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 UNBOUNDED UTILITY FOR SAVAGE'S "FOUNDATIONS
 OF STATISTICS," AND OTHER MODELS

 PETER WAKKER

 A general procedure for extending finite-dimensional "additive-like" representations for
 binary relations to infinite-dimensional "integral-like" representations is developed by means
 of a condition called truncation-continuity. The restriction of boundedness of utility, met
 throughout the literature, can now be dispensed with, and for instance normal distributions,
 or any other distribution with finite first moment, can be incorporated. Classical representa-
 tion results of expected utility, such as Savage (1954), von Neumann and Morgenstern (1944),
 Anscombe and Aumann (1963), de Finetti (1937), and many others, can now be extended.
 The results are generalized to Schmeidler's (1989) approach with nonadditive measures and
 Choquet integrals, and Quiggin's (1982) rank-dependent utility. The different approaches
 have been brought together in this paper to bring to the fore the unity in the extension
 process.

 Introduction. In decision science it is usually assumed that a decision maker,
 when choosing between alternatives, maximizes a quantitative functional, satisfying
 certain desirable properties. Often the functional is assumed to be an integral. In
 decision theory the integral of a utility function may be taken in an expected utility
 criterion, in statistics the integral of the negative of a loss function leads to the
 minimization of expected loss. In dynamic contexts the integral of income over the
 time axis is taken, with a density function representing discounting. The assumption
 of maximization of a quantitative functional is made operational by behavioral
 foundations, i.e., (decision-theoretic) representation theorems. These take preferences
 (binary choices) between alternatives as observable primitives, and give necessary and
 sufficient conditions ("characterizations") for the preferences to maximize a func-
 tional of the desired kind. Obviously, this requires a "translation" of the desired
 conditions of the functionals to be maximized into conditions for the preferences, and
 vice-versa. Hence conditions for integrals must be found that are suited for such a
 translation.

 For the continuation of this introduction some terminology must be introduced,
 and the organization of the paper must be sketched; see Figure 1. Results are given
 for five approaches. In each of these the term alternative is used. The first approach,
 the "functional approach," appears in ?1. Here functionals on a set of (alternatives =)
 functions to R are taken as primitives, and characterized as integrals. The obtained
 results will be used in the other approaches. In these other approaches binary
 preferences are taken as primitives, and those representable by integrals are charac-
 terized. Section 2 presents three approaches, each dealing with decision making
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 UNBOUNDED UTILITY FOR SAVAGE'S 'FOUNDATIONS OF STATISTICS"

 SUBSECTION 1.6: functional ves
 The functional alternatives
 approach. is primitive are functions nonadditivity included;
 SUBSECTION 2.2: < richness concerns I=u(C)
 The A&A approach. which is an interval;

 monotonicity is pointwise
 SUBSECTION 2.3: alteratives are
 The connected preference acts (DMUU)
 topology approach. / relation is
 SUBSECrION 2 4: pimitive only additivity considered;
 Savage's approach. alteatives are richness concerns
 SECTION 3: DMUR probability states/probabilities;

 distribuions monotonicity is conditional

 FIGURE 1. Organization of this paper. The (sub)sections of this paper are self-contained, and can be
 studied independently of other sections. Only Subsection 1.6 is needed for the proofs in Subsections 2.2
 and 2.3.

 under uncertainty (DMUU). Here (alternatives =) "acts" map a state space into a
 consequence space. The A&A approach of Subsection 2.2 assumes that the conse-
 quence space is a set of probability distributions; the connected topology approach of
 Subsection 2.3 assumes that the consequence space is a connected (separable)
 topological space; so both approaches impose richness restrictions upon the conse-
 quence space. While the three approaches mentioned so far include nonadditive
 integrals, the fourth and fifth approaches only deal with additive integrals. The fourth
 approach, i.e., the third and final approach to DMUU, is Savage's approach, consid-
 ered in Subsection 2.4. It imposes richness restrictions upon the state space. Finally,
 ?3 considers decision making under risk (DMUR), with (alternatives =) probability
 distributions. The richness restriction of this approach, requiring all step probability
 distributions to be available, is similar to the richness restriction of Savage's ap-
 proach. To conclude the sketch of the organization of the paper, let us mention that
 in all approaches integrals designate expected utility in some sense.

 The usual procedure in decision-theoretic integral representations reflects the
 definition of integrals. In a first stage the representation is obtained for "step"
 alternatives (having finite range). The integral representation for step alternatives is
 of an additive nature, and the equivalent conditions for preference relations through
 their finite (-dimensional) nature are proper for empirical testing. Next, in a second
 stage, some monotonicity (or continuity) condition is used to extend the integral
 representation from the step alternatives to bounded alternatives. The literature
 usually stops here. This paper adds a third stage. It also considers unbounded
 alternatives, as long as these have finite integrals. The desirability of such an
 extension was pointed out for instance in DeGroot (1970, end of ?7.9), and for
 dynamic contexts in Lippman (1975). The main problem in the few approaches in the
 literature that address unbounded utility is that no proper condition was available to
 distinguish between alternatives with bounded integral and with unbounded, or
 undefined, integral. See for instance the beginning of ?7.10 in DeGroot (1970).

 "Truncation-continuity" (see Figure 3) turns out to be such a proper condition. By
 proper I mean that the condition can be translated into a condition for preferences
 that is observable. An example of a condition, proper in the above sense, is pointwise
 monotonicity. It requires that a function that pointwise dominates another should
 have at least as large an integral; see (1.5) below. In the usual setup of utility theory
 this translates into the condition for preferences that one alternative should be
 preferred to another if it dominates the other on all dimensions; see (2.1) below.
 Related conditions are used in ?4.5 of Bhaskara Rao and Bhaskara Rao to define

 integrals. The conditions for defining integrals as used in ?I.III.2 of Dunford and
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 Schwartz (1958), and in ?4.4 in Bhaskara Rao and Bhaskara Rao (1983), can, to the
 best of my knowledge, not be translated directly into conditions for preferences. So
 these conditions are not proper in the above sense. The truncation-continuity condi-
 tion for integrals is given in Lemma 1.8; formulas (2.2a, b) give the translation into a
 condition for preferences.

 I agree (as in Wakker, 1989b, ?11.1) with Aumann (1962, p. 446) and Schmeidler
 (1989, p. 576) that completeness of preferences (over "many" alternatives) is the most
 questionable condition in decision theory. Hence this paper strives for maximal
 flexibility concerning the alternatives required to be available. Apart from requiring
 availability of the "step" alternatives, and with every alternative some of its "trunca-
 tions", the approach of this paper applies to any set of alternatives which have a
 finite integral; see Example 4.7. Step alternatives are very useful, first because they
 are empirically most meaningful, and second because they are theoretically useful in
 avoiding measurability problems and problems about infinite-dimensionality. Hence
 this paper generalizes results from the literature by restricting conditions as much as
 possible to step alternatives. As a price to pay, mainly, the formulation of "condi-
 tional monotonicity" for Savage's approach and DMUR is more complicated; it is
 however less restrictive than versions that have appeared in the literature.

 The most important application of our results may be to the famous result in the
 first five chapters of Savage (1954). Savage was the first to give a sound behavioral
 foundation of subjective expected utility in which neither probabilities nor utilities are
 supposed to be given a priori. (The earlier Ramsey (1931) is not complete.) This
 changed the meaning of subjective probabilities and utilities from obscure-ad hoc into
 scientifically well founded. A foundation of Bayesian statistics, decision analysis, and
 the measuring of information had been laid. Still Savage's axioms have not been
 taken as point of departure in other analyses. It was discovered by Fishburn and
 Savage that Savage's axioms implied, in a way not foreseen by Savage, that the utility
 function had to be bounded. See Fishburn (1970, ?14.1) and the second edition (1972,
 footnote on p. 80) of Savage (1954). Arrow (1971, pp. 64-65) found the same for a
 similar axiom system. Ever since, the extension of Savage's theorem to unbounded
 utility has been an open question, and with that the question "what is wrong with
 Savage's axioms?". This paper gives the extension of Savage's result to unbounded
 utility functions in Theorem 2.17. It incorporates (acts generating) the usual probabil-
 ity distributions over utilities, such as the normal distribution. While the implication
 of boundedness in Savage's theorem has been ascribed mainly to his postulates P6
 and P7, I think that "what is wrong with Savage's axioms", is primarily his require-
 ment of completeness of the preference relation on the set of all (alternatives =)
 acts, indeed, under preservation of the other conditions. This completeness is the
 only postulate of Savage that is relaxed in Theorem 2.17; his other postulates are all
 satisfied there. The underlying problem was already observed by Menger (1934). As
 soon as utility is unbounded, there exist acts with unbounded expected utility; to the
 best of my knowledge there is no "sensible" complete ordering of these. The
 well-known St. Petersburg Paradox builds on this; see Samuelson (1977) and Shapley
 (1977) and the references therein for many discussions. Also Toulet (1986) weakens
 completeness in Savage's axioms.
 The results of this paper are useful for every field of science where integral

 representations are important, such as welfare theory (where alternatives are for
 instance allocations of income), dynamic decision making (where alternatives are for
 instance streams of income), and the theory of continuous systems (where the
 performance of a system may be an integral of the performances of the components).
 Wakker (1989b, ?11.1) gives more examples. Given the largeness of the literature, I
 restrict attention to my own research specialization, DMUU/R, in this paper.
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 Results in the literature which can be extended by the techniques of this paper, but
 will not be discussed in the sequel, include de Finetti (1937,1972, 1974), Koopmans
 (1972; our approach allows for discrete time as well as continuous time or mixed
 cases), Mak (1987, for infinitely many components), and Weibull (1985; truncation-
 continuity characterizes the set L1 without assuming, as Weibull does, utility to be
 known).

 Similarly to the extension of Savage's (1954) result, the results of Anscombe and
 Aumann (1963) and Wakker (1989b) are extended below. In the latter two no
 restriction is imposed on the state space. It may be finite, infinite, a continuum, and
 may or may not contain atoms. Also the result of von Neumann and Morgenstern
 (1944) for DMUR will be extended. The models of Savage and Anscombe and
 Aumann have not yet been extended to unbounded utility functions in the literature.
 For the result of von Neumann and Morgenstern several contributions have been
 made; nevertheless the generality provided by truncation-continuity in Theorem 3.6
 has not been attained before.

 Theorems 2.9 and 2.13, and Corollary 4.5 deal with generalizations of expected
 utility. While the axioms of Savage make subjective expected utility operational, they
 (primarily the sure-thing principle) are nowadays mostly taken to show that subjective
 expected utility has too many drawbacks. This was discussed in the early Allais (1953).
 The most influential result in the recent literature to deviate from expected utility has
 been Machina (1982). There expected utility was deprived of its most celebrated
 results, the results on risk aversion of Pratt and Arrow and the results on stochastic
 dominance. Machina showed that these results, extended in a natural way, hold in the
 general (differentiable) case, without needing the assumption of expected utility
 maximization. See also the survey in Machina (1987) and Fishburn (1988), for recent
 deviations from expected utility. Another impulse for the deviation from expected
 utility stems from the recent developments in artificial intelligence. The prevailing
 view is that subjective probabilities are too restricted and intractable to describe
 reasoning with uncertainty, or for the updating of knowledge. See for instance the
 discussion in Statistical Science (1987, 2, no. 1), or Wakker (1990c). Hence, besides
 expected utility, this paper considers the generalization of subjective expected utility
 called Choquet expected utility, as initiated by Schmeidler (1989; first version 1982).
 Here probabilities are allowed to be nonadditive, which may express vagueness about
 the values of the probabilities, and optimism/pessimism. Integration is done by
 means of the Choquet integral. As a corollary of these results, Subsection 4.2 extends
 Quiggin's (1982) rank-dependent utility to unbounded probability distributions.
 In ?4 countable additivity, uniqueness results, and necessity of conditions are

 discussed. The motivation to bring together representation results for several differ-
 ent approaches into one paper, rather than present them separately, is to bring to the
 fore their unity. This is sketched in Subsection 4.6. For that reason the similar
 intermediate steps will be made explicit in the analyses.

 Subsections 2.2, 2.3, 2.4, ?3, and Subsection 4.2, dealing with five different ap-
 proaches to representations of preferences, can be read independently of each other.
 If a (sub)section uses definitions given before, mention will be made in that (sub)sec-
 tion. Also all main results are formulated so as to be immediately accessible without
 consultation of the text, other than for definitions. These main results are Theorems
 1.12, 1.13, 1.15, 2.5, 2.9, 2.13, 2.17, 3.6, as well as Corollaries 2.10, 2.14, and 4.5.

 1. Properties of integrals. This section deals with the functional approach, and
 studies properties of functionals which are (Choquet) integrals. Alternatives, the
 arguments of the functionals, are functions.
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 1.1. Introduction. The characterizations of integral representations in this paper
 reflect the definitions of integrals with respect to bounded measures. The start is with
 a measure, or, equivalently, with the integral of indicator functions, subsequently
 extended to all linear combinations of indicator functions (i.e., step functions). This
 paper concentrates on subsequent technical stages, where integral representations
 are extended to functions with infinitely many values. For such functions the integral
 can be defined as the limit of integrals of step functions that approximate the
 function in an appropriate manner.

 This leads, in the second stage, to a well-defined real value whenever the function
 is bounded. Bounded functions can be enclosed from above and below by step
 functions, resulting in upper and lower sums which in the limit uniquely enclose the
 value of the integral. The exact way of constructing the enclosing step functions varies
 from context to context. In most contexts the range is "rich", i.e., an interval; then
 the enclosing step functions can be dominating/dominated "pointwise", i.e., for
 every argument. This is the usual procedure for defining integrals. In some contexts in
 this paper however, not the range, but the domain is "rich". Then the range of the
 measure is convex and the enclosing step functions are taken, somewhat more
 complicated, "conditionally dominating/dominated".

