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Theoretical Note 

Additive Representation for Equally Spaced Structures 

PETER WAKKER 

Duke Universiry 

It is shown that additive conjoint measurement theory can be considerably generalized and 
simplified in the equally spaced case. ti”l 1991 Academic Press, Inc. 

1. INTRODUCTION 

The major step forward in additive conjoint measurement may have been 
Debreu’s (1960) contribution. Debreu showed how for three or more essential coor- 
dinates mainly an independence condition, abbreviated “CT in this paper, is 
necessary and sufficient for additive representability of preferences. For the case of 
two essential coordinates, Debreu showed that a condition, the “hexagon condi- 
tion,” had to be added, and he showed that this condition is weaker than both the 
Thomsen condition and triple cancellation (see his Fig. 1). Debreu used restrictive 
nonnecessary conditions that were of a topological nature; i.e., he required con- 
tinuity with respect to a connected separable topology. A next step forward was 
obtained in the psychological literature; the results have been gathered mainly in 
Chapter 6 of Krantz, Lute, Suppes, & Tversky (1971), hereafter abbreviated KLST. 
They used an alternative nonnecessary condition of an algebraic nature, “restricted 
solvability.” It was shown that this condition is less restrictive than Debreu’s 
topological condition. Wakker (1988) argued that the algebraic conditions are not 
only mathematically, but also intuitively preferable to the topological conditions. 
Necessary and sufficient conditions for additive representability in full generality 
have been provided by Jaffray (1974b) for two dimensions, and by Jaffray ( 1974a) 
in full generality. These conditions are very complicated, and because of that the 
simpler results which use nonnecessary conditions remain of interest. 

The approach of KLST allows one to deal not only with spaces isomorphic to 
a continuum, but also with discrete spaces. Discrete spaces may be “densely spaced” 
as are the spaces isomorphic to a continuum, but they do not have to be. If they 
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are not, then they turn out to be “equally spaced,” as will be shown. KLST gave 
proofs that apply simultaneously to the densely spaced and to the equally spaced 
cases, building upon a generalization of a lemma of Holder that applies to each of 
these cases. In subsequent contributions in the literature, authors have usually 
avoided the equaly spaced case by simply adding an assumption of dense spaced- 
ness. The equally spaced case may have been considered complicated because it is 
of a combinatorial nature. 

This paper demonstrates that the equally spaced case in fact is much simpler, and 
allows much stronger theorems, than has usually been thought. We shall strengthen 
the results of KLST by showing that only the weakest implication of CI, called 
“weak separability” in this paper, is necessary and sufficient for additive represen- 
tability, in the presence of the other conditions. In particular for the two-dimensional 
case no additional condition (such as the Thomsen condition) is needed. Under a 
more restrictive definition of equal spacedness, such an observation was made for 
two dimensions in KLST, Theorem 2.1. For the case of difference measurement (i.e., 
the two-dimensional case where the second additive value function is minus the 
first) on finite subsets of Cartesian products a related observation was made in 
Doignon and Falmagne (1974, Theorem 1 and the last sentence of Section II). Also 
the proofs for the equally spaced case are fairly simple. It turns out that the condi- 
tions of equal spacedness, restricted solvability, and weak separability combine 
nicely. The crucial idea is described in Remark 6 and the last sentence above 
Formula (8). 

A first impression may be obtained from Corollary 4, and the fact that strict 
increasingness there implies weak separability. The latter illustrates the generality of 
weak separability. 

