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Additive Representations of Preferences, A New Foundation of Decision
Analysis; The Algebraic Approach

Peter Wakker*
University of Nijmegen (NICI)

In Wakker (1989b, ‘Additive Representations of Preferences, A New Foundation
of Decision Analysis’), a new foundation of decision analysis was given. The
main tool was a way to derive comparisons of ‘tradeoffs’ from ordinal prefer-
ences, with comparisons of tradeoffs revealing orderings of utility differences.
These comparisons of tradeoffs underly the construction of standard sequences
in conjoint measurement theory. The restrictive structural assumption (every
approach has its restrictive structural assumption) was of a topological nature,
requiring continuity. This paper adapts the main results of Wakker (1989b) to
the algebraic approach, where a solvability condition is required which is less
restrictive than continuity.

1. History, Motivation and Preview

The foundations of decision analysis were for the major part laid around the fifties. The
main results are, a.o., von Neumann & Morgenstern (1944), Savage (1954), Suppes (1956),
Anscombe & Aumann (1963). An early brilliant contribution of Ramsey (1931) became
appreciated and known only long after its appearance. It has never been fully understood:
to the best of our knowledge there is no set-up in which all operations of Ramsey (1931)
are formally correct. Also the contribution of de Finetti (1931, refined in de Finetti, 1937,
1974) has been underestimated, and misunderstood. While the derivation of von Neumann &
Morgenstern assumes probabilities given in advance, the derivation of de Finetti can be seen
to assume utilities given in advance. Also the approach of Anscombe & Aumann, as well as
that of Pratt, Raiffa, & Schlaifer (1964), assume not all, but still many, probabilities given.
The derivation of Ramsey (1931) assumes probabilities 1/2 given, through the ‘ethically
neutral’ event; it is not a real characterization fully in terms of preferences.

The idea of conjoint measurement is to take several quantities to be measured as unknown,
and to derive them jointly from observations. This idea was not commonly known around
the fifties, when most of the foundations of decision analysis were laid. Only in the late
sixties, through the work gathered in Krantz, Luce, Suppes, & Tversky (1971), hereafter
abbreviated KLST, did this idea become full-blown. When applied to decision analysis,
it leads to the question of how to characterize/elicit both utilities and probabilities from
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preferences. Savage did raise that question, and solved it; this has finally led to the famous
result in the first five chapters of Savage (1954).! It can be argued that also Ramsey (1931)
came close to the joint derivation of probabilities and utilities. Given the importance of
subjective probabilities as the, paradoxical, operationalization of ‘knowing what one doesn’t
know’, and their importance as the refined modeling of degrees of knowledge, given the
originality of using a conjoint measurement approach, given the well-written presentation,
and given the high level of mathematics, the first five chapters of Savage (1954) constitute
one of the most impressive scientific achievements of this century. The idea of conjoint
measurement is well established nowadays and, mainly through KLST, its techniques are
well-developed. Wakker (1989b), hereafter abbreviated [W], uses these new techniques to
revisit the foundations of decision analysis of the fifties, and to obtain a new foundation
hoped to contribute to those obtained around the fifties. The basic idea is to use ‘tradeoffs’
between dimensions (a dimension for each state of nature) to build up standard sequences on
each dimension, thus eliciting utility. This is achieved by ‘derived comparisons of tradeoffs’.
Then the number of units of utility contingent on one state of nature that outweighs one
unit of utility contingent on another state of nature gives (proportions of) probabilities.

The motivation to deviate from the approaches of von Neumann & Morgenstern (1944),
Anscombe & Aumann (1963), Pratt, Raiffa, & Schlaifer (1964), and to a lesser degree from
Ramsey (1931) and Suppes (1956), is to avoid the necessity of probabilities given in advance.
The motivation to deviate from Savage’s set-up is that Savage needs to impose richness
conditions on the state space through his postulate P6 and his nontransparent P7 (P7 is
only transparent in those finite cases where it is implied by and does not contribute to the
other axioms), and that Savage’s axioms turned out to imply boundedness of utility in an
unforeseen way; see Fishburn (1970, Section 14.1), or the second edition of 1972 of Savage
(1954), footnote on p. 80. An extension of Savage’s approach to unbounded utility has been
given in Wakker (1989¢, Theorem 33).

The motivation to deviate from de Finetti (1931) is, firstly, to allow for nonlinearity of
utility, and, secondly, to allow for nonquantitative consequences for which linearity and de
Finetti’s coherence condition cannot even be defined. The starting question of our research
was how to generalize de Finetti’s ‘Dutch book making’, and has indeed led to the book
[W]. It combines Savage’s possibility to have nonlinear utility with de Finetti’s possibility to
have general, possibly finite, possibly infinite, state spaces. See Theorem 5 below. Instead
of taking the state space as a continuum, as is basically done in Savage’s set-up, we take
the consequence space as a continuum (to be generalized somewhat in this paper). The
latter is more customary in economic models, and in conjoint measurement as considered
in the present paper. The present paper shows how the restrictive continuity assumption
of [W] can be replaced by the, according to Wakker (1988) more general and intuitively
preferable, restrictive solvability axiom, together with the nonrestrictive and merely technical
Archimedean axiom. Thus it gives a survey and generalization of the results in [W]. For
extensive motivations and elucidations see [W]. The sequel of this paper will only now and
then supplement additional motivation or history. A self-contained presentation of all proofs
below would take much space, so instead we often refer to the proofs and reasonings in
other papers by the author, mainly [W] and Wakker (1990c), and show how these should be
adapted.

