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An Explanation and Characterization
for the Buying of Lotteries

HEIN FENNEMA AND PETER WAKKER

Abstract

Popular lotteries typically give a very small probability to win a large prize and
a moderate chance to win smaller prizes. In this paper, 2 rank dependent model
is axiomatized, with an S-shaped weighting function, capable rf giving an ac-
count for the popularity of these lotteries. Also, the role of utility, loss aversion
and scale compatibility in the explanation of the buying of lotteries is discussed.

Introduction

The history of mankind shows that people like to gamble. Gambling,
however, has posed problems to economic theory. Expected utility the-
ory does not provide the possibility for giving a plausible account, as
will be explained below. A solution is to question if gambling behav-
ior, although systematically observed, does at all fall under the realm
of rational behavior. In this vein, gambling has often been explained in
non-economic terms, by the enjoyment or the production of adrenaline
that gambling can provide. However, also economic characteristics affect
the attractiveness of gambles. A typically popular lottery, while actuari-
ally unfair, has two distinctive features: first, it gives a very small chance
to win a large amount and second, it gives a considerable chance to win
a small amount or to break even. On the other hand, an actuarially fair
fifty-fifty gamble is almost always rejected.
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This paper provides an axiomatic model that is based on rank depen-
dent utility theory developed by Quiggin (1982). The model implies an
S-shaped weighting function that gives an account of the characteristics
of popular lotteries. Besides economic characteristics encompassed by
the axiomatization, we readily concede that psychological factors play
an important role. These are discussed in the final section.

Explaining the Buying of Lotteries

Theoretically, gambling is somewhat puzzling. From a broad point of
view, expected utility does quite a good job at describing decisions un-
der risk, mainly by the assumption of diminishing marginal utility. Un-
der this assumption, however, people are predicted to dislike long shot
lotteries (gaining a large amount with a small probability), which is
contrary to observed behavior (Shapiro and Venezia, 1992). The pop-
ularity of long shot lotteries becomes even more puzzling if we accept
the intuitively compelling idea that a reference-point is relevant in the
evaluation of gambles (Markowitz, 1952, Kahneman and Tversky, 1979):
Empirically it is well established that most people exhibit loss-aversion,
which implies that the utility is steeper for losses than for gains. But
by gambling, people do not seem to attach as much importance to the
ticket-fee as a steep utility for losses would suggest.

Friedman and Savage (1948) also tried to explain the attractiveness
of lotteries within an expected utility framework. They hypothesize
a utility with a convex region, to account for risk-seeking behavior!.
When people have an initial wealth located near the first inflection point
(with the convex region at the right hand side), people are predicted to
reject fifty-fifty fair gambles but to accept long shot gambles. Still, this
hypothesis is not very convincing. The predictions are only accurate
for a specific range of initial wealths. If wealth is in the convex region,
subjects are predicted to take fifty-fifty gambles, even if the gambles are
actuarially unfair to a moderate degree. As Quiggin (1991) points out,
the levels of wealth in the convex region are predicted not to be found
in the society, for at these levels people will gamble until they reach a
level of wealth in one of the concave regions. Although this argument
may seem contrived, it points at a major weakness of the Friedman-
Savage hypothesis. The attractiveness of typical lottery formats does
not seem to be related to the level of wealth of participants as predicted
by the Friedman-Savage hypothesis. For more elaborated criticisms, see
Machina (1982).
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A suggestion already given by Edwards (1962) is that not only the
attitude towards money is important in decision making, but also the
attitude towards probability. To explain gambling and the buying of
insurance simultaneously, it is hypothesized that people are prone to
overestimate the probability of rare events. For very small probabilities,
the probability-distortion effect could outweigh the relative loss of utility.
Also, by assuming underweighting of moderate and large probabilities, it
is predicted that people dislike actuarially fair gambles with a moderate
probability for obtaining the highest outcome.

Although transforming probabilities proves to be an adequate in-
strument to explain gambling and other kinds of systematic violations
of expected utility, it is not easy to model. The first model, studied
by Edwards and others, violates first order stochastic dominance, see
for instance Fishburn (1978) or Wakker (1989). Quiggin (1982) was the
first to find a proper model for using transformed probabilities in deci-
sion making, the rank dependent utility model. Quiggin (1991) used this
model to explain the features of popular lotteries, through an S-shaped
weighting function. Such a function had also been proposed by Karni
and Safra (1990). A typical example is given in Figure 1.
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Figure 1. Example of S-shaped weighting function.
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The next section provides an axiomatization of such weighting func-
tions, that predict the overweighting of small probabilities and the un-
derweighting of large probabilities. We concentrate there on the mod-
eling of probability effects. Utility effects will not be axiomatized, but
will be discussed in later sections.

