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1. Expected utility theory deals with choosing among acts where the decision-
maker does not know for sure which consequence will result from a chosen act.
When faced with several acts, the decision-maker will choose the one with the
highest ‘expected utility’, where the expected utility of an act is the sum of the
products of probability and utility over all possible consequences.

The introduction of the concept of expected utility is usually attributed to
Daniel Bernoulli (1738). He arrived at this concept as a resolution of the so-called
St Petersburg paradox. It involves the following gamble: A ‘fair’ coin is flipped
until the first time heads up. If this is at the kth flip, then the gambler receives
$2*. The question arose how much to pay for participation in this gamble. Since
the probability that heads will occur for the first time in the kth flip is 27*
(assuming independence of the flips), and the gain then is $2*, the ‘expected value’
(i.e. the mathematical expectation of the gain) of the gamble is infinite. It has been
observed though that gamblers were not willing to pay more then $2 to $4 to
participate in such a gamble. Hence the ‘paradox’ between the mathematical
expectation of the gain, and the observed willingness to pay.

Bernoulli suggested that the gambler’s goal is not to maximize his expected
gain, but to maximize the expectation of the logarithm of the gain which is Z2
277 log 27, i.e. 2 log 2(=1log 4). Then the gambler is willing to pay $4 for the
gamble. The idea that homo economicus considers the expected utility of the gamble,
and not the expected value, is a cornerstone of expected utility theory.

In the next section the approach of Savage to decisions under uncertainty is
presented. In section 3 the von Neumann—Morgenstern characterization of
expected utility maximization for the context of decisions under risk is given.
Section 4 briefly mentions same related approaches. Section 5, the Appendix,
defines (mathematical) expectation.
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2. EXPECTED UTILITY WHEN APPLIED TO DECISIONS UNDER UNCERTAINTY;
SAVAGE’S APPROACH

2.1 The main ingredients of a decision problem under uncertainty are acts
consequences’ and states of nature. Suppose that a decision-maker has to choose
one of three feasible acts f, g, h. Act f leads to one (only) of the two consequences
a and b. Act g leads to a or c, act h to b or d. Thus the set of consequences, C,
is in this example {a, b, c, d}.

The matching of feasible acts to consequences is expressed by the concept of
‘state of nature’, or ‘state’ for short. More precisely, a given state of nature
indicates for each feasible act what the resulting consequence will be. In the above
example, there are three feasible acts f, g, h, each leading to one of two possible
consequences. See Table 2.1.

A state of nature completely resolves the uncertainty relating acts to consequences.
If the decision-maker would know for sure which state of nature is the true one,
then he would choose an act which results in the most desirable consequence.
The desirability of a consequence neither depends on the act nor on the state of
nature leading to it.

In constructing a table like Table 2.1 some of the states of nature may be
deleted if the decision-maker is certain that they cannot occur.

TABLE 2.1 The eight logically possible matchings of feasible acts to consequences

States
Acts 4 s, S3 S4 Ss Se 5, Sg
f a a a a b b b b
g a a c c a a c c
h b d b d b d b d

The next step in the process of selecting the best act is to construct ‘conceivable’
acts, which are not feasible. Thus the set of acts, F, in Savage’s set-up consists
of all functions from the set of states of nature, S, to the set C of consequences.
In our example there are 4% acts. Of these, three acts f, g and h are actually
feasible: The additional 65533 acts are only conceivable. The construction of the
conceivable acts and the possibility of all acts of F is a basic assumption of the
present approach. For the sake of presentation we will in the next subsection
assume the validity of the expected utility theory and then we will return to the
rationale of our construction.

2.2 Suppose for the present that the decision-maker, in choosing between acts,
indeed computes the expected utility of each act, and selects a feasible act with
the highest expected utility. Thus we are assuming that he has assigned
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probability P(s) to every state of nature s in S, and the utility U(c) to every
consequence ¢ in C. So, given an act f in F, the expected utility EU(f) of f
equals Z,.sP(s)U[ f(s)]. More generally, if the set S is infinite, then P is a finitely
additive probability measure defined on all events (i.e. subsets of S), and EU(f)
equals [ U[f(s)] dP(s) (assuming the integral to exist; say U is bounded; see
the Appendix, on Mathematical Expectation, section 5). So in fact in this case
the decision-maker has a well-defined ‘preference relation’ (i.e. binary relation) > on
the set of acts F, with, for all f, g in F:

(2.3) fZg iff EU(f)=EU(g).