 For unbounded functions complications occur. Integrals can be plus or minus
 infinity, or, which is the more difficult problem, they can be undefined if both tails are
 too dense. The third and final stage of the extension includes the functions that are
 unbounded but still have a well-defined and finite integral. The characteristic feature
 of such functions is that for each positive E a "truncation from above" of the function
 can be made such that the integral above the truncation is smaller than E (see Figure
 3), with similar observations for truncation from below. This condition can be
 translated into a condition for preference relations, truncation-continuity, introduced
 in Wakker (1989b) for the context of subjective expected utility. The condition has
 not appeared elsewhere in the literature. Still I think it is the natural translation of
 the above characteristic feature. The aim of this paper is to show that this condition
 gives a simple and general tool to characterize integral representations for un-
 bounded functions in many contexts.

 The extension of preferences to functions with infinite and unbounded integrals is
 a topic for future research. In DMUU the only attempt along these lines known to us
 is Toulet (1986). Many open problems remain in her paper, however, such as how to
 define formally "may be compared" in Axiom l(iv) while having correctness of
 Propositions 4 and 10, how to deal with the case where utility is both unbounded
 from above and below, and how to define preferences such as in Counterexample 5.1
 while preserving conditions such as transitivity. The take-over criterion from eco-
 nomic growth theory, considering the integral of differences rather than the differ-
 ence of integrals (see for instance von Weizsacker 1965) seems better suited.

 The results in this section are given for general nonadditive measures (capacities).
 A reader interested only in (integrals with respect to) additive measures may simply
 keep in mind throughout the sequel the special case that the capacities v are additive,
 i.e., are probability measures, and that the Choquet integrals are regular integrals.
 The reader need only observe then that (1.1) below is an alternative way to define
 additive integrals.

 In the functional-analysis-literature it is usually assumed that the domain of a
 functional is a linear space of functions. In representations of preferences, however,
 the domain of the functional is usually not closed under addition and/or multiplica-
 tion. Hence integrals must be characterized on more general domains. Given an
 algebra v on a set fl, the set of step functions, denoted s,S is the set of functions
 from 1l to an interval I that are linear combinations of the indicator-functions of
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 elements of d. The only restriction imposed on F below is that it contain all step
 functions. Step functions meet no measurability problems. They are measurable
 whatever algebra is imposed on the range, and so are their sums and mixtures.
 Hence, many conditions will be restricted to FS below. Obviously, F- is a subset
 of the set of measurable simple functions (i.e., functions with finite range) from fl to
 I. In the functional approach of this section the algebra . on I is assumed to contain
 all one-point subsets; then 5F is identical to the set of measurable simple functions.
 So we assume throughout this section:

 ASSUMPTION 1.1. (Functional Assumption). fl is a nonempty set and S is an
 algebra of subsets of 1S. I c R is a nondegenerate interval and . is an algebra of
 subsets of I containing all intervals. F is a set of measurable functions from fl to I,
 containing -s. V is a function from SF to 1R. o

 The above assumption describes the functional approach. Note that the measurabil-
 ity assumptions are the usual ones if 9 is the Borel-o--algebra and v is a cr-algebra.
 The more general approach of this paper, including (non-a-) algebras, calls for some
 caution. For example, the sum of two measurable functions may be nonmeasurable.
 Because this has sometimes been overlooked in the literature, an example is given.
 Another example for a somewhat different context has been given in Fishburn (1982,
 ?10.2). The sum/mixture of step functions is always measurable. This is one reason
 for restricting conditions to step functions.

 EXAMPLE 1.2 (measurability problems for algebras). Let 1f = [0, 1] x [0, 1], with
 v the set of all rectangles and their finite unions. I = R and 3 is the set of all
 intervals and their finite unions. Now f, the projection on the first coordinate, and g,
 the projection on the second coordinate, are measurable, but their sum is not;
 (f + g)- ([0, 1]) is not a finite union of rectangles. Similarly, mixtures (e.g., f + 2g)
 of f and g are not measurable. o

 Real numbers are sometimes identified with constant functions. A function f

 pointwise dominates a function g, notation f >p g, if [Vwo e (: f(w) > g(G)]. The
 notations >p, < p, <p are similar.

 1.2. Choquet integration. This subsection can be skipped by readers only inter-
 ested in additive measures and integration. A function v: W-> [0, 1] is a capacity if
 v(0) = 0, v(fl) = 1, and v is monotonic with respect to set-inclusion, i.e., A D B =
 v(A) > v(B). In the literature the normalization v(f) = 1 is sometimes omitted,
 and often the (set-) continuity condition of Subsection 4.1 is added; v is a (finitely
 additive) probability measure if furthermore v is additive, i.e., v(A U B) = v(A) +
 v(B) for all disjoint A, B.

 For a capacity v, and a measurable function f: 1f -> R, the Choquet integral of f
 (with respect to v), denoted ff dv, or ff dv, or ff, and introduced in Choquet
 (1953-1954), is

 (1.1) f v({s e (: f(s) > r}) dT + f [v({s e f: f(s) > r}) - 1] dr.

 The integrals have been denoted as Lebesgue integrals; the integrands being nonde-
 creasing, extended Riemann integrals could have been taken as well. As usual, the
 Choquet integral is undefined if in (1.1) co-oo would result. Obviously, a Choquet
 integral and the capacity in question are uniquely related through the equality
 v(A)= lA dv (1A denotes the indicator function of A). For countably additive
 (capacities =) probability measures, the Choquet integral is identical to the Lebesgue
 integral. For the more general finitely additive (capacities =) probability measures,
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 the Choquet integral coincides with the S-integrals in Bhaskara Rao and Bhaskara
 Rao (1983, ?4.5), which uses upper and lower sums. An alternative definition of
 integration is given in Dunford and Schwartz (1958, Definition III.2.17), dealing with
 ranges more general than R; see also ?4.4 in Bhaskara Rao and Bhaskara Rao (1983).
 With R as range, the Dunford and Schwartz integral is defined, and then is identical
 to the Choquet integral, whenever the latter is finite. Further comments on integra-
 tion with respect to finitely additive measures are given in de Finetti (1974, ?3.12 and
 Chapter 6).

 In Wakker (1989b, Chapter VI), elucidations are given for the Choquet integral. If
 a functional V is a Choquet integral, then the following straightforward results hold
 (with all V values assumed well defined):

 (1.2) V E RL: V(,L) = ,

 (1.3) V\/ E , Vf: V( f + XLt) = V(f) + tL (translation invariance),

 (1.4) VA E R +, Vf: V(Af) = AV(f) (positive homogeneity),

 (1.5) Vf, g f > gf = V(f ) > V(g) (pointwise monotonicity).

 Dellacherie (1970) was the first to observe the importance of the following condition
 for the Choquet integral. A set C of functions is comonotonic if

 Of, g E C, w, w' E f such that f(w) > f('), g(w) < g(w').

 The intuition for this condition can be inferred from Yaari (1987, p. 104), or Wakker
 (1990c, Example 1 up to Definition 4), or Wakker (1990b, ?4). The following theorem
 has been proved in Dellacherie (1970) for positive functions under the assumption
 that v satisfies the first implication in Definition 4.1 below and that d= 2n.
 Schmeidler (1986, Remark 4) was the first to prove the result in full generality.

 THEOREM 1.3 (comonotonic additivity for Choquet integrals). Suppose the Func-
 tional Assumption 1.1 holds. Let or, r > 0, and suppose f, g, of + rg E Y7, and f, g
 are comonotonic. Then f(crf + rg)dv = (rffdv + rfgdv, whenever all integrals in
 question are defined. o

 1.3. Enclosing bounded functions by step functions when I is rich (an interval).
 This subsection deals with the case that I is an interval. Then bounded functions

 f E - (and their integrals) can be enclosed within step functions (and their integrals)
 mainly by pointwise monotonicity, as follows (see Figure 2(a)).

 A sequence of functions (fj)j_l uniformly approximates a function f from below if

 (1.6) Ve > 03j E V NVi >j, Vof: f(o) - E < fi(w) < f ().

 Similarly uniform approximation from above is defined. These approximations are of
 course special cases of supnorm-approximation. In agreement with customs in the
 field, which deviate somewhat from traditional terminology, we say that f is bounded
 (from) above if there exists an upper bound i e I for f; f is bounded (from) below
 if there exists a lower bound v e I for f, and f is bounded if it is both bounded from
 above and from below. ,-b denotes the set of all bounded functions in ;-. Thus a
 bounded function that is not contained in $-, is neither contained in 5-b. If I is
 bounded from some side but does not contain its infimum/supremum, then a
 function may not be bounded in the sense just introduced, but still be bounded in the
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 1- FIGURE 2(a). Enclosing f from above and
 below by step functions f,+ and f,, - when

 3/4.___~~/ - monotonicity is pointwise.
 3/4- . _ ... +

 2/4- _f

 1/4

 m

 A A A
 1,m 2,m 3,m 4,m

 FIGURE 2(b). Enclosing f from above and
 below by step fntn functions + and ft,- when
 monotonicity is conditional. f,-- and f +
 take only values I and 0.

 1 - Iri -^ Fl(;umR: 2(b)(i). On every A, ,,, the integral of
 . f;- is equal to ( - 1)/mi times the "size"
 (probability) of A i.

 3/4 /

 2/4-

 1 ,m A2 A3 A m

 1- - - FlU;iai 2(b)(ii). On every Ai,,, the integral
 i 1 ii. / ~ ' of; + is equal to j/i? times the "sizc"

 (probability) of A ,,.
 3/4-

 2/4- _c^ m

 1/4 -

 A, A A A 1l,m 2, m 4,m

 FIGURE 2. Enclosing a bounded function by step functions. A function f with bounds, say 0 and 1, is
 enclosed by step functions f;,S- (from below) and f?,+ (from above) for m = 4.

 3/4-V VJUY UIVLIU JIIJ11
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 traditional sense (e.g., f' in Example 1.7). Hence Wakker (1989b) used the term
 strongly bounded for the above definition of bounded.

 LEMMA 1.4. Suppose the Functional Assumption 1.1 holds. If f E -b, then a
 sequence of step functions approximating f uniformly from below, and a sequence of step
 functions approximating f uniformly from above, can be obtained. For all such se-
 quences of step functions the Choquet integral tends to the Choquet integral of f.

 PROOF. The standard proof for additive measures can directly be applied to
 Choquet integrals. For the sake of reference, and comparison with reasonings below,
 details are given. Let f E --b, with bounds say v < A E I (the case v = uL is trivial).
 Let v = 0, ,u = 1 for simplicity of notation. By translation invariance and positive
 homogeneity these choices are immaterial. Define for m E N

 fs,-+. -

 (1.7) Al, m=f- 0,m]) 1 < j < m Aj,m ] and

 m , _+
 J -J = ] tm 'm m m

 j=1

 Then (f~,-)m= is a sequence of step functions, approximating f uniformly from
 below, and (f'+)m= is a sequence of step functions approximating f uniformly from
 above.

 Next let (ff's-)j be an arbitrary sequence of step functions approximating f
 uniformly from below (from above is similar, and will not be elaborated). We may
 assume that, for all j,[Vw: f(o) - f/'-(w) < 1/j]. With fjs'+:= (f/'-+ 1/j), then
 (f/'+)J=1 is a sequence of step functions approximating f uniformly from above. By
 pointwise monotonicity, the Choquet integrals of the f/'-s are all smaller than or
 equal to the Choquet integral of f, and the Choquet integrals of the ffj+s are all
 greater or equal. Because the Choquet integrals of the fjf+s and fjs'-s differ by 1/j
 (as follows from translation invariance), the desired convergence follows. o

 Note the interplay in the above proof of pointwise monotonicity and "below-and-
 above-enclosing-denseness" of step functions, which did not use any continuity.

 LEMMA 1.5. Suppose the Functional Assumption 1.1 holds. V is a Choquet integral
 on 9b whenever V is a Choquet integral on FS and is pointwise monotonic.

 PROOF. Let f e -b. By Lemma 1.4, f can be uniformly approximated from
 above by a first sequence of step functions, and from below by a second sequence of
 step functions. By pointwise monotonicity of V, V(f) is the unique real number
 between the two sequences of Choquet integrals of the step functions. This, by
 pointwise monotonicity of the Choquet integral, is equal to the Choquet integral of f.

 1.4. Enclosing bounded functions by step functions when fl is rich. This section
 only sketches the ideas leading to the results in Subsection 2.4 and ?3. See Figure
 2(b). Instead of the richness assumption concerning the range I as in the previous
 subsection, in the literature often a richness assumption is made concerning the
 domain fl. It will entail the availability of all probabilities. The step functions
 obtained in Lemma 1.4 need not be available anymore and an alternative, somewhat
 more complicated way must be used to enclose bounded functions between step
 functions. For nonadditive contexts this would be very complicated, and will not be
 pursued here. So we assume in this subsection that V is an integral on f-s with respect
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 to an additive capacity v; v is also denoted as P. The richness assumption that we use
 is as follows:

 VA E /, 0 < a < 1 3B E v' such that B c A, P(B) = rP(A).