A Characterization of the Buying of Lotteries

This section derives the characterization of S-shaped weighting functions
when utility is linear, and is more technical than the other parts of the
paper. We assume that the outcome set is an interval [0, M], for a fixed
M > 0. Thus, we only consider gain outcomes and sign-dependence is
not an issue. By P we denote the set of all gambles over the outcomes,
i.e., all probability distributions over [0, M] that assign probability one
to a finite subset of [0, M]. By (z1,p1;. .. ; Tm, Pm) We denote the gamble
that with probability p; results in outcome =z, ..., and with probability
P in outcome z,,. For the study of rank-dependence, the topic of this
paper, it is convenient to formulate 2 mechanism that can generate the
randomness, i.e., to assume an underlying state space. We model it
through the unit interval, as follows.

Assume that a number is picked at random from [0,1]. For each
subinterval A of [0,1], the probability P(A) that the random number is
contained in A is the length of A. This determines the usual uniform
probability distribution over [0,1]. A gamble is generated by a random
variable f on [0,1], i.e., f denotes a mechanism that specifies for each
number from [0, 1] an amount of money obtained when the number in
question is the number randomly chosen from [0, 1]. We use the term act
instead of random variable, and the set of acts is denoted by 7; all acts
are assumed measurable and take only a finite number of outcomes.
Thus, each act generates a gamble, and for each gamble acts can be
constructed to generate the gamble; we identify acts and gambles. Acts
can be mixed, in a ‘pointwise manner’, as af + (1 — a)g : w — af(w) +
(1 — a)g(w). It is important to note that here outcomes are mixed, and
not probabilities.

Finally, > denotes the preference relation of a decision maker on
the gambles. We assume that each act is equivalent to the gamble it
generates, thus > also denotes preferences over acts. By > we denote
strict preference, and ~ denotes indifference. We assume throughout
that > is complete (f = g or g > f for all acts f,g) and transitive, i.e.,
it is a weak order. We further assume that > satisfies strict stochestic

THE BUYING OF LOTTERIES 167

dominance, i.e., if in (21, p1;- .. ;Tn,pn) any of its outcomes that occurs
with positive probability is increased, the resulting gamble is strictly
preferred. Finally, we assume that > is continuous in both outcomes
and probabilities. So a minor change in outcomes, as well as a minor
change in probabilities, leads to a minor change in preference.

A function V' : ¥—R represents > if, for all acts f,g,

frg=V(f)2V(g)

We say that the rank-dependent utility model holds if there exist a
strictly increasing continuous weighting function w : [0,1]—[0, 1], with
w(0) = 0,w(1) = 1, and a utility function u : [0, M]—>R such that
> is represented by the following form, displayed now for the case
1 > ... > z, and subsequently defined in general:

n
(Z1,P15-- -3 Tn, Pn) Z miu(z;),
i=1

with 7; the difference w(35_, p;) —w(X5} p;), which is w(p,) fori = 1.
If the outcomes are not ordered as assumed above, then they are first
permuted and then a formula as above is applied.

In rank-dependent utility, comonotonicity plays an important role;
it was introduced in Schmeidler (1989). Acts f and g are comonotonic if
there do not exist w,w'€[0,1] such that f(w) > f(w') and g(w) < g(w').
In words, the acts do not order states in contradictory manners. A set
of acts is comonotonic if every pair of acts in the set is comonotonic.
Obviously, every constant act is comonotonic with every other act.

Rank-dependent utility was introduced in Quiggin (1982), under the
special assumption that w(1/2) = 1/2. That assumption was subse-
quently criticized by economists. It was argued that ” pessimism” would
be the general phenomenon. Pessimism implies that a decision maker
assigns relatively more importance in a decision to the relatively unfa-
vorable outcomes of that decision. It can be modeled through convexity
of the weighting function?. Indeed, it is readily seen that convexity of
the weighting function means that differences w(p + ¢) — w(p) are rel-
atively smaller if p is smaller. Since our method of integration starts
with the highest outcomes, this means that the highest outcomes re-
ceive re.latlvely smaller decision weights m; = w(}_i—; p;) — w(E;;ll pi)-
Convexity of the weighting function cannot be satisfied under Quiggin’s
assumption that w(1/2) = 1/2, unless the trivial case of the identity-
weighting function.
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Psychological research has revealed, however, that pessimism and
risk aversion are not universal phenomena. Rather, for small probabi-
lity /large gain gambles, the majority of people tends to be risk seeking.
This is exhibited for instance by the existence and popularity of gam-
bles. It can be explained under rank-dependent utility by an S-shaped
weighting function, that is concave on an interval [0, p] and convex on an
interval [p, 1]. Such a function can very well agree with Quiggin’s (1982)
assumption that w(1/2) = 1/2, although empirical research suggests
that w(1/2) is somewhat smaller than 1/2.