2. THE MAIN RESULT 

We concisely repeat the standard definitions of conjoint measurement. Let 
X7= i r, be a finite Cartesian product, with elements x = (x,, . . . . x,) called alter- 
natives. Let > be a binary relation on XI= i Ti, with >, <, <, - as usual. Let 
n 3 2. We write X-,v, for x with xi replaced by vi, and, for i#j, x-;,~D~, wi for x 
with -yi replaced by ri and xi replaced by M;. += is a weak order if it is complete 
(Vx, y E Xy=, Ti : x > y or y 3 x) and transitive. 3 satisfies restricted solvability if 
for each x -iai>y>xPjcj there exists b, such that xPibiw~‘. For the definition of 
the technical Archimedean axiom the reader is referred to Definition 6.7 and Sec- 
tion 6.11 of KLST. Coordinate i is inessential if always .Y _ ;ui - xp ;wi; otherwise it 
is essential. A function I/: X:=, r, + !K represenfs 3 if [.u>J o V(x) > V(y)]. The 
function V is additiue if I/: x H c,“= i V,(x,) for some functions V,. If V is additive 
and representing, then the involved functions V, are called additive value functions. 
V is an interval scale if it can be replaced by another function if and only if the 
other function is obtained from V by adding a real number, and multiplying with 
a positive number. 
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The main condition used by KLST to characterize additive representability is 
“independence.” Since the term independence occurs in many different contexts with 
many different meanings, we prefer to rename the condition as follows. We say + 
is independent of common coordinates, or coordinate independent (CI) for short, if 
for all i, x, y, ui, w, 

CI says that in a preference any common coordinate may be replaced by another 
common coordinate. Obviously by repetition this implies that any set of common 
coordinates can be replaced by any other set of common coordinates. The latter is 
the formulation of KLST, and is equivalent to ours. 

The discrete case which deviates most from the continuum is the equally spaced 
case, the topic of this paper. The terminology in the definition below does not seem 
to reflect an idea of equal spacedness, and may not be perfectly suited for general 
cases. For additive representations as considerd in this paper, it will nevertheless be 
equivalent to equal spacedness as in KLST, as the last sentence in Theorem 3 will 
show. This explains our choice of term. Also Theorem 3 will show that there are not 
many equally spaced models that are not additive, i.e., for which the terminology 
below is not suited. 

DEFINITION 1. We say X:=, r,, & satisfies the equally spaced condition if there 
exist i, x, a;, ci such that 

As we shall show, the cancellation axioms and independence can be weakened to 
the following condition. We are not aware of an explicit term for the condition in 
psychological literature, though it did occur as condition 3’ in KLST (Theorem 7.1) 
and condition A2 in Fishburn and Roberts (1988). “Weak independence” might be 
a good term. We shall however not introduce a new term, but instead use the term 
customary in economic literature. 

DEFINITION 2. The binary relation + satisfies weak separability if for all i, x, y, 
vi, M’; 

Whereas CI implies that every subset of common coordinates in a preference can 
be replaced by other common coordinates, weak separability implies this only for 
subsets of size n - 1. This makes it much weaker. For instance, if Vi : f i = %, then 
the usual strict increasingness of + (the higher a coordinate the better) already 
implies weak separability, whereas it does not at all imply CI. 
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THEOREM 3. Let 3 be a binary relation on a finite Cartesian product Xy=, Ti. 
Let at ieast two coordinates be essential, and let restricted solvability and the equal/j 
spaced condition hold. Then the following two statements are equivalent: 

(i) There exists an additive representation for 3. 

(ii) The binary relation $ is a weak order satisfying the Archimedean axiom 
and weak separability. 

Further, the additive representation in (i) is an interval scale. The range of ever?> 
additive value function can be taken as an interval within the set of integers. 

A proof will be given in the next section. The claim about the range of the 
additive value functions could have been taken as a characterization of the case of 
equal spacedness and restricted solvability: one can include these conditions in 
statement (ii), rather than as structural presupposition, if one includes the claim 
about the range in statement (i). Obviously, if XI= l f-, contains finitely many 
elements, then the Archimedean axiom in statement (ii) may be omitted. A direct 
consequence of the above theorem is that the conditions in statement (ii) imply all 
the cancellation axioms, including CI and the Thomsen condition. The following 
corollary illustrates the little restrictiveness of weak separability. An accumulation 
point of a set is a point that is a limit of points of the set different from the point 
itself. Given that strict increasingness implies weak separability, the corollary 
follows straightforwardly from the above theorem. 

COROLLARY 4. Let Vi : Ti c ‘R Suppose the weak order 3 on X1=, I-, (n > 2) 
is strictly increasing in each coordinate, and satisfies restricted solvability, the 
Arrhimedean axiom, and the equally spaced condition. Then there exists an additive 
representation for 3, strictly increasing in each coordinate. The Ti’s are discrete and 
have no accumulation points. 

