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Pessimism-independence is introduced to characterize pessimistic risk attitudes 
for the nonlinear-probability models of Schmeidler, Quiggin, and Vaari directly in 
terms of comonotonicity, rather than through additional conditions such as con- 
vexity of preferences. Pessimism-independence requires the mixture of an arbitrary 
good and a fixed act to be preferred to the mixture of a comonotonic bad act and 
the fixed act. Thus, more general than full-force independence, it does not exclude 
the additional (pessimistic) appreciation of the hedging involved in the mixture of 
a noncomonotonic bad and fixed act. More restrictive than comonotonic inde- 
pendence, it does exclude (optimistic) aversion of hedging. Journal of Economic 
Literature Classification Numbers: 026, 213, 521. 0 1990 Academic Press, Inc. 

1. hTR00ucT10~ 

This note gives a very simple, but (it is hoped) elegant, way to charac- 
terize optimism and pessimism in the nonexpected utility models of 
Schmeidler [ 151, Quiggin [ 131, and Yaari [24]. These models deal with 
nonlinear probabilities. The main new phenomenon that these ap 
can incorporate is a kind of pessimism, excluded by traditional (a 
expected utility. In the nonlinear-probability models pessimism, an 
counterpart optimism,. have so far been characterized through additional 
conditions like convexity/concavity of preference relations, or avers’ 
preference for mean-preserving increases in risk (for the latter see [ 
We show that a natural characterization can be obtained directly in terms 
of comonotonicity, a condition needed anyhow in the ~bara~terizat~ons of 
nonlinear-probability models. Table I at the end of Section 4 summarizes 
the results of this paper. 
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Section 2 gives some mathematical properties of the Choquet integral 
that will make possible our characterization of optimism and pessimism. 
Section 3 describes Schmeidler’s [15] set-up, his new idea of comonotonic 
independence, and his main theorem. Section 4 starts with an intuitive 
interpretation of comonotonicity. We hope our way of characterizing 
pessimism/optimism will then appear natural to the reader. Adaptation to 
Yaari’s set-up will also be indicated. The Appendix gives mathematical 
generalizations and elaborations, not given in the main body of the note 
for reasons of accessibility. 

2. CONCAVITY/CONVEXITYOF THE CHOQUET INTEGRAL 

Let S = {sl, . . . . s,} be a finite nonempty set of states (of nature). Finite- 
ness of S is assumed for simplicity of exposition; the appendix will indicate 
that the results of this paper also hold for infinite S. r is an arbitrary fixed 
nondegenerate interval. ?? is the set of functions from S to K Some results 
in the sequel will be formulated for 3, some for !R’. 

A function 2) : 2’ --t [0, 1 ] is a capacity if v(o) = 0, u(S) = 1, and u 
is monotonic w.r.t. set-inclusion, i.e., A 2 B+ v(A) 3 v(B). A capacity is 
superadditive if for all A, BcS, v(Au B)+v(An B)> v(A)+v(B). It is 
subadditive if above we have d instead of 2. 

For a capacity v, and a function q: S -+ 93, the Choquet integral of cp 
(with respect to v), denoted ls 40 dv, or J cp dv, is 

In [ 18, Chap. VI] elucidations and illustrations are given. Obviously 9 can 
be considered a convex subset of !R2”, and the Choquet integral is a function 
(“functional”) from !Xi” or 9 to ‘R So convexity and concavity of the 
Choquet integral can be defined as usual. It is straightforward that the 
Choquet integral is convex/concave on !.R* if and only if it is so on %, so 
in the sequel we shall freely interchange these. For r= % the following 
lemma is well-known, see for instance [S, 54.21, [lo, Propositions 10.2.5 
and 102.11, [15, the Proposition], or [l, pp. 248/249]. Adaptation to 
general nondegenerate intervals r is straightforward (e.g., first for the case 
where 0 is in the interior of r, using positive homogeneity), and is left to 
the reader. 