 It can be inferred from Example 4.10 that indeed the approach of the previous
 subsection will not work under this richness assumption. Suppose f 1-b has
 bounds v < /. Suppose, for simplicity of notation, that v = 0, tu = 1. Let, for any
 m E N and j = 1,..., m, Aj m be as in (1.7). As in the proof of Lemma 1.4, step
 functions fm- and f', are defined for any m such that

 (1.8) |ff;-dP <fdP ff ,+ dP and fS d fpm

 (1.9) ff+ dP-ff-dP=

 The step functions will now only assign values 0 and 1. They are not
 dominating/dominated pointwise, but "conditionally", as follows. To define f-, we
 split up any Ajm into two events Am, and A, m. The superscript minus refers
 to the minus of f,-; versions with + will appear below. A'jm has probability
 ((j - l)/m)P(A, m); here fm- is 1. AY' - has probability ((m -j + l)/m)P(Ajm);
 here fm~- is 0. To define fm+, we split up any Aj m into two events A;+ and A?+
 A:,+ has probability (j/m)P(Aj,); here f,'+ is 1. Aj?+ has probability
 ((m - j)/m)P(Aj m); here fm+ is 0. Note that

 fS,- dP = j P(Aj) f S,+ dP= - P(Ajm) for allj.
 M MM j, j,m j,m ,

 Hence (1.9) follows, and for any A, m

 (1.10) VCEAi,m: fm dP?<f(w)P(Aj,m)< f dP.
 j, n , , M

 Conditionally dominating/dominated refers to the appropriate inequality in (1.10).
 Because of this condition, for any Aj m,

 fA f dP< f fdP < f, s+dP,
 j, jIm j

 and consequently (1.8) follows. Indeed, f has been enclosed between step functions
 "conditionally given each Aj m".
 At this stage an analogue of Lemma 1.5 could be formulated, with pointwise
 monotonicity replaced by a condition for functionals that might be called conditional
 monotonicity. I think however that for its own sake the condition is not very natural
 for functionals; hence I abstain from making it explicit. It will be implicit in Savage's
 approach to DMUU, and in the DMUR approach.

 1.5. Unbounded functions with finite (Choquet) integrals. In this subsection, func-
 tionals are characterized as Choquet integrals on domains where the Choquet
 integral is well defined and finite. These domains may include unbounded functions.
 We assume that it has already been established that the functionals are Choquet
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 integrals on the set F-b of all bounded functions in -, which is assumed to include
 the set -S of all step functions. First some useful observations are given for the case
 where the set I is rich. Then, if a function f is unbounded from only one side, the set
 of step functions is sufficiently rich to determine ff. The following claims are readily
 derived from the definition of the Choquet integral under the Functional Assump-
 tion 1.1

 (1.11) for all f bounded from below: ff= sup(ffs: f>p f},

 (1.12) for all f bounded from above: ff = infffS: f p f }.

 LEMMA 1.6. Suppose the Functional Assumption 1.1 holds, V is a Choquet integral
 on $b, and V is pointwise monotonic. Then V(f ) > ff for every f E - that is
 bounded from below, and V(f ) < ff for every f E y- that is bounded from above.

 PROOF. We only consider the case where f is bounded from below. Then

 V(f) > sup{V(fs): f> fS} = sup{/S: f > f > = ffdv,

 the inequality by pointwise monotonicity, the second equality by (1.11). o
 The inequalities in the above lemma can be strict. The following example, a

 variation on (1) of ?5.4 in Savage (1954), illustrates.
 EXAMPLE 1.7 (truncation-continuity cannot be omitted). Let fl = N, I=

 2Q, I =]0, 1]. Let %' be an ultrafilter (for a definition see Kelley (1955) or Wakker
 (1989b)) on N \ {1}, containing no finite set. Let P be a probability measure assigning
 probability 1/2 to {1} and probability 1/2 to every subset of N in '. Obviously, P is
 not countably additive. One may think of P as assigning probability 1/2 to two atoms,
 {1}, and an "invisible atom at infinity" described by %C. Let

 V: f fdP - lim P(f 1(]0, ])).

 For every function bounded in the sense defined above, V(f) is the Choquet integral
 of f, which in this case is a regular additive integral. However, for f': ( -
 1/w, lime,0 P(f'-l(]0, E])) is 1/2, so that V(f') is the Choquet integral of f' minus
 1/2. V is not identical to the Choquet integral. o

 For functions that are bounded from one side, a continuity condition could be
 imposed in the spirit of truncation-continuity as defined below, but with truncations
 replaced by pointwise dominating, or dominated, step functions. Thus Choquet
 integrals could be characterized. However, if a function f is unbounded from both
 sides, then no step function will dominate it pointwise, or be dominated pointwise,
 and approximations as in (1.11) and (1.12) cannot be invoked to identify the Choquet
 integral. For these functions an alternative method must be used. For the additive
 Lebesgue integral, where the integrals of functions bounded from one side are
 defined through (1.11) and (1.12), the integrals of functions f that are unbounded
 from both sides are traditionally defined as the sum of the integrals of f := f 0 and
 f-=: f 0?, whenever this sum is defined. Such an approach could also be used for the
 definition of the Choquet integral. It is however, to the best of my knowledge, not
 suited for the purpose of this paper, where properties of integrals are to be
 "translated" into conditions in terms of the preferences represented by the integrals.
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 ~W and

 below: fA4

 FIGURE 3. Above truncation. The above truncation f A of f at level y/. If the integral of f is finite,
 then the area dashed xxx tends to 0 if ,/ tends to infinity. If the integral of f is plus infinite or undefined,
 then the area dashed xxx is infinite no matter how large /, is.

 The reason is that I do not know of a way to translate the addition-operation into
 conditions for preferences. Hence I use an alternative approach, similar to the
 definition of improper Riemann integrals, where integrals are obtained as a limit of
 integrals of truncated functions. The method will also be useful if not I, but f1, is
 rich.

 For f e - and /I E I, f ^ , the above truncation of f at ,/, assigns min{f(o), /}L)
 to every wo E f; f v, the below truncation of f at v, assigns max{f(o), v} to every
 w E f. As a preparation for truncation-continuity, note that a finite Choquet integral
 can be approximated by integrals of truncations, also if the integrand is unbounded.
 The restriction to /L E f(Qf) below makes the result also suited for approaches where
 the range of alternatives does not satisfy richness assumptions.

 LEMMA 1.8 (Truncation-continuity of the Choquet integral). Let f denote a
 Choquet integral, and let f E 9S. Suppose ff is finite. Then

 (1.13a) Ve > 0 3 e f(f):0 ff ff A t< and

 (1.13b) Ve > 0 3v ef(): 0 < fffv - f < .

 PROOF. Note that the lemma did not require the truncations to be contained in
 -. We only prove (1.13a). First suppose f(fl) is unbounded above. If the integral
 f,+v({s E f: f(s) > r}) dr is finite, then for every positive e there must exist a
 positive Au E lR such that the integral differs by no more than e from J[o ,]v({s E Qf:
 f(s) > r}) dr. The Choquet integral ff A^ is

 f v({s e l ff(s) > r}) dr+ f [v({s e f: f(s) > r}) - ] dr,

 and differs by less than e from ff.
 Next suppose f(fl) is not unbounded above, so that it has a finite supremum. Then

 we can take f A with ,u in f(f) differing by less than e from the supremum of
 f(fl). Hence (f A ) + E has Choquet integral larger than or equal to that of f. By
 translation invariance, the Choquet integral of f ^ L differs by no more than e from
 the Choquet integral of f. o
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 The above result is characteristic for finite Choquet integrals. As soon as a
 Choquet integral of f is infinite, the difference between this and the Choquet integral
 of any above truncation of f is always infinite. To characterize functions, possibly
 unbounded, that have a finite V value identical to the Choquet integral, the above
 property of functions f with finite Choquet integral values is mimicked.

 DEFINITION 1.9. We call f E F truncation-robust (with respect to V) if for all
 gS E "Fs

 (1.14a) V(f) > V(gs) = 3 EI- I: f^ ?E -, V(f ") > V(gs) and

 (1.14b) V(f) < V(gs) 3v E I: f eE 9, V(fvv) < V(gs).

 V is truncation-continuous if the above conditions hold for all f E &-. [
 Truncation-continuity imposes some richness condition on -; loosely speaking,

 sufficiently many truncations must be available for each f E E-. In all main results
 below, truncation-continuity implies that - is weakly truncation-closed: for every
 u. E I there must exist u' > pt such that f A E Y, and for every v E I there must
 exist v' < v such that f Ev E . Given that, for a Choquet integral functional, the
 function f E y- has a finite Choquet integral value if and only if f is truncation-robust
 with respect to that Choquet integral functional. Most results in the literature
 require, more restrictively, that '- be truncation-closed, i.e., that all truncations are
 contained in Y.

 To establish integral representations for unbounded utility functions, Wakker
 (1989b, Chapter V) assumed that for every f E - there exists a "certainty equiva-
 lent", or "fair price", in the terminology of de Finetti. A certainty equivalent is an
 element a E I such that V(a) = V(f). To achieve maximal unity between the several
 approaches of this paper, including those where richness is imposed on fl, the
 assumption is formulated in a slightly more general way.

 DEFINITION 1.10. V satisfies the step equivalent assumption if

 Vf Y-3fs E fs: V(f) = V(fS). [

 As constant functions are special cases of step functions, the above condition is
 indeed implied by, so less restrictive than, the assumption that certainty equivalents
 exist. In the presence of convexity of I, and continuity of V on Fs as implied by the
 other conditions in all main results below, the two conditions are actually equivalent
 (the certainty equivalent is between the maximum and minimum of the step equiva-
 lent). Step equivalence serves to exclude infinitesimal differences between equiva-
 lence classes. As truncation-continuity, it can as well serve to exclude, in the presence
 of the other conditions, functions with integral value plus or minus infinity. Actually,
 such functions do not pose serious problems for representation theorems. The
 functions that are really problematic are those that are unbounded from both sides,
 and have an undefined integral; i.e., their positive part gives integral plus infinity,
 their negative part minus infinity. These functions can satisfy the step equivalent
 assumption, as well as the other usual decision-theoretic assumptions. Only to discard
 these, the full strength of truncation-continuity is needed.

 LEMMA 1.11. Under the Functional Assumption 1.1, V is a Choquet integral when-
 ever V is a Choquet integral on Fb, V is pointwise monotonic, V satisfies the step
 equivalent assumption, and V is truncation-continuous.
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 PROOF. V satisfies above-truncation-continuity if (1.14a) holds for all f. We first
 establish (without using truncation-continuity in full force):

 (1.15) if V satisfies above-truncation-continuity, then for all f E 5F:

 f dv is well defined and V( f) < ffdv.

 As a preparation we show that ff is well defined. Suppose, for contradiction, it were
 not. Let V(f) = V(fS) for fs E F-. Because ff is undefined, I is unbounded from
 below (in fact from both sides) so v E I can be found with v = V(y) < V(fS), i.e.,
 V(v) < V(f). By (1.14a), V(v) < V(f A) for some /t. Contradiction results from
 -o < V(v) <V(f A) < ff A = -o, where the weak inequality follows from
 Lemma 1.6, the equality holds because ff is undefined.

 So ff is well defined. Suppose now, for contradiction, that V(f) > ff. Let V(gs) =
 V(f) for a g5 E y-s. The just-assumed inequality implies the existence of a g E I
 such that < V(f). By this, and convexity of I, gs can be modified slightly into fS,
 such that V(f)> V(fs) > ff. By above-truncation-continuity, there is an above
 truncation f A l such that still

 (1.16) V(f > V(fS) > ffdv.

 However, by Lemma 1.6 and pointwise monotonicity of the Choquet integral,

 V(f l) < ffA dv < ffdv,

 contradicting (1.16). So (1.15) has been proved.
 V satisfies below-truncation-continuity if (1.14b) holds. Similarly to (1.15) we get

 (1.17) if V satisfies below-truncation-continuity, then for all f E Y:

 ffdv is well defined and V( f) > f du.

 The theorem follows from (1.15) and (1.17). o

 1.6. Results for the functional approach, with functions as alternatives. In this
 subsection the results of the previous subsections are combined into a method for
 extending characterizations of Choquet integrals from step functions to more general
 functions, as long as the latter have a finite Choquet integral.

 THEOREM 1.12. Under the Functional Assumption 1.1, V is a Choquet integral
 whenever the following four conditions are satisfied:
 (1) V is a Choquet integral on -,
 (2) V is pointwise monotonic,
 (3) V satisfies the step equivalent assumption,
 (4) V is truncation-continuous.

 PROOF. This follows from Lemmas 1.5 and 1.11. a

 The following theorem extends the main result in Schmeidler (1986) to unbounded
 functions with finite Choquet integral.
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 THEOREM 1.13. Suppose the Functional Assumption 1.1 holds with I = R.
 V: F--* [R is a Choquet integral whenever the following five conditions are satisfied:

 (1) V(1n) = 1,
 (2) comonotonic additivity: if f, g are comonotonic and f, g, f +g E -, then

 V(f + g)= V(f) + V(g),
 (3) V is pointwise monotonic,
 (4) V satisfies the step equivalent assumption,
 (5) V is truncation-continuous.

 PROOF. By Schmeidler (1986, second half of p. 257), Conditions (1), (2) and (3)
 imply that V is a Choquet integral on Fs. The result now follows from Theorem
 1.12. o

 Condition (1) is necessary by Formula (1.2), Condition (2) is necessary by Theorem
 1.3, Condition (3) is necessary by Formula (1.5), and necessity of Condition (4) follows
 mainly from convexity of I. If F is weakly truncation-closed, then necessity of
 Condition (5) follows from Lemma 1.8. So, if F is weakly truncation-closed, then all
 conditions are necessary. Comonotonic additivity was only used for step functions in
 the proof.

 Note that the above theorem applies to any set y that contains all step functions
 together with any arbitrary set of unbounded functions with finite Choquet integral,
 as long as weak truncation-closedness is satisfied. The corollary below is the result as
 given in Schmeidler (1986). It makes use of the fact that in the above theorem step
 equivalence and truncation-continuity have not been used on Fb.

 COROLLARY 1.14. Suppose the Functional Assumption 1.1 holds with I = R. Let $F
 be the set of all bounded measurable functions from 1f to iR. Then V is a Choquet
 integral if and only if V(1n) = 1 and V satisfies comonotonic additivity and pointwise
 monotonicity.

 PROOF. Sufficiency of the conditions follows from Theorem 1.13 because trunca-
 tion-continuity is trivially satisfied, and step equivalence is only needed for un-
 bounded functions. Necessity was demonstrated above. o

 The following generalization of Theorem 1.13 is more in accordance with the setup
 of the following sections. It allows I to be any nondegenerate interval.