Section 2 starts with a presentation of de Finetti’'s theorem on IR"™. Section 3 sketches
the set-up of additive conjoint measurement on a Cartesian product x!' ,C;. Here the ‘de-
rived comparisons of tradeofts’ formulation is used to obtain an alternative, and we hope

1Section 3.3.3 in von Neumann & Morgenstern (1944), footnote 2, does announce the idea of conjoint
measurement for subjective expected utility.
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transparent, formulation for standard additive representation results. Section 4 gives a char-
acterization of subjective expected utility (SEU) maximization on a Cartesian product C”,
i.e., obtains the desired generalization of de Finetti’s theorem. Nowadays deviations from
SEU are popular; Section 5 characterizes such a deviation, i.e., Choquet-expected utility,
which allows probabilities to be nonadditive. Again the domain is a Cartesian product C™.
Nakamura (1990a,b) has recently also obtained characterizations of SEU and CEU under the
algebraic assumptions, with a solvability axiom that is somewhat stronger than the one in
KLST and in this paper. His solvability axiom implies the existence of certainty equivalents
and rules out the equally spaced case. The main tool is a bi/multi symmetry axiom in the
spirit of Pfanzagl (1968) and KLST (Section 6.9), instead of the tool of derived tradeoffs.
Finally some basic definitions are given. A function V' represents a binary relation on its
domain if for all arguments x,y,

z=ye Vie) > V(y).

If there exists a representing function for a binary relation > then the binary relation is
a weak order, i.e., it is transitive (Vz,y,z : [z = y,y = 2| = [¢ = z]) and complete
(Ve,y:x =yory = zx).

2. Digression; The Theorem of De Finetti

This section presents a short sketch of one version of de Finetti’s theorem, surely not the
most general version. For references to proofs see [W, Section A2]. De Finetti’s result can be
seen to imply linearity of utility, a condition that deters economists. In many places in the
literature authors have presented de Finetti’s results in a misleading way, by suggesting that
‘incoherence’ is identical to violation of monotonicity (‘taking a sure loss’), and by putting
under the cover the nonselfevident linear operations (only additivity in our presentation
below with continuity presupposed) as needed in the book making process to lead incoherent
preferences into a sure loss.

Let > be a binary relation on IR". For an element x of IR", x; denotes its ith coordinate,
i=1,...,n. > is strongly monotonic if x > y whenever x # y and z; > y; for all i. It is
continuous if a first alternative is weakly preferred to a second alternative whenever the first
alternative can be approximated by a first sequence of alternatives, and the second alternative
by a second sequence, such that each ith term of the first sequence is weakly preferred to the
1th term of the second. The crucial condition in the theorem below is ‘additivity’, i.e., ‘zero-
independence’ in the terminology of Moulin (1988). We call > additive if x > y implies
x+vr=y+w, forall x,y,v.

THEOREM 1 Let > be a binary relation on IR™. Then the following two statements are
equivalent:

(i) There exist positive numbers py,...,p,, summing to one, such that z —
> | piv; represents ~.

(ii) The binary relation > is a continuous strongly monotonic additive weak
order.

The numbers p; in Statement (i) above are uniquely determined. O
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De Finetti applied the above theorem to decision making under uncertainty. Suppose an
asymmetric die with n sides will be thrown, and x € IR™ denotes a gamble that yields $x;
if side j will come up. Because a decision maker with preference relation > over gambles
is uncertain about the side that will come up, he is uncertain about the amount of money
x; that will result from the gamble z. The above theorem has characterized expected value
maximization. Actually de Finetti obtained a more general result, where the domain of the
preference relation can be a subset of IR, as long as for every gamble there is a ‘fair price’,
i.e., a constant gamble that is equivalent. In presentations of de Finetti’s result the additivity
condition is usually not discussed, it is implicit in a book making set-up? together with a
multiplication condition that was implied above by additivity and continuity, and the role of
strong monotonicity (or somewhat weaker versions thereof) is overemphasized. Because of
the book making set-up, some may disagree with our claim that the above theorem describes
what de Finetti proved. Anyway, the aim to generalize the above theorem to nonlinear utility
has initiated our research. The major step forward was our coincidental discovery of the book
KLST, and the theory of additive conjoint measurement presented there.

3. Additive Representation through Comparisons of Tradeoffs and Contradictory
Tradeoffs

This section presents the results of additive representation in a version somewhat deviating
from KLST.

3.1. Elementary Definitions of Additive Conjoint Measurement

Let x7,C; be a Cartesian product of nonempty sets. Its elements are called alternatives.
Sections 4 and 5 consider identical coordinate sets C;, i.e., Vi : C; = C for some space C. By >
we denote a binary (preference) relation on x_,C;; >, <, <, and ~ are as usual. A function
V is additive if

n

Viz— Y V()

=1

for some functions V; : C; — IR,j = 1,...,n. If an additive function represents =, then the
Vj’s are called additive value functions. A function V is an interval scale (or ‘cardinal’)
if, loosely speaking, it ‘can be replaced’ by any function 7+ oV for real 7 and positive o. If
an additive function is an interval scale, then the additive value functions are ‘joint interval
scales’, i.e., arbitrary real numbers (‘locations’) can be added to each of them, and they can
be multiplied by a joint positive factor (‘scale’). These two uniqueness results are equivalent,
we shall usually make explicit the result applying to the additive function.