It is easily seen that the preference relation, defined in (2.3), is not affected when
the utility function U:C+ R is replaced by any positive linear transformation
of it (say U:cr—alU(c) + B, for some real B and positive a).

2.4 1f a preference relation, =, over acts is derived from comparisons of expected
utility as in (2.3), then it must satisfy several properties. We follow the terminology
and order of Savage (1954). He listed seven postulates, five of which (P1 up to
P4, and P7) are implied by (2.3). Postulate P1 says that the preference relation
is complete (fZ g or g Z ffor all acts f, g) and transitive. Postulate P2 is referred
to as the sure-thing principle. It says that, when comparing two acts, only those
states of nature matter, on which these acts differ. In other words, for the
comparison between two acts, if they coincide on an event A, it really does not
matter what actually the consequence is for each state in A. Thus P2 makes
it possible to derive a preference relation over acts, conditioned on the event A¢;
this for any event A.

Postulate P3 entails that the desirability of a consequence does not depend
on the combination of state and act that lead to it; hence the desirability of
consequences can be expressed by a utility function on C.

P4 guarantees that the preference relation over acts induces a qualitative
probability relation (‘at least as probable as’) over events, which is transitive
and complete. P7 is a technical monotonicity condition.

PS5 and P6 are Savage’s only postulates which are not a necessary implication
of (2.3). PS5 simply serves to exclude the trivial case where the decision-maker is
indifferent between any two acts. P6 implies some sort of continuity of the
preference relation, and non-atomicity of the probability measure; the last term
means that any non-impossible event can be partitioned into two non-impossible
events. Hence there must be an infinite number of states.

Savage’s great achievement was not to assume (2.3), but to show that his list
of postulates P1-P7 implies that the preference relation over acts has an expected
utility representation asin (2.3). Savage argued compellingly for the appropriateness
of his postulates. Furthermore, Savage showed that the probability measure in
(2.3) is uniquely determined by the preference relation =, and that the utility
function is unique up to a positive linear transformation.
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2.5 The significance of Savage’s achievement is that it gives the first, and until
today most complete, conceptual foundation to expected utility. Savage’s
conclusion, to use expected utility for the selection of optimal acts, can be used
even if we do not have the structure and the seven postulates of Savage. Indeed,
the assumption needed on consequences, states, acts and preferences, is that they
can be extended so as to satisfy all requirements of Savage’s model. Also other
models, as mentioned in section 4, can be used to obtain expected utility
representations.

Given a decision problem under uncertainty, if we assume that it can be
embedded in Savage’s framework, then it is not necessary to actually carry out
this embedding. In other words, if the decision-maker is convinced that in principle
it is possible to construct the conceivable acts as in subsection 2.1 and the ranking
of all acts in accordance with the postulates, then this construction does not have
to be made. Instead one can directly try to assess probabilities and utilities, and
apply the expected utility criterion. As an example, suppose a market-vendor has
to decide whether to order 50 portions of ice-cream (f), or not (g). One portion
costs $1, and is sold for $2. If the weather will be nice the next day, the school
nearby will allow the children to go to the market, and all 50 portions, if ordered,
will be sold, yielding a profit of $50. If the weather is not nice, no portion will
be sold. We assume that the ice-cream cannot be kept in stock and hence bad
weather will yield a ‘gain’ of $-50 if the portions have been ordered.

Instead of embedding the above example into Savage’s framework, the market
salesman may immediately assess P, (or 1 — P,), the probability for good (bad)
weather; next assess the utilities of gaining $50, $0 and — $50; finally order the
50 portions if P,U($50)+ (1 — P,)U(—$50) > U(30).

Theoretical conclusions can be derived from the mere assumption of expected
utility maximization, without an actual assessment of the probabilities and
utilities. Examples are the theories of attitudes towards risk, with applications
to insurance, portfolio choice, etc. The validity of these applications depends on
expected utility theory, which in turn depends on the plausibility of Savage’s
model (or other derivations of expected utility).

Another important theoretical application of Savage’s model is to neo-Bayesian
statistics. For applied statistics, in this vein, the availability of a ‘prior distribution’,
as proved by Savage’s approach, is essential.