 THEOREM 1.15 (Choquet integral for unbounded functions). Under the Functional
 Assumption 1.1, V: F---> R is a Choquet integral whenever the following five conditions
 are satisfied:
 (1) 3v < ,I E I such that V(v X 1n) = v, V(I X 1x ) = j/,
 (2) comonotonic mixability: if f, g E S are comonotonic then

 V(?f + g)= - V(f) + ?V(g),

 (3) V is pointwise monotonic,
 (4) V satisfies the step equivalent assumption,
 (5) V is truncation-continuous.

 PROOF. By Theorem 1.12 it suffices to show that V is a Choquet integral on S5.
 By appropriate translation and change of scale of both V and I, we may assume that
 v = 0 and /t = 1. Then for all f e .9 also 2f E 5-, and, with g 0 in Condition
 (2), V(?if)= V(f). For all f,g, f + ge -9s, by Condition (2), it follows that
 V(?f + 2g) = V(f) + 2V(g). These two observations imply comonotonic additivity
 for all step functions f, g, f + g E S-. Now the reasoning of Schmeidler (1986,
 second half of p. 257) can be repeated, showing that V is indeed a Choquet integral
 on -s. o
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 2. Representations of preferences in DMUU, with acts as alternatives. This
 section studies decision making under uncertainty (DMUU). Here an alternative is an
 act, i.e., a function from a nonempty set fl, the state space, to a nonempty set e, the
 consequence space. Exactly one of the states is true, the others are untrue, and a
 decision maker is uncertain which state is true. Hence he is uncertain which

 consequence will result from a chosen act. The preference relation a of the decision
 maker is a binary relation on -, the set of acts under consideration. We write f > g
 if f a g and not g , f, f i g if g a f, f -< g if g >- f, and f - g if f a g and g a f.
 Further, a is a weak order if it is complete (f a g or g f for all f, g) and
 transitive, and a is trivial if f a g for all f, g. Elements of - are identified with the
 associated constant acts. Thus, for a, 13 E -, we write a 13 if the associated
 constant acts are contained in F and the same relation applies to these. Following
 Fishburn (1982, p. 24), A c e is a preference interval if

 Va, p,y E {: [a,y eA, a 3 y] f8 A.

 For example, if f is the set of rational numbers and a = > on e, then [0, /22] n f
 is a preference interval. Given an algebra v of events on fl, a step act is an act that
 is constant on every element of a finite partition of fl consisting of elements from /'.
 FS denotes the set of step acts. Again, step acts are measurable whatever the algebra
 on - is, and F- is a subset of the set of measurable simple acts. As illustrated in
 Fishburn (1982, p. 122), it may be an essential subset. In Wakker (1989b, Chapter V)
 the term step should have been used instead of simple.

 Under the following assumption it can be seen that for every measurable simple act
 fS there is a step act gs such that Vw: fS(w) gS(w). We assume throughout this
 section:

 ASSUMPTION 2.1 (DMUU Assumption). f is a nonempty set endowed with an
 algebra S/. e is a nonempty set, endowed with an algebra S. F is the set of acts,
 i.e., SF -na; a is a nontrivial binary relation on F. 9 contains all preference
 intervals. All acts are assumed measurable. F contains y,. o

 2.1. The Central Representation Theorem. This subsection presents a theorem by
 means of which many representation theorems from the literature can be extended,
 i.e., those where the range for (utility values of) alternatives is an interval (i.e., u(e)
 below). The extensions are then a matter of routine. As an illustration, two important
 extensions are made explicit in the following two subsections.

 V represents , or a maximizes V, if V is a functional from F to 1R such that
 [Vf, g EE F: f a g * V(f ) > V(g)]. We say that a maximizes Choquet expected
 utility (CEU) if there exists a capacity v on e, and a function u: -~> R such that
 f f(uo f) dv represents a; f(u f)dv is the Choquet expected utility of f
 (CEU(f)). We use the term subjective expected utility (SEU) instead of Choquet
 expected utility if the capacity is additive. Note that measurability of u is ensured if R
 is endowed with the usual algebra generated by intervals, because then all sets
 u-1(] - , L]), u-([v, oo[) are preference intervals. In proofs below, measurability of
 sets of the form u-'(](j - 1)/m, j/m]) is often used without explicit mention.

 Next we adapt some definitions from ?1, mainly by replacing > on R by a on e.
 Act fpointwise dominates act g, notation f p g, if [Vw E f1: f(o) a g(w)]. We say
 a is pointwise monotonic if

 V f,g Y-: fp, g =f g.
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 A set C of acts is comonotonic if

 Of, g E C, o, ' E f: f(w) >- f(O'), g(o) '< g(w').

 An act f is bounded (from) above if there exists a /,u E such that Vco E fQ:
 /, a f(o). Then A is an upper bound for f. Boundedness (from) below, and a lower
 bound, are defined similarly; f is bounded if it is both bounded from above and from
 below. FZb denotes the set of all acts in - that are bounded.

 DEFINITION 2.2. We say that a satisfies the step equivalent assumption if

 V ef e- 3fS Fs: f f. -

 LEMMA 2.3. Suppose the DMUUAssumption 2.1 holds, and z maximizes CEU on
 59s with respect to a capacity v and a function u. Suppose u({) is a nondegenerate
 interval. Then > maximizes CEU on 9-b with respect to the same u and u whenever
 a is a weak order on y^, is pointwise monotonic, and > satisfies the step
 equivalent assumption.

 PROOF. Because CEU represents a on Fs, all step acts equivalent to f have
 the same CEU value. Hence we can define V: Y-- R by V: f > CEU(fs) where
 fS E S, fs - f; V represents > . It remains to prove that V is a Choquet integral
 on 9F . Consider the set 5' of functions from fl to u(e) of the form u o f, f E Y.
 By two-fold pointwise monotonicity, any two acts f, g such that [u o f = u o g , are
 equivalent, so have the same V value; hence we can define V': 5-' -> R according to
 V'(u o f)= V(f) for all f. It suffices to prove that V' is a Choquet integral. This
 follows from Lemma 1.5, if we verify all conditions of Lemma 1.5, thus of Assumption
 1.1, for V'. This is done in the remainder of the proof.

 Note that 5' contains the entire '5". V' is the Choquet integral on ',s, and
 inherits pointwise monotonicity from V. The algebra 9' on I should be chosen such
 that all functions u o f 5-' are 9' - v measurable. This is ensured by taking for
 9' the minimal algebra that is possible, i.e., the algebra consisting of all finite unions
 of intervals. Then for each act f and interval A, (u o f)- (A) is the inverse under f
 of a preference interval, so is measurable. o

 For f: ft --, and a E -', f A a, the above truncation of f at a, assigns a to every
 w E fl s.t. f(w) >- a, and f(o) to all remaining o. For f: fl -> e and 3 E e, fV ,
 the below truncation of f at /3, assigns 8 to every w E 1 s.t. f(w) < /3, and f(w) to
 all remaining w. Central is the following property: f c 9- is truncation-robust (with
 respect to >) if for all gS E -s

 (2.2a) f >- gs 3g/ e :t f : ' f f /^f >- gs, and

 (2.2b) f < gS 3 E3v : fvE v , fv < gS.

 We call a truncation-continuous if every f E - is truncation-robust. The stronger
 version where gS is replaced by a general g E -, turns out to be equivalent in the
 presence of the other conditions in the main results. This stronger version was
 announced in Wakker (1985, p. 123), and actually introduced in Wakker (1989b,
 Definition V.4.5), for the context of additive representations; see Corollary 2.14. The
 condition in the literature most similar to truncation-continuity has been formulated
 for DMUR and will in that context be compared to the condition of this paper; see
 Example 3.5, and the text above that example. Truncation-continuity implies weak
 truncation-closedness in all main results: for every /, E -e there must exist /u' a -
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 such that f EA1 E , and for every v e r( there must exist v' s v such that

 LEMMA 2.4. Suppose the DMUUAssumption 2.1 holds, and a maximizes CEU on
 -b with respect to a capacity v and a function u. Suppose u(-) is a nondegenerate
 interval. Then a maximizes CEU with respect to the same v and u on the entire 4
 (with CEU(f) real-valued for all f E 3-) whenever a is a weak order on Y-, a is
 pointwise monotonic, a satisfies the step equivalent assumption, and a is truncation-
 continuous.

 PROOF. Define V, V', ', ', I as in the proof of Lemma 2.3. V' inherits step
 equivalence and truncation-continuity from a (for truncation-continuity, note that u
 represents a on -). By Lemma 1.11, V' is a Choquet integral. The same follows
 for V. a

 THEOREM 2.5 (Central Representation Theorem). Suppose the DMUU Assumption
 2.1 holds, and a maximizes CEU on -sF with respect to a capacity v and a function
 u. Suppose u(-e) is a nondegenerate interval. Then a> maximizes CEU with respect to
 the same v and u on the entire F- (with CEU(f) real-valued for all f E -F) whenever
 the following four conditions hold:

 (1) > is a weak order on -,
 (2) a is pointwise monotonic,
 (3) a satisfies the step equivalent assumption,
 (4) a is truncation-continuous.

 PROOF. This follows from Lemmas 2.3 and 2.4. u

 2.2. The A &A approach to DMUU, with probability distributions as consequences.
 In this subsection results of Schmeidler (1989) and Anscombe and Aumann (1963) are
 entended. We assume throughout this subsection, in addition to the DMUU Assumption
 2.1:

 ASSUMPTION 2.6 (A&A Assumption). - is the set of all probability distributions
 with finite support over a nonempty set F. For any function U: F -R R, EU: - -> R
 denotes the expectation of U. D

 The approach of this subsection is called the A &A approach. Elements of F are
 called prizes. Acts f, g can be mixed in a pointwise manner, as

 rf + (1 - ()g: tow - rf(w) + (1 - r)g(t).

 Results are obtained for general sets of measurable acts ~-, not necessarily closed
 under mixture operations. Hence many of the conditions, imposed on all acts in the
 literature, are weakened here by restricting them to 4-S, the set of step acts. This also
 avoids the measurability problems in the mixing of acts as in Schmeidler (1989)
 (compare Example 1.2).

 The stochastic mechanism determining the prize that will result from a conse-
 quence is an auxiliary structure to facilitate the analysis. It makes possible the
 application of techniques for mixture spaces as started in von Neumann and Morgen-
 stern (Appendix in 1947,1953), and extensively used in Fishburn (1982), and many
 other recent works in decision theory. The first appearance of the following condition
 (without a restriction to step acts) was in von Neumann and Morgenstern (1944,
 Axioms 3:B:c and 3:B:d).

 DEFINITION 2.7. We say that a is s(tep)-vNM-continuous if Vf, g, h e 3-S

 f> g> h =*3a, E ]0,1[ such that (1 - )f + h > g >- rf + (1 - r)h. D
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 The well-known independence condition, and its restriction to comonotonic acts as
 introduced in Schmeidler (1989), are restricted to step acts below.
 DEFINITION 2.8. We say a satisfies s(tep)-comonotonic independence if, for all

 comonotonic step acts {f, g, h}, and 0 < r < 1,

 f > g ==> f + (1 - a)h >- ag + (1 - o)h.

 The definition of s(tep)-independence is obtained by requiring the above implication
 also for all noncomonotonic step acts {f, g, h}. u
 The following theorem extends the Theorem of Schmeidler (1989) to acts with

 unbounded utility. The step equivalent condition is equivalent to the existence of a
 certainty equivalent, i.e., an equivalent constant act.

 THEOREM 2.9 (Extension of Schmeidler's (1989) CEU-representation to unbounded
 acts). Suppose the DMUU Assumption 2.1 and the A &A Assumption 2.6 hold. Then
 a maximizes CEU with respect to a capacity v and a function EU: e -> R derived
 from a function U: F * R (with all Choquet integrals finite), whenever the following six
 conditions are satisfied:
 (1) a is a weak order on -,
 (2) a is s-vNM-continuous,
 (3) a is s-comonotonic independent,
 (4) a is pointwise monotonic,
 (5) a satisfies the step equivalent assumption,
 (6) a is truncation-continuous.

 PROOF. As shown in Schmeidler (1989), or Wakker (1990c, Theorem 6), Condi-
 tions (1), (2), (3) and (4) imply the representation on 9-s. EU(e) being a nondegen-
 erate interval, Theorem 2.5 now gives the desired result. n
 Schmeidler (1989) considered the special case of the above theorem where y is

 the set of all bounded acts, and Conditions (2) and (3) are strengthened to hold for all
 these acts. On -b, Condition (6) is trivially satisfied, and Condition (5) is straightfor-
 wardly implied by the strengthening of s-continuity to all acts (leaving aside some
 measurability complications).

 COROLLARY 2.10 (Extension of Anscombe and Aumann's (1963) SEU representation
 to unbounded acts). In the above theorem maximization of SEU holds if Condition (3)
 is strengthened to s-independence.

 PROOF. Additivity of the capacity follows straightforwardly, e.g., by applying the
 theorem of Anscombe and Aumann (1963) to any fixed finite partition of fQ and the
 set of step acts measurable with respect to that partition. n
 The above corollary has extended the classical result of Anscombe and Aumann to

 infinite state spaces, and also to unbounded acts; that latter extension has not yet
 been provided in the literature. Fishburn (1982, Chapter 10) extends the result of
 Anscombe and Aumann to infinite state spaces, but assumes that Y contains all
 measurable acts (and even, to obtain a mixture space structure, mixtures of these that
 can be nonmeasurable). This implies boundedness (with probability one) of all acts in
 Y-, and boundedness of utility as soon as there is a denumerable partition of f with
 all elements having positive probability.

