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Additive representation theory on subsets of Cartesian products has characteristics different from 
additive representation theory on full Cartesian products. This paper describes the difficulties 
that can arise on subsets. These difficulties have been underestimated in the literature. For the 
special case of rank-ordered subsets of Cartesian products the paper obtains characterizations of 
additive representations. These results can be applied in the modern rank-dependent approaches 
to decision making under risk/uncertainty, and to generalizations of the Gini index in the 
measurement of inequality. 

1. Introduction 

This paper studies additive representation theory on subsets of Cartesian 
products. Interest in this topic has increased during the last decade because 
of new developments in decision making under risk and uncertainty, and 
because of new developments in the measurement of inequality. This paper 
considers the topological approach, i.e., it makes use of continuity assump- 
tions. Wakker (1991) has given results for the algebraic approach, where 
solvability and an Archimedean axiom are used instead of continuity. The 
present paper builds on the latter one. A comparison of the algebraic and the 
topological approach has been given in Wakker (1988), and in Lute et al. 
(1990, see p. 49, 1. 10). 

Traditional expected utility theory was characterized mainly by ‘indepen- 
dence’ axioms. Dissatisfaction with expected utility has led to weakenings of 
independence that require independence to hold only within certain sub- 
domains. Special cases of this general procedure for weakening independence 
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include Chew (1989), who requires independence to hold only within 
equivalence classes, and the ‘twins’ Jaffray (1988) and Gilboa (1988), who 
require independence to hold only, among others, when minimal outcomes 
are identical. In Becker and Sarin’s (1987) ‘lottery-dependent expected utility’ 
the sets of lotteries within which independence should hold are characterized 
by having the same (lottery-dependent) utility function. The present paper has 
been motivated by the rank-dependent theories initiated by Quiggin (1982) and 
Schmeidler (1989, first version 1982), which require independence to hold only 
on ‘comonotonic’ subsets. The literature and history of rank-dependent theories 
have been discussed in Wakker (1991). After completion of that paper we found 
Birnbaum (1974, p. 559) and Birnbaum and Sutton (1990). These papers deal 
with ‘configural weight theory’, which is similar to rank-dependent utility in 
that decision weights are also allowed to depend on ranking. 

Section 2.3 discusses several papers dealing with additive representations 
on subsets of Cartesian products. In addition let us mention here that the 
case of additive functions, linear with respect to a mixture operation, has 
been dealt with by Fishburn (1976). The present paper will not assume 
linearity with respect to mixing. Necessary and sufficient conditions for 
general additive representability on arbitrary countable subsets of Cartesian 
products were provided by Jaffray (1974b) for two dimensions, and Jaffray 
(1974a) for arbitrary finite dimensions. We study the special case of additive 
representations that are continuous with respect to a connected topology. 
Euclidean spaces are, of course, the most important example of this type. In 
two dimensions, Blaschke and Bol (1938, Chapter 1) derived this represen- 
tation for open, simply connected domains in which all equivalence classes 
and all intersections of the domain with hyperplanes perpendicular to an axis 
are connected. Recently Segal (1990) showed how to extend these results to 
finite dimensions greater/equal three, and to open domains within Euclidean 
spaces that are connected instead of simply connected. 

It has occasionally been thought that additive representation theory on 
subsets of Cartesian products does not differ from additive representation 
theory on full Cartesian products, when the subsets have interiors that are 
‘full-dimensional’ and connected. A first counter-example, refuting several 
conjectures in the literature, was given in Wakker (1989b, Remark 111.7.8). It 
is illustrated and modified in fig. 2 below. Indeed, Krantz et al. (1971, p. 276, 
lines 6/7) had already suggested that the subject is nontrivial. We shall 
observe the following phenomenona, typical for subsets of Cartesian products 
in the topological approach: 

(1) [See Example 3.8.1 One reason that the traditional axioms no longer 
imply additive representability is that, loosely speaking, an additive 
representation may be ‘driven to infinity’ at maximal alternatives, and to 
minus infinity at minimal alternatives. 
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(2) [See Examples 3.9 and 3.10.1 Continuity of > on a subset X of the 
Cartesian product V no longer has to imply continuity of the associated 
binary relation 3’ on %?. 

(3) [See fig. 2 below, or Remark 111.7.8 of Wakker (1989b) with restriction 
to interiors.] In general, even if the subset is full-dimensional, connected 
and open, the traditional axioms of additive representation theory still 
need not imply additive representability. 

(4) [See figs. 1 and 2 below, or Remark 111.7.8 of Wakker (1989b).] ‘Local 
additive representability’ (for the definition see Claim 2.1 below) no 
longer implies (‘global’) additive representability. 

We shall show that on rank-ordered subsets of Cartesian products additive 
representation theory essentially remains valid, as long as maximal and 
minimal alternatives are excluded. Loosely speaking, rank-ordered subsets 
provide sufficient overlap between different local additive representations to 
make these tit together into one global additive representation. The results of 
this paper will be used in Chew and Wakker (1991) to characterize the 
preference relations on full Cartesian products that satisfy ‘comonotonic 
independence’. Comonotonic independence requires that the usual additive 
representation axioms hold only within rank-ordered subsets. 

This paper is organized as follows. In section 2 we discuss some common 
errors that have caused many misunderstandings in the literature, and might 
be feared to continue doing so. Section 2.1 describes them without yet 
criticizing, giving the reader the opportunity to find the mistakes by him- or 
herself. Section 2.2 points out the mistakes, and section 2.3 discusses the 
literature. Section 3 gives the main results of this paper. It can be read 
independently of the other sections. Section 3.5 gives examples that show 
peculiarities of extreme alternatives in rank-ordered subsets. Proofs are given 
in section 4. Section 5 concludes. 

2. Common misconceptions 

This section discusses some erroneous reasonings. Their alleged correctness 
has been accepted in the literature as a kind of common knowledge. To 
prevent future misunderstandings we have decided to present these reason- 
ings in detail, see section 2.1. The reader is invited to find the mistakes by 
him- or herself, prior to reading section 2.2 where they are exposed. 

2.1. Common beliefs 

For simplicity we assume in this subsection that the domain of the 
preference relation is (a subset of) [w”, and that the preference relation is a 
continuous and increasing weak order. For consistency of terminology, 
elements of Iw” are called alternatives. 



4 P. Wakker, Additive representations on rank-ordered sets 

Claim 2.1 [From local to global additive representation]. If for every 
alternative in L%” there is a neighborhood on which there is an additive 
representation for the preference relation (local additive representability) then 
there exists a (‘global’) additive representation. 

Alleged Proof. Let us repeat that by the well-known uniqueness results 
additive representations are unique up to scale and location. The neighbor- 
hoods may and will be assumed to be open rectangles. We use as-if two- 
dimensional terminology. 

Step 1. Take any starting alternative. Take the open rectangle around the 
starting alternative, and the additive representation on this rectangle. 

Step 2. Next take any second rectangle that intersects the first, for example 
one around a boundary point of the first. Take the additive representation 
on the second rectangle. On the intersection of the first and second rectangle 
(that intersection is itself a rectangle) the two additive representations 
represent the same preference relation. Hence by standard uniqueness results 
we can change scale and location of the additive representation on the 
second rectangle so that it coincides with the additive representation of the 
first rectangle on common domain; so we do. We have obtained an additive 
representation on the union of two rectangles. 