We write x_;v; for = with z; replaced by v;, and, for i # j, we write x_; ;v;,w; for z
with x; replaced by v;, x; replaced by w;. Coordinate i is inessential (with respect to
=) if [Vx,y; : © ~ x_;y;]. The opposite of inessential is essential. > satisfies restricted
solvability if:

T_;Q; > Y = T_;C; = 3b; 1 x_;b; ~ Yy (1)

for all alternatives x_;a;,y,z_;c;.

2There a decision maker/bookmaker, considering some gambles (acts with as consequences amounts of
money) as ‘fair’ (equivalent to the 0-gamble), should also consider all linear combinations of these as fair.
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We say > satisfies independence of equal coordinates, or coordinate indepen-
dence (CI) for short, if, for all alternatives in question,

[z_v; =y v & [z _w; = y_w;]. (2)

In the usual way =; is defined for each coordinate i, i.e., v; =; w; if and only if there exists
x such that z_;v; = z_,w;. Similarly >;, <;, <;, ~; can be derived from >, =<, <,~. The
following implications of CI are straightforward. Under CI, v; >=; w; holds if and only if
y_;v; = y_;w; for all y. Also under CI it follows that if > is a weak order, then so is =;, the
relations »;, =;, <;, ~; can be derived from >; in the usual way, and we have the following
monotonicities:

Vi : 2 =i yi] = [ = yl; (3)
Vi:x; = y; and 3j : ;= y;] = [z > yl; (4)
Vi:x; ~ oy =[x~y (5)

Next the Archimedean axiom is defined. For n = 2 the definition below coincides with
that of KLST. There are several, for additive representations equivalent, ways to extend
this condition to three or more dimensions; KLST do not make explicit which one they
have in mind. One way we adopt below. An alternative would be to take in the definition
below equivalences x,jz]’-“ ~ y,jzj-CH for all £k = 1,2,..., instead of the special case with
x = x_v;,y = x_;w; as adopted below. It can be seen that for all purposes this version
of the Archimedean axiom is equivalent to our choice. For coordinate j we call 2]1-, zj?, ... a
standard sequence (on coordinate j, with respect to >), if there exist z, i # j, and
v; o4 w; €C;, such that x_; jv;, z;? ~ T Wi, 21 for all k =1,2,.... A standard sequence
may be infinite or finite of any length. A standard sequence is bounded if there exist 25"
and 2" such that zj™ >=; zF =; 2" for all k. The Archimedean axiom requires that

every bounded standard sequence be finite.

3.2. Comparisons of Tradeoffs and Contradictory Tradeoffs

Now the method to compare tradeoffs is introduced. It is the central tool in most of the
author’s works, and uses the tradeoff idea from multiattribute utility theory. [W), reference
footnote rfl3 on p. 168] refers to several related ideas in the literature. Still, the simplicity
and generality of results that can be obtained through its use, to our knowledge have not
been observed before. Below, a pair x;y; may be interpreted as the ‘tradeoft’ of receiving z;
instead of y;, or as the strength of preference of x; over y;. We write, for x;, y;, v;, w; € C;,
iy -1 vw; if:

there exist alternatives a, b such that

a_;T; i b_zyz and (6)

not a_;v; = b_w;.

The idea is that the above preferences reveal that the ‘tradeoff’ of getting x; instead of y; is
better than the tradeoff of getting v; instead of w;. Note that the notation >;* ‘remembers’
the coordinate ¢, but ‘forgets’ the alternatives a,b. The notation is misleading in contexts



76 P. Wakker

where this forgetting of alternatives is not appropriate, and where it then leads to a kind of
contradiction. Theorem 3 shows that the notation is appropriate if and only if the preference
relation is additively representable, given the other conditions there. After the definition of
=¥, we shall describe the kind of contradiction that may result for general preferences.

We write >} instead of >!* if in (6) we have ‘<X’ instead of ‘not >’. The reason for two
g in >, and only one * in =¥, is to avoid the misunderstanding that in general >=** would
be the asymmetric part of >=}. For general preference relations >;* does not have to be the
asymmetric part of >=f. One easily verifies by substitution:

LEMMA 2 If there exist additive value functions (V;)7_, for =, then:

ziy; =i viw; = Vi(xg) — Vi(yi) > Vi(vi) — Vi(wi) (7)
and
xy; = viw, = Vi(z) — Vi(y) > Vi(vi) — Vi(wy). (8)

Coordinate i reveals contradictory (orderings of) tradeoffs if there exist x;, y;, v;, w;
such that both

[zy; =F vyw;] and [v;w; =1 x;y]. 9)

By the previous lemma contradictory tradeoffs clearly falsify additive representability. Under
the conditions of Theorem 3 absence of contradictory tradeoffs will not only be necessary,
but also sufficient for additive representability. The condition that no coordinate reveals
contradictory tradeoffs, when formulated entirely in terms of preferences, can, with an in-
terchange of symbols as compared to the above notation, be reformulated as:

T_ia; 2 Y_ib; & v_ia; = w_;b;
& T_iC; = Y—id; =
V_;C; t w—idi

for all 4, x, ..., d;.

For n = 2 the above condition is identical to ‘triple cancellation’ of KLST, hence it is
called generalized triple cancellation. It is easily seen that generalized triple cancel-
lation, hence the absence of contradictory tradeoffs revealed by coordinates, implies CI if
~ is reflexive (set a; = b;,¢; = d;,x = y). This leads to the main theorem on additive
representation.