3. PROOF OF THEOREM 3 

Necessity of the conditions in statement (ii) is elementary and well-known. So we 
turn to sufliciency. Suppose the conditions in statement (ii) hold. Say that the i in 
the definition of equal spacedness is 1. So there exist a: and ai such that, for some 
x, x-,a:>x-,a: but x -,a:>xP,b,>x_,a~ for no b,. By weak separability we 
can in the usual way define ki for each coordinate i, i.e., vibi wi if and only if there 
exists x so that xeivi +x-~w,, which by weak separability holds if and only if 
yPivi +JJL, wi for all y. Also from weak separability it follows that 3; is a weak 
order, that the relations >i, <i, x,, - i can be derived from 3 i in the usual way, 
and that we have the following monotonicities: 

[Vi: xi+i yi] 5 [x+y], (3) 

if further besides (3) also [3i : x,>~ yj] then x>,v, (4) 

[Vi : xi -i y,] =+ [x-ev]. (5) 
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We call b, strictly between aj and ci if ai>i b,>i c, or Ci>i b;>i a,. Equal spaced- 
ness says there does not exist b, strictly between a: and u:. The following lemma 
straightforwardly follows from application of restricted solvability to the implied 
w  -,., a,, qj> M'-,,jCj3Pj> M: -r,JCj, qj. 

LEMMA 5. Let ai>i ci, pi>, qj. Let w’_,,,a,, q,> w -,, jci, p,. Then there exists bj 
strictly between ai and c, so that ~._,.~b~, qi-\v-,,ici,p,. 

We have 

JPi>jq,: w-,.p:, 9j=‘“‘-I.,u~s Pj (6) 

because that would imply, by Lemma 5, existence of b, strictly between uy and a;. 
Next we construct standard sequences on each coordinate. First this is done for all 
j f 1. We fix any arbitrary a; E T,, j = 2, . . . . n. Say, for any j # 1, there is bj 2, a,;. 
BY (6) W-1.ja7, bi 9 M’-,.,a:,aJ?; 
U’L1 jay, Ujl wW-l,jOi, 

by Lemma 5 there must exist a: to give 
a:. There can be no JJ, strictly between a: and a,‘; it would 

by Lemma 5 imply existence of a 6, strictly between a: and at. Analogously, if 
there exists bj kj a:, we can construct a: so that VV_ ,,,a:, a,” - w  _ r. jui, a,’ and that 
there exists no b, strictly between 
ing a:+’ 

ai and a;. We continue inductively by construct- 
so that wj-,,jay, a:+‘-~ _ ,,,a:, a: as long as there exists b, >, a:. Either 

this gives an infinite sequence, or the sequence stops at a maximal al. If the 
sequence is infinite, then by the Archimedean axiom there can be no upper bound 
for the standard sequence. Further there is no bj strictly between any uf and a;+‘. 

Again analogously, if there exists b.i<, a:, we can construct an ai-’ so that 
11’ 0 0 -,,,a,, aI -u’ .a1 -L., , 2 a, - ‘, and so that there is no bi strictly between a: and ai- ’ . 
We can again continue and define inductively a,:” with ~-,,~a?. ajWkt’ - 
U’ -I,ja:, a,: k. Either this gives an infinite sequence, or the sequence stops at a 
minimal aI- ‘. Again there is no b, strictly between any a,-‘, r and a,rk. From the 
above one sees 

Each h,.~ f, is ( -,) equivalent to af for some 2. (7) 

To construct the standard sequence on the first coordinate, note that there are at 
least two coordinates essential, so that there must be a j# 1 for which there exists 
not only a;, but also a,! or a;-‘. Say a: exists. Then we can use the “measure stick” 
ai’, a; on coordinate j to construct the standard sequence a:, ai, .., and a:, a;‘, . . . 
on coordinate 1, exactly as we used the “measure stick” a:, a: on coordinate 1 to 
construct the standard sequences a:, a,!, . . . and a:, a;‘, . . . for all i# 1. 

The construction of the standard sequences is not unique. Any 7; could be 
replaced by any bf wj a;. It should be noted that, by weak separabrhty and its 
implication (5), nothing in our reasonings, constructions, or definitions would have 
altered if we had carried out a replacement as just mentioned. 

Remark 6. The important property of the standard sequences constructed 
above, showing independence of the particular way they have been constructed, and 
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facilitating additive representation, is that there are no coordinates strictly between 
them, so, loosely speaking, a; -+ ’ is the direct follower in preference of a;. 