Step k. Suppose k- 1 rectangles have been covered. Take any rectangle that 
has not yet been covered and that intersects the area already covered, and 
the additive function Vk on that new rectangle. On the intersection with the 
area already covered it represents the same preference relation as the additive 
function I/ constructed so far. Hence by standard uniqueness results we can 
choose scale and location so that Vk coincides with I/ on common domain. 

By the lemma of Zorn, or countable induction and topological separability, 
this process will stop only if the entire domain R” has been covered. A global 
additive representation has been obtained. 0 

Claim 2.2 [Additive representation on subsets]. The usual characterization 
results of Debreu (1960) and Gorman (1968) also apply to subsets of KY if 
these subsets are connected and have nonempty interior (and only contain 
boundary points that are limits of interior points). 

Alleged Proof. For every interior point there is an open rectangle around 
the point contained within the set, on which by the traditional results 
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additive representability is ensured. I.e., on the interior we have local additive 
representability. Then, by a reasoning completely analogous to the Alleged 
Proof of Claim 2.1, we get an additive representation on the interior. 
Extension to the boundary is by continuity. 0 

The Alleged Proof of Claim 2.2, building on the Alleged Proof of Claim 
2.1, in fact also gives an Alleged Proof for the following Claim 2.3, which 
strengthens both Claim 2.1 and Claim 2.2. 

Claim 2.3. Claim 2.1 also applies to the subsets as described in Claim 2.2. 

2.2. Flaws in the alleged proofs 

Flaws in the Alleged Proof of Claim 2.1. We distinguish four flaws in the 
Alleged Proof of Claim 2.1, of which the fourth flaw is generated by the lirst 
three. 

The first flaw occurs at Step 2. There we have constructed an additive 
function on a union of two rectangles, that is representing on each of the 
rectangles. After a little reflection the reader will see that this does not mean 
that the additive function is representing on the union of the two rectangles. 
In general, if a function on a union of two sets is representing on each of the 
two sets, it need not be representing on the union. The additive function may 
compare incorrectly an element from the first rectangle that is not contained 
in the second, with an element from the second rectangle that is not 
contained in the first. See fig. 2, where W is representing both on the 
rectangle E, u E,, and on the rectangle E, u E,, but not on their union. 

The second flaw does not occur at the first or second step, but only at 
later steps. Suppose we have constructed an additive representation on the 
first k- 1 rectangles, and want to include the kth rectangle, intersecting the 
area already covered. On the intersection the two additive functions repre- 
sent the same preference relation. This does not ensure that they therefore 
differ only by scale and location. That has been established in the literature 
only for the special case where the intersection is a connected Cartesian 
product, and can readily be extended to any connected set. The intersection 
is not necessarily a connected set though. As a general example, think of the 
case where the intersection consists of two disjoint parts A and B that share 
no coordinates; suppose all elements of A are strictly preferred to those of B. 
An additive representation is given on the union of the two, it is positive on 
A, and negative on B. Then we can multiply the function by two on A and 
leave it unchanged on B, to obtain an alternative additive representation on 
the union. It has not been obtained from the original one in the usual way. 
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Fig. 1 [A function that is additive on two sets need not be additive on the union of these two sets]. 
Suppose,in ~z,R,=[O,3]x[-1,2],R,=[2,5]x[-3,0],R,=[4,7]~[-1,2], Visx-,+2x,on 
the subset f4.71 x fO,2] of R,, V is X, +x, on the remainder of R, u R, u R,. V is additive on 
R, u R,, aswell as on-R, u R3. But c is not additive on the union R, ; R, ; R3 because then 
contradictory requirements would result for the second-coordinate function on [0,2]: should it 
be the identity or two times the identity? The binary relation represented by V is locally 

additively representable, but not globally. 

The third flaw also does not occur at the first or second step, but only at 
later steps. Suppose again we have constructed an additive representation on 
the first k- 1 rectangles, and want to include the kth rectangle, intersecting 
the area already covered. Suppose we can escape from the second flaw and 
can ‘tit together’ the representations, i.e., obtain one function on the union of 
these k rectangles that is additive and representing on the union of the first 
k- 1 rectangles, and on the kth rectangle. In the first flaw above we already 
saw that this one function may not be representing on the union of the k 
rectangles; in addition, the function may neither be additive. In general, a 
function that is additive on each of two sets need not be additive on their 
union. See fig. 1. 

There is a fourth flaw, generated by the first and third. To wit, let us look 
at the kth step. It was claimed that the additive representation on the kth 
rectangle would on the intersection with the area already covered represent 
the same preference relation as the additive representation already con- 
structed. This is not necessarily true because of the first and third flaws. The 
function as already constructed does not have to be representing or 
additive. 0 

Flaws in the Alleged Proof of Claim 2.2. Firstly of course the Alleged Proof 
builds on the Alleged Proof of Claim 2.1, thus shares its flaws. In addition, 
there is a jiih flaw: additive representation on the boundary may go wrong. 
Loosely speaking, the additive representation may be ‘driven to co’ at 
maximal alternatives, and to -co at minimal alternatives, even if there exists 
a bounded real-valued continuous (nonadditive) representation on the set. 
See Example 3.8. 0 
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An actual counterexample against Claims 2.2 and 2.3 has been provided in 
Remark 111.7.8 of Wakker (1989b). A modified version is given in fig. 2. 

One reason for the persistence of the erroneous beliefs in these claims and 
their alleged proofs may be their mutual support. If someone believes the 
claims to be true, then a momentary doubt related to the flaws in the Alleged 
Proof of Claim 2.1 will be silenced by the belief in Claim 2.2. Conversely, 
momentary doubt about Claim 2.2 will be silenced by the Alleged Proof of 
Claim 2.1, which also gives Claim 2.3, implying Claim 2.2. 

2.3. A discussion of literature 

The Alleged Proof, or small variations, can be found in Green and Jullien 
(1988, Lemma in Appendix), Ebert (1988a, proof of Theorem 1; and 1988b, 
top of p. 220; both presentations concise), as well as in some other places in 
the decision literature. For functional equations it can be found in Rado 
(1959, proofs of Theorems 1 and 2) and in Hosszu (1964, Section 3; note that 
the domain in fig. 2 is simply connected). Radb (1959, Theorems 1 and 2) 
formulates Claims 2.2 and 2.3 for arbitrary domains. Applications of 
functional equations have more often been inaccurate concerning domains. 
Von Stengel (1990) mentions problems in Gorman’s (1968) application of 
Aczel (1966, p. 31 l/312 Theorem 1 and Corollary l), and presents corrections 
and generalizations. In the decision literature a version of Claim 2.2 is found 
in Quiggin (1989, Proposition 4). See also Kahneman and Tversky (1979, 
Appendix; since the probabilities sum to 1, the domain there is not a full 
Cartesian product). Other derivations, while basically correct, have dealt with 
the problems described above in very concise and implicit manners. Let us, 
given its importance, discuss in detail Debreu (1960, Theorem 3). Below fig. 1 
(‘Actually, . . . type’) of that paper, Claim 2.1 is made for dimension 2. Debreu 
(1990) referred to Blaschke and Bol (1938), where it is indeed found in 
Exercise 8 of Section 1.2, p. 22, be it with little elaboration. This result is 
essentially used in Debreu (1960, proof of Theorem 3), when for global 
additive representability on the two-dimensional sets denoted Ti x T2 only 
local (‘in the small’) additive representability, on neighborhoods denoted U, 
has been established. Again, for extension of the additive representation from 
sets TI x ... x Tk_, to sets T, x ... x Tk there, only local additive represent- 
ability has been established, on neighborhoods denoted I/: Because the 
dimensions 1, . . . , k- 1 can be taken together, this can be reformulated as a 
two-dimensional problem, and can (first within each compact subset) be 
derived from the result in Blaschke and Bol (1938). So again it can be 
justified; sometimes Debreu has been criticized for these two steps. Note 
however that the domain (i.e., the domain of the function denoted gk) there is 
not necessarily a full Cartesian product; this can be seen to be no serious 
problem, by the reformulation as mentioned above and Blaschke and Bol 
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k: Indifference surface through t-3,6,6) and (IS,-3,-3). 