LEMMA 1. The Choquet integral is concave if and only if the capacity is 
superadditive, and convex if and only if the capacity is subadditiue. This also 
applies to the restriction of the Choquet integral to 9. 
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Two functions cp, $ from S to % are comonatoazic if there do not exist 
states si, sj such that 

and 

A set of functions from S to % is comonotonic if every pair ~o~tai~~d in it 
is comonotonic. For comonotonic functions Q, $ we have 

This was proved in [6] (for continuous capacities and maximal algebras~ 
and in 1211 (in full generality). The following characterization sf 
concave/convex Choquet integrals will be used in the sequel. 

b%EX4A 2. The Choquet integral is concave if and on/y if, for all 
q, $I, < E B with I/I, 5 comonotonic and 0 < 01< 1 

Above we may replace “concave” by “convex” if we replace “‘I), 5 comono- 
tonic” by “9, < comonotonic”. 

ProoJ The case of convex Choquet integral is analogous to the case of 
concave Choquet integral, so we consider only the latter. The only-if 
is direct from concavity, positiveness of ~1, and (1). Next we suppose (2) 
hoids, and derive concavity. Let, with “int” denoting topological interior, 
40: S 4 int(r) be an element from 9. Identifying $ E int(r) with a constant 
function, noting that a constant function is comonotonic with every other 
function, and applying (2) and (I), we get, with 0 < d < I, 5 E $9, 

=a$+(l-CI)j.gdv. (3) 

Taking the supremum over ~4 while noting that, by finiteness of S, 
jqdu~int(T) so that Jrpdv=sup{$~int(r):$<jcpdv), (3) 
[(acp+(l---)5)dv>cc~cpdv+(l--a)ftdv. I.e., the Choquet i 
concave for acts with-image within int(r). It must be concave. 
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3. SCHMEIDLER'S CHARACTERIZATION OF CHOQUET EXPECTED UTILITY 

Let 9’ be the set of money lotteries. I.e., an element P= 
(P 1; x1, . . . . pm; x,) from P is a probability distribution with finite support 
over 3, resulting with probability pI1 in the amount of money (real num- 
ber) x1, . . . . and with probability pm in the amount of money (real number) 

Of course, to any A c 93, P assigns probability CX.EA pi. Money 
zieries can be “mixed”, for 0 6 ol,< 1, UP’ + (1 -a) P2 assigns UP’(A) + 
(l-a)P2(A) to AcR 

By 9 we denote the set of functions from S to 9. Elements of 9 are 
acts. Acts can also be mixed, in a “pointwise manner”, as af + (1 -a) g: 
s H af(s) + (1 - LX) g(s). Finally, 3 denotes the preference reZation of a 
decision maker on 9. 

As usual, we write f >g iff kg and not g+tf, f <g if g&f, f <g if 
g > f, and f 1: g if f + g and g += J: Further 3 is a weak order if it is com- 
plete (f+ g or g +f for allf, g) and transitive, and + is trivial iff > g for 
all f, g. We identify money lotteries with constant acts, and write P1 3 P2 if 
f 3 g for the act f constant P’ and g constant P2; analogously for >, <, 
<, N . This induces preference relations over money lotteries. A function 
V: B + % represents + if, for all acts A g, 

We say Choquet expected utility applies if there exist a capacity u on S, and 
a utility function u: B + !?I, such that f I-+ J uo f dv (the Choquet integral of 
u 0 f) represents +. 

We assume that the probability mechanism which generates money 
lotteries gives well-established probabilities, not inducing any optimism 
or pessimism. Hence we shall, like Anscombe and Aumann C23 and 
Schmeidler [15], assume in the sequel that the decision maker uses 
expected utility to value these lotteries. Then u, the utility function over the 
money lotteries, will be an expected utility function, i.e., it is linear. (9 can 
be considered a convex subset of a linear space so this is well-defined.) We 
can then define U: % -+ % by U: ,u H u( 1; P), and get u(p, ; x1, . . . . pm; x,) 
= CrZ 1 piU(xi). Because of this we shall then write EU instead of U. Our 
central interest will be the way in which the decision maker processes 
the, unprobabilized, uncertainty concerning the true state. Here we will 
incorporate the phenomenon of optimism/pessimism, reflected through 
nonadditivity of the capacity. [7; 17; 18, Chap. VI; 121 derive Choquet 
expected utility without probability mechanisms. 

First we adapt the definition of comonotonicity, given before for func- 

’ Or, more accurately, &,, p,. 
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tions from S to %, to acts. It can be seen that under Croquet-expected 
utility two acts f, g are comonotonic if and only if the functions u 0.L uo g 
are comonotonic. 

DEFINITION 3 (see Fig. 1 below). Acts f and g are comonotonic if there 
do not exist states si and sj so that f(sJ > f(s,) and g(sJ i g(s,). 

