified treatment" of the vNM utility

 theory. Samuelson (1977, p. 48) writes:

 Savage and Marschak, better than von Neumann-Morgenstern

 or Menger, address themselves to these questions along lines

 6 Savage ( 1951 ) says nothing about independence or the sure-thing
 principle. On p. 58 he describes "monotonicity." This is further dis-

 cussed at the end of our ?7.

 implicit in Ramsey [. . ., 1931] and involving what are called

 various "independence axioms" in Samuelson [. . ., 1952].

 Ellsberg (1954, p. 544) says that the independence ax-

 iom is Samuelson's invention, although on page 538 he

 refers also to Marschak (1950).

 While Marschak, Samuelson, and others suspected

 that von Neumann and Morgenstern avoided the in-

 dependence condition because it was implicit in their

 formulation, it seems that this became generally un-

 derstood only after the presentation of Samuelson

 (1953) at the 1952 Paris colloquium. As we noted above,

 independence was implied when vNM transferred the

 mixture operation from lotteries to indifference classes

 of lotteries. While already recognized by Dalkey (1949),

 Malinvaud (1952) is the first published work to make

 this explicit.

 The history after 1952 is well known. Herstein and

 Milnor (1953) give an efficient axiomatization of ex-

 pected utility which assumes independence condition

 (2.1) only for X = 4. Savage (1954, first five chapters)
 used the sure-thing principle to obtain his path-breaking

 axiomatization of subjective expected utility maximi-

 zation. In doing this, Savage generalized the results of

 von Neumann and Morgenstern and of Marschak by

 not assuming that probabilities were given primitives.

 Jensen (1967) presented the version of vNM's theorem

 that is most popular today. It uses the strict-preference

 independence condition (2.3) along with an appealing

 continuity axiom. Later refinements and generalizations

 are described in Fishburn (1982).

 The 1952 conference in Paris also gave birth to Maur-

 ice Allais' famous examples that criticize the indepen-

 dence condition. Although this criticism received little

 attention at first, it was pursued in Allais and Hagen

 (1979), Kahneman and Tversky (1979), and Machina

 (1982) and is now a main theme in risk theory. One

 version of an Allais paradox for preferences is

 M >- (0.98, 5M) and (0.0098, 5M) >- (0.01, M),

 where M denotes 100 million dollars and (X, X) is the

 lottery that pays X with probability X and $0 otherwise.

 The given preferences violate (2.3) by the substitutions

 P = M, P' = (0.98,5M), Q = $0, and X = 0.01. According

 to Allais, most people express the given preferences.

 MANAGEMENT SCIENCE/VOL. 41, No. 7, July 1995 1135

This content downloaded from 130.115.158.153 on Thu, 10 Nov 2016 15:34:35 UTC
All use subject to http://about.jstor.org/terms



 FISHBURN AND WAKKER

 Inidepenidenice Coniditioni for Preferenices

 5. Savage's Sure-thing Principle for
 Decision Under Uncertainty

 This and subsequent sections discuss conditions related

 to independence for risk as described by (2.1)-(2.3).

 This section studies Savage's sure-thing principle in the

 general context of decision under uncertainty, where it

 is not sufficiently strong to imply expected-utility max-

 imization. The next section describes an equivalence

 between independence and the sure-thing principle for

 decision under risk, and ?7 brings conjoint indepen-
 dence into the picture.

 In decision under uncertainty (DUU), uncertainty is

 not described initially by probabilities, but by a state

 space S. For example, if the uncertainty concerns which

 of three participating horses will win a race and si de-

 notes the state that horse i wins, then S = { S1, S2, S3 } -
 Exactly one state is true, the other states are not true,

 and the decision maker is uncertain about which state

 is true. Subsets of S are called events. In the example,

 { S1, S2 } is the event that either the first or the second
 horse wins.

 Let 9 denote the set of all decision alternatives, called

 acts, that the decision maker could face, and let X be

 the set of consequences, i.e., possible outcomes of de-
 cisions after the uncertainty about the true state has

 been resolved. Formally, an act f in JI is a function from

 S to X, specifying for each state s the consequence f (s)

 that results if act f is chosen and state s is the true state.
 For simplicity we assume that consequences in X are

 monetary amounts in an interval [0, M *] and refer to

 acts as ganibles. The term lottery will continue to be

 used as a probability distribution over consequences.