THEOREM 3 Let = be a binary relation on a Cartesian product X7 ,C;. Suppose at least
two coordinates are essential, and restricted solvability is satisfied. Then the following three
statements are equivalent:

(i) There exists an additive representation for >.

(i) The binary relation > is a weak order, it satisfies the Archimedean axiom,
and no coordinate reveals contradictory tradeoffs.

(iii) The binary relation = is a weak order that satisfies the Archimedean
axiom and generalized triple cancellation.
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If at least three coordinates are essential, then the absence of contradictory tradeoffs in State-
ment (ii), respectively generalized triple cancellation in Statement (iii), can be weakened to
CL

Further, the additive representation in (i) is an interval scale.

PROOF. [W] gives a proof from the scratch for the above theorem in the context of the topo-
logical approach. In this proof an essential step is to construct, loosely speaking, midpoints
between coordinates (see [W, Stage 5]). In the present more general set-up of KLST, this
no longer is possible, as pointed out in [W, end of Section I11.6]. So we sketch an alternative
proof. Actually, the above theorem is just a reformulation and regrouping of results already
present in KLST. For the case of three or more essential coordinates the result follows mainly
from Theorem 6.13 of KLST, and the observation that generalized triple cancellation, so the
absence of contradictory tradeoffs by a coordinate as well, implies CI. For the case of exactly
two essential coordinates, the theorem follows from the observation that generalized triple
cancellation coincides (after suppression of the inessential coordinates) with triple cancel-
lation of KLST, and the end of Section 6.2.4 in KLST. As usual, uniqueness results are
standard. O

Statements (ii) and (iii), contrary to the formulation in KLST, do not separate between
the case of two essential coordinates, and the case of three or more essential coordinates. In a
mathematical sense this ‘achievement’ is no surprise: For the case of two essential coordinates
the conditions are equivalent to those used by KLST, for the case of three or more essential
coordinates they are simply stronger than CI as used by KLST. Still there is interest in a
unified formulation, even if logically weaker, as we have learned from experience. Let us
also mention Wakker (1991), where it is shown that for the ‘equally spaced’ case the proof
and conditions of the above theorem can be considerably simplified; the only implications
of CI or generalized triple cancellation, needed for that case, are (3), (4), and (5) (‘weak
separability’).

4. Subjective Expected Utility Through Comparisons of Tradeoffs and Contra-
dictory Tradeoffs

This section characterizes subjective expected utility (SEU) maximization, i.e., the rep-
resentation in Statement (i) in Theorem 5. The set-up of decision making under uncertainty
as described at the end of Section 2 is adopted. This comes down to conjoint measure-
ment with all coordinate sets C; identical to one set C. The following paragraph gives an
interpretation.

Suppose there are n ‘states of nature’, where exactly one is the true state, the other states
are not true. A decision maker is uncertain about which of the states is the true one, and
cannot, change the truth of states. Further a set C of consequences is given, with elements
denoted as «, 3, ... . An element x from the n-fold Cartesian product C” is called act rather
than alternative, and is interpreted as a course of action or a decision alternative of the
decision maker that will result in z; if the jth state of nature is true. Because the decision
maker does not know for sure which state is true, he or she does not know for sure which
consequence will result from an act, and faces decision making under uncertainty. Often an
act z is considered a function assigning x; to the jth state, instead of an n-tuple. Note that
this set-up does not require (but neither excludes) that there are given ‘objectively known’
probabilities for the states of nature in advance. If such probabilities are given and contain
all relevant information about the states of nature, then one speaks of decision making under
risk.
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We write af =** ~¢ if there exists an ¢ such that o >!* v6, i.e., there exist acts a,b and
a state ¢ such that

a_;a > b ;3 and (10)
not a_;y = b_;0.

Note that, as compared to (6), not only the acts a, b are ‘forgotten’, but also the state 7, in the
notation >=**. The notation will be misleading in contexts where this forgetting of the acts
and state is not appropriate, and where this leads to a kind of contradiction. Theorem 5 will
show that the notation is appropriate if and only if the preference relation is representable
by subjective expected utility, given the other conditions there. For inessential states ¢ we
have af3 »=! ~6 for all a, 3,7,6, which is not informative. Hence we define o =* 6 if in
(10) above we have ‘=’ instead of ‘not »=’, and further state i is essential. One easily verifies
by substitution:

LeEmMMA 4 If SEU holds, i.e., Statement (i) in Theorem 5 holds, then:

af =" 6 = Ula) = U(B) > U(y) = U(6) (11)
and
af =" v6=Ua) = U(B) 2 U(y) = U(6). (12)

Again, the following kind of contradiction is to be excluded: > reveals contradictory
(orderings of) tradeoffs (on consequences) if there exist consequences «, 3,7, 6 such

that both

[afB =" 76| and [y =" af)]. (13)

Obviously the revelation of contradictory orderings of tradeoffs on consequences falsifies
SEU. Theorem 5 will show that, under the usual conditions as supposed there, the absence
of contradictory tradeoffs on consequences is not only necessary, but also sufficient, for SEU.
In terms of the relations =7 and >;* as introduced in Section 3, > reveals contradictory
tradeoffs (on consequences) if there exist «, (3,7, 6, and a jth state and an essential ith
state, such that both

[aB =} v6] and [y =7 af]. (14)

Note that the >7* relation above automatically implies essentiality of the jth state. This
shows how the present condition strengthens the condition of absence of contradictory trade-
offs revealed by coordinates/states, as considered in Section 3. Now also orderings of differ-
ences contingent on different states should not yield contradicts. This is typically the way in
which SEU restricts additive representability: the orderings of differences should be the same
for different states, leading to proportionality of the additive value functions (given common
zero), thus to subjective expected utility. Finally the condition of absence of contradictory
tradeoffs on consequences is presented entirely in terms of preferences. This shows most
clearly its direct empirical content, and the way to test it; intuitively it is less transparent,
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we think. Again the restriction is added that state ¢ is essential. The condition below has
been called ‘cardinal coordinate independence’ in earlier writings by the author. Wakker
(1984) refers to Axiom 5 in Section 8.2.6 of KLST as the condition in the literature most
similar to cardinal coordinate independence.