In the ensuing formal analysis we restrict attention to linear utility
functions. It is well understood that this assumption is not empirically
realistic; still it is a useful working hypothesis to most, clearly bringing
to the fore the characteristics of the weighting function. This is similar
to Yaari’s (1987) approach, where also linearity of utility was imposed.

Wakker (1990a) characterized rank-dependent utility, for uncertainty,
with linear utility functions and either convex or concave weighting
functions. This has also been done by Yaari (1987) and Chateauneuf
(1991). The result of Wakker (1990a) was different because it charac-
terized convexity/concavity directly in terms of a basic condition for
rank-dependent utility: the comonotonicity condition. In view of the
new insights in the empirically prevailing shape of the weighting func-
tions, it seems warranted that the axiomatization of Wakker (1990a)
be adapted to S-shaped weighting functions; that is the purpose of this
section.

The following definition is similar to the independence condition for
decisions under risk that underlies the utility result of von Neumann
and Morgenstern (1944). There is, however, one essential difference,
that is, in the condition below outcomes are mixed and not probabili-
ties. We shall nevertheless use the same terminology as for probability
mixtures, because the conditions can be identified in a mathematical
sense; compare Wakker (1990a, Appendix). Also the condition is given
in a comonotonic version.

Definition 1 We say that > satisfies (mizture-)independence if, for all
acts {f,g,h} and0< a< 1,

f=g=oaf+(1-a)h>ag+(1-a)h. (1)

We say that > satisfies comonotonic independence if implication (1) is
required only when {f,g, h} are comonotonic.

Elucidation for comonotonic independence has been given in Sec-
tion 4 in Wakker (1990a). It can readily be verified that mixture
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independence, in the presence of the usual assumptions, characterizes
expected value maximization, thus uniquely determines the preference
relation. For instance this can be derived from the theorem below.

A version of the following theorem for uncertainty was given in
Wakker (1990a, Theorem 5 and Appendix). Wakker (1990c) showed
how to derive the present risk result from it. For uncertainty, very sim-
ilar results are given in Schmeidler (1989), Wakker (1990b, Theorems
6, 11), and Chateauneuf (1991). For risk, similar results are provided
in Yaari (1987), Weymark (1981, Theorem 3), Wakker (1987, Theorem
4.2), Chateauneuf (1990, 1991).

Theorem 1 The following two statements are equivalent:

(1) Rank-dependent utility holds, where the utility for money is lin-
ear.

(i) The preference relation > satisfies comonotonic independence.

Further, the weighting function in (i) is uniquely determined.

It can readily be derived from Wakker (1990a, Corollary 8 and
Lemma 10) that w in the above theorem is convex if and only if comono-
tonic independence is strengthened to the following condition: pessimism-
independence holds if implication (1) is required only when g,h are
comonotonic. Similarly, w is concave if and only if the following condi-
tion holds: implication (1) is required only when f,k are comonotonic
(optimism-independence). Wakker (1990a) gave the results for uncer-
tainty, but it is well known that the conditions obtained there are, for
uncertainty, equivalent to convexity, or concavity respectively, of the
weighting function w.

Next we turn to the condition that characterizes the S-shape for
weighting functions. In this, P(M, p) is the subset of gambles that assign
a probability of at least p to the maximal outcome M, and P(0,1 - p)
denotes the subset of P of those gambles that assign a probability of at
least 1 — p to the zero outcome.