 We denote by >= the decision maker's binary is pre-

 ferred or indifferent to relation on Ji. Throughout we as-

 sume that >= is complete (f >= g or g >= f for all gambles

 f, g) and transitive. Standard continuity conditions for

 > are also presumed; they need not be made explicit

 in this analysis. We say that a function V: JI -* lR rep-
 resents the preference relation >= if for all f and g in Ji,

 f > g== V(f ) ? V(g) .

 Hence more-preferred gambles have greater V values.

 The idea behind Savage's sure-thing principle is that

 a choice between gambles f and g should depend only

 on states for which f(s) = g(s): states for which the

 gambles yield identical consequences should not play

 a role in the decision. Suppose in the horse-race example

 that the decision maker must choose between gambles

 f and g, where for the first horse both gambles yield

 $3; see Figure 1. Because it does not matter which choice

 is made if the first horse wins, the sure-thing principle

 says that the choice should depend only on the pay-

 ments for the second and third horses. Suppose the

 decision-maker prefers f over g. If the $3 payment for

 s, is changed to $4 for both f and g, but the S2 and S3
 payments are unchanged, then the choice should not

 change. This means that f ' >= g' if f >= g in Figure 1.

 Formally, the sure-thing principle says that a prefer-

 ence between two gambles is independent of the states

 in which the two yield identical consequences. So it

 requires f >= g 4f ' >= g' whenever S can be partitioned
 into two parts-I (the "irrelevant" event) and R (the

 "relevant" event)-such that, on I, f = g and f ' = g',
 and on R, f = f' and g = g'. When probabilities are

 assigned to states, expected-utility maximization implies

 the sure-thing principle because the parts of the ex-

 pected utilities of f and g or of f' and g' related to event

 I cancel.

 An Allais-type example that challenges the sure-thing

 principle is illustrated by Figure 2. We have taken the

 liberty here of associating states with probabilities in a

 particular alignment and recasting an Allais paradox

 (preceding section) in Savage's format. This mimics the

 way that Savage himself (Savage 1954, p. 103) viewed

 Allais' paradox. However, this is justified only if one

 adopts an axiom like the DUR-Assumption described

 in the next section. In the example, M denotes 100 mil-

 lion dollars, and it is assumed that state probabilities

 are known. Many people prefer f to g, but when the

 Figure 1 The Sure-thing Principle. Iff f g then f ' 2 g'.

 I R R

 S, Si S3

 f 3 0 7
 g 3 1 5

 f' 4 0 7
 g 4 1 5
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 Figure 2 Allais Paradox

 state probabilities: 0.89 0.10 0.01

 I R R

 SI 52 53

 f 0 5M 0
 g 0 LM 1M

 f 1M 5M 0

 9 IM 1M IM

 common consequence under s1 is changed from 0 to

 1 M, most of them prefer g' to f ', because g' gives 1 M

 with certainty. Thus many people have preferences that

 violate the sure-thing principle.

 We observe next that the sure-thing principle does

 not imply expected-utility maximization, so it certainly

 does not imply the independence condition when prob-

 abilities are given. To illustrate this, and to characterize

 the strength of the sure-thing principle, consider a par-

 tition of S into three or more mutually exclusive and

 exhaustive events E1, . . . , E,,. We denote partition

 { E1, . . ., E, } by ir. Suppose that all Ej are possible in
 the sense that each can influence preferences. We restrict

 attention to the subset of gambles that are constant on

 each Ej. We denote this subset by JIr and for gamble f
 in Ji r let fj be the consequence that results if Ej contains
 the true state. Under standard continuity assumptions,

 the sure-thing principle is equivalent to the existence

 of an additive representation, so there exist functions

 V1, ... , V,, on consequences such that >- is represented

 by V ( f ) = V1 (f1 ) + * * * + V, (f,,). This was first proved
 by Debreu (1960, Theorem 3). The principle's necessity

 is easily derived from substitution, but the sufficiency

 derivation is deep and complicated. The expected-utility

 form is a special case in which Vj = P(Ej)U for all j,
 where U denotes utility and P(Ej) is the probability of
 event Ej. The additive model is more general because,
 even if we set Vj(O) = 0 for all j (which is always al-
 lowed), the Vj need not be proportional. The state-
 dependent expected-utility model (Karni 1985), in

 which Vj = P(Ej) Uj, for each j, is another example of
 the additive model that satisfies the sure-thing principle.