Also border between X- and X++. 

: Indifference surface through (-1,8,8) and (16,-2,-Z). 

Fig. 2 [Counterexample to additive representation on subsets of Cartesian products, also showing 
that local additive representability need not imply global additive representability]. 
E,:=[-18,0]x[-l8,9]x[-18,0],E,:=[-18,0]x[-18,9]x[O,9],E,:=[O,18]x[-18,0]x 
[-18,0]. X:=E,uE2uE3. W:X-*R is defined by W:(X~,X~,X~)~X~+X~+X~-~. 
x-:={(xr,x,,x,)EX: w(x,,xz,x~)~o}, x++:= {(x,,x,,x~)EX: W(x,,x,,x,)>O}. The function 
V is defined as WJ2 on E, nX++, as W on the remainder of X. The binary relation + is 
represented by V 

Note that W represents $ not only on E, v Ez, but also on E, v E,. Still W does not 
represent 3 on the entire X; it compares incorrectly pairs of elements x, y with XEX++ n E, 
and ycX++ n E,. To wit: W(-1,8,8)=6>3=W(16, -2, -2) but V(-1,8,8)=3= 
V(16, -2, -2) so that (- 1,8,8)-(16, -2, -2). 

For every element of X there exists a neighborhood on which the preference relation has an 
additive representation, and on which V is a strictly increasing transform of that additive 
representation: W can always be taken for that additive representation, and X- or E, or E, for 
the neighborhood. Still, the representing function V is not a transform of any additive function. 
For suppose it were; contradiction will follow. The additive function would be of the form 40 W 
on E, u E,, and of the form 4’0 W on E, v ES, for positive afline 4,+‘. From E, we infer that 
4=@. However, then V would be a strictly increasing transform of W on X. This is impossible 
because W is not representing on the entire X. 

The preference relation satisfies all usual conditions for additive representability, only the 
domain is not a full Cartesian product. To wit, + is transitive, complete, and continuous. Its 
domain X is topologically connected (even simply connected). Also + satisfies CL This follows 
mainly from the fact that the two separate parts of X+’ have no coordinates in common, This 
also shows that the meaning of CI [and, more generally, in the terminology of Krantz et al. 
(1971) of cancellation axioms] is sensitive to the shape of the domain. 
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(1938). Debreu does not discuss the extension of the representation to the 

boundary of the domain, but on full Cartesian products this extension does 
not pose any problem. Also in Fishburn (1970, p. 75/76) some problems have 
not been elaborated. 

Positive references are Doignon and Falmagne (1974) for difference 
measurement, and Wakker (1986, Chapter VI; 1989a; 1989b, Chapter VI), 
Miyamoto (1988, for n = 2) and Nakamura (1990) for Choquet expected 
utility, i.e., expected utility on rank-ordered sets. [Lemma 2 in Nakamura 
(1990), is subject to the ‘driven to infinity problem, but this is no serious 
problem.] To the best of our knowledge, all these authors obtained the first 
versions of their results independently. They avoided the flaws indicated 
above by employing, in an early stage of the proof, the proportionality of the 
additive value functions that is available in their set-ups. 

The correctness of Claim 2.1 has been an open problem for me ever since 
my first reading of the claim in Debreu (1960, below fig. 1). This, together 
with the recent developments in decision theory, has triggered my investi- 
gation. Only when Debreu (1990) pointed out that his referring to Blaschke 
and Bol (1938) also covered this claim, and when I understood from 
Fishburn (1970, fig. 5.7 and p. 74, Step 5) that it sufficed to prove the result 
on compact sets, did I find a proof, in Wakker (1990). Obviously, this proof 
is more involved than the alleged proof as sketched above. 

3. The main results 

3.1. Rank-ordered alternatives; extreme alternatives; the set X 

%? is a nonempty connected topological space, with elements called 
outcomes. +=’ is a weak order on %?, i.e., it is complete (Vu, fi E VT:: CI 3’ /? or 
fi 3’~) and transitive. >‘, <‘, <‘, N’ are as usual. We assume that nz2. An 
n-tuple (xi,..., x,) E %” is rank-ordered if xi 3’ x2 3’. . +=’ x,, and is then 
called a rank-ordered alternative. The set of rank-ordered alternatives is 
denoted as %r. Since non-rank-ordered alternatives will not be considered in 
this paper, we simply say alternative instead of rank-ordered alternative. The 
restriction to rank-ordered alternatives implies, in the terminology intro- 
duced by Schmeidler (1989) that all alternatives are ‘comonotonic’. Thus 
‘coordinate independence’ in our set-up will be identical to ‘comonotonic 
coordinate independence’. 

An outcome c( is maximal if p >‘c( for no outcome /?, u is minimal if B <’ CI 
for no outcome b. Note that a rank-ordered alternative with maximal nth 
coordinate must have all of its coordinates maximal, and a rank-ordered 
alternative with minimal first coordinate must have all of its coordinates 
minimal. We call such alternatives extreme. We shall see in this paper, 
primarily in section 3.5, that complications and new phenomena can occur 
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for extreme alternatives when the domain of the preference relation is not a 
full Cartesian product. 

We consider a binary (preference) relation 3 on a set Xc%‘:. Either X 
will be the set of all (rank-ordered) alternatives, or it will be that set with the 
extreme alternatives excluded. Again >, 4, <, - are as usual. Often a 
‘constant’ alternative (a,. . . , a) EX will be identified with the outcome ME%?. 
Transitivity and the monotonicity assumption of this paper will ensure that 
>’ and + are in agreement, i.e., for all (c(, . . . ,a), (b,. . . $)EX: 
(a,..., 4 % (P, . . * 9 B)=-a 2=‘B. 