 2.3. The connected topology approach to DMUU, with a connected topological space
 as consequence space. This subsection gives representation theorems where u(e) is
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 an interval because u is continuous with respect to a connected topology on W. Such
 an assumption is usually satisfied in the literature, e.g., if -e = R, designating money,
 or -4 = R, designating commodity bundles. Also, the setup of the previous subsec-
 tion can be considered a special case of this setup, e there being a convex subset of a
 linear space and (EU =)u being linear. See the works of de Finetti or Yaari (1987).
 The most general approach along this line is Wakker (1989b), where the following
 assumption is made:

 ASSUMPTION 2.11 (Topological Assumption). e is a connected separable topologi-
 cal space. o

 The approach of this section is called the connected topology approach. The
 assumption of connectedness is crucial; the assumption of separability has been made
 for simplicity of presentation, and can nearly always be omitted. See Remark 4.8. The
 motivation for the approach of this subsection is as follows. As compared to Savage's
 approach, the continuity assumption (Condition (6) in Theorem 2.17) requiring
 fineness of the state space is replaced by continuity requiring fineness of the
 consequence space. The latter assumption is satisfied anyhow in many analyses. As
 compared to the A&A approach, we do not require all simple objective probability
 distributions over prizes to be available as consequences. These objective probability
 distributions over prizes are to be dealt with in a linear way, i.e., as in EU (see the
 A&A Assumption 2.6), in the A&A approach. Relaxing this requirement is particu-
 larly desirable in nonadditive contexts. This subsection generalizes the approaches of
 de Finetti to continuous instead of linear utility, and of course to more general
 consequence spaces than R. Linearity of utility is generally considered to be too
 restrictive. The price to pay for the great generality is that the characterizing
 conditions are more complicated than those in the previous subsection. The presenta-
 tion below will be concise.

 For A E V/, a E {, and f: f2 -X -, f-Aa assigns f(o) to every w E Ac, and a to
 every w E A. Let 7r = (A 1,..., Am) be an ordered partition, or partition for short, of
 f. In this paper a partition is always, without explicit mention, assumed to consist of
 events. Write EJm a,lAj for the act with value aj on Aj, j = 1,..., m. Y- is the set
 of step acts of the form EJ iajlAi, and yc is the (comonotonic!) set of step acts of
 the form Em jojlAj with, furthermore, a, a . a am. Note that in the latter
 definition the ordering of the events in nr is essential. The preference relation a is

 s(tep)-continuous if for any partition (A1..., Am) and any act f = E= 1Pj1lj, the
 sets

 { m l I m \
 (a ... m) EE : E ajlj f and (aI ... am) : EE lj f

 j=l j=I

 are closed with respect to the product topology on em. This s-continuity is of a
 finite-dimensional character, thus is weaker than most of the other continuity condi-
 tions used in the literature. It is weaker than continuity of a with respect to the
 (restriction of the) product topology, and also weaker than the sup-metric continuity
 as used in Koopmans (1972). Also the step equivalent assumption can be seen to be
 implied by product-topology-continuity, and by Koopmans' sup-metric-continuity.
 From a set C c F it can be concluded that an event A is not impossible if there
 are acts f, g e C that coincide outside of A, but are not equivalent. So we call event
 A essential (with respect to a) on C if there exist f >- g E C where f and g coincide
 outside of A. The opposite of essential is inessential. (In)essential abbreviates
 (in)essential on F, rr(in)essential abbreviates (in)essential on SF. Write, for
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 a, f3, y,8 e ,

 aj3 >* y8 if 3A E , f E - S, g E Fs such that

 (2.3) f_Aa > gf-A and f-Ay< g-A'

 The idea is that the above preferences show that the "tradeoff" of getting a instead
 of /3 is better than the tradeoff of getting y instead of 5; (2.5) will further illustrate.
 More comments on this definition are given in Wakker (1989b, ??II.4 and IV.2) and
 Wakker and Tversky (1991). We write a* instead of >-* if in (2.3) we have i
 instead of -< and if furthermore A is essential on F-.

 The following variations were introduced in Wakker (1989b, ?VI.4). We write >-c
 instead of >-* if furthermore the four acts in (2.3) are comonotonic. We write >*
 instead of s* if the four acts are comonotonic, and furthermore A is rr-essential for
 a rr such that the four acts in question are contained in "T. (The four acts are
 comonotonic if and only if they are contained in a set F,"r; see Wakker (1989b),
 Lemma VI.3.3.) Similarly to Wakker (1989b, Lemma IV.2.6), one shows that if a
 maximizes SEU, then

 (2.4) at38 S 6 u(a) - u(3) > u(y) - u(8) and

 (2.5) af >-* y8 u(a) u()- ) > u(y) - u(8).

 Similarly to Wakker (1989b, Formulas VI.5.1,VI.5.5, VI.5.6) it is shown that if z
 maximizes CEU, then

 (2.6) a13 > y8 = u(a) - u(/3) > u(y) - u(8) and

 (2.7) af3 >-* y8 =* u(a) - u(,3) > u(y) - u(8).

 DEFINITION 2.12. The preference relation a satisfies tradeoff consistency if there
 do not exist consequences a, 3, y, 8 such that [both af,3 =* y8 and y8 >-* a,3]. The
 preference relation a satisfies comonotonic tradeoff consistency if there do not exist
 consequences a,, y,, , such that [both a,3 - y8 and y8 >-* a,3]. n

 By (2.4) and (2.5), tradeoff consistency is a necessary condition for SEU maximiza-
 tion, and by (2.6) and (2.7) comonotonic tradeoff consistency is necessary for CEU
 maximization. The following theorem and corollary show that the tradeoff consistency
 conditions, in the presence of the other usual axioms, are also sufficient.

 THEOREM 2.13 (Extension of Wakker's (1989b) CEU representation to unbounded
 acts). Suppose the DMUU Assumption 2.1 and the Topological Assumption 2.11 hold.
 Then a maximizes CEU with respect to a capacity v and a continuous function u:
 - - R (with all Choquet integrals finite) whenever the following six conditions are
 satisfied:

 (1) > is a weak order on ,
 (2) a is s-continuous,
 (3) a satisfies comonotonic tradeoff consistency,
 (4) a is pointwise monotonic,
 (5) a satisfies the step equivalent assumption,
 (6) a is truncation-continuous.

 PROOF. By Theorem VI.5.1 in Wakker (1989b), the above theorem holds if fl is
 finite. Hence it also holds if a fixed finite partition of fl is taken, and a is restricted
 to the acts measurable with respect to that partition. The resulting capacity v and
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 utility function u can be taken independent of the partition in question: fit v and u
 together for any two partitions by taking a common refinement of these partitions,
 using uniqueness of v and uniqueness up to transformations of u as provided in
 Observation VI.5.1' in Wakker (1989b). The fitting-together is completely similar to
 Theorem V.3.4 in Wakker (1989b). This gives a CEU representation on F-. (Also the
 uniqueness results, given in Subsection 4.3, follow at this stage from the uniqueness
 results in Wakker (1989b, Observation VI.5.1').) By continuity of u,u(e) is an
 interval; it is nondegenerate by nontriviality of a . Finally, Theorem 2.5 gives the
 remaining results. o
 The above theorem generalizes the additive Theorem V.6.1 in Wakker (1989b).

 The latter is given as a corollary. In the remainder of this paragraph we discuss some
 details. One difference is that Wakker (1989b) used a constant-continuity condition
 instead of the present step equivalence assumption. The only implication of
 constant-continuity was, however, the existence of certainty equivalents, as derived in
 Lemma V.4.4 there (also straightforwardly implied by step equivalence, s-continuity,
 and connectedness). The second difference is that Wakker (1989b) assumed that 9
 contains all open subsets, instead of the present assumption that _ contain all
 preference intervals; the latter can be seen to be somewhat less restrictive.

 COROLLARY 2.14 (Extension of Wakker's (1989b) SEU representation to unbounded
 acts). In the above theorem a maximizes SEU if comonotonic tradeoff consistency is
 strengthened to tradeoff consistency. D

 Necessary and sufficient conditions for a representation as above (also using a
 connected topology; compare Remark 4.8) are given in Grodal (1978). Her condition
 that the set of acts is a "mixture" and that all constant acts should be available

 implies truncation-closedness, and the availability of all step acts. Her condition of
 continuity with respect to nullsets implies countable additivity of the probability
 measure and truncation-continuity; see Subsection 4.1. Her main characterizing
 condition (instead of tradeoff consistency) requires "independence" of a mean
 groupoid operation on the set of consequences, derived from the preference relation,
 and using continuity for its definition. It has the disadvantage of not being elementary
 in terms of preferences, hence not being directly testable.

 2.4. Savage's approach to DMUU, with an infinitely divisible state space. This
 subsection shows how to use truncation-continuity to extend the famous result of
 Savage (1954) to the case of unbounded utility. The approach of this subsection is
 called Savage's approach, and is characterized mainly by Condition (6) in Theorem
 2.17, imposing restrictions upon the state space. A nonadditive generalization of
 Savage's model is very complicated; it has been obtained in Gilboa (1987). There the
 sure-thing principle no longer holds, and conditional preferences, as used below, can
 no longer be defined. So there Gilboa's axiom P7*, by itself logically independent of
 Savage's P7, would have to be generalized in the same spirit as Savage's P7 is
 generalized below. This paper, however, will follow Savage's setup as closely as
 possible, to obtain a direct generalization thereof. Hence the nonadditive generaliza-
 tion of Savage's model is not studied here.

 Truncation-continuity is used again to exclude acts with unbounded or (more
 importantly) undefined SEU. The main difference as compared to the setups consid-
 ered so far is that not the consequence space, but the state space satisfies a fineness
 restriction. For that reason the restrictive conditions of continuity of utility are,
 loosely speaking, replaced by a continuity condition for probability.

 The notation f_Aa from Subsection 2.3 is also used in this subsection, as is the
 definition of essentiality of events, and the convention that elements of partitions are
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 events. Some further preparatory notations are given. For f, g: fl -> -, A E d, fA
 is the restriction of f to A, and g-AfA is identical to f on A and to g on Ac. Let us
 recall that, for any fixed w E Sl, g_Af(o) is equal to g on AC and to the constant
 f(t) on A.

 The sure-thing principle, Savage's (1954) most famous condition, is given in the
 version as it is usually taken nowadays; i.e., it entails only Savage's P2. (Savage
 himself also included his P3, i.e., Condition (3) in Theorem 2.17, in the term
 sure-thing principle.) It says that a preference between two acts should only depend
 on the states of nature at which the acts are different. It is straightforwardly verified
 that this is a necessary condition for SEU maximization, and that it is implied in
 Corollaries 2.10 and 2.14. Many related independence-conditions from other decision
 theories have been listed in Wakker (1989b, ?11.5). As throughout this paper,
 conditions are restricted to FS as much as possible; this also holds for the sure-thing
 principle. It can be seen that the conditions in Theorem 2.17, with the sure-thing
 principle restricted to step acts, imply the sure-thing principle for all acts.
 DEFINITION 2.15. We say that a satisfies the sure-thing principle if

 Vff, g, s, t E F, A E -V) f _ASA, g-ASA, f_AtA, g-AtA

 E = f: f-ASA a g-ASA ** f-AtA > g-AtA.

 We say > satisfies the s(tep)-sure-thing principle if the above is required only on Fs.

 In the presence of the s-sure-thing principle the following definitions are useful.
 Write fA 'A gA whenever 3h: h_AfA, h AgA e Y,h AfA h_AgA By the
 s-sure-thing principle

 fA >A gA V h E 51S: h-AfA > h_AgA'

 Similarly, the other conditional preference relations >, , -A, -<A and A are
 derived from their versions without the subscript A.

 The only nonstraightforward complication as compared to the previous subsections
 is that we can no more tightly enclose bounded acts from above and below by
 pointwise dominating/dominated step acts, the needed consequences possibly not
 being available. This can be inferred from Example 4.10. Hence pointwise dominance
 is modified by the following condition, that was announced in Subsection 1.4. Note
 below that f(O)Ai denotes the restriction of the constant act f(co) to Ai.

 DEFINITION 2.16. We say that > satisfies conditional monotonicity if, for every
 partition (A1,..., Am) of Q, act f e , and step act f5 E SFS:

 (V essential Ai, t) E Ai: f(W)A, >-Ai f,i) = f > fs and

 (V essential Ai, w) Ai: f(W)A, )Ai fA i ) f ' fs.

 Note that in the antecedents above only (conditional parts of) step acts are used,
 i.e., the constant act f(w), and fs. In the first implication above, f conditionally
 dominates f5, in the second f is conditionally dominated by fs. The condition is a
 variation of Savage's P7. Savage's P7 requires the above for single events Ai and
 preferences at the right-hand side of " " conditional on Ai, instead of considering
 m fold partitions as we do. However, it is elementarily verified that in Savage's setup
 the above condition is implied by his P7, mainly by the sure-thing principle and the
 richness of the set of acts in his setup. For our purposes, with fewer assumptions
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 about availability of acts, Savage's P7 would become too weak. Several constructions
 that were possible in the proofs of Savage require more caution in the present
 approach, where fewer auxiliary "intermediate" acts are available. Fishburn (1970,

 Theorem 14.1) uses a somewhat weaker condition than P7 of Savage by requiring >A,
 instead of A , and <Ai instead of <A , in the antecedent. A version in the same
 spirit for the present setup would meet considerable complications, again because of
 the generality concerning available acts. Hence such a version is not presented.

 We could, as in the A&A approach and the connected topology approach, have
 started by giving a characterization of functionals which are integrals, and subse-
 quently derive from this a representation result for binary relations. However, the
 extension of the functional to nonstep functions is now more complicated, and needs
 ordinal conditions like variations of the (s-)sure-thing principle (and Condition (3)
 below). Hence the result is derived immediately for representations of preferences,
 and the underlying functional result is not made explicit. As pointed out in Savage
 (1954, ?4; see also Wakker, 1981) the assumption that v is a a-algebra is essential in
 the theorem below. Let us compare the conditions below with Savage's Postulates.
 First, of course, the set F as determined by the DMUU Assumption 2.1 is different.
 Conditions (1), (4), and (5) are identical to Savage's Postulates P1, P4, and P5,
 respectively. His P2, P3, and P6 postulates have been weakened in Conditions (2), (3),
 and (6) to hold only for step acts. His P7 in the present context would be weaker than
 Condition (7), but in his setup would be equivalent. Conditions (8) and (9) have been
 added to deal with unbounded acts, and are only needed for these.