 Although we have explained the matter for gambles

 that depend only on events El, . . ., E,, the preceding
 results can be extended to all acts by a procedure de-

 scribed in Chew and Wakker (1991).

 Additional conditions are clearly needed to obtain

 expected utility from the additive representation. The

 exact nature of these conditions depends on the conti-

 nuity conditions that are used. Such conditions are

 found in Wakker (1984, 1989, Theorem IV.2.7), Chew

 (1989), Nakamura (1990), Fishburn (1990), and Gul

 (1992) as well as in Savage (1954). We summarize the

 above findings for DUU.

 OBSERVATION 5.1. Unider standard orderinig anid con-

 tinuity assunmptions, the sure-thinig principle is equivalent
 to the existenice of an additive representationi that does not

 iniply expected-utility maximizationi. Further conditions
 must be added to characterize expected utility. LI

 As an aside on terminology, we remark that the def-

 inition of the sure-thing principle in our paper is the

 version used most often today. It amounts to Savage's

 P2. Savage (1954, ?2.7) also included his P3 as part of
 his own designation of the sure-thing principle.7

 6. Risk and Uncertainty: An
 Equivalence Theorem

 This section applies the sure-thing principle to decision

 under risk (DUR) and shows that it is equivalent to in-

 dependence in that context. We note first how DUR can

 be considered to be a special case of DUU.

 DUR concerns the special case in which a probability

 measure tt on the state space S is given a priori. Given

 tt on S, each gamble generates a lottery over the con-

 sequence set X. An example appears in Figure 2 of the
 previous section, where probabilities 0.89, 0.10, and

 0.01 are given for s1, s2, and S3, respectively. The lotteries
 thus generated are, in probability / payoff form,

 (0.10, 5M: 0.90, 0) forf;

 (0.11, 1M; 0.89, 0) forg;

 (0.10, 5M; 0.89, 1M; 0.01, 0) forf';

 1 M for g'.

 7 See the first footnote of ?2.7 in the 1972 edition of Savage (1954)
 for a minor mathematical correction of the original definition.
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 It is assumed in DUR that the only preference-relevant

 aspect of a gamble is the lottery it generates on conse-

 quences. We shall assume also that all conceivable lot-

 teries over consequences can be obtained from gambles.

 This assumption is customary in DUR and is guaranteed

 by the absence of "atoms," where an atom is a positive-

 probability event that includes no subevent with positive

 but strictly smaller probability.8

 DUR-AssuMPTION 6.1. If ganmbles f and g generate

 the same lottery over X, then f g. Moreover, S contains
 no atonms. LI

 Under the DUR-Assumption, a preference relation

 over lotteries is obtained in the obvious way from pref-

 erences between gambles. Because the only relevant as-

 pect of a gamble is the lottery it generates, gambles are

 usually described as lotteries in DUR, and the under-

 lying state space S is suppressed. Under the DUR-

 Assumption plus typical ordering and continuity con-

 ditions, independence implies expected-utility maxim-

 ization. Because the subjective expected-utility model

 for DUU implies the sure-thing principle, it follows that

 independence in the DUR reduction implies the sure-

 thing principle.

 We have noted a difference between the assumption

 of expected-utility maximization and the sure-thing

 principle in DUU because the latter does not imply the

 former. However, this difference is obliterated under

 DUR. To see this, consider the S-partition 7r = { E1, . . .,

 E, } and suppose that y(E1) = ... = (E,,)= 1 / n. The
 DUR-Assumption then implies that a gamble from JIr

 remains in the same indifference class if its consequences

 for the Ei's are permuted. Given an additive represen-
 tation as implied by the sure-thing principle, it follows

 that all Vj's must be identical up to shifts in origins.
 Hence the expected-utility model results if one sets U

 = nVi for an arbitrary i along with 4(E1) = 1/n for all
 j, so Vj = U/n for all j. This yields an expected-utility
 representation for each JIr with equally probable events.