For the case of difference measurement (n = 2, l-i = TZ, V, = - V,) on a finite 
subset of a Cartesian product, a result related to Remark 6 was obtained in 
Lemma 1 in Doignon and Falmagne (1974). 

We define the additive value functions as follows, in accordance with the claim 
about the range in the theorem: For any j and bj E f,, V, (6,) = 2 with z so that 
a; - , bi. By (5) and (7) it suffices to show that these functions are additive value 
functions on the grid alternatives, i.e., the alternatives with all coordinates of the 
form u,f. We first show that the “trade-offs of size one” are alright. The following 
equivalence in the present setup simply follows from Lemma 5 and Remark 6. 

11’ -i iaf, a;‘+’ - M’ -,,&+ ‘, a;’ (8) 

for all grid alternatives M’-~, ja,, a,‘+ ‘, \V _ ;, juf+ ‘, a;‘. In general additive conjoint 
measurement the derivation of the above equation is the only step where more 
implications of the cancellation axioms are needed than weak separability. This is 
explicated in Wakker (1989, Section 111.5, comment at Stage 3); there only the 
derivation of Fomula (111.5.3),the analogue of the present Formula (8), requires CI 
in full strength and besides that also the Thomsen condition (or the weaker 
hexagon condition) if no more than two coordinates are essential. It is remarkable 
that Formula (8) follows, in the presence of restricted solvability and the equally 
spaced condition, from merely weak separability, and does not need anything else 
from CI and/or other cancellation axioms. 

Completion of the demonstration that the Vj’s are additive value functions is 
done as in Wakker (1989, Section 111.5, Step 3.3). In short, the above trade-offs of 
size one can be repeated, showing that any two alternatives with the same sum of 
additive value functions must be equivalent. Increasing the sum of the additive 
value functions leads obviously to a higher equivalence class. 

That the additive representation is an interval scale is standard. For example, one 
can see that any pair of values p > v instead of 1,0 would have been possible for 
V,(a:), Vl(a~), and that after those choices the additive representation is uniquely 
determined. For the case of finitely many equivalence classes this uniqueness result 
is a special case of Corollary 1 in Fishburn and Roberts (1988), which gives 
necessary and sufficient conditions for additive represenations on finite structures to 
be interval scales. 

4. CONCLUSION 

We have shown that additive conjoint measurement for the equally spaced case 
is simpler, and that stronger results can be obtained, than has usually been thought. 
Only weak separability, a very weak version of cancellation, is needed. 



266 PETER WAKKER 

REFERENCES 

DEBREU, G. (1960). Topological methods in cardinal utility theory. In K. J. Arrow, S. Karlin, & 
P. Suppes (1959, Eds.). Mathematical methods in the social sciences (pp. 16-26). Stanford: Stanford 
Univ. Press. 

DOIGNON, J. P., & FALMAGNE. J. C. (1974). Difference measurement and simple scalability with restricted 
solvability. Journal of Mathematical Psychology, 11, 413499. 

FISHBURN, P. C., & ROBERTS, F. S. (1988). Unique finite conjoint measurement. Mathematical Social 
Sciences, 16, 107-143. 

JAFFRAY, J. Y. (1974a). Existence, proprietbs de continuittt, additivitt de fonctions d’utilitk sur un espace 
partiellement ou totalement ordonnC. Ph.D. dissertation, University of Paris VI, Paris. 

JAFFRAY, J. Y. (1974b). On the extension of additive utilities to infinite sets. Journal of Mathematical 
Psychology, 11, 43 1452. 

KRANTZ, D. H., LUCE. R. D.. SUPPES, P., & TVERSKY, A. (1971) (=KLST). Foundations of measure- 
ment, Vol I, Additive and pol~vnomial representations. New York: Academic Press. 

WAKKER. P. P. (1988). The algebraic versus the topological approach to additive representations. 
Journal qf Mathematical Psycholog,v, 32, 421435. 

WAKKER, P. P. (1989). Additive representations of preferences, a new foundation of decision analysis. 
Dordrecht: Kluwer Academic Publishers (was Reidel). 

RECEIVED: January 30, 1990 