Lemma 1 Suppose rank-dependent utility holds with linear utility. Then
the weighting function is concave on [0,p] if and only if p satisfies
?ptimism-independence on the set P(0,1 — p), and it is convez on [p,1]
if and only if p satisfies pessimism-independence on the set P (M, p).
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Proof. First consider the set P(0,1 — p), and let (21,P15+ - » Tns Pn)
be an element thereof. It can be transformed into another gamble, as
follows: First, the probability for outcome O is decreased b}.{ 1 — p; then,
this probability 1 — p is distributed evenly over the rem-aimng outc.o‘n?es
(which may still include 0), in other words, all remaining probabilities
are multiplied by 1/p. Through this transformation, the preference_ re-
lation and the rank-dependent representation can be trans-ferred into
a new preference relation and rank-dependent repre_sent.a.tlon on the
entire ("isomorphic”) set P. The property of optimism-independence
is carried over by this transformation; therefore, for the new rank-
dependent representation, the weighting function w* is concave on [0, 1]
if and only if optimism-independence is satisfied on P(0,1 — p). Now
w(g) = w*(g/p) x w(p) for all 0 < ¢ < p, so concavity of w on [0,p] holds
if and only if optimism-independence holds on P(0,1-p).

The result concerning the set P(M,p) can be derived similarly, now
probability p is proportionally shifted from outcome M to the other
outcomes, and one proceeds as above. O

We are now ready to formulate the condition that characterizes ra:nk-
dependent utility with linear utility and an S-shaped weighifing_functlor_l:
> satisfies S-shape independence for probability p if implication (1) is
required whenever either {f,g, h} are comonotonic, or g, h are comono-
tonic and f, g, h assign probability p or higher to the outcome M,or f,h
are comonotonic and f, g, h assign probability 1— p or higher to outcome
0.

Theorem 2 The following two statements are equivalent:
(i) Rank-dependent utility holds, where the utility for money is lin-
ear, and w is concave on [0,p] and convez on [p, 1].

(i) The preference relation > satisfies S-shape independence for
probability p.

The weighting functions characterized above will be most regular
and appealing if they are differentiable at the point p.

Discussion

The overweighting of small probabilities explains why people con.sider
long shot gambles attractive. But popular lotteries are also typically
characterized by various smaller prizes. The model with linear utility,
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characterized above, does not explain why such lotteries are preferred
to single prize lotteries. If, however, we incorporate utility effects and
a reference point effect, the presence of smaller prizes can be explained.
To explain the idea, we compare a single prize lottery (M, p;0,1 — p) to
a two prize lottery (M, ¢; m,r;0,1— ¢—r). The probability r of winning
a small prize is assumed to be around .15 for a typical lottery. If we
assume a weighting function similar to Figure 1, this implies that the
probability of winning the smaller prize is also overweighted®. Assume
that both lotteries have the same expected value, so Mp equals Mg+mr.
These lotteries can be expected to yield the same profit to the operator.
According to the model with linear utility, the single prize lottery has a
value of w(p) M and the two prize lottery has value w(g)M + [w(g+r) —
w(g)]m. The single prize lottery has the higher value, which is derived
from concavity of w on the relevant interval.*

If we assume diminishing marginal utility for the outcomes of the
lotteries, not yet characterized by the model (a characterization is pro-
vided Wakker and Tversky, 1993), the evaluation of the two lotteries
becomes different. The two prize lottery becomes better, relative to the
single prize lottery, because the smaller prize of the two prize lottery has
a relatively higher utility than the top prize of the single prize lottery.
Without specific assumptions about the weighting and utility function,
however, no definite predictions can be made.

A second phencmenon not yet incorporated in the present model is
loss aversion. Subjects tend to attach much more value to an amount of
money that may be lost than to the same amount that may be gained.
This results in a distinctive effect on the evaluation of both lotteries, to
the favor of the two prize lottery. When participating in the single prize
lottery, people are almost certain to lose their ticket fee. The two prize
lottery, however, produces a reasonable chance to avoid a loss (while
retaining the long shot effect). Because losses loom larger than gains, it
is expected that people will prefer the reasonable chance to break even
at least, to an almost certain loss. This we call the break even effect.

The break even effect is enhanced by the underweighting of mod-
erate to large probabilities. This was pointed out by Quiggin (1991),
and can be illustrated by treating the zero outcomes in the two exem-
plary lotteries as the outcomes denoting the loss of the ticket fee. The
chance of losing the ticket fee in the two prize lottery is now 1 — (g + r)-
This probability is underweighted if the chance to win a prize is over-
weighted, as is hypothesized, see Figure 1. For the one prize lottery the
probability of losing is also underweighted by the same argument, but it
will not result in a significant effect: the probability of losing still does
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not deviate much from unity. So probability distortion, modeled with
an S-shaped weighting function, acts like a two-edged sword enhancing
the popularity of a two prized, long shot lottery: on the one hand, the
chance of winning the top prize or a smaller prize is overweighted, on
the other hand the chance of losing the ticket fee is underweighted.

