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his note demonstrates that two minimal requirements of decision tree analysis, the folding
back procedure and the interchangeability of consecutive event nodes, imply independence.

(Decision Analysis; Dynamic Choice)

It is now well-known that under a set of decision tree
rationality assumptions expected utility (EU) is the only
appropriate model for evaluating alternatives in a de-
cision tree. Early discussions are found in Raiffa (1968)
and Burks (1977). Recently, Karni and Schmeidler
(1991) formally showed that the reduction of compound
lotteries axiom, consequentialism, and dynamic consis-
tency can only be simultaneously satisfied if EU holds.
Surprisingly, a much weaker set of assumptions than
hitherto presented in the literature is required to justify
the use of EU in decision tree analysis. We shall show
that a simple rule that is widely used in decision tree
constructions, together with the usual folding back pro-
cedure, is sufficient to justify the independence prin-
ciple, the critical condition for EU. Our conditions are
more basic than the ones used before in the literature.
Further, by invoking a theorem of Gorman (1968), we
are able to derive independence from fewer structural
assumptions. In particular, our analysis needs the avail-
ability of only a few uncertain events, and does not
require the existence of extraneously specified proba-
bilities.

LaValle and Wapman (1986) showed that consistency
between results obtained by rolling back an extensive
tree and its probabilistically equivalent normal tree can
only be achieved under independence. LaValle (1992)
reaches the same conclusion by requiring invariance and
horizon flexibility in alternative representations of de-
cision trees. We obtain independence in a more general
context. We require only that the decision maker accept
interchangeability of consecutive event nodes and the
possibility of folding back as an appropriate method of
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analysis. The folding-back procedure need only calcu-
late certainty equivalents according to whatever pref-
erence model the decision-maker uses,' and does not
need given probabilities, or a multiplication rule for
those. Our result is therefore obtained with a weaker
set of assumptions.

A cardinal rule in the construction of decision trees
is that consecutive event nodes can be interchanged or
combined. As an example, suppose the profits of an ice-
cream vendor depend on whether the weather is warm
(W) or cold (C), and the size of the crowd, big (B) or
small (S). Three representations of this problem are
given in Figure 1. This figure depicts alternative event
trees” that emanate from a given act. The only difference
between the representations in Tree 1 and Tree 3 is that
consecutive event nodes are interchanged. Regardless
of the preference model employed, most people will
agree that the three versions in the figure should give
equivalent results. We further assume that the decision
maker evaluates the decision trees by means of the
folding back technique. Thus, at nodes 2 and 3 in Tree
1, he computes the certainty equivalent of the respective
gambles, using any appropriate model of his choice. In

! We only require the standard assumptions of transitivity, complete-
ness, strict monotonicity (any strict increase of a profit leads to a strict
increase in appreciation), and continuity. This permits a large class
of nonexpected utility models, such as Choquet expected utility, or,
if probabilities are given, rank-dependent utility, weighted utility, lot-
tery-dependent utility, or any Machina functional (see Fishburn,
1988).

2 An event tree is a decision tree, or a subpart thereof, in which there
are only event nodes and no decision nodes.
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Figure 1 The Three Event Trees Emanating from the Same Act
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the first stage the gamble over these certainty equiva-
lents is evaluated subsequently. This standard procedure
of folding back decision trees assumes that the evalu-
ation at node 2 is independent of the evaluation at node
3, and vice versa (consequentialism). It further assumes
that the certainty equivalents, computed at nodes 2 and
3, are used in the evaluation at node 1 (dynamic con-
sistency).

The only structural assumption that we use in the
result below is that the outcomes ¥, . . ., x4 can be any
real numbers.? Note that the events in Figure 1 are kept
fixed in our analysis, so that the result can be applied
to any fixed quadruple of disjoint events WB, WS, CB,
CS .* Formally, interchangeability means that the three
trees in Figure 1 are equivalent in the sense that they
induce the same preference relation over quadruples
(x1,...,x4). Thus, only their “normal form” is essential,
and the timing and exact sequence of the consecutive
events (with no intervening decision nodes) does not
matter. Independence in the context of decision making
under uncertainty is Savage’s (1954) sure-thing prin-
ciple. It requires that every event is separable, i.e., pref-
erences between acts that coincide outside that event
are independent of the particular outcomes of those acts
outside the event.

® This can be greatly generalized. For instance the outcome set can be
any nondegenerate interval, and outcomes may be state-dependent
in the sense that different intervals are used for different events. Also,
the result extends directly to the case in which the outcome set is a
convex set of any dimension. This includes the case in which outcomes
are probability distributions over a set of prizes, as considered in
Hammond (1988), and Anscombe and Aumann (1963).

4 The assumption that there are only two first-stage events W, C, and
only two second-stage events S, B, was only made for simplicity of
presentation. The extension to the case of m first-stage events, and n
second-stage events, for any m = 2, n = 2, is immediate.
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We note that we do not require that probabilities are
given for the events. For the special case in which prob-
abilities are given, we do not require that a reduction
of compound lotteries assumption holds. The latter as-
sumption was used by LaValle and Wapman (1986),
Hammond (1988), and Karni and Schmeidler (1991)
in their derivation of independence.

OBSERVATION. [Interchangeability of consecutive event
nodes, along with the folding back procedure, implies in-
dependence.