3.2. Intuitive conditions of additive representations 

Throughout, suppose E c X. Because we consider varying subsets of V”, it 
is useful to deline the properties introduced below for subsets of Cartesian 
products. Whenever below E =X (X the entire domain of +), we omit the 
phrase ‘on E’. 3 is a weak order on E if it is transitive on E (Vx, y, ZE E: 
[x+y,y+z]*[x+z]) and complete on E (VX,~EE: x$y or y+x). A 
function V represents + on E if E is contained in the domain of r/; V’s range 
is R, and x 3 yo V(x) 2 V(y). A function V is additive on E if Vx E E: 
V(x) =I;= 1 q(xj) for some functions V,, . . . , V, to 5%. If an additive function 
represents 2, then the Vi’s are additive value functions. We sometimes say 
that an additive representing function is ‘the sum’ of the additive value 
functions. Given different domains this is a slight abuse of terminology. A 
function I’ is cardinal (or an ‘interval scale’) if, loosely speaking, it ‘can be 
replaced’ by any function r+oV for real z and positive 0. Additive value 
functions (I$=i are jointly cardinal if they can be replaced by (~j);_l if and 
only if there exist real zi, . . . , T,, and a positive g, such that tf j: Wj = zj + aVj. 

If in the above definitions the range of I/ (and the Q’s) is R u {-cc, co} 
instead of R, then I/ is called an extended representation, respectively 
extended additive representation, and the Vys are called extended additive 
ualue functions. Obviously an (additive) representation is an extended 
additive representation, and additive value functions are extended additive 
value functions. R u (-cc, a} is endowed with the usual addition and 
multiplication rules, with cc - cc undefined. We write X_~CI for x with xi 
replaced by c(, and, for i # j, x -i,,qp for x with xi replaced by c(, xi replaced 
by fi. If extended additive value functions exist on EcX then 3 is 
coordinate independent (Cl) on E, i.e., X _ ia > y _ in 0 x _i/? $ y _ i/I whenever 
all alternatives in question are contained in E. As shown in Wakker (1991), 
on rank-ordered sets CI implies that preferences are independent not only of 
one common coordinate, but of any set of common coordinates. If extended 
additive value functions exist for 3 on E cV” then + satisfies generalized 
triple cancellation on E c %‘“, i.e., for all x _ :c(, . . . , w _ i 6 E E: 
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X_icL d y_iB & V_tU 3 W-tp 

& X-ty ~ y-i6 

Note that, for reflexive >, this implies CI, by setting LY=/$ y =6, x= y. The 
binary relation > satisfies monotonicity on E if a >‘/3~ ~_~a > X_iB for all 
X_~CI, X_$E E. Analogously a function I’ to R satisfies monotonicity on E if E 
is in the domain of V and a+‘Bo V(X_in)~ V(X_iB) for all x-p, X-ipEE. 
Also we call, for Ejc %?, a function 5: E,-+R monotonic on Ej if Ej is in the 

domain of 5 and VC@E Ei a >’ fro Pi 2 5(:(B). 

3.3. Technical conditions of additive representations 

In this section we give some technical conditions. They can be skipped by 
readers not interested in details. Most of these conditions are only used in 
proofs; the definition of the second-order Archimedean axiom is used only in 

Theorem 3.3(c) and its proof. 
Coordinate i is inessential on E (with respect to >) if Vx,x_p E E: x wx_p. 

The opposite of inessential is essential. Next we define the Archimedean 
axiom. As a preparation we define a standard sequence; a standard sequence 
may be infinite or finite of any length. For coordinate j we call al,c?,. . . a 

standard sequence (on coordinate j) with respect to 3 on E cV, if there 
exist x, i# j, vi+ W,E% such that, for all k= 1,2,. . . , we have X_i,jVi, akE E, 
x_~,~w~,M~+’ E E, and 

x-i jvi,cxk-X_i jwi,u k+l . 

A sequence cl’, Ed,. . . on coordinate j is bounded on E if there exist clsup and 
czinf such that Pp 3’ LX~ 3’~~“~ for all k, with xj=ainf, yj=c(‘“P for some 
x,y~ E (the latter to ensure that asup, xinf are in the range of additive value 
functions, if these exist). The Archimedean axiom requires that every bounded 
standard sequence is finite. On rank-ordered sets a stronger notion of the 
Archimedean axiom will be needed. For coordinate j we call ,i, c?,. . . a 
second-order standard sequence (on coordinate j) with respect to E c%“‘, if for 
every k there exists a standard sequence p’, p2,. . . on coordinate j with 
respect to 3 on E, such that, for some m, m’, /EN, ak -‘pm, ak+l -‘/?“+l, 
and ak+2 -‘pm+2r. The second-order Archimedean axiom requires that every 
bounded second-order standard sequence is finite. Since any standard 
sequence is a second-order standard sequence, the second-order Archimedean 
axiom implies the usual one. Again it is necessary for additive representa- 
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bility: the q-differences of subsequent outcomes in a second-order standard 
sequence are constant. The condition is somewhat less unattractive and, by 
itself, less restrictive than the strong Archimedean axiom as needed in the 
algebraic approach in Wakker (1991). 

A comprehensive presentation of elementary topological definitions, and 
further definitions, is given in Wakker (1989b, Section 0.1). Readers not 
familiar with general topology may simply assume that %= [w, and that 
preferences are increasing (a > fl - X_~CI > x _&I); then all topological assump- 
tions below are satisfied. Without further mention we assume throughout 
that X, as well as any E c X, are endowed with the restriction of the product 
topology on V. We call 3 continuous on E if for all ye E the sets {XG E: 

x + y} and {x E E: x =$ y} are closed. Analogously, 3’ on %? is continuous if 
for all ME%? the sets {fly%: b +‘a} and {PE’%‘: j3 a’~} are closed. In general, 
continuity of $, or continuity of additive value functions, does not imply 
continuity of >’ on %?. Continuity of &’ is, however, needed in the main 
results, hence will be presupposed in the Structural Assumption 3.1. 

3.4. The main theorems 

This subsection gives the main theorems. These adapt the results of 
Wakker (1991) to the topological approach. For the sake of easy reference 
and self-containedness we shall spell out several straighforward corollaries. 
Let us repeat the assumptions of our set-up: 

Assumption 3.1 [Structural Assumption]. %? is a nonempty connected topo- 
logical space, nz2, and subsets of %?” are endowed with the restriction of the 
product topology. + is a binary relation on a set Xc%?; of rank-ordered 
alternatives. Rank-ordering is with respect to a continuous weak order $’ on 
%? ‘agreeing’ with the binary relation > on X restricted to constant 
alternatives. 

The assumption of continuity of 3’ can often be deleted, for instance for 
n 2 3 in Theorem 3.2. See Proposition 3.11. In the topological approach it is - 
more convenient to formulate conditions for additive value functions, than 
for their sum (the additive representation) as was done in Wakker (1991). 

Theorem 3.2. Suppose the Structural Assumption 3.1 holds with X=%7:. Then 
the following two statements are equivalent: 

(i) There exist extended monotonic additive value functions (Vj)y=, for $ on 
X that are finite except possibly VI at minimal outcomes and V, at 
maximal outcomes, and that are continuous where they are finite. 
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(ii) The binary relation 3 on X is a continuous monotonic weak order that 

satisfies generalized triple cancellation. 

The additive value functions in (i) are jointly cardinal on %:\(extreme 

alternatives}. If nz3 then generalized triple cancellation in Statement (ii) can 

be weakened to Cl. 