T 2 yY_if3 & v_jo = w_jf3
& Ty = yY_id =
v_jy = w_j6

for all essential states i, and x, ..., 0.

A related work, not known to the author when writing [W], is Fishburn (1990), who gives
a nontransitive extension of the result below for the topological approach. It can be seen
that each of his Axioms 4 (which is very close to cardinal coordinate independence when
restricted to the transitive case) and 5 would, in addition to additive representability, give

SEU.

THEOREM 5 Let > be a binary relation on a Cartesian product C™. Suppose at least two
states are essential, and restricted solvability is satisfied. Then the following two statements
are equivalent:

(i) There exist nonnegative (p;)}_,, summing to one, and a function U : C — IR
such that x — }%_, p;U(v;) represents .

(ii) The binary relation > is a weak order, satisfies the Archimedean axiom,
and does not reveal contradictory tradeoffs.

Further, the p;’s are uniquely determined, and U s an interval scale.

PROOF. Again the proof of Theorem IV.2.7 of [W] cannot be invoked because no continuity
is available. So again the proof is based on results from KLST. It is straightforwardly seen
that the absence of contradictory tradeoffs, revealed by >, implies that no state/coordinate
can reveal contradictory tradeoffs; this is direct both for essential states, and for inessential
states. So by Theorem 3 there exist additive value functions (Vj)?_; for =. Showing that
the additive value functions are proportional, after a choice of a common zero, can be done
exactly as at the end of the proof of Theorem 2.1 of Wakker (1984). As usual, uniqueness
results are standard. O

5. Choquet-Expected Utility with Nonadditive Probabilities through Compar-
isons of Tradeoffs and Contradictory Tradeoffs

In this section the study of decision making under uncertainty is continued. So again > is a
preference relation on a Cartesian product C". SEU is generalized by allowing probabilities
to be nonadditive. This was initiated by Schmeidler (1989, first version 1982), and, building
on that, by Gilboa (1987). The formal term for nonadditive probability, in want for a
better term, is ‘capacity’. An alternative term might be ‘cumulative belief function’. This
term expresses the phenomenon that the essential aspect of this function is its values in
‘cumulative events’, i.e., events of receiving some consequence or anything better; this is
apparent in Formula (16) below. The set {1,...,n} of coordinates is again taken as state
space. A function v : 281"t — [0,1] is a capacity if v(0) = 0, v({1,...,n}) =1, and v is
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monotonic with respect to set-inclusion, i.e., A D B = v(A) > v(B). So as compared to a
probability distribution, additivity has been weakened to monotonicity. We say =~ maximizes
Choquet-expected utility (CEU) if there exist a utility function U : C — IR and a
capacity v such that the preference relation is represented by

z+— CEU(xz) = /{17 ,}(on)dv (15)

where the integration with respect to the capacity v of course needs elucidation and definition.
In it, = should be taken as a function from {1,...,n} to C, assigning z; to each state j.
The integral is taken as the ‘Choquet integral’, introduced in Choquet (1953-4). First the
general definition is given, which can also be used for infinite state spaces. Next in (17) a
more accessible formulation is given. CEU(z) :=

/11#7)({3@{1,...,77,} L U(z,) > 7Y dr + /]IL[?J({SE{l,...,n} L Uz,) > 7)) — 1] dr . (16)

In the present finite state case it can be rewritten as follows. Let the permutation 7 describe
a ‘favorability ordering of the states in accordance with x’, i.e., Zr(j) = Zx(j41) for all j.

CEU(x Zl v({r(@), . w()}) —o{m(1), .. 7 = DN} Ulzeg).  (17)
j=
So, first the utilities U(x;) are ordered from best, U(zx(1)), to worst, U(zxm)). Next to
each utility U(z(;)) the ‘decision weight’ [v({n(1),...,7(j)}) —v({m(1),...,7(j — 1)})] is
attached, i.e., the marginal contribution in capacity to the better states. In [W, Chapter VI]
further elucidations are given.

The same way to evaluate acts was developed independently in Luce (1988), in his exten-
sion of the dual bilinear model to the case of more than two states of nature. The identity of
his method with Choquet-expected utility may appear from comparison of his Formulas (7a),
(7b), and (8) with [W]’s Formulas (V1.2.7) and (VI1.2.11); Luce’s Formula (8) is equivalent
to Wakker’s second part of Formula (VI.2.11). The set-up of Luce incorporates multi-stage
gambles and operations on utility and gambles (acts), hence is different from ours.