 The usual continuity conditions then imply that an ex-

 pected-utility representation must exist on the entire set

 8 We omit the proof that every probability distribution over X is then

 generated by at least one gamble. Also, to avoid technical details, we

 do not discuss continuity conditions and measure-theoretic aspects

 that can be dealt with by imposing a a-algebra on S.

 JI of gambles, so independence holds for all lotteries.

 We summarize as follows.

 OBSERVATION 6.2. Uinder the DUR-Assumptioni, in-

 dependence and the sure-thing principle are equivalent. Z

 Because our derivation of [sure-thing principle =, in-

 dependence] for DUR invoked equal-probability par-

 titions and continuity, it is not as elementary as has

 sometimes been thought. For historical completeness

 and without elaboration, we mention that the heuristic

 derivation of independence from a sure-thing-like

 principle in Friedman and Savage (1952, p. 469) is not
 entirely rigorous.9

 7. Independence for Consumer
 Theory and Its History

 This section compares the independence condition for

 DUR with the independence condition of consumer de-

 mand theory, multiattribute utility theory, and conjoint

 measurement that we refer to as conjoint independence.

 We observe that conjoint independence can be identified

 with the sure-thing principle.

 It should be recalled that independence in our paper

 designates a property of preference relations that is for-

 mally different from the older independence condition

 for utilities that excludes complementarity and substi-

 tutability effects. Debreu (1960), however, showed that

 independence for preferences is equivalent to indepen-

 dence for utilities when a few other assumptions are

 granted.

 We define conjoint independence for preferences over

 n -tuples (x1, . . . , x,,) in the product set X 1 Xj1. Conjoint

 independence requires that, for all x, y E X" Xj, x > y
 is independent of common coordinate values of x and

 y. In other words, it requires that x >= y x' > y'
 whenever { 1, . . . , n } can be partitioned into two parts

 I and R such that, on I, x = y and x' = y', and on R, x

 = x' and y = y'. An example for >= on RI4is given in
 Figure 3. Here I = {2, 4} and R = {1, 3}.

 To relate conjoint independence to the sure-thing

 principle, we note that if all Xj's are identical to the

 9 One complication in the Friedman / Savage analysis is that gambles-

 conditional-on-events cannot be readily identified with nonconditional

 gambles.
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 Figure 3 Conjoint Independence. If x 2 y then x' 2 y'.

 R I R I

 x 3 1 5 7

 y 4 1 6 7
 -x' 3 2 5 8

 Y' 4 2 6 8

 same set X, then X" 1Xj can be identified with the set
 of functions from { 1, ..., n } to X. When S = {1, ...

 n }, conjoint independence then reduces to the sure-

 thing principle.10 Similarly, conjoint independence can

 be extended to infinite product sets for which { 1, . . ..

 n } is replaced by an infinite index set, in which case

 the sure-thing principle for infinite state spaces can be

 related to conjoint independence. We conclude that the

 sure-thing principle is equivalent to conjoint indepen-

 dence when all Xj sets are identical.
 The history of conjoint independence is tied to con-

 tributions of Sono, Leontief, Samuelson, and Irving

 Fisher. For simplicity, we assume throughout that n

 2 3. Near the end of the preceding century it was cus-

 tomary to evaluate an n -tuple of goods (xi, . . . , x,1) by
 an additive utility function, say V1 (xi) + ? * * + V1l (X71).
 However, it was also recognized (Fisher 1892) that ef-

 fects of complementarity and substitutability could pre-

 clude additive representability. Such effects were

 expressed in terms of a holistic representing function

 V (Xl, X2, . .. , x7,), often through cross-derivatives, in
 which the value of xi can depend on coordinate values

 xj for j * i. Slutsky (1915), Allen (1934), and Friedman
 (1935) also noted restrictions on preferences that are

 implied by an additive representation.