Concerning the uniqueness result at extreme alternatives, we shall see at 
the end of section 4.2 that V, must assign the value co to maximal outcomes 
if that is the supremum of the values of V, over nonmaximal outcomes. If 
that supremum is not co, V, can either be taken to be that supremum, or co. 
Similarly, to minimal outcomes, V, either assigns the intimum over the 
nonminimal outcomes, or -co. The following theorem shows when the 
representation in Statement (i) above can be taken finite. 

Theorem 3.3. We may add in Statement (i) of Theorem 3.2 that the additive 
value functions are everywhere finite (thus co@nuous) if we either: 

(a) add in the theorem the assumption that there are no maximal or minimal 

outcomes, 

or 

(b) restrict the domain X of + to %F\{extreme alternatives}, instead of %?F, 

or 

(c) add in Statement (ii) the second-order Archimedean axiom. 

Each of these changes gives again equivalent Statements (i) and (ii). 

Note that Theorem 3.3.(c) has given a characterization of additive representa- 
bility on rank-ordered subsets in full generality. It shows that the lemma in 
the appendix of Green and Jullien (1988) can be corrected by addition of the 
second-order Archimedean axiom. The condition in the proposition below 
does not give a representation result in the strict sense because it is not 
directly in terms of the observable primitive, the preference relation. 

Proposition 3.4. The additive value functions in Theorem 3.2(i) can be taken 

finite if and only if V, is bounded below on the nonminimal outcomes whenever 
a minimal outcome exists, and V, is bounded above on the nonmaximal 

outcomes whenever a maximal outcome exists. 

Again, the proportionality condition below is not directly in terms of the 
preference relation. Wakker (1991, above Corollary 6) lists several conditions 
from the literature that characterize proportionality directly in terms of the 
preference relation. 
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Proposition 3.5. The additive value functions in Theorem 3.2(i) can be taken 
finite if they are proportional on the set of nonminimal and nonmaximal 
outcomes. 

The following corollary repeats some special cases. 

Corollary 3.6. Suppose either X = Iw: = {(x,, . . . ,x,) E R”: x1 2 . . . zxn}, or 
x=(Iw++):={(x,,... ,x,)E([W++)n:xl~...~x,}; 3 on X is an increasing 
continuous weak order chat satisfies Cl, and generalized triple cancellation if 
n=2. Then there exist jointly cardinal continuous increasing additive value 
functions. 

If one sets X =([w+): in the above corollary then, strictly speaking, it may 
happen that no additive value functions exist, because the additive value 
function I’, may be ‘driven to - 00’ at 0. Note that the monotonicity 
conditions in the above results have ruled out inessential coordinates. 
Inessential coordinates can be suppressed from notation, thus do not 
complicate the above results. Definitions of the conditions in the Remark 
below are given in Wakker (1989b), as well as in many other references, 

Remark 3.7. For n = 2 generalized triple cancellation in the above results can 
be replaced by the ‘Thomsen condition’, or the ‘hexagon condition’. 

3.5. Extreme alternatives and continuity 

Example 25a in the algebraic approach of Wakker (1991) showed that an 
additive value function V, at maximal outcomes, if finite, can take any value 
greater/equal the supremum over the nonmaximal outcomes. That was 
because no continuity was imposed. If continuity is imposed, such as in this 
paper, then the additive value function, if finite, simply has to be the 
mentioned supremum at maximal outcomes. Similar things apply to V, and 
minimal outcomes. 

Example 3.8 [VI driven to - CO]. See fig. 3. This is a topological version of 
Example 25b (fig. 4) in Wakker (1991). It satisfies all conditions in Theorem 
3.2, and shows that indeed an additive value function Vi can be 
‘driven to -co’. Similarly V, can be driven to co, see Example 2% in 
Wakker (1991). Continuity of $ and +’ can also be derived for these 
examples; see also Lemmas 4.3 and A.l. Strictly speaking, these examples 
provide counter-examples to (nonextended) additive representation on rank- 
ordered subsets. q 
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a%%’ 0.6 a5 ci4 0.3 cx2 C 

114 

0 

Fig. 3 [A counter-example to additive representation on a (rank-ordered) subset of a Cartesian 
product]. Let nh2, %=[O, 11; 3 is defined on W:, and is represented by (x,,...,xJ++x, x eX2 x 
‘.. x ex”. Any extended additive value functions (W,,. ., W,) would be of the form 

([r, + 0 In@,)]. [tz + bXz]r , ET.+ fix,]), with (r>O and In(O):= - CE. W, would satisfy, with 
c(k=e”-k”4 for all k, W,(aX)- W,(%“‘)= W,(&“)- W,(a”* ). Thus WI would necessarily assign 

value - cz to 0. 

Let us now present two examples showing that, even on ‘nice’ subsets of 
Cartesian products, continuity of >’ is problematic. In some cases it is not 
implied by the other conditions in the main theorems. 

Example 3.9 [Absence of continuity of 3’ on WJ. Case la in fig. 4 shows 
that continuity of + on Wz\{extreme alternatives} need not imply continuity 
of the associated binary relation 3’ on %‘. Similarly continuity of additive 
value functions on %‘,?\{extreme alternatives} is not implied by continuity of 
their sum. This example can be extended to dimension n23: Suppose again 
that %=]O, 11, endowed with the circle topology of fig. 4. For the topology 
Y_: on the unit cube, any open set containing a point of the form 
(l,...,l,~~+i,...,x,J (l>xi+,~...~xx,,i<n) contains cubes around all 
points of the form (vi,. . , u~,x~+~,. . . , xn) for which, for all j 5 i, Vj= 0 or 
Vj= 1. These cubes can be taken so small (diameters smaller than ixi+ i) that 
they intersect %?: only in the cube around (1,. . . ,1,X,+ i,. . . , x,,). It straight- 
forwardly follows that the restriction of Y-2 to %?F\{extreme alternatives} 
coincides with the (restriction of) the Euclidean topology, and that 

(x i,...,xJNxi+ ... +x, is continuous and represents a continuous relation 
+. The conclusions of the Cases la, 1 b, and 2 in fig. 4 can be extended to 

dimension n 2 3. 0 
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................... ..................... 
........ ............. 

Union of these -“‘x 
two gives n1XH2 *“%, 

for &a). 
(0, a) 

b 

. . . . . . . . . . . . 
of these 

four gives H1XH2 
both for (O,O), 
(l,O), and (1,l). 

Fig. 4 [Topological complications on rank-ordered subsets (dashed in the figure)]. The circle 
topology T< on [0, l] is like the usual Euclidean topology with one exception: every open set 
containing 1 must contain 0, and vice versa. Note that this is connected. Let us consider the 
closed unit square endowed with the product topology 9-f. For Occt< 1, any open neighbor- 
hood H, x Hz of (1,s~) must contain a rectangle around (1,~) as well as one around (0,a). An 
open neighborhood H, x H, of (0,O) must contain a rectangle around each of the points (O,O), 
(l,O), (1, l), (0,l); this also holds for any open neighborhood of (l,O), (1, l), as well as of (0,l). 