As usual the binary relation > on C is derived from the binary relation > on C" through
constant acts. Under SEU this can be seen to coincide with all =;’s for essential i. A set
of acts is comonotonic if for no pair of elements x,y from the set, and no states 7, j, we
both have z; > x; and y; > y;. The importance of this condition can easily be understood
from Formula 16: comonotonic acts have same cumulative events. We say ‘xz and y are
comonotonic’ if {z,y} is. Intuition for comonotonicity can be inferred from Yaari (1987, p
104), or Wakker (1990a, Example 1 up to Definition 3), or Wakker (1990b, Section 4). The
largest comonotonic sets can be seen to be rank-ordered cones, i.e., sets of acts of the
form {x € C" : xrq1) = Xr2) = ... = T}, Where 7 is a permutation. Armstrong (1990)
generalizes maximal comonotonic sets, rank-ordered subsets, and their relations, to more
general spaces.

It can be seen that for all acts within one comonotonic set the permutation 7 of Formula
(17), and hence the decision weights [v({7(1),...,7(j)}) —v({7(1),...,m(j—1)})] there, can
be taken the same. Hence within a comonotonic set CEU looks like usual SEU. Therefore the
method to characterize CEU is to restrict conditions of usual expected utility to comonotonic
subsets. The most important empirical implication of CEU may be ‘comonotonic coordinate
independence’, the analogue of the most important empirical implication of SEU, Savage’s
P2 postulate of the sure-thing principle. Savage’s P2 has been called CI in this paper.
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DEFINITION 6 We say that >~ satisfies comonotonic independence of equal coordi-
nates, or comonotonic coordinate independence for short, abbreviated Com. CI, if
(2) has to hold only if the two acts in question are comonotonic.

To the best of our knowledge this condition was first introduced in Wakker (1986). It is
illustrated in Wakker (1989a). The condition adapts Schmeidler’s condition of comonotonic
independence with respect to probabilistic mixtures of ‘lottery-acts’ for decision making un-
der risk to decision making under uncertainty, like Savage’s sure-thing principle adapts the
Marschak/Nash-independence condition for decision making under risk to decision making
under uncertainty. Also, in exactly the same way as CI was adapted to CEU, the derived or-
derings of tradeoffs can be adapted to CEU. The subindex ¢ below abbreviates ‘comonotonic’,
indicating that the acts in question are comonotonic.

We write a3 =** 46 if there exist acts exactly as in (10), but now comonotonic. One of
the greatest difficulties in our first development of the theory, adapted in this section to the
algebraic approach, was to find the right notion of essentiality of ¢ in the definition of >
below. For a subset E of acts, coordinate i is inessential on F if [Vx,z 5, €FE : x ~ z_y;].
The opposite of inessential on E is again essential on E. We define af = 4 if in (10) we
have ‘=’ instead of ‘not »’, and state ¢ is essential on a comonotonic set containing all four
acts in question. Obviously this implies that the four acts are comonotonic.

Note that, because of comonotonicity, 7 in Formula (17) is the same for all four acts used
in the definitions of »* and >**. Also note that v({m(1),...,7(:)}) —v({nm(1),...,7(i —1)})
is positive because of essentiality of 7. Thus one easily derives from Formula (17):

LEMMA 7 If CEU holds then:

af =" 6= Ula) = U(B) > U(y) — U(6) (18)
and
af z¢ v6 = Ula) = U(B) 2 U(v) = U(6). (19)

We say that = reveals comonotonic-contradictory (orderings of) tradeoffs (on
consequences) if there exist «, (3,7, 6 such that both

[af =7 6] and [v6 =2 af]. (20)

Obviously the revelation of comonotonic-contradictory tradeoffs on consequences falsifies
CEU. Theorem 8 will show that the absence of comonotonic-contradictory tradeofts on con-
sequences is not, only necessary, but also sufficient, for CEU, given the conditions there. Next
the condition of absence of comonotonic-contradictory tradeoffs on consequences is presented
entirely in terms of preferences. Again the restriction is added that state ¢ is essential. The
condition below has been called ‘comonotonic cardinal coordinate independence’ in earlier
writings by the author:

o =2y ;03 & v_ja = w3
& Ty = Y-ib =
vy = w6
where x_;a,y ;0,2 _;7v,y_;6 are contained in a comonotonic set on which state ¢ is essential,
and also v_ o, w_;3,v_;v,w_;6 are comonotonic.
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Finally a technical comment is given on the Archimedean axiom. In full generality the
Archimedean axiom as formulated above for additive representations no more has to hold
under Choquet-expected utility. The reason is that the condition v; ¢; w; is no more
useful, now that additive representability no longer holds and the relation ~; has different
characteristics. So the ‘comonotonic Archimedean axiom’ is introduced. A ‘comonotonic
standard sequence’ as defined next may be infinite or finite of any length. For coordinate j

we call zjl-, z?, ... a comonotonic standard sequence (on coordinate j, with respect
to =), if there exist z, i # j, and v; o w; € C, such that z_; ju;, 2 ~ x_iiji,zj’“l for
all £k = 1,2,..., and further all acts in question are contained in a comonotonic set on

which ¢ is essential. A standard sequence is bounded if there exist zjuP and z;-nin such that
z;uP > z;-“ > z?‘in for all k. The comonotonic Archimedean axiom requires that every
bounded comonotonic standard sequence is finite. A related version of the Archimedean
axiom has been formulated in Miyamoto (1988).

For the proof of the Theorem below Theorem VI.5.1 of [W] cannot be invoked, again,
because no continuity is available. The major problem for the proof is to establish additive

representability on each rank-ordered cone. This has been done in Wakker (1990c).