 Sono (1943) seems to be the first publication to iden-

 tify a version of conjoint independence related to the

 family of conditions studied in our paper. However,

 this paper was written in Japanese during the second

 world war and became widely known only after it was

 translated into English as Sono (1961). The paper pro-

 posed a definition of "separability" to the effect that a

 group of commodities A C { 1, . . . , n } is separable if the

 preference relation induced over Xj EAXj by keeping the

 10 Further substitutions are f, f ', g, g' for x, x', y, y'.

 non-A coordinates at fixed levels is independent of those

 levels. Obviously, conjoint independence holds if and

 only if every subset of { 1, . . ., n } is separable. We

 remark that the requirement of separability of all subsets

 of { 1, . . . , n } is implied by seemingly weaker separa-

 bility assumptions. For example, it suffices for all two-

 element subsets to be separable. This induces additive

 representability and thus conjoint independence. An

 even more general result is proved in Gorman (1968),

 with later contributions in von Stengel (1993).

 Sono did not pay much attention to the strong con-

 dition of separability of all subsets. In particular, he did

 not derive the additive form. Independently, Leontief

 (1947a, b) also introduced the idea of separability. He

 used the phrase strong separability for the condition that

 all subsets are separable (conjoint independence) and

 showed that this implies the existence of an additive

 representation. The papers of Sono and Leontief for-

 mulated conditions in terms of representing functions

 and used differentiability methods with each Xj a real

 interval. A typical way to formulate separability of, say,

 commodities 1 and 2 in this mode is to require that, for

 each commodity bundle (xl, . . . , x0), the amount 6 to
 be gained for commodity 2 in order to make up for a

 loss of e of commodity 1 " should be independent of

 X3, . . . , X?l -

 Samuelson independently arrived at the same result

 as Leontief-that conjoint independence implies ad-

 ditive representability for n ? 3 (Samuelson 1947, p.
 174-180). His formula (32) is equivalent to the re-

 quirement that the rate of substitution between two

 goods be independent of the other goods. After his for-

 mula (33), Samuelson pointed out that this condition

 is necessary and sufficient for additive representability.12
 It should be noted that Samuelson's work, while pub-

 lished in 1947, was written as a Ph.D. dissertation in

 1940.

 Separability of single commodities (sometimes called

 weak separability) was used previously in Fisher (1927,

 1' That is (x1 - (, X2 + 6, X3, . * *, X,)- (Xl, X2, X3, * * *, X,,).

 12 Samuelson's term "independence (of utility)," in this context, means
 additive representability, which is to be distinguished from the in-

 dependence condition for preferences in our paper. The interesting

 footnote 95 of Allais (1953), ?3.5 in Marschak (1951), as well as
 most writings of that time, also use the term independence to designate

 the existence of an additive representation.
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 p. 175 ff). This condition is, however, too weak to be

 considered a version of separability or conjoint inde-

 pendence. Only when separability is imposed on subsets

 of two or more commodities and there are other com-

 modities not in the subset do we obtain tradeoffs be-

 tween commodities that are strong enough to qualify

 as a version of conjoint independence. Consequently,

 conjoint independence obtains its full strength only

 when there are three or more commodities, attributes,

 or coordinates, as presumed above.

 As explained shortly, conjoint independence can be

 viewed as a type of monotonicity condition, a condition

 that has been around for centuries. Some people have

 argued that monotonicity should be considered as an

 early form of independence, but we think this is inap-

 propriate. The rest of this section explains how we dis-

 tinguish independence from monotonicity.

 Suppose that a weak order =j is given on each co-
 ordinate set Xj. Then monotoniicity requires x >= y when
 Xj =j yj for all j, with x >- y if also xj >-j yj for at least
 one j. Weak separability (separability of single com-

 modities) can be reformulated as the requirement that

 on each Xj a weak order >=j exists such that >= satisfies
 monotonicity with respect to these >=j's. For example,
 define >l by xl >= y if there exist Z2, . . . , z,1 such that

 (Xl, Z2, * * *, Z,1 ) > (Yl, Z2 - * * *, z, ) * By weak separability,

 this does not depend on the particular zj values that
 were chosen. Other =j are defined similarly. Repeated
 applications of weak separability and transitivity then

 imply monotonicity. The thing to note for weak sepa-

 rability is that the =j relations are not given beforehand,
 but are derived from >=.