Now let us consider subsets of rank-ordered alternatives, and the restriction of Y-,‘. If none of 
the points (O,O), (l,O), (1,l) is contained in the subset, then the restriction of Y-f coincides with 
the usual Euclidean topology; this mainly follows from the observation that in the figure for any 
O<cc< 1 one can take the rectangle around (0, X) small enough not to intersect the dashed area; 
similarly open neighborhoods of points (x,0) can be taken within the dashed area. If any of the 
points (O,O), (l,O), (1,1) is contained, the topologies do not coincide. 

In each of the cases below + is represented by (x,,x~)Hx, fx,. In each case V contains 1, 
and +’ on V is not continuous: the set {a EW: r >’ l/2) contains 1 but is not open because any 
open set containing 1 should contain an interval ]O,s] for a small s>O. 

Case la. U=]O, 11, endowed with the restriction of the circle topology; 3 is defined on 
Cf\{(l, 1)). It is continuous because the topology on %“,2\{(1,1)} coincides with the usual 
Euclidean topology. This case also illustrates that on a subset of a Cartesian product an additive 
representation [(x,,xJc~x, fx,] can be continuous whereas not all of the additive value 
functions are continuous: X,HX, is not continuous as a function from 10, ll-with-the-circle- 
topology to R-with-the-usual-Euclidean-topology. 

Case lb. V=]O, 11, endowed with the restriction of the circle topology, 3 is defined on Wj; so 
now (1,1) is included. Continuity of + is violated because the set of alternatives strictly 
preferred to (2/3, 2/3) contains (1,1) but does not contain {l} x10,&[ for some EZO, as it should 
to be open. 

Case 2. %=[O, 11, endowed with the circle topology. The following reasoning shows 
discontinuity of 3, both if it is defined on V:\{(O,O),(l, l)}, and if it is extended to one or both 
of the alternatives (O,O), (1,l). Any open set containing (1,O) will contain alternatives of the form 
(/J,O) for /I>0 very small. Hence the set of alternatives strictly preferred to (l/3,1/3) is not open, 
and > is not continuous. 
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Example 3.10 [Absence of continuity of +’ on $5’1. Suppose the Structural 

Assumption 3.1 holds, with the exception possibly of continuity of +‘, 
further n = 2, and ‘%‘= [0, l] endowed with the usual Euclidean topology. %‘, 
+F- is any partition %I?‘, with sets nonempty. 3’ two 
equivalence ‘F+, with %?’ preferred equivalence 
Obviously 3’ not continuous. VI =0 %?+, VI - cc ‘K, V, cc 
on V,=O on Then both functions are constant, thus 
where are finite. 

X =%‘f, in Theorem + is by monotonicy, 
three equivalence and connectedness of X be 

continuous. Statement (i) Theorem 3.2 however holds true. (i) *(ii) 
Theorem 3.2 does hold true. is a 
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x=c; 

x=c> 
(extr.alts.) 

no maximal or 

minimal outcomes 

maximal and/or 
minimal outcomes 

Fig. 5. + means that continuity of >’ is implied by the other conditions, - means it is not. 
This depends on the domain X of 3, the presence or absence of maximal/minimal outcomes, 
the dimension n, and whether Statement (i) or Statement (ii) in Theorem 3.2 is assumed to hold. 

function-value cc or -00 implies convergence of function-values to co or 
-co, respectively. Then joint cardinality would have resulted on the entire 
domain in all results, and Example 3.10 would have been ruled out. We do 
not pursue this line. 

4. Proofs 

4.1. No extreme alternatives: Proof of Theorem 3.3.(b), thus of Theorem 

3.3.(a) 

We assume throughout this subsection that Assumption 3.1 holds, and 
that X =V~\(extreme alternatives}. First suppose (i) in Theorem 3.2 holds. 
Note that, by the definition of additive value functions, VI only has to be 
defined on the nonminimal outcomes, V,, only on the nonmaximal outcomes. 
Continuity of each F implies continuity of each V/I:(x,,. . .,x,)H v(x,) (also 
for i= 1 and i=n), thus of the sum of these functions. This implies continuity 
of 3. The other conditions of (ii) are straightforward. 

Next we assume (ii) holds (with generalized triple cancellation weakened to 
CI for n>=3), and derive (i). We derive this as a corollary from Theorem 4.(b) 
in Wakker (1991). There the following two conditions were used instead of 
continuity to derive additive representability; the two conditions will now be 
derived from continuity. Finally we shall then establish continuity of the 
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additive value functions, and the uniqueness result. 3 satisfies restricted 
solvability on E if, for all x-p, y, x_,y E E: 

X-icL > _Y > X-i? j IBEX: x~,~EE, X_ip~y. 

If >’ is trivial (has one equivalence class) then, all alternatives being both 
maximal and minimal, X is empty, so Statement (i) is vacuous. So we 
suppose henceforth that 3’ has at least two equivalence classes. 

Lemma 4.1. += satisfies restricted solvability. 

Proof Suppose x _ iz > y > x_~Y. By monotonicity, CI >’ y. We first derive 
openness of the set E+:={a~%T:a+‘cr or (c~>‘a>‘y and xeia>y)}. Take 
any GEE+. We find an open neighborhood H of o within E’. If IJ >‘a then, 
by continuity of +‘, H = {z E %?I z >’ M> can be taken. So say 0 <‘E. Then, 
both if cm’ c( and if e <’ cy, x mig E X and x-i0 > y. By continuity of $ with 
respect to the restriction of the product topology, there exists an open 
neighborhood (H, x ... x H,) A X of x-p with HjcV open for all j, all 

elements of which are strictly preferred to y. Obviously, not y E Hi because 
x-;y is in X but is strictly dispreferred to y. There may however be outcomes 
t <’ y in Hi, simply because xPir $ X, i.e., r <‘xi+ r. We exclude such z by 
considering, instead of Hi, H: = Hi n {z E ST?: z >’ y}, which by continuity of 3’ 
is open, and contains 0. So we may, and do, assume that H c {ze%? T >‘r>. 
To see that Hc E+, note that for each r E H either r +‘cr or r <‘cc in which 

case indeed c( >‘r >‘y and x_,z~(H, x ... x H,) n X, so X_~T > y. 
Analogously, the set E-:={a~%‘: a=$‘y or (a>‘o>‘y and x_~o<Y)) is 

open. Both E+ and E- are nonempty, and they are disjoint. By connected- 
ness of %Y’, there must be a /3 contained neither in E+ nor in E-. Because 
c( >_‘/I >‘y, we have x_#EX; x-$-y follows. 0 

Lemma 4.2. 3 satisjies the Archimedean axiom. 

Proof: Suppose there is an infinite standard sequence ~‘,cY~,. . . on co- 
ordinate j. I.e., there exist x, i # j, and vi +’ wi E %?, such that X_i,jUir~k m 
X_i.jWi,Clk” for all k= 1,2,. . , with further all alternatives in question 
contained in X. Suppose the standard sequence is bounded, i.e., there exist 
CY SUP and C(inf that are jth coordinates of elements of X, such that 
@SUP 3’ Clk +I &nf for all k; note that cxinf is nonminimal if j= 1, clsup is 
nonmaximal if j=n. Contradiction will follow. 