 THEOREM 2.17 (Savage for unbounded utility). Under the DMUU Assumption 2.1
 with v a a-algebra, a maximizes SEU with respect to a probability measure P and a
 utility function u (with all expected utilities finite) whenever the following nine conditions
 are satisfied:

 (1) a is a weak order on -,
 (2) > satisfies the s-sure-thing principle,
 (3) if event A is essential, then Va, 3 E e: oa > 13 aA >A PA,
 (4) if a >- 3 and y > 5, then for events A, B: [-3 Aa > P-Ba] * [_-Ay > 8- B],
 (5) > on - is nontrivial,
 (6) if, for f, g E -s, f > g and a E e, then there exists a partition (A1,..., Am)

 of fl such that f_Aa >- g and f >- g_Aia for all j,
 (7) a is conditionally monotonic,
 (8) a satisfies the step equivalent assumption,
 (9) a is truncation-continuous.

 PROOF. Conditions (1)-(6) imply that there exists a unique finitely additive
 probability measure P on v and a function u: - -> 1R, such that a is represented
 by SEU on F5. Further [VA E X, 0 < ,L < P(A), 3B cA such that P(B) = 4t].
 This was essentially proved in Savage (1954, up to ?5.4) and Fishburn (1970,
 ?14.1-14.4) and is not repeated here. It remains to show that a is represented by
 SEU, with respect to the same P and u, on the entire F (with f(u f)dP
 real-valued for all f E F-).

 For every act f E Ss, all step acts equivalent to f have the same SEU value.
 Hence V: 9-> R can be defined by V: f -* SEU(fs), where fS E Fs is any step act
 such that f - f. By transitivity of a , this function V represents preferences. It
 remains to show that V is SEU. The following is an immediate consequence of
 conditional monotonicity, applied twice, with m = 1:

 Vfe -, a e -3 [Vw E n: f(w) - a]: f- a.
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 We next show:

 (2.9) fE Fb = V(f)= j(uof)dP.

 Say v -< /L are bounds of f. As in the previous subsections (compare Lemma 1.4 and
 Subsection 1.4) f is tightly enclosed by step acts, but now these will be conditionally,
 rather than pointwise, dominating/dominated. If , - v then by (2.8), V(f)=
 V(u) = f(u o f)dP, and we are done immediately. So say v -< L. By rescaling, we
 may assume that u(v) = 0 and u(u) = 1 for simplicity of notation. Let m e N.
 Define

 A, = {(w) E 1: O < u(f(o)) < 1/m},

 and for all 1 < i < m,

 Ai :=e(i : < (fU ()) < }.

 All these sets are preference intervals, so are measurable. So the step act -,m can
 be defined as follows. For i = 1, , , split Ai into two events A~'- and Al- . The
 superscript minus refers to the minus of "-,m; versions with + appear below. A~'-
 has probability ((i- l)/m)P(Ai); here ?-'m is AL, i.e., has u value 1. Ai'- has
 probability ((m - i + l)/m)P(Ai); here -'m is v, i.e., has u value 0. Note that

 A u mdP= i- p (Ai) for alli. m

 For all essential

 Ai: [Vto E Ai: f(.O)Ai -Ai QA];m],

 as can be inferred from the preference, for any arbitrary fS E s7, fSAf(W) Ai
 fS AiO A'm; this preference follows from the representation by SEU that has already
 been established on FS. Hence, by conditional monotonicity, f > 0-,m.

 The step act 4 + m is defined similarly to -m. The only difference is that now, for
 i = 1,..., m, Ai is split into two events AK,f and AI+, with probabilities (i/m)P(A),
 respectively ((m - i)/m)P(Ai). Similarly, now + m a f. Note that

 fU O +'m dP= 4P(A,) = (uo- m-dP) + 1 P(As) for all i. m Ai) Aim

 It follows that V(O-m) < V(f) < V(O+1 ).
 Also

 V(-,m') = f(u ) o +-dP ) dP =V( (+'m)
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 (the inequalities by elementary properties of integration) and

 0? f (u ? m) dP- f(u -'m) dP -

 So both V(f) and f(uo f)dP can be enclosed arbitrarily tightly within the same
 sequences, and must be identical: (2.9) follows. Note that we have used the step
 equivalent assumption in this derivation. Formula (2.9) can also be derived without
 step equivalence; this was more or less what Savage did.

 Next we derive the following analogue of Lemma 1.6:

 (2.10) if f is bounded below, then V(f) > f(u o f) dP.

 Let v be the lower bound of f. Define, for any tt E( f(f) for which L >- v (if no such
 ,u exists, apply (2.8)), m E N, A1,..., Am as below (2.9). Add Am?+ := {6o: f(o) >- u}.
 Define m-'m as before, with -'m = iu on Am + added. By conditional monotonicity,

 v(f) > V( - m) (uo - m) dP.

 The supremum of these values over /u and m is f(u o f) dP. Hence (2.10) follows.
 In the same way one demonstrates:

 (2.11) if f is bounded above, then V(f) < f(uo f) dP.

 We say that > satisfies above-truncation-continuity if (2.2a) holds for all f E E.
 Next we prove (without using truncation-continuity in full force):

 (2.12) if > satisfies above-truncation-continuity, then for all f E :

 f(uo f) dP is well defined and V(f) < (u of) dP.

 We first show that f(u o f) dP is well defined. Suppose it were undefined. Let f - f
 for fS E 9S. Because (u o f) dP is undefined, u(e) is unbounded from below (in
 fact from both sides) so gS E F5 can be found with gS -< f, i.e., gS -< f. By
 above-truncation-continuity, gS < f ^ K for some /t. Contradiction follows from

 -co < V(gs) < V(f ^) < EU(f ^) = -oo,

 where the second inequality follows since V is representing, the weak inequality
 follows from (2.11), and the equality follows because EU(f) is undefined.

 So f(u o f) dP is well defined. Suppose, for contradiction, that V(f) > f(u o f) dP.
 By step equivalence, V(gs) V(f) for a g5 e f-s. Because f(uof)dP >
 inf(u o f(fl)), we have [30' E : u o f(') < V(f)]. By means of this consequence
 f(w'), and the availability of all probabilities, we can modify gS E F' into fS such
 that

 v(f)> V(fs)> f(uof)dP.
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 By above-truncation-continuity there is an above truncation f A " such that still

 (2.13) V(f A) > V(fS) = f(uof) dP> f(uof)dP.

 However, by (2.11) and pointwise monotonicity of the integral,

 V(f ^A) fu o(f )dP f(uof)dP,

 contradicting (2.13). Hence (2.12) has been proved.
 Similarly z satisfies below-truncation-continuity if (2.2b) holds for all f E -, and

 we get

 (2.14) if a satisfies below-truncation-continuity, then for all f E F:

 f(u f) dP is well defined and V(f) > f(u f) dP.

 The theorem follows from (2.12) and (2.14). a
 I think the above result shows that boundedness of utility, as implied in Savage's

 model, is not a consequence of mainly his postulates P6 (Condition (6) above) and/or
 P7 (conditional monotonicity). Each of these postulates, as well as all other postulates
 of Savage, hold in the above theorem. I prefer to ascribe boundedness of utility in
 Savage's setup to his assumption that the preference relation is defined (i.e., com-
 plete) over all acts (i.e., measurable functions from fl to e), thus under unbounded
 utility also for the acts having infinite or undefined expected utility. Note that, as a
 corollary of the above theorem, the used conditions do imply pointwise monotonicity.

 3. DMUR, with probability distributions as alternatives. This section studies
 decision making under risk (DMUR), where alternatives are probability distributions
 over a set e, the consequence space. This setup should be distinguished from the
 A&A approach in Subsection 2.2. As compared to DMUU it assumes that an
 ("objective") probability distribution over fl is given. Then any act can be associated
 with the probability distribution over the consequences generated by the act, and the
 state space Qf can be forgotten. Results of DMUR and DMUU can be related by the
 techniques described in Wakker (1990a). Thus it can be seen that the results of this
 section and Subsection 2.4 are closely related. The same appears from the proof of
 Savage's theorem in Fishburn (1970) and Arrow (1971). The definitions of weak order
 and representing function, or function to be maximized, from ?2 are also used in this
 section.

 Note below that probability distributions are assumed to be finitely additive, not
 necessarily countably additive. The extension to nonadditive probability measures,
 with a setup as sketched in Jaffray (1989), meets complications like those for the
 nonadditive version of Savage's approach, and is not pursued here. A simple proba-
 bility distribution has finite support. In this paper it is also called step-probability
 distribution, for unity of terminology. Note that .9 below is not supposed to be
 closed under mixing. Probability distributions which assign probability one to a single
 element of - are identified with the associated element of '; hence a below
 induces again a binary relation on e, also denoted as a .

 ASSUMPTION 3.1 (DMUR Assumption). -e is a nonempty set, endowed with an
 algebra . of subsets containing all one-point subsets. .9 is a set of probability
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 distributions on 9, containing the set 9is of all step probability distributions; a is a
 nontrivial binary relation on 9. For the induced binary relation a on -e,
 contains all preference intervals. a

 The following condition adapts the s-sure-thing principle and s-independence from
 Definition 2.8 to the present setup.

 DEFINITION 3.2. We say that a satisfies s(tep)-independence if, for all P, Q, R E
 gs and 0 < o< 1,

 P >- Q rP + (1 -- )R >- Q + (1 - o-)R. n

 Definition 2.7 (s-vNM-continuity) is straightforwardly adapted to the present con-
 text, by replacing f, g, h, -s by P, Q, R, *.

 DEFINITION 3.3. We say that a satisfies the step equivalent assumption if

 VP e 9 3Ps e s: P Ps. D

 Because the definition below is the natural adaptation of Definition 2.16, the same
 term is used. Note that the probability measures Pi are not required to be contained
 in 9, and that the sets occurring below are preference intervals, hence measurable.
 In the context studied mostly in the literature, e.g., in Fishburn (1982, Chapter 3), 9
 is rich and is closed under convex combinations; then the condition below can be
 restricted to the simpler case m = 1. Together with mainly independence required
 for all probability distributions instead of just for step-probability distributions, and
 richness of .9, it then straightforwardly implies the condition below. Also note that
 all preferences in antecedents are between step-probability distributions.
 DEFINITION 3.4. We say that a satisfies conditional monotonicity if, for all

 PiS E Ss, positive o,,..., oA summing to one, and probability measures Pi on . for
 which Em lorPi E ., we have

 m m

 Vi: Pi({ a E : a > PiS) = 1 =- E Pi E iP S
 i=1 t=1

 m m

 Vi: Pi({ a c : P )=1= E iPi E Pi. P
 i=1 i=l

 In the first line above, ET 1o0iP conditionally dominates Em lcriPiS, in the second
 line E lPiPP is conditionally dominated by Em iriPi. Fishburn (1982, Chapter 3) uses
 a condition that is somewhat weaker by requiring >- instead of a , and -< instead
 of a , in the antecedents above. A version in the same spirit for the present setup
 would meet considerable complications because of the generality concerning available
 probability distributions (see Fishburn's reasoning on p. 29, lines 22-26). Hence such
 a version is not given.
 It is elementarily verified that in the theorem below the conditions of s-indepen-
 dence and s-vNM-continuity, do imply the same conditions for all probability distri-
 butions in the presence of the other conditions. EU(P) denotes the expectation of a
 measurable function u: - - R under probability measure P; it is infinite respectively
 undefined if the expectation is.
 Similarly to previous definitions, for P E 9 and A e 4 , P A , the above truncation
 of P at /t, is as P on {a E -': a sx } \ {It}, and assigns all remaining probability
 P({L}) + P({a E -': a >- u}) to ,. So PA^({a E -e: a>- ) = 0. In words, all
 probability mass from {a - ': a >- /} is shifted to jI. Similarly, for v e 4, P v , the
 below truncation of P at v, shifts all probability mass from {a e -: a -< v} to v.
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 P E 9, is truncation-robust (with respect to a) if for all QS E 9s

 (3.1a) P Qs 3 pAE pA> Q and (3.la) P> QS ~ 3x E -?: P ^ ?E ^ , P ^ ~ >- QS and

 (3.1b) P -< QS s 3v E -: P V E p2, Pv -< QS.