THEOREM 8 Let = be a binary relation on a Cartesian product C". Suppose there exists
a comonotonic subset with at least two essential coordinates, and restricted solvability is
satisfied. Then the following two statements are equivalent:

(i) » maximizes CEU for a capacity v on {1,...,n} and a utility function
U:C— IR.

(ii) The binary relation > is a weak order, satisfies the comonotonic Archi-
medean axiom, and does not reveal comonotonic-contradictory tradeoffs.

Further, the capacity in Statement (i) is uniquely determined, and the utility function is an
interval scale.

PROOF. First consider the implication (i) = (ii), so suppose (i) holds. It immediately
follows that > is a weak order. From Lemma, 7 it follows that > does not reveal comonotonic-
contradictory tradeoffs. The comonotonic Archimedean axiom follows from substitution.

As a preparation for the sequel, we say the equally spaced case applies if there exist
consequences « > v for which there is no # with a > 8 > . The other case is the densely
spaced case. As shown in Wakker (1990c) for rank-ordered cones, and before for instance in
KLST for full Cartesian products, in the equally spaced case the range of each additive value
function can be taken as an interval within the integers (see Wakker, 1990c, Corollary 7), in
the densely spaced case the range of each additive value function is dense within its convex
hull (see Wakker, 1990c, Formula (16)). The latter is called denserangedness.

For the reversed implication, suppose (ii) holds. To derive are (i) and the uniqueness
results. Exactly as in [W, Section VI.4], the following conditions can be derived: Com. CI,
pointwise monotonicity ([Vi : z; = y;] = = > y), and comonotonic strong mono-
tonicity (z > y if not only ([Vi : z; > v;]), but also z; > y; for some j that is essential on
a comonotonic set containing both = and y). An elaborated self-contained presentation of
the proof below would take much space. Hence a verbal presentation is given. It uses many
parts of reasonings in other papers by the author.

First attention is restricted to a rank-ordered cone with two or more essential coordi-
nates. For the time being the coordinates inessential on this cone are suppressed. Then the
combination of pointwise monotonicity and comonotonic strong monotonicity on the rank-
ordered cone is identical to ‘monotonicity’ in Wakker (1990c). It is straightforward that
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the absence of comonotonic-contradictory tradeoffs revelations by >~ implies the generalized
triple cancellation condition on this rank-ordered cone, and that restricted solvability on C™
in the presence of the other conditions (mainly monotonicity) implies restricted solvability
within the rank-ordered cone. According to Wakker (1990c, Theorem 3), the conditions of
restricted solvability, transitivity, completeness, monotonicity, the Archimedean axiom,® and
generalized triple cancellation, imply the existence of additive value functions (V;) on this
rank-ordered cone with inessential coordinates suppressed and with mazimal and minimal
acts deleted. Theorem 3 and Examples 25b and 25¢ in Wakker (1990c) also show that at this
stage it cannot yet be excluded that the additive representation would be ‘driven to infinity’
at a maximal act, and ‘driven to minus infinity’ at a minimal act. Obviously constant addi-
tive value functions can be assigned to the inessential coordinates, resulting in additive value
functions (V})}_; on the rank-ordered cone with maximal and minimal acts deleted. Similarly
additive value functions are obtained on each rank-ordered cone with maximal/minimal acts
deleted, and with two or more coordinates essential. Lemma VI.8.2 in [W] shows that under
the conditions holding there the additive value functions are all mutually proportional. The
method of proof used there can however not be directly used here, because it makes use of the
continuum structure of the range of the additive value functions; that structure presently is
not available. It can however be shown that the nonrevelation of comonotonic-contradictory
tradeoffs implies that for each pair of coordinates on each rank-ordered cone standard se-
quences are noncontradictory. To wit, suppose the equivalences z_; jv;, @ ~ z_; jw;, 8 and
x_; Vi, 3 ~ x_; jw;,y hold where all four acts are comonotonic, 7 is essential on a como-
notonic set containing the four acts, and v; ¢ w;. Suppose further that (with * still to
be determined) y sk, & ~ Y_gitx, 3 and y_p Sk, B * y_gitk, 7y, With again these four acts
comonotonic, k essential on a comonotonic set containing the four acts, and s ¢ tx. The
first two equivalences show that «, 3,7 is (part of) a standard sequence on coordinate j in
some comonotonic set. The third equivalence occurs if «, 3 is a part of a standard sequence
on coordinate [ in some, possibly different, comonotonic set. Now any other preference for
x than ~ would lead to comonotonic-contradictory tradeoffs. So indeed for each pair of
coordinates on each rank-ordered cone standard sequences are noncontradictory. This gives
the result of Lemma VI.8.2 of [W], i.e., after choice of common zero, proportionality of all
obtained additive value functions, both those belonging to different coordinates in a same
rank-ordered cone, and those belonging to different rank-ordered cones. So there exists one
function, say U, such that each additive value function obtained thus far is a positive multi-
ple of that function U. By Wakker (1990c, Corollary 6), the additive representation can be
extended to the maximal and minimal acts; so we do. This can be done under preservation
of proportionality, in the equally spaced case by a unit increase of the maximum over the
values assigned to the nonmaximal acts at the maximal act, and an analogous unit decrease
at the minimal act (‘unit’ is length of minimal gap in range of representing function), in the
other (densely spaced) case by taking supremum/infimum. Next two nonequivalent constant
(‘certain’) acts are fixed, as well as any two real numbers, and all additive representations
are renormalized to assign the highest real number to the preferred of the two fixed con-
stant acts, the lowest number to the dispreferred fixed constant act. By proportionality the
additive representations must then assign the same value to all constant acts (the weights
attached to U have the same sum). U and the attached weights are renormalized such that
all weights sum to one. Rank-ordered cones with no essential coordinate cannot exist (see
[W, Corollary VI.4.12]. On those with exactly one essential coordinate every ‘starting’ act
is equivalent to the constant act identical to the one essential coordinate, and the U-value

3The comonotonic version here implies the version in Wakker, 1990c within every rankordered cone,
because of monotonicity and suppression of inessential coordinates/states.
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of that constant act is assigned to the starting act.