 Conjoint independence can be reformulated as the

 condition that, for each partition of { 1, . . ., n } into m

 "blocks" Al, ..., A,,, there exist weak orders >Ai on
 XjEA XJ such that >= satisfies monotonicity with respect
 to these orders. To illustrate "block-monotonicity,"

 suppose n = 3 and X = X2 = X3 = R, so that >= is
 defined on R3. Assume that we observe (7, 4, 6) >= (7,

 3, 6) and (1, 5, 1) >= (0, 5, 2). Then we can conclude

 from conjoint independence that (1, 4, 1) > (0, 3, 2):

 the first observed preference (7, 4, 6) >= (7, 3, 6) and

 conjoint independence imply (1, 4, 1) >= (1, 3, 1); the

 second observed preference (1, 5, 1) >= (0, 5, 2) and

 conjoint independence imply (1, 3, 1) >= (0, 3, 2).

 Transitivity then gives (1, 4, 1) >= (0, 3, 2). The argu-

 ment becomes more transparent if we recognize block

 monotonicity in the following manner. Divide { 1, 2, 3 }

 up into the blocks Al = {2} and A2 = {1, 3}; then (7,

 4, 6) >= (7, 3, 6) implies 4 >Al 3, (1, 5, 1) > (0, 5, 2)
 implies (1, 1) >A2 (0, 2), and the conclusion (1, 4, 1)

 >= (0, 3, 2) is a consequence of monotonicity with 4

 >A1 3 and (1, 1) >A2 (0, 2). The differences between
 conjoint independence and monotonicity are first, that

 conjoint independence imposes monotonicity with re-

 spect to each partition of { 1, . . . , n } into blocks, and

 second, that the weak orders >A, are not given a
 priori.

 We now relate independence for DUR to monoton-

 icity, using the version of independence in (2.3). Our

 product set is X1 X X2, where Xl = X2 = X and X is the

 set of all lotteries. We interpret (P, Q) in Xi X X2 as
 lottery XP + (1 - X)Q, where 0 < X < 1 is fixed and is

 as in (2.3). This means that X, X X2 is the same set of

 lotteries as Xl, X2, and X. By taking the orderings >=
 and =2 on X, and X2 as identical to the preference re-
 lation > over lotteries, the implication

 P >= P'=== XP + (1 - X)Q >= XP' + (1 - X)Q

 of (2.3) can be interpreted as monotonicity! This may

 explain the exceptional intuitive appeal of independence

 for DUR. Its interpretation as a monotonicity condition

 is, however, very special and subtle. There is actually

 a monotonicity condition for each X in (0, 1) with many

 structural symmetries, and the orderings >= and > 2 are

 not given beforehand but are identical to the preference

 relation >=.

 In view of the preceding results, we recall that some

 authors cite Savage (1951, p. 58) for the sure-thing

 principle (conjoint independence for DUU). However,

 only monotonicity is described there.13 A similar remark
 holds for Axiom 2a in Ramsey (1931). Further com-

 ments on the recent history of conjoint independence

 and related conditions appear in Wakker (1989, ?II.5).

 8. Conclusion
 This paper has discussed three conditions: independence

 in DUR, the sure-thing principle in DUU, and conjoint

 independence in consumer theory. The sure-thing prin-

 1 Savage (1954) does discuss the sure-thing principle quite explicitly.
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 ciple is mathematically identical to conjoint indepen-

 dence. Our basic form of independence is defined only

 for DUR, and there it is equivalent to the sure-thing

 principle.
 The independence condition as it is known today is

 due in large part to Marschak (1950). The vNM for-

 mulation did not invoke independence because it used

 indifference classes of lotteries as primitives and trans-

 ferred the probability mixture operation to indifference

 classes. Dalkey (1949) and Malinvaud (1952) observed

 that this automatically presumes independence. Savage

 developed his sure-thing principle between 1950 and

 1952 as a derivative of independence. He was probably

 not influenced by conjoint independence in consumer

 demand theory that was then available in the literature

 through Leontief (1947a, b) and could also be recog-

 nized in Samuelson (1940, formula (32); 1947, formula

 (32)). Because of the relatedness of independence with

 conjoint independence, Sanuelson proposed the term

 inidepenidenzce for what has proved to be such an im-

 portant condition in DUR.