Case (a). vi >’ wi. By monotonicity, ak+r >’ txk for all k. Let E+ : = {p EW: 
Vk: p >’ ak>, E : = {/?E W: 3k: D <’ N”}. By continuity of +‘, E- is a union of 
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open sets, so is again open. Further E- and E+ are disjoint, nonempty, and 
their union is 9. Thus, by connectedness of V, E+ cannot be open. To 
establish contradiction, we finally derive openness of E+. Suppose pi >’ ak 
for all k. It s&ices, by continuity of +‘, to find a p” <‘pi such that still 
Vk: p” 3’ ak. 

If x_i,jwi,pl#X then j>l and pl>‘xj_i +‘ak (with x~_~:=w~ if i=j-1) 
for all k, the latter preference because ~_~,~w~,a~ is rank-ordered for all k. 
Then p” = Xj_ 1 can be taken. A similar reasoning applies if x _ i,jui,pl 4 X. So 
suppose x _ i,jWi,~’ E X and X- i,jUi,~’ E X. By monotonicity, for all k, 

x-i,jUi2/11 > X-i,jWi,/ll 3 X_i,jW,ak+2 > x_i,jwi,ak+l Iv X -i , jVi,Ork. 

By restricted solvability, there exists a p” between p1 and a1 (or any other ak) 
such that X _ i,jUe~“O N X _ i,jW, p’. We saw above that, for each k, the latter is 
strictly preferred to x _ i,jUgak, SO X_ i,jUecL” > x _ i,jU,ak. By monotonicity 
,D’ >’ ak for all k, and ,u’ is as desired. 

Case (b). oi <’ wi. This is analogous to the above case. Now ak+ ’ <’ ak for 
all k, and one defines E+ : = {BE%? 3k$>‘ak}, E-:={BE%: Vk$?$‘ak), 
etc. 0 

So $ is a weak order that satisfies restricted solvability, the Archimedean 
axiom, monotonicity, CI, and generalized triple cancellation if n = 2. Theorem 
4.(b) of Wakker (1991) implies that there exist additive value functions (I#= 1 
for $. Continuity follows from Lemma A.1 in the Appendix. 

Finally we establish the uniqueness result: Joint cardinality of the additive 
value functions is implied by cardinality of the additive representation, as 
implied by Theorem 4.(b) in Wakker (1991). For the application of the latter 
result note that, because >’ is continuous with respect to a connected 
topology, as soon as it has two or more equivalence classes, it must have 
infinitely many equivalence classes. 

4.2. Extreme alternative: Proof of Theorem 3.2 

As a preparation we show that the requirement of continuity of the 
preference relation at extreme outcomes is immaterial. 

Lemma 4.3. Suppose that the Structural Assumption 3.1 holds with X=%?F, 
and that > is a monotonic weak order that is continuous on %?:\(extreme 
alternatives}. Then 3 is continuous on 97:. 

Proof. We derive openness of the set P’(y):= {xEW;: x > y}. If y is 
maximal then P’(y) is empty, thus open. So assume y is not maximal. 
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P’(y)\{maximal alternatives} = :P(y) = {x E %Y:\{extreme alternatives}: x > y} is 
an open subset of ‘e:\{extreme alternatives}. So there exists an open set 
PC%?” intersecting C:\{extreme alternatives) in exactly that subset. By 
monotonicity we may assume that Pc(uj”, 1 {xE’%? Xj nonminimal}), by 
intersecting with that latter open set. I.e., we may assume that P does not 
contain minimal alternatives. If no maximal outcomes exist then P’(y) = 
P n 55’; and we are done. So suppose there exist maximal outcomes. We show 
that P may be assumed to contain maximal alternatives. 

To that end we first find an alternative j~P’(y) with all coordinates 
nonmaximal. Because y is nonmaximal, there is a coordinate is n such that 
y,, . . . , yip 1 are maximal and yi is nonmaximal. Say i 2 2, otherwise j = y can 
be taken. By continuity of +’ and connectedness of %? there exists a 
nonmaximal ji >’ yi. By monotonicity, the nonmaximal y-iii E P(y). There 
must exist open A,, . . . , A, such that y_i~iEA, x ... xA,cP. We may, and 
do, replace Ai_ 1 by the open nonempty Ai- 1 n {y: y > pi). By closedness of 
{maximal outcomes} ~97, and connectedness of %‘, Aipl contains a non- 
maximal outcome ji _ i. Then y-,,(i- l)Fi, ji- , E P(y): we have replaced the 
maximal yi_l by a nonmaximal pi_ 1 without leaving P(y). Continuing that 
way we end up with FE P(y) that has all coordinates nonmaximal. 

The set r)l= 1 {u E Vi”‘: ui >‘ji} is open. All of its elements being strictly 
preferred to j, its intersection with %?T is a subset of P(y), and we may replace 
P by its union with fly= 1 {uE%‘“: vi >’ ji}. This contains all maximal 
alternatives; openness of P’(y) follows. Analogously, {x E%??:: x i y} is 
open. 0 

We next derive the implication (i)=$ii) in Theorem 3.2. Transitivity, 
completeness, and monotonicity are direct. Generalized triple cancellation, 
hence CI, follows straightforwardly, either by elimination of cases, or by 
substitution of the extended additive representation. Next we turn to 
continuity. If we restrict both the additive function and the preference 
relation to the nonextreme alternatives, then these restrictions are all 
continuous, as well as the associated additive value functions. Now conti- 
nuity of 3 follows from Lemma 4.3. It is a remarkable property of rank- 
ordered sets that continuity of the additive value functions on the non- 
extreme alternatives implies continuity of 3 on all alternatives. 

For (ii)*(i), suppose >’ contains at least two, so infinitely many, 
equivalence classes, to avoid triviality. Theorem 3.3.(b) gives an additive 
representation V on %:\{extreme alternatives}. We can assign to maximal 
extreme alternatives any V-value greater/equal the supremum over the other 
alternatives, by letting I’,‘, assign to the maximal outcome any value 
greater/equal sup( V,( { nonmaximal outcomes})). Note that that supremum is 
not assigned to any nonmaximal outcome, 3’ being continuous with respect 
to a connected topology. The supremum may be co. For continuity of V” 
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where it is finite, the only finite value that V, can assign to a maximal 
outcome is the mentioned supremum. The case of minimal extreme alterna- 
tives is similar, let V, (minimal outcome) = inf ( y { nonminimal outcomes})) or 
-Co. Cl 

4.3. The second-order Archimedean axiom: Proof of Theorem 3.3.(c) 

Below the definition of the second-order Archimedean axiom it was 
already pointed out that the condition is necessary for real-valued additive 
representability. So let us assume that it holds, together with Statement (i), 
thus (ii), of Theorem 3.2. Suppose that there exists a maximal outcome with 
K-value ‘driven to co’, i.e., sup(l/,(%\{ maximal outcomes}) = co. The case of 
Vi driven to -co is similar. Violation of the second-order Archimedean 
axiom will be derived. We construct an infinite increasing second-order 
standard sequence (ak)k”_ i, obviously bounded above by the maximal out- 
comes, and bounded below by cl’. Take any (~l~)km,i with v,(ak+‘)- Vn(ak)= 1 
for all k. V,(%‘\( maximal outcomes)) being connected, this is possible. Fix k. 
Because K-l((aE% cxk+2 <‘cc <‘a”‘}) is a nondegenerate interval, we can 
find xk+’ <‘y <‘6 $‘a k+3 and IEN such that V,_,(6)--l/,_,(y)=l/. Next 
we take a sequence (fi”‘)~‘=,, such that /?’ = ak, j’ =gk+i, p” = OI~+~, and 
I/n(~m+l)-v;t(/?m)=l/I for all 05rn521-1. Then, with zi=‘.. =zn-2:=ak+3 
to ensure rank-orderedness of the following alternatives, z_(, _ lj,ny,gm+ ’ N 
z_~,,_~~,~B,/?~ for all Osms221--1. In other words, (/I”)~~o is a standard 
sequence on coordinate n. As this can be obtained for each k, (ak)FZ1 is an 
infinite bounded second-order standard sequence. A violation of the second- 
order Archimedean axiom has been obtained. 0 