Next it is shown that the normalized (thus coinciding on constant acts) additive represen-
tations within rank-ordered cones with all additive value functions proportional, represent in
the right manner acts from different rank-ordered cones. For acts with certainty equivalents
this is direct, as in Lemma VI1.8.6 of [W]. Unfortunately, in the algebraic set-up of this paper
there do not necessarily exist certainty equivalents for all acts. So we must elaborate.

The equally spaced case is discussed briefly. By Wakker (1990c, Subs. 3.1), within each
rank-ordered cone an additive representation exists with same ‘decision weights’ on the
states essential there. By restricted solvability, each rank-ordered cone has the same set of
equivalence classes, hence the same number, say k, of essential states. The construction
of the representations within rank-ordered cones in Wakker (1990c, Subs. 3.1) shows that
there are k — 1 equivalence classes strictly between two subsequent constant act-equivalence
classes. They are valued the same in each rank-ordered cone. From this everything follows.

Next let us turn to the densely spaced case. First let x and y be such that, for an
additive representation V® within a rank-ordered cone containing z, and for an additive
representation V¥ within a rank-ordered cone containing y, we have V*(x) > V¥(y). It is an
elementary exercise to show that denserangedness of the additive value functions together
with monotonicity implies denserangedness of the additive representation when restricted to
the constant acts.* So, by monotonicity, for each nondegenerate interval within the convex
hull of the range of the additive representation there exists a constant act that obtains
a value within that interval. There must exist a constant act dispreferred to = (e.g. the
worst consequence of y), hence also a constant act ¢ such that V*(z) > V*(c) > V¥(y).
Because V?*(c) = V¥(c), there must also exist a constant act ¢ such that V*(z) > V%(c) =
V¥(c) > V¥(d) > V¥(y). It follows that = = ¢ = ¢ > y, the first preference within z’s
cone, the second and third within y’s cone. The implication V*(z) > V¥(y) = z > y has
been established. This also shows that equivalent acts get assigned the same value from all
additive representations, in particular one same act gets the same value from all additive
representations within all rank-ordered cones in which the act is contained. So one function
V can be defined, additive and representing within each rank-ordered cone, with all additive
value functions proportional, and with V(z) > V(y) = x > y for z,y not contained within
one same cone.

Next suppose = > y. By a reasoning similar to Lemma 11 in Wakker (1990c¢), there exists
2’ in the same rank-ordered cone as x such that z = 2/, and still 2’ = y.° By the results of
the previous paragraph V(z) > V' (z) > V(y) follows.

The results of the last two paragraphs show that V' is representing. That V' is a Choquet
integral is now demonstrated similarly to Lemma VI.8.7 and Theorem VI.8.8 (now including
maximal and minimal consequences) of [W].

The standard uniqueness results follow from the uniqueness results for the additive rep-
resentations on the rank-ordered cones without the maximal/minimal acts as obtained in
Theorem 3 of Wakker (1990c), then by proportionality extend to these maximal and mini-
mal acts after all, and for the remainder are similar to [W, Theorem VI.5.1]. O

4E.g., for any nonmaximal constant act ¢ and any € > 0 there exists by monotonicity another constant
act ¢ > ¢ such that all additive value functions assign to ¢’ a value exceeding the value of ¢ by less than €/n.

5Say the cone has first coordinate best, second coordinate second-best, and so on. Take the nonminimal
coordinate x; of x with j essential within the cone and as high as possible. Decrease (= change into a less
preferred consequence) the subsequent nonessential 41, 42, ... equivalent to ;. This does not affect the
equivalence class of the act. Next decrease z; as in Lemma 11 of Wakker (1990c).
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6. Remaining Results in [W], and Conclusion

In Chapter V in [W] the representation of SEU as in Theorem 5 has been extended to
infinite state spaces. A similar adaptation could be obtained for the algebraic approach.
The assumption of the existence of a certainty-equivalent is needed for the method that
we have in mind though; for the algebraic set-up that is really an additional restrictive
assumption. A more general set-up for infinite state spaces and unbounded utilities has
been given in Wakker (1989c), dealing also with CEU.

The first part of Chapter VII of [W] deals with convex/concave additive representations
on mixture spaces. These will lead to continuums of ranges of additive representations, so
that the topological approach is not more restrictive than the algebraic. The second part
of Chapter VII of [W] deals with risk aversion and real numbers (amounts of money) as
consequences. Here strict increasingness of utility is a natural condition. This rules out
countability of the range of utility, thus the equally spaced case, so leads to the densely
spaced case. That excludes ‘jumps’ of U: U is continuous after all. Again, here the algebraic
approach does not generalize the topological approach.

For the other major conjoint measurement results of [W], this paper has given an essential
generalization, of the topological approach to the algebraic approach. That this is a desirable
extension has been argued in Wakker (1988).
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