So far we have been arguing that a probability-distortion effect can
explain why certain kinds of gambles are more popular than others, thus
accommodating observed gambling behavior. But gambling behavior is
complex, so it is to be expected that other psychological factors are
relevant for explaining why people find lotteries attractive, even if these
are actuarially far from fair. The already mentioned element of joy
and excitement of gambling constitutes an important explanatory factor.
We think that phenomena explaining the preference reversal effect also
play a role in explaining the popularity of gambles, and turn now to a
discussion of these.

The preference reversal effect, discovered by Slovic and Lichtenstein
(1968), has been well established. Subjects are presented with a bet
providing a high chance of getting a small amount of money (the P-bet)
and a bet giving a small probability for a large amount of money (the
$-bet), mostly with a slightly higher expected value. When asked to
choose between those two bets most people opt for the P-bet, but when
they are asked to state their minimal selling prizes, they state a higher
amount for the $-bet. Moreover, Goldstein and Einhorn (1987) found
that when subjects were asked to rank the two bets by the attractiveness
of the bets, the P-bet was chosen far more often. But in terms of the
minimum selling prize, the $-bet is quite often ranked higher.

Tversky, Slovic and Kahneman (1990) show that the preference re-
versal phenomenon cannot be explained plausibly by violations of inde-
pendence or reduction of compound lotteries. People rather violate pro-
cedure invariance: various seemingly equivalent elicitation-procedures
for ranking gambles lead to different rank-orderings. One of the effects
leading to violations of procedure invariance is scale-compatibility, see
Tversky, Sattath and Slovic (1988). If people are asked to rank gambles
according to their minimal selling prices, people will pay more attention
to the value of the outcomes. This way to elicit preferences makes the
$-bet more attractive. If people are asked to make a choice, they make a
more integrated evaluation, comparing the trade-off in probability and
pay-off. This procedure thus leads to more attention for the probability
distribution, enhancing the attractiveness of the P-bet.

People presumably do not order lotteries by a mechanism of pricing.
For example, there does not exist a bargaining mechanism for lottery
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t?ckef;s. The decision to buy a lottery ticket is a choice, where participa-
tion is preferred over abstaining. But typical lotteries exclusively direct
attention to the outcomes: probabilities are never made explicitly avail-
able to the buyers. This prevents the buyer from making the integrated
evaluation as done in the choice problems in preference reversal experi-
ments. Instead, the buyer is led to evaluate the lottery on the only scale
available, which causes her to overvalue the lottery. Research on the
preference reversal effect shows that if people primarily pay attention to
the money scale, they are prone to an overpricing of the $-bet: Tversky
Slovic and Kahneman (1990) found that 83.9% of the subjects showing,
preference reversals overpriced the $-bet.

We conclude that recent developments in decision theory improve
our understanding of the buying of lotteries.

Notes

1. It should be noted that Friedman and Savage interchange the terms convex
and concave compared to current terminology.

2. .Here we emphasize that our way of integration is dual to the one most common
in de.msm'ns under risk for rank-dependent utility; convexity of our weighting
function is equivalent to concavity of the weighting function in the more com-
mon _approa.ch. We chose our way of integration because it is more common in
decisions under uncertainty and has been used in cumulative prospect theo
of Tversky and Kahneman (1992). i

3. Formally, the smaller prize will be overweighted if w(g+r) —w(g) >r.

4. This can be shown as follows. We can rewrite the two prize lottery as (M, bp; a M,
(p—bp)/a;0,1 —bp — (p — bp)/a), 0 < a,b < 1, thus satisfying equalit); of, ex- ’
pected value. The value of this lottery now becomes: w(bp)M + aM[w((p —
bp)/a + bp) — w(bp)]. By concavity of w on the relevant interval, we conclude
w((p —bp)/a+bp) — w(bp) < w((p—bp)/a) and by concavity of w and 1/a >1
we find w((p — bp)/a) < w(p — bp)/a, so w(bp)M + aM|w((p — bp)/a + bp) —
w(bp)] < M[w(bp) + w(p(1 — b)]. By concavity of w on the relevant interval
M{w(bp) + w(p(1 — b))] is smaller than Muw(p), which is the rank dependent,
value of the single prize lottery.
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