 We call a truncation-continuous if every P E 4 is truncation-robust.
 In Theorem 3.6 below, truncation-continuity will imply weak truncation-closedness,

 i.e., VP e 9, A, v E e 3ju' >, , v' < v such that P A l, P Vv' E 0. The conditions in
 the literature most similar to truncation-continuity may be Axioms A5 and A5* in
 Fishburn (1982, ??3.2 and 3.3). Axiom A5 is, like truncation-continuity, necessary and
 sufficient for the EU contribution of upper and lower tails of probability distributions
 to tend to zero; thus it is also necessary and sufficient for finiteness of EU. It is,
 however, more complicated and uses (and requires available) several conditional
 probability distributions, and the results of "gluings-together" of these. More in the
 spirit of truncation-continuity is Fishburn's axiom A5*, with comparable simplicity.
 However, as indicated by Fishburn, his axiom A5* is necessary and sufficient for
 finiteness of EU only if the probability distributions are countably additive, not if they
 are finitely additive. The main difference between Fishburn's latter axiom and ours,
 and between Fishburn's definition of above (or, similarly, below) truncation and ours
 is, loosely speaking, as follows. We assign the probability mass taken from above the
 level of truncation entirely to that level of truncation, whereas Fishburn spreads that
 probability mass evenly over the remaining consequences. This is done by taking the
 conditional distribution given the event that the obtained consequence does not
 exceed the level of truncation. Fishburn's truncation is more drastic, leading to a
 more restrictive continuity condition. Even more drastic is the amputating as used by
 de Finetti (1974), assigning, with -= R+, for above truncations, all truncated
 probability mass to 0. Next we discuss approaches to DMUR where the outcome set
 is rich, and utility has an interval as range. Let us consider the Menger (1934) version
 of the St. Petersburg paradox, where the utility function is assumed unbounded from
 above, with connected range. A lottery is evaluated that yields utility 2k if after k
 tosses of a coin for the first time heads comes up, so has infinite expected utility. It
 has been observed several times that infinity of expected utility corresponds with
 divergence, to infinity, of the certainty equivalents of truncations of the lottery in
 question; truncation is obtained here by stopping after a finite number of tosses of
 the coin. See for instance Arrow (1971, p. 23), or Samuelson (1977, p. 34). Also Chew
 and Epstein (1989, end of ?4) consider certainty equivalents of truncations, and
 convergence of these to a real number. They formulate this condition for general
 lotteries, and for theories that generalize expected utility, but do not make explicit
 their method of truncation (denoted FK ). Addition of the certainty equivalent
 condition and truncation continuity completes their idea. At the very end of ?4 they
 suggest that completeness of preferences over unbounded probability measures must
 probably be abandoned. The following example illustrates some of the conditions
 discussed above:

 EXAMPLE 3.5 (comparing methods of truncation). Let = ]0, 1], u is the identity,
 and .9 is the usual Borel a-algebra. 59 contains all finitely additive probability
 measures on 9; they obviously have finite expectation. Suppose a maximizes EU.
 Let P be any step-probability distribution such that EU(P) = 3/4, say P assigns
 probability 1 to {3/4}. Let Q be a discrete probability measure which assigns
 probability 1 to {1/n: n E N}, probability 1/2 to {1}, and probability 0 to every finite
 subset of {l/n: n > 2}; Q can for instance be generated by the act f' in Example 1.7.
 Obviously, Q is not countably additive; EU(Q) = 1/2, and P - Q. ,9 is truncation-

 474

This content downloaded from 130.115.158.153 on Thu, 10 Nov 2016 16:04:37 UTC
All use subject to http://about.jstor.org/terms



 UNBOUNDED UTILITY FOR SAVAGE S 'FOUNDATIONS OF STATISTICS"

 closed, hence, as claimed at the beginning of Subsection 4.4, > satisfies truncation-
 continuity. Indeed, the EU values of below truncations of Q tend to 1/2 and, e.g., for
 any , > 3/4, v < 1/2, P >- Q . However, for any v E ]0, 1[, the conditional distri-
 bution of P on ]v, 1] assigns probability 1 to 1, so Q is preferred to none of these and
 Fishburn's analogue of truncation-continuity is not satisfied; it is not a necessary
 condition for EU maximization. o[

 THEOREM 3.6 (unbounded utility for probability distributions). Under the DMUR
 Assumption 3.1, , maximizes EU with respect to a utility function u: - - [R (with all
 integrals finite) whenever the following six conditions are satisfied:

 (1) a is a weak order on 9s,
 (2) > satisfies s-independence,
 (3) a satisfies s-vNM-continuity,
 (4) > is conditionally monotonic,
 (5) > satisfies the step equivalent assumption,
 (6) a is truncation-continuous.

 PROOF. It is well known that Conditions (1) (when restricted to Ys), (2) and (3)
 are necessary and sufficient for the existence of a function u: - -*> R such that a
 maximizes EU with respect to u on 5s. Let P E SJ.. All Ps equivalent to P have the
 same EU value, hence we can define the representing V(P) = EU(Ps) for any such
 Ps. It remains to prove that V(P) = EU(P). The following is an immediate conse-
 quence of conditional monotonicity, applied twice, with m = 1:

 (3.2) VP e ~,, a E -: P({3 e -f: /f - a}) = 1 P ~ a.

 P is bounded (from) below if 3v E {: P({a e E : a > v}) = 1; then v is a lower
 bound of P. P is bounded (from) above if 3A E ': P({a e {: ,/L , a}) = 1; then /L
 is an upper bound of P. P is bounded if it is both bounded from above and below.
 gb denotes the set of all probability distributions in ? that are bounded. We first
 show:

 (3.3) P E b = V(P) = EU(P).

 Suppose v is a lower bound and / is an upper bound for P. Note that EU(P) is well
 defined and is contained in [u(v), u(,u)], so is finite. We tightly enclose P by step
 probability distributions; these will not be pointwise dominating/dominated, but
 conditionally dominating/dominated. If , - v then, by (3.2), V(P) = V(/u) = EU(P)
 and we are done immediately. So suppose I >- v. Assume, for simplicity of notation,
 that u(v) = 0, u(af) = 1; this can always be obtained by rescaling. Let m E N. Define
 A := u- 1([0, 1/m]), and for all 1 < i < m, Ai := u ([(i - 1)/m, i/m]). Define the
 step probability distribution P- m as a mixture of step probability distributions
 pi,-m as follows. Define Pi,-,m({u}) = (i - 1)/m, Pi,-,m({v}) - (m - i + 1)/m,
 and ri := P(Ai) for all 1 < i < m. P-, : Et oPi, -,m. For every i with P(A,) > 0
 write P.A for the conditional probability distribution P given Ai. For all such i,
 according to the EU representation already obtained for step probability distribu-
 tions, PA({a -E : a pi' -m}) = 1, hence by conditional monotonicity (with i's
 omitted for which P(Ai) = 0) P > P-,.

 The step probability distribution p+,m is defined similarly as p-,m. The only
 difference is that now, for i = 1,..., m,

 Pi+*m({1) l Pi, +,m({v}) = (m - i)/m. vi+,({~)=m"
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 Now p+,m p is derived similarly as above. It follows that V(P- ) < V(P) <
 V(P+ m). Note that

 i+ 1 EU(Pi , ) = m = EU(P" '') + m- forall i. / m v / m

 Also

 V(P- m) = EU(P- ) < EU(P) < EU(P+'m) = V(P+m)

 (the inequalities by elementary properties of integration) and 0 < EU(P'") -
 EU(P-,m) = 1/m. The same inequalities hold with V(P) instead of EU(P), by the
 preferences p-,m p < p+,m as established above. Hence (3.3) follows.

 Next we show:

 (3.4) if P is bounded below, then V(P) > EU(P).

 Say v is a lower bound for P. Define, for any / >- v (if no such x, exists the case is
 straightforward by (3.2)), and m E N, A, ..., Am, ol,..., ao as below (3.3), and add

 Am+i := {( E -: a >}, O'm+i = P(Am+).

 Let pm+l,-,m assign probability 1 to tx, and p-,m :--= Ei =l 1 Pi-, - Again, by
 conditional monotonicity, V(P) > V(P- ) = EU(P-" ). EU(P) is the supremum of
 the latter values over ,t, m. Hence (3.4) is proved. In particular we see that EU(P) is
 finite. In the same way one demonstrates:

 (3.5) if P is bounded above, then V(P) < EU(P).

 By boundedness from above, EU(P) in (3.5) is well defined but might in general be
 -oo; the above inequality shows, however, that EU(P) is finite. We say that a
 satisfies above-truncation-continuity if (3.la) holds for all P e D. We prove next
 (without using truncation-continuity in full force):

 (3.6) if a satisfies above-truncation-continuity, then for all P E 9:

 EU(P) is well defined and V(P) < EU(P).

 We first show that EU(P) is well defined. Suppose it were undefined. Let P - Ps for
 ps E 5S. EU(P) being undefined, u(-) is unbounded from below (in fact from both
 sides) so Qs E Ds can be found with QS -< PS, i.e., QS -< P. By above-truncation-
 continuity, QS < P 'A for some uL. Contradiction follows from

 -oo < V(Q) < V(P ^) < EU(P A) = -oo,

 where the weak inequality follows from (3.5), the equality because EU(P) is unde-
 fined.

 So EU(P) is well defined. Suppose, for contradiction, V(P)> EU(P). Because
 EU(P) > inf(u(-)), [3a E / : u(a) < (P)]. Mix a with Rs (Rs E 9s, RS - P) to
 obtain PS E gs such that V(P) > V(Ps) > EU(P). By above-truncation-continuity,
 there is an above truncation P A A such that still

 V/(P A ) > V(PS) = EU(Ps) > EU(P).
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 However, by (3.5) and pointwise monotonicity of the integral,

 V(P^A) < EU(P A) < EU(P),

 contradicting (3.7). Hence (3.6) has been proved. Similarly one defines below-trunca-
 tion-continuity and gets

 (3.8) if a satisfies below-truncation-continuity, then for all P E 0:

 EU(P) is well defined and V(P) > EU(P).

 The theorem follows from (3.6) and (3.8). o
 Many papers have dealt with the topic of the above theorem, i.e., expected utility

 for unbounded probability distributions. Attention is mostly restricted to countably
 additive probability distributions. One of the first contributions may have been
 Blackwell and Girshick (1954), dealing with all step and discrete probability distribu-
 tions; the utility function must be bounded in their approach.

 DeGroot (1970) does deal with probability distributions with unbounded utility. He
 uses a two-stage approach. In the first stage utilities are derived to represent
 preferences on 5s, and on 7b (denoted .YB there). In the second stage these
 utilities are used as primitive to define the class (5E, see end of ?7.9 there) of all
 probability distributions with finite expected utility. Hence DeGroot's approach does
 not yield a representation in the strict sense that all conditions are directly given in
 elementary properties of preferences, i.e., can be directly tested in principle. Here
 truncation-continuity would have provided a proper means to define PE directly in
 terms of elementary properties for preferences. Strangely enough, in the continuation

 of the second stage, in ?7.10, DeGroot characterizes EU maximization on 6E
 through conditions for preferences; with utility available as primitive, the characteri-
 zation can be obtained as a tautology!

 The disadvantage of DeGroot's approach also applies to Ledyard (1971). He uses
 the utility function derived from the step probability distributions to define a
 pseudo-metric, needed in the central Axiom 5. Also he allows the utility function to
 be unbounded; through Axiom 4.(b) he restricts attention to bounded probability
 distributions.

 Ryan (1974) (see also Arrow 1974) observed that in special cases, where one has
 restricted the set of utility functions to be considered, it is possible to at least identify
 subclasses of the set of distributions with finite expected utility in an empirically
 meaningful way. For instance if = [0, oo[ and risk aversion has been established, so
 that the utility function must be concave (and increasing), then the distributions with
 finite first moment have finite expected utility.

 Grandmont (1972) studies, under countable additivity, topological restrictions, and
 assumes closedness under countable convex combinations; part (2) in the proof of his
 Lemma 2 shows how the latter closedness implies boundedness of utility.

 Foldes (1972) considers, for several special cases of 9 all included in the setup of
 this paper, several topological conditions leading to continuous utilities.

 Fishburn made several contributions. Fishburn (1970, Chapters 8 and 10) dealt with
 bounded utility functions. Fishburn (1982, Chapter 3) extended the results to un-
 bounded utility. Fishburn's assumptions that 9 is closed under convex combinations,
 contains all conditional probability measures, and contains all one-point measures,
 implies truncation-closedness and the inclusion of all step probability distributions.
 Fishburn (1976), in reaction to the exchange between Ryan (1974) and Arrow (1974),
 reformulated axioms from his other papers in a way suited for the case where
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 consequences are monetary and utility is increasing. In Fishburn (1982, Chapter 3),
 Axioms A4 and A0.1 in Theorem 1 (through boundedness of utility in Theorem 1)
 and Axiom A5 in Theorem 2 imply truncation-continuity.

 A general result has been provided in Nielsen (1984). He restricts attention to the
 case where v' is a o'-algebra containing all one-point subsets, and all probability
 measures contained in ~ are countably additive. For this case he uses topological
 conditions to characterize expected utility. His approach, contrary to ours, does not
 need (any analogue of) truncation-continuity. Compare the remark at the end of
 Subsection 4.1 below.

 4. Further results and remarks.

 4.1. Countable additivity and set-continuity. In the literature the following conti-
 nuity conditions are often imposed on capacities.

 DEFINITION 4.1. We call v set-continuous if

 Aj A v(Aj) t v(A) and Aj A * v(Aj)v u(A). o

 Set-continuous abbreviates "continuous with respect to increasing and decreasing
 sets". It is well known that a probability measure P is countably additive if and only if
 it is set-continuous. The characterization of set-continuity of a capacity through the
 generated Choquet integral is straightforward. A functional V: ---> R is set-continu-
 ous if

 [A,jA = V(lAj) V(1A)] and [AJ A = V(1A,) V(1A)\.

 One directly observes:

 LEMMA 4.2. Suppose V is the Choquet integral. Then the associated capacity v is
 continuous if and only if V is set-continuous. o

 Hence set-continuous or countably additive versions of the previous theorems can
 be obtained as follows.

 PROPOSITION 4.3. In Theorem 1.12, Theorem 1.13, Corollary 1.14, and Theorem
 1.15, the capacity in question is continuous if and only if V is set-continuous. D

 The characterization of set-continuity of a capacity in terms of a preference
 relation is through the following condition, given for r-algebras and additive probabil-
 ities in Fishburn (1982, F7 in ?10.3). We say that a is set-continuous if

 (4.1) , >.fs and (4.1) Vf s E FS, a >- P1 Aj ? A: _-Aa >- f s 3j: P-Ai > f S and

 (4.2) \VfS E Fs, a >- 3, Aj A: p _Aa fs j 3j: P3-Aa f fS.

 By substitution one straightforwardly verifies:

 PROPOSITION 4.4 (countable additivity or set-continuity). The capacities in Theorems
 2.5, 2.9, and 2.13 are set-continuous if and only if a is set-continuous. The probability
 measures in Corollaries 2.10 and 2.14, and in Theorem 2.17, are countably additive if
 and only if a is set-continuous. o
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 In the context of countable additivity, several parts in the analysis of this paper
 could have been abbreviated and simplified. Compare ?3.3 in Fishburn (1982). One
 can then adopt a monotone continuity condition as in Arrow (1971) (or continuity
 with respect to nullsets in the terminology of Grodal 1978), to imply both truncation-
 continuity and set-continuity.