 There are earlier results in mathematics that embody

 the independence idea. In particular, Nagumo (1930)

 and Kolmogorov (1930) may have been the first to work

 out the mathemtiatics of vNM expected utility. We de-

 scribe this in the appendix.

 We conclude with a tongue-in-cheek citation from

 Friedman and Savage (1952, p. 468) which suggests

 that independence can be traced back to the ancient

 Greeks:

 . a principle that we believe practically unique among max-

 ims for wise action in the face of uncertainty, in the strength

 of its intuitive appeal. This principle is universally known and

 recognized; and the Greeks must surely have had a name for

 it, though current English seems not to.
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 Appendix

 Related Mathematical Results

 It is probably impossible to attribute the invention of independence

 to one person at one point in time. We have observed that Samuelson,

 Sono, Leontief, Marschak, and Nash discovered related ideas in pref-

 erence theory, and we noted that it is unclear precisely how these

 discoveries were interrelated or influenced by other people such as

 Rubin and Dalkey. Section 2 explained that independence can be

 viewed as a special case of a standard mathematical principle which

 transfers operations from individual elements to equivalence classes.

 We now describe other results in mathematics that are closely related

 to independence in preference theory but have an older history. Unlike

 preference theory, they are based on real numbers rather than on the

 more primitive notion of a qualitative preference relation.

 We consider first the generalized associativity equation for functional

 equations. Associativity of addition means that (a + b) + c = a

 + (b- + c), so we can write n1 + b + c unambiguously. If we write

 the addition operation as a two-place function f(a, b) = n + b,

 then associativity says that f ( f (a, b), c) = f (a, f (b, c)). For general
 f, this is the associativitit funiictionial equiationi. The genleralized associa-

 tivity functional equation replaces each occurrence of f by a different
 function:

 G(H(a, b), c) = K(a, M(b, c)).

 This equation is described in Acze1 (1968, ?7.2.2), where many older

 references are given.

 Now suppose that >= is a preference relation on R' which satisfies

 the usual monotonicity and continuity conditions. Then there is a

 continuous representing function F (a, 1, c) that strictly increases in

 each argument. If the coordinate set 1 1, 2 l for the first two arguments

 is separable, then a relation >= 1,2 can be defined independently of the

 level at which the third argument is kept fixed. This relation also

 satisfies monotonicity and continuity, so a continuous strictly increasing

 representing function H can be found for >= 1,2. Because of separability

 for , 1, 2 ', all that is needed to determine the level of F(a, b, c) are
 the levels of H(a, b) and c. We then define G to satisfy F(a, b, c)

 = G(H(a, b), c), where all functions are continuous and strictly in-

 creasing in their arguments. We arrive at the following conclusion

 (whose converse implication is obvious):

 1, 2 is separable if and only if there exist G and H such that

 F(a, b, c) = G(H(a, 1), c), where all functions are strictly

 increasing and continuous. Similarly, t 2, 3 1 is separable if and
 only if there exist K and M such that F(a, b, c) = K(a, M(b,

 c)) with all functions continuous and strictly increasing.

 Thus, given the usual continuity and monotonicity conditions, sep-

 arability for a subset of coordinates is equivalent to the long-studied

 possibility of decomposing a representing function. It was established

 in the preceding century that under certain regularity conditions the

 generalized associativity functional equation

 F(a, 1, c) = G(H(a, b), c) = K(a, M(b, c))

 implies that F(a, b, c) has the form f(F1(a) + F2(b) + F3(c)). This

 form implies that > can be represented additively by Fi(a) + F2(b)
 + F3(c), and therefore conjoint independence follows. The result ex-

 tends in a natural way to more than three dimensions.