3. EXPECTED UTILITY WHEN APPLIED TO DECISIONS UNDER RISKS;
THE VON NEUMANN-MORGENSTERN APPROACH

Special and extreme cases of decisions under uncertainty are decisions in ‘risky’
situations. In decisions under uncertainty, as exposited in the previous section,
the decision-maker who follows the dictum of expected utility has to assign
utilities to the consequences and probabilities to the states. He can do it by
mimicking the proof of Savage’s theorem, or more directly by organizing his
information, as the case may be.

Decision-making under risk considers the special case where the formulation
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of the problem for the decision-maker includes probabilities for the events, so
that he only has to derive the utilities of consequences. As an example, consider
a gambler in a casino who assumes that the roulette is really unbiased, so that
each number has probability 1/37 (or 1/38). Another example is the St Petersburg
paradox, described in subsection 1.2.

Within the framework of expected utility theory, for the evaluation of an act,
only its probability distribution over the consequences has to be taken into
account. Thus, for decision-making under risk, with probabilities known in
advance, one may just as well describe acts as probability distributions over
consequences instead of as functions from the states to the consequences.

3.1 Let us denote by L the set of probability distributions over C with finite
support. We refer to them as lotteries. Von Neumann and Morgenstern (1947,
Appendix) suggested conditions on a preference relation = between lotteries,
necessary and sufficient for the existence of a real-valued utility function U on
C, such that for any two lotteries P and Q in L:

(3.2) P>0Q iff } P(c)U(c)= Y Q(c)U(c).

ceC ceC

It is easy to see that the utility function, U, is unique up to positive linear
transformations. Before we present a version of von Neumann—Morgenstern’s
theorem, recall that for any 0 <a <1, and for any two lotteries P and W,
R:=aP+ (1 —a)Q is again a lottery, assigning probability R(c)=aP(c)+
(1 —«)Q(c) to any c in C. Also note that the assumption that all lotteries are
given is sometimes as heroic as Savage’s assumption that all functions from S
to C are conceivable acts.

The first axiom of von Neumann—Morgenstern, NM 1, says that the preference
relation over the lotteries is complete and transitive. NM2, the continuity axiom,
says that, if P > Q > R, then there are o, fin ]0, I [, such thataR + (1 —a)P > Q >
BP + (1 — B)R. Here the strict preference relation > is derived from X in
the usual way: P> Q if P22 Q and not Q2= P.

The third axiom NM3 is the independence axiom. It says that for « in [0, 1],
P is preferred to Q iff aP + (1 — a) R is preferred to aQ + (1 — ) R. This condition
is the antecedent of Savage’s sure-thing principle, and is the most important
innovation of the above axioms.

3.3 Von Neumann and Morgenstern originally stated their theorem for more
general sets than L. They did it for so-called mixture spaces, i.e. spaces endowed
with some sort of convex combination operation. This has been done more
precisely by Herstein and Milnor (1953).

Von Neumann and Morgenstern introduced their theory of decision-making
under risk as a normative tool for playing zero-sum games in strategic form.
There the ‘player’ (i.e. decision-maker) can actually construct any lottery he
wishes over his pure-strategies (but not over his consequences).
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The theorem of von Neumann and Morgenstern, stated above, is a major step
in the proof of Savage’s theorem.

Recently there has been much research on decision-making under risk for its
own end. Some of this research is experimental; subjects are asked to express
their preferences between lotteries. These experiments, or polls, reveal violations
of most of the axioms. They lead to representations different from expected utility.

4. OTHER APPROACHES AND BIBLIOGRAPHICAL REMARKS

The first suggestion for expected utility theory in decision-making under
uncertainty in the vein of Savage was Ramsey’s (1931). His model was not
completely formalized. The work of Savage was influenced by de Finetti’s
approach to probabilities, as in de Finetti (1931, 1937). The decision-theoretic
framework to which Savage’s expected utility model owes much is that of Wald
(1951), who regards a statistician as a decision-maker.

A model which can be considered intermediate between those of Savage and
von Neumann and Morgenstern is that considered by Anscombe and Aumann
(1963). Formally it is a special case of a mixture set, but like Savage it introduces
states of nature, and gives a simultaneous derivation of probabilities for the states,
and of utilities for the consequences. A consequence in this model consists of a
lottery over deterministic outcomes; this involves probabilities known in advance,
as in the approach of von Neumann and Morgenstern. The Anscombe and
Aumann theory, as well as most of the technical results up to 1970, are presented
in detail in Fishburn (1970).