 4.2. Rank-dependent utility. This subsection extends Quiggin's (1982) rank-
 dependent utility to unbounded probability distributions. Although this result falls
 somewhat outside the scope of this paper, which only considered the additive case for
 DMUR, the result is nevertheless given in view of its importance. The extension is
 only formulated for intervals - and countably additive probability distributions. The
 extension to any connected topological space and finitely additive probability distribu-
 tions is straightforward, but omitted for brevity. Under the DMUR Assumption 3.1,
 a maximizes rank-dependent utility if there exists a function u: --> [R, and a
 nondecreasing (probability transformation) function 4: [0,1] -> [0, 1] with b(0) = 0
 and 4(1) = 1, such that a is represented by

 P | f P (P(u -[r, oo[))dr + [ [k(P(u -[r,oo[)) - 1] dr.

 Stochastic dominance means that P a Q whenever

 Va e [R: P(] - oo, ]) < Q(] - oo,a]).

 The step equivalent assumption, and truncation-continuity, have been defined in
 Definition 3.3 and below Formula (3.1).

 COROLLARY 4.5 (unbounded utility for Quiggin's (1982) rank-dependent utility).
 Suppose the DMUR Assumption 3.1 holds, all elements of ` are countably additive,
 and e c R is an interval. Then a maximizes rank-dependent utility on j whenever
 the following five conditions hold:

 (1) a maximizes rank-dependent utility on 9s, with u continuous,
 (2) a is a weak order on ,,
 (3) a satisfies stochastic dominance,
 (4) a satisfies the step equivalent assumption,
 (5) a satisfies truncation-continuity.

 PROOF. The corollary follows from Theorem 2.5 as follows. Define fl = [0, 1],
 endowed with the Lebesgue measure (i.e., the uniform distribution), d and 9 are
 the Borel a-algebras, and y is the set of random variables from Q1 to W. Identify
 random variables with the probability distributions generated over -. Then rank-
 dependent utility maximization over 9 is equivalent to Choquet expected utility
 maximization over 9 with capacity v = o A (A denotes the Lebesgue measure),
 and stochastic dominance is equivalent to pointwise monotonicity. The latter is most
 easily seen by relating probability distributions to the generalized inverses of their
 distribution functions. n

 Axioms to characterize maximization of rank-dependent utility on 9S have been
 provided in Quiggin (1982; here 4(1/2) = 1/2), Yaari (1987; here u is the identity),
 Chew (1989), Nakamura (1992), and Wakker (1990d).

 4.3. Uniqueness results. Below, cardinal abbreviates "unique up to a positive
 affine transformation", and ordinal abbreviates "unique up to a strictly increasing
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 transformation". The uniqueness results for the above theorems are standard. In
 Theorem 1.12, 1.13, Corollary 1.14, and Theorem 1.15, the capacity v is uniquely
 determined. In Theorem 2.9, v is unique and U is cardinal, as in Schmeidler (1989);
 in Corollary 2.10 the same holds with now v a probability measure. For Theorem 2.13
 the same uniqueness results hold as in Observation VI.5.1' in Wakker (1989b), for
 Corollary 2.14 the same uniqueness results hold as in Observation V.3.4' in Wakker
 (1989b); for brevity these results are not repeated here. In Theorem 2.17, P is unique
 and u is cardinal as in Savage (1954), in Theorem 3.6 u is cardinal as in Fishburn
 (1982, Chapter 3).

 4.4. Necessity of the conditions. Many of the conditions used in several theorems
 were not only sufficient, but also necessary, for the derived implications. Pointwise
 monotonicity is necessary whenever used, as is truncation-continuity whenever weak
 truncation-closedness holds. For representations of binary relations it is always
 necessary that the binary relations are weak orders. Leaving aside trivial observations,
 we further mention the following necessary conditions:

 (1) in Theorem 1.13 and Corollary 1.14: Condition (1) and comonotonic additivity
 (the latter by Theorem 1.3),

 (2) in Theorem 1.15: Condition (1) and comonotonic mixability,
 (3) in Theorem 2.9 and Corollary 2.10: s-vNM-continuity and s-comonotonic (or s-)

 independence,
 (4) in Theorem 2.13 and Corollary 2.14: s-continuity, (comonotonic) tradeoff con-

 sistency,
 (5) in Theorem 2.17: the s-sure-thing principle, Conditions (3) and (4), conditional

 monotonicity,
 (6) in Theorem 3.6: s-independence, s-vNM-continuity, and conditional mono-

 tonicity.
 The conditions above that were restricted to step acts hold as well if they are

 extended to nonstep acts. In particular, all conditions above with s-prescript hold as
 well if this prescript is deleted (and sometimes alternatives are restricted to those that
 are in the domain of a). Not necessary are structural or richness conditions, such as
 I being an interval, - being a connected separable topological space or a set
 containing "many" probability distributions, Condition (6) in Theorem 2.17, or the
 availability of all step probability distributions over e; further weak truncation-
 closedness, as implied by truncation-continuity, is nonnecessary; given weak trunca-
 tion-closedness, truncation-continuity is necessary. Step equivalence in full generality
 is not necessary, but in the presence of the other richness assumptions of this paper
 it is.

 4.5. Further remarks and results.

 REMARK 4.6 (mixture spaces). The only property of { used in Theorem 2.9 and
 Corollary 2.10 is that e is a mixture space (defined in Fishburn 1982 and Wakker
 1989b), and that EU is affine. Another special case of mixture spaces is the case
 where e is an interval and consequences designate money, or l is Rm and
 consequences are commodity bundles, each time with linear/affine utility. The first
 case concerns the works of de Finetti (1937, 1972, 1974), Lindley (1982), Yaari (1987),
 and Chateauneuf (1991). o

 The following simple example ensures that the results of this paper do not fall
 victim to the same problem as Savage (1954), i.e., there is no "hidden" way in which
 boundedness of utility would be implied.

 EXAMPLE 4.7 (unbounded utility; examples). The results of the functional ap-
 proach apply to the functionals V both in (a) and (b) below. The results of the A&A
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 approach apply to a in (b) below, the results of the connected topology approach, as
 well as those of Savage's approach, apply to a in (a) below. The results of DMUR
 apply to a in (c) below.

 (a) Let Qf = [0, 1], i' is the Borel-o--algebra, = [R, _ is the Borel-or-algebra, P
 on / is the Lebesgue measure, and u: - -* R is the identity. -F contains the step
 acts together with any arbitrary subset of the set of all measurable acts from fl to {
 with finite expectation, and their truncations; a is represented by V = expectation
 (= expected utility).

 (b) fl, W, P are as above; e consists of all (step =) simple probability distribu-
 tions over R, U: R - > R is the identity, and u = EU: ,- -> R is expected value. 9
 contains EU- (E) for all Borel-measurable sets E. 95 consists, as usual, of all step
 acts from fl to -'. 9- contains 9 , together with any arbitrary subset of the set of all
 measurable acts from fl to -e with finite expectation of EU, and their truncations; a
 is represented by V = the expectation of EU.

 (c) Let e = 7R, 9 is the Borel-o--algebra, u: - --> R is the identity. 9 consists of
 7S, together with any arbitrary subset of the set of all finitely additive probability
 measures on 9 with finite expectation, and their truncations; > is represented by
 V = the expectation of u. o

 REMARK 4.8 (deleting topological separability). The requirement of topological
 separability in Subsection 2.3 has been added mainly for simplicity of formulation. It
 can nearly always be omitted, with the exception of the case of exactly one essential
 state, which comes down to the case that there is no uncertainty. Compare Remark
 A3.1 in Wakker (1989b). o

 REMARK 4.9 (circularity in the definition of truncation-robust alternatives). There
 is some circularity in the identification of alternatives with finite value in this paper:
 To define a (or the function V) its domain should first be defined; however, in the
 definition of the elements of its domain (the truncation-robust alternatives) already
 a (or V) was used! This presentation was chosen for conciseness and accessibility.
 Below a procedure is sketched that is more constructive by circumventing the
 circularity:

 Stage 1. 9s is defined.
 Stage 2. 9b is defined.
 Stage 3. An alternative f, bounded from below, is incorporated if and only if

 there is a step alternative that is preferred to all step alternatives that are pointwise,
 or conditionally, dominated by f. An alternative f, bounded from above, is incorpo-
 rated if and only if there is a step alternative that is dispreferred to all step
 alternatives that pointwise, or conditionally, dominate f.

 Stage 4. An alternative f, unbounded from both sides, is incorporated if and only
 if its truncations (or a subset of truncations, related to a subset of consequences
 unbounded from above and below) can be incorporated already at Stage 3.

 By this procedure, in each stage the extension of domain either did not use a (or
 V) at all, or only used it as already defined on domains that could be established in
 previous stages. All truncation-robust alternatives can be incorporated this way. o

 EXAMPLE 4.10 (necessity of conditional monotonicity in Theorem 3.6; stochastic
 dominance instead does not suffice; similarly, pointwise monotonicity instead of
 conditional monotonicity is not sufficient in Theorem 2.17, i.e., Savage's approach).
 This example will be formulated in the most popular context, DMUR. It can be
 adapted to the other contexts by constructing an underlying, sufficiently rich, state
 space fl, as described in detail in Wakker (1990a).

 Let == {-1/j: j E N} U {1 + 1/j: j E IN}, = 2<. 6 contains all finitely
 additive probability distributions over ', and u denotes the identity function; >
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 maximizes expected value on 95. To describe examples, let

 EPa1 - a, (( a+/3 (= 1 1).

 // 1 \\ o".j 1 (( J )) j=1 ( J1)
 where a, /3,y, 8 are nonnegative and sum to one. For P E ,, Fp denotes the
 distribution function, i.e., F(t) = P(-oo, t] for all t e lR. Note that, for all P E O,
 Fp is constant on [0, 1]. Now

 lim Fp( = a, P((- - : J j E = Fp(O) = Fp(l) = a + 3,
 ( 1) ( 1

 lim Fp 1 + J a + + y.

 For all countably additive P, / = 0 because P({0}) = 0, and y =0 by countable
 additivity, which implies right-continuity of Fp. For finitely additive P, 3 and y may
 very well be positive. For any step probability distribution Ps that stochastically
 dominates P, Fp( -l/j) < a for all j, so that also Fps(O) = Fps(1) < a. For any step
 probability distribution Ps, stochastically dominated by P, Fps(l + 1/j) > a + 3 + y
 for all j, so that also Fpe(l) = Fps(O) > a + / + y. The gap in expected value
 between dominating and dominated step probability distributions is at least /3 + y.
 The expectation of P as above simply is undetermined if /3 or y is nonzero. Suppose
 a is represented by the functional

 ? j=

 It is straightforwardly verified that all conditions of Theorem 3.6 other than condi-
 tional monotonicity are satisfied, and that strict stochastic dominance is satisfied as
 well. Independence and vNM-continuity even hold in full strength, by linearity and
 continuity of the functional in probability. But conditional monotonicity is not
 satisfied: Let P be such that y = 1; let QS assign probability 1/3 to -1 and
 probability 2/3 to 2. So the expected value of QS, which is equal to V(Q&), is 1. Every
 positive consequence 1 + 1/j is preferred to QS. P assigns probability 1 to such
 consequences, i.e., P({1 + l/j: j e })) = 1. By conditional monotonicity (with m = 1)
 we should find P a QS. However, V(P) = y/2 = 1/2 < 1 = V(QS), so P -< Qs:
 conditional monotonicity is violated. n

 4.6. The unity in the different approaches. Let us shortly repeat the approach to
 integral representations, to point out the unity in the different results. In a first stage
 one obtains the representation for step alternatives. For the functional approach this
 is mainly obtained through (comonotonic) additivity or mixability, in the A&A
 approach the theorem of Anscombe and Aumann (1963) (additive) or Schmeidler
 (1989) (nonadditive) is used, in the connected topology approach Theorem IV.2.7
 (additive) or VI.5.1 (nonadditive) of Wakker (1989b) is used, in Savage's approach the
 proof up to ?5.4 of Savage (1954) is used (which does not use his condition P7,
 i.e., conditional monotonicity), and for DMUR the result of von Neumann and
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 Morgenstern (1944) is used. It can be seen that there are close relations between the
 different approaches. For instance, there is a close relationship between (com-
 onotonic) additivity/mixability in the functional approach, the sure-thing principle,
 and (comonotonic) independence in the A&A approach and DMUR. Tradeoff
 consistency in the connected topology approach can be seen to be a strengthening of
 the s-sure-thing principle that (see Wakker, 1989a, ?10) in the presence of mixture
 operations is straightforwardly implied by the independence conditions.

 The extendability of the integral representation to bounded alternatives is ensured
 by monotonicity, because every bounded alternative can be approximated from above
 and below by step alternatives. Here monotonicity is pointwise in Figure 2(a) and, for
 the functional approach, in Lemmas 1.4 and 1.5; based on these are Theorems 1.12,
 1.13, and 1.15 for the functional approach, Theorem 2.5 (through Lemma 2.3), and
 then, building on the latter theorem, Theorem 2.9 for the A&A approach, Theorem
 2.13 for the connected topology approach, and Corollary 4.5 for rank-dependent
 utility. Monotonicity is conditional in Figure 2(b) and Subsection 1.4; based on this
 are Theorem 2.17 (through (2.8) and (2.9)) for Savage's approach, and Theorem 3.6
 (through (3.2) and (3.3)) for DMUR.

 The extension to any unbounded alternative with finite expected utility is obtained
 by truncation continuity. For the functional approach this is done in the results of
 Subsection 1.6 (based on Lemma 1.11). Theorem 2.5 obtains the extension through
 Lemma 2.4, and prepares for Theorems 2.9, 2.13, and Corollary 4.5. In Savage's
 approach the extension is obtained at the end of the proof of Theorem 2.17, and in
 DMUR at the end of the proof of Theorem 3.6. Again, the reasonings are very
 similar.

 5. Conclusion. It is hoped that, after study of this paper, the reader will not only
 understand the specific theorems of the paper, but also the general principle to derive
 infinite-dimensional integral representations from finite-dimensional ones.
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