 We now turn to the mathematical theory of generalized mean func-

 tions and relate it to DUR. A sitiple probability distribtitioti fll71ctio71 F
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 assigns to each real number y the probability that Y < y, where Y is

 a random variable taking finitely many real values. Let l (A, B) denote

 the set of simple probability distribution functions on the interval [A,

 B], and let M be a function from ?D(A, B) to lR. Hardy et'al. (1934)

 proved that there is a continuous strictly increasing function u on

 [A, B] such that

 M(F) = i-( u (x) dF (x))

 if and only if M satisfies the following conditions:

 (i) M assigns value x to the degenerate distribution function that

 has value 0 for all y < x, and value 1 for all y ? x ("x with certainty").
 (ii) M satisfies strict stochastic dominance: if F ? G and F # G then

 M(F) > M(G).

 (iii) If M(F) = M(G), and 0 < c < 1, then

 M(caF + (1 - a)H) = M(aG + (1 - a)H).

 We relate the theory of generalized means to decision under risk by

 interpreting mean values as certainty equivalents of lotteries. Under

 the usual continuity and monotonicity conditions for a preference

 relation over lotteries, a certainty equivalent exists for each lottery,

 and preferences and certainty equivalence functions (generalized

 means) are uniquely related to each other. Condition (iii) is equivalent

 to independence of the preference relation over probability distri-

 butions. The first publication of the above result appears to be de
 Finetti (1931b, p. 379), which refers to (iii) as an associativity con-

 dition. This paper is remarkable in other respects. For instance, p. 386

 gives a two-line proof for the result, later obtained by Pratt (1964)

 and Arrow (1965), that one person is more risk averse than another

 if and only if his or her utility is a concave transform of the other's

 utility.

 De Finetti (1931b, p. 380) mentions a variation of (iii) that is also

 called associativity. To describe it, let M map U,EN R"l to R, and assign
 to each ii -tuple (xi, . . ., x,,) a value between the maximal and minimal

 values in . xi, . . . , x,, . Then M(a, . . ., a) = a for all a. Suppose
 further that M is symmetric in its arguments. Then it is called a geil-
 eralized meani. M is associative if, for all r < ii < oc,

 M (xl, . . . , Xr, Xr+1, . . , X,,)

 = M(M(X1, . . , Xr), ... , M(xl, ... ,X0 Xr+l . Xti)

 Let us now restrict attention for a fixed ni &E lN to Rl" C U,,,EN Rl". On

 this subdomain, associativity of M entails separability of the coordinate

 subset { 1, . . ., r },for each r c m, and thus, by symmetry, separability

 of each subset of fl 1, . . ., m i So it implies conjoint independence,

 which in decision under uncertainty and under risk comes down to

 the sure-thing principle. To these conditions it adds symmetry. The

 definition of associativity of means seems to have been given first in

 Bemporad (1926, p. 87) in a characterization of the arithmetic mean

 (xl + - - - + x,, ) / in. The present approach is related to DUR by iden-

 tifying the n-tuple (xi, . . . , xz) with the probability distribution that

 assigns probability 1/ n to each xj. De Finetti did not explicitly mention
 the relevance for DUR even though he published a first version of

 his famous coherence argument in the same year (de Finetti 1931a).

 Suitable regularity conditions imply that an associative mean M on

 U,,=N R " can be written as u -((u(x1) + * - + u(x,,))/ni) for a con-
 tinuous strictly increasing function u. Then, for a preference relation

 related to the associative mean,, the certainty equivalent a = M(xl,
 .. ., x,,) satisfies u(a) = (u(x1) + * * + u(x,))/ a. Thus u can be
 considered to be a von Neumann-Morgenstern utility representing

 the preference relation. Although the ii -tuples (x1, . . ., x,,) only de-
 scribe probability distributions with rational probabilities, minimal

 continuity conditions give the expected utility representation for all

 simple probability distributions. The first papers to axiomatize asso-

 ciative means on U,,tEN Rl" are Nagumo (1930) and Kolmogorov (1930).
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