In the expected utility theory, described above, the desirability (utility) of
consequences does not depend on acts or states of nature. This is a restriction
in many applications. For example the desirability of family income may depend
on whether the state of nature is ‘head of family alive’ or ‘head of family deceased’.
Karni (1985) summarized and developed the expected utility theory without the
restrictive assumption of state-independent preferences over consequences.

Ellsberg (1961) argued against the expected utility approach of Savage by
proposing an example, inconsistent with it. A way of resolving the inconsistency
is to relax the additivity property of the involved probability measures. Schmeidler
(1984) formulated expected utility theory with non-additive probabilities for the
framework of Anscombe and Aumann (1963). Gilboa (1986) did the same for
the original framework of Savage. Wakker (1986) obtained expected utility
representation, including the non-additive case, for a finite number of states of
nature and non-linear utility.

5. APPENDIX: MATHEMATICAL EXPECTATION

5.1 Expectation withrespect to finitely additipe probability. A non-empty collection
X of subsets (called events) of a non-empty set S is said to be an algebra if it
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contains the complement of each set belonging to it, and it contains the union
of any two sets belonging to it. A (finitely additive) probability P on T assigns
to every event in X a number between 0 and 1 such that P(S)=1 and for any
two disjoint events A and B, P(A u B)= P(A)+ P(B).

A random variable X is a real-valued function on S such that, for any open
or closed (bounded or unbounded) interval I, {seS|X(s)el} (or [Xel] for
short) is an event i.e., in . Given such a random variable X, its (mathematical)
expectation is:

o

(5.2) E(X)=J P[XZa]da—J (1-P[X>a])da,

] -
where the integration above is Riemann-integration and it is assumed that the
integral exist. The integrands in (5.2) are monotonic, so E(X ) exist if X is bounded.
If the random variable X has finitely many values, say x,, ..., x, then (5.2)
reduces to

(5.3) E(X)= Y P(X=x)x;.

i=1
However, an equation like that above may not hold if the random variable
obtains countably many different values. An example will be provided in
subsection 5.7.

5.4 o-additive probability. Kolmogorov (1933) imposed an additional continuity
assumption on probability P on X: To simplify presentation he first assumed
that X is a o-algebra, i.e., an algebra such that for every sequence of events (4;){%,
it contains its union U2, 4;. He then required that P(U2,A4,)=2X2 P(A)) if
the A;’s are pairwise disjoint.

This last property is referred to as o-additivity of the probability P. In this
way Kolmogorov transformed large parts of probability theory into (a special
case of ) measure theory. Thus an expectation of a random variable X is

(5.5) E(X)=f X(s) dP(s)
N

where the right side is a Lebesgue integral (if it exists...), defined as a limit of
integrals of random variables with countably many values. Let Y be such a
random variable with values (y;)2,, then

(56) E(Y)= 3 P(Y=y)y,

if the right side is absolutely convergent.

5.7 An example will now be introduced of a finitely additive probability, i.e.
a probability for which (5.3) holds but (5.6) does not hold. Let S be the set of
rational numbers in the interval [0, 1] and let X be the algebra of all subsets of
S. (It is in fact a g-algebra.) For 0 <a < f <1 define P(Sn[a, f])=p—a and
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extend P to all subsets of X. For each s in S, P(s)=0. Since S is countable we
can write S ={s,, 5,,...} and 1 = P(§)> X2, P(s;) = 0. Defining Y{(s;) = 1/i for
all i, we get a contradiction to (5.6). The finitely additive probability P has also
the property implied by Savage’s P6 (see 2.4): If P(A) > 0 then there is an event
B = A such that 0 < P(B) < P(A).

5.8 Distributions. A non-decreasing right continuous function on the extended
real line is called a distribution function if F(—o0)=0 and F(oo)=1. Given a
random variable X, its distribution function Fy is defined by Fy(a) = P(X <«)
for all real o. Then

0

(5.9) E(X)=J‘oo [1—Fx(a)] da—f F(a)da
0

e

which is the dual formula (5.2). If the distribution Fy is smooth we say that the
random variable X has a density fy: R— R, which is the derivative of Fy. In this
case

(5.10) E(X):F of (o) do.

5.11 Non-additive probability. A function P:X—[0, 1] is said to be a
non-additive probability (or capacity) if P(S)=1, P(¢)=0 and for 4 = B,
P(A) < P(B). Choquet (1953—-4) suggested integrating a random variable with
respect to non-additive probability for formula (5.2).
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