PROOF. Consider the preferences in Tree 2. The
possibility to employ folding back in Tree 1, together
with the possibility to combine the event nodes of Tree
1 into those of Tree 2, implies separability of the events
{WB, WS} and {CB, CS} in Tree 2. The possibility to
employ folding back in Tree 3, together with the pos-
sibility to combine the event nodes of Tree 3 into those
of Tree 2, implies separability of the events {WB, CB}
and {WS, CS} in Tree 2. By the theorem of Gorman
(1968) all events must then be separable in Tree 2. This
is equivalent to independence. O

We note that the equivalence between Tree 1 and
Tree 2 alone can be preserved by a wide class of nonex-
pected utility models. To see this, suppose V;, V,, V3
are three arbitrary (nonexpected utility ) functions from
IR? to IR, continuous and strictly increasing in both
variables. Suppose the decision maker uses V, at node
2 to obtain V,(x;, x,), and similarly he uses V; at node
3. Finally, at node 1 the evaluation V; (V,(x1, x2), V3(x3,
%4)) is used. The consistency between Trees 1 and 2 is
simply achieved by using the evaluation V;(V,(x1, x2),
V3(xs3, x4)) in Tree 2. The only implication of folding
back in Tree 1 is that in Tree 2, the events {WB, WS}
(associated with (x;, x,)) and {CB, CS} (associated with
(x3, x4)) must be separable. So the reducibility of the
two-stage Tree 1 to the one-stage Tree 2 is not very
restrictive, and does not imply independence. For the
derivation of independence in the above observation,
the equivalence with Tree 3 is essential.

Let us comment on the special case of decision making
under risk, in which probabilities are given. Segal (1990)
argued for abandoning the reduction of compound lot-
teries assumption in the folding back of decision trees
by means of nonexpected utility models. As our analysis
has shown, a requirement more basic than the reduction
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of compound lotteries must be abandoned to justify the
use of nonexpected utility models in the folding back
analysis. What is crucial here is not so much the mul-
tiplication operation of probabilities, but, more elemen-
tarily, the very possibility of combining and inter-
changing consecutive event nodes. It may happen that
interchangeability is not reasonable in experimental
psychology where the order of the presentation of
events could indeed influence a subject’s perception and
evaluation. In the domain of decision analysis, however,
this condition seems eminently reasonable. This is be-
cause the difference between Trees 1 and 3 is not sub-
stantive with respect to the underlying decision problem,
and arises as an arbitrary choice of problem represen-
tation by the decision analyst.

McClennen (1990) and Machina (1989) suggest a
way to achieve equivalence among decision trees such
as those in Figure 1. They require that the evaluation
at the second-stage node 2 be dependent on the gamble
in node 3, and vice versa. Thus they can keep dynamic
consistency and reduction of compound lotteries, but
they drop consequentialism. This relaxation of conse-
quentialism, however, precludes the folding back pro-
cedure as described above, thus it complicates the anal-
ysis of extensive trees.

In a seminal paper, Hammond (1988) provided re-
sults similar to the above observation. His term “con-
sequentialism”” entails both dynamic consistency as de-
scribed above and the equivalence of decision trees such
as in Figure 1. Also he assumed our consequentialism,
named ““consistency’ in his paper. The main difference
is that he assumes a rich model with many structural
assumptions, whereas our model is elementary and uses
minimal structure. Hammond assumes that all decision
trees and all probability distributions are available, and
uses these in his derivations. For probabilities he as-
sumes reduction of compound lotteries, and he gives a
central role to stochastic independence. Our result has
shown that independence can already be derived in the
simplest setup, a setup that can be found within small
subparts of decision trees. Thus, our paper has reduced
the derivation of independence to its bare essence.

Because of the mild structural restrictions that we in-
voked, our assumptions, while implying independence,
have not entirely determined expected utility maximi-
zation. This finding shows additionally that the as-
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sumptions in the above observation are not very re-
strictive. As demonstrated by Gorman (1968), the con-
ditions in the proposition are necessary and sufficient
for additive representability, i.e., the possibility to rep-
resent preferences by a function

(X1, ..., X)) = 2 bi(x:),

i=1

where the ¢; functions are continuous and strictly in-
creasing. This form can be interpreted as state-depen-
dent expected utility, the model advanced by Karni
(1985). To obtain expected utility maximization, in-
dependence must be slightly strengthened. One such
strengthening was proposed in Wakker (1984, 1989),
and an alternative strengthening was given in Gul
(1992). Under the assumption, customary in the liter-
ature, that probabilities are available and that the usual
symmetry conditions are satisfied,® expected utility
maximization follows straightforwardly. In our context,
EU follows if the decision maker accepts interchange-
ability of consecutive event nodes for all possible events,
and probabilities are given for all these events. Alter-
natively, if outcomes are probability distributions over
a set of prizes, then a simple monotonicity condition
suffices to give EU (see for instance Anscombe and Au-
mann, 1963).

The point is that the hurdles along the road from
independence to EU are relatively small. Nonexpected
utility models are designed primarily to permit nonsep-
arability of preferences across mutually exclusive events.
We have shown that such nonseparability cannot be
permitted in decision tree analysis if one accepts folding
back and interchangeability of consecutive event nodes
as two reasonable rules.

In summary, the folding back process is a requirement
for the standard decision technology that is used to
evaluate decision trees. Interchangeability of consecu-
tive event nodes is a requirement for preserving equiv-
alence in alternative representations of the same prob-
lem. It is remarkable that these two requirements are
sufficient to derive independence.®
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