4.4. Proof of Propositions 3.4 and 3.5, Corollary 3.6, Remark 3.7. and 
Proposition 3.11 

Proposition 3.4 follows immediately from section 4.2, or from Proposition 
5 in Wakker (1991); restricted solvability, as required in the latter, is implied 
by Lemma 4.1. Proposition 3.5 is a corollary of Proposition 3.4, or of 
Corollary 6 in Wakker (1991) and again Lemma 4.1. Corollary 3.6 is a 
special case of Theorem 3.3.(a). Remark 3.7 is analogous to Remark 23 in 
Wakker (1991). Note that in the topological approach, contrary to the 
algebraic approach, also the hexagon condition can be used to obtain 
additive representability for two dimensions; see for instance Wakker (1989b, 
Theorem 111.6.6(ii)). 

In Proposition 3.11, Statement (a) follows from continuity of Vi (represent- 
ing 3’ by monotonicity) on %?, and Statement (b), proved next. 

Under the conditions of (b) we derive openness of {BE%? p >‘x>. 
Suppose y >’ a. There exist open A,, . . . , A,c% such that (y,. . . , y) E 
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(A, x ... x A,, n X) c {x E X: x > (a,. . . , a)}, the latter set being open. 

Ai n .*. n A, gives an open neighborhood of y within {BE%? /I >’ a}. The 
latter set is open. Similarly {/?E%?: /l <‘a} is open, and 3’ is continuous. 

Under the conditions of Statement (c), continuity of 3’ follows either from 
Statement (i) of Theorem 3.2 and monotonicity and continuity of V,, or from 
Statement (b). 

The conditions of Statement (d) imply continuity of $’ by monotonicity 
and continuity of I’,. 0 

5. Conclusion 

The additive representation of preferences on subsets of Cartesian products 
is more complicated than has usually been thought. Several incorrect ideas 
have been accepted almost as common knowledge. To prevent future 
misunderstandings we have described and criticized them. Further we have 
given positive results for the special and simple, but presently most import- 
ant, case: the rank-ordered cone. Still the proofs were not simple. Maximal 
and minimal alternatives cause complications. The obtained result will make 
possible the derivation of further results for rank-dependent approaches to 
decision making under risk and uncertainty, and the derivation of further 
results for generalizations of the Gini index for welfare theory. 

Appendix A. Continuity of additive functions on rank-ordered sets 

The following lemma, used in the proof of Theorem 3.3.(b), may have 
interest of its own in adapting Theorem 3.1 of Wakker (1988) to rank- 
ordered sets. Hence we repeat all assumptions. Monotonicity is implied 
below by the requirement that all I/i’s represent +’ on their domain. 

Lemma A.1. Suppose the Structural Assumption 3.1 holds, with X= 

%:\{extreme alternatives}, V,, . . . , V, _ I :%+ R, VI : %\(minimal outcomes} + R, 
V, : %T\ { maximal outcomes} +R, where all these functions represent >’ on their 
domain and are nonconstant. Suppose > on X, represented by (x,, . . .,x,,)H 
cj”= 1 y(Xj), is continuous. Then VI,. . . , V, are continuous. 

Proof: Suppose some 5 is not continuous. Then it certainly is not 
continuous with respect to the order topology induced by 3’. Contradiction 
will follow. The domain of Vj is connected with respect to the order 
topology, also for j= 1 and j = n. For j= 1 and j = n this follows by 
standard techniques, see for instance Wakker (1989b, Lemma VI.7.4). Hence, 
again by standard reasonings, there must exist a ‘gap’ of the form ]p, v] or of 
the form [p, v[ in the range of I$, say the latter. More precisely, v is in the 
range of 5, ,D is not, neither is any element between the two. But there is a 
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sequence of elements in the range of vj converging to p from below. Let 
I’(?) = v. We distinguish two cases. 

Case 1. j<n. We first show that 

v-~>vj+l(xj+l)-vj+l(Yj+l)>o (A.11 

for no Xj+l,Yj+l E V,:‘(] - cc,p[). Suppose there were such Xj+l,Yj+i. Con- 
tradiction will follow. Fix zi = . . . = zj = v”, zj + 1 = . . . = Z, = Yj + 1. These choices 
imply that the alternatives below are indeed rank-ordered. 

By ~+l(xj+l)-~+l(yj+,)<v-~~<{~-~(~j+l) and monotonicity we 
get: 

Z- j,(j+l)Xj+l,Xj+l < Z-j,(j+l)c3Yj+l <z-j.Cj+l)3Txj+le 

By restricted solvability, as implied by Lemma 4.1, there exists b, between 
Xj+l and v” such that ~_j,(j+l,bj,xj+,~~_j,(j+l)VI,~j+l. This would however 
imply v> y{b,) >p, in contradiction with the assumed gap. So (A.l) holds. 

The assumption of the gap implies that there are at least countably many 
equivalence classes of outcomes with I/,-value below ~1, so certainly below v”. 
Actually, as soon as there exist two, then by standard reasonings there are 
uncountably many; see for instance Wakker (1989b, Lemma VI.7.4 and p. 42, 
lines 3/4). By (A.l) that would generate uncountably many mutually disjoint 
open intervals with length v-p and midpoints vj+ I(aj+ J for uj+ 1 5’;. This 
is impossible by denseness of the rationals in the reals. Contradiction has 
resulted. 

Case 2. j= n. Now v” cannot be maximal, because maximal outcomes are 
not contained in the domain of V,. Analogously to Case 1 above, we can 
show that O<~j-,(xj-I)-~j_,(yj_,)<v-~ for no xj_i, yj-I from 
q’(]v, co[). Again, there are uncountably many equivalence classes in 
5 ‘(Iv, co[). This would induce uncountably many mutually disjoint inter- 
vals within R, which cannot be. Contradiction has resulted. 0 

The following remark, formulated somewhat informally, is straightforward. 

Remark A.2. Suppose the extreme outcomes are also included in the 
domains of Vi, V,. If then V,(‘%\( minimal outcomes}) is unbounded from 
below, V, is -co at minimal outcomes. Otherwise V, can be redefined as the 
i&mum of V,(%?\{ minimal outcomes)) at minimal outcomes without affect- 
ing the represented +, and then is continuous. If IQV\{maximal outcomes}) 
is unbounded from above, then V, is co at maximal outcomes. Otherwise V, 
can be redefined as the supremum of 1/,(%‘\{ maximal outcomes}) at maximal 
outcomes, and then is continuous. 0 
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