A set of acts is comonotonic if every pair of acts in the set is 
comonotonic. Obviously every constant act is comonotonic with any other 

act. The following definition gives the well-known independence condition 
for (additive, von Neumann-Morgenstern) utility, the earliest reference for 
which is Marschak [ll] so far as we know (see also the loose-hand [14]). 
Further the definition gives comonotonic independence as introduceo in 
[15]. 

DEFINITION 4 (See Fig. 2 below). We say 3 satisfies (mixture- j 
independence if, for all acts (f, g, hj, and 0 < r < 1, 

f>-g~olf+(l--)hh>g+(H-a)h. (41 

We say > satisfies comonotonic independence if implication (4) is required 
only when {f, g, h} is comonotonic. 

Elucidation of comonotonic independence will be given in Section 4. 
[ 151 proved the following result (also for infinite state spaces, see the 
Appendix). [19, Sect. 51 gave an alternative self-contained proof, not using 
results from functional analysis (“fuzzy measure” is mathematically identi- 
cal to capacity). We give two preparatory definitions. Tn the first ‘“vN 
abbreviates “van Neumann-Morgenstern”. 

We call + (vNM-) continuous if, for all actsf > g> h, there exist d such 
that (I-r)S+oth>g, and p such that g>/?j+(l-P>h. 

e call 3 weakly monotonic if, for all actsf, g, 

f(s)> g(s) for all s-f+ g. 

THEOREM 5 (Schmeidler). Let 9 be the set of money lotteries, S afizite 
set of states, % the set of functions from S to 9, and & a nontrivia! 
preference relation on %. The following two statements are eq~i~ale~t~ 

(i) There exist a capacity v on S, and a function U: 

f ++~,EU~fdv represents 3. 

(ii) The preference relation + is a weakly monotonic vN -con- 
tinuous weak order, satisfying comonotonic independence. 

Further, v in (i) is uniquely determined, and U is cardinal.’ 

2 This abbreviates: “unique up to a positive linear transformation.” 
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The theorem of Anscombe and Aumann [2] results if in (i) above the 
requirement is added that a is additive, and in (ii) above comonotonic 
independence is strengthened to mixture-independence. In the context 
where lotteries are for money it is natural to add nondecreasingness of U. 
This can be characterized by adding in (ii) above monotonicity of + on 
9 w.r.t. stochastic dominance. Continuity of U is central in [17], [lS, 
Chapter VI]. 

4. PESSIMISM- AND OPTIMISM-INDEPENDENCE 

To suggest intuitively how pessimism can be characterized directly 
through comonotonicity, we consider the phenomenon of “hedging” as 
described in Yaari [23] (“bets on the same event”) and Yaari [24, p. 1041. 
(See Fig. 1.) 

Suppose two actsf, g are not comonotonic, so that there exist two states, 
say s1,s2, with f(sl) > f(s2) and dsl) < g(s2). Say EUWl)) = 17, 
EU(jJQ) = 13, EU(g(s,)) = 1, EU(g(s,)) = 7. See Fig. lb. The mixture 
ff + ig assigns E&value 9 to s1 and 10 to s2. It seems that the mixing has 
induced a reduction of the involved uncertainty. At sr, f(sl) was relatively 
favorable (favorable as compared to f(s,)), this provided a hedge against 
the relatively unfavorable g(s,) (unfavorable as compared to g(s*)). A same 
hedge, with f and g interchanged, occurred at s2. 

The hedging described above is typically a phenomenon that will occur 

ElJ(f); -:EU(g); . . . . EU($f+$g). Both in 
^̂  . 

FIG. 1. Comonotonicity and hedging. - 
Fig. la and in Fig. lb, f  and g are not comonotomc smce for f  state si IS strictly more 
favorable than s2, whereas for g this is reversed, s2 is strictly more favorable than si. In the 
mixture if + $g the (relatively) favorable outcome off at s, gives a hedge against the 
relatively unfavorable outcome of g at s,; at s2 the same things apply with f  and g inter- 
changed. The mixture if+ 4 g seems to involve less uncertainty than J and also less than g. 
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if and only if two acts are not comonotonic. It is a kind of reduction of 
the involved uncertainty. Comonotonic independence wants to allow for 
hedging effects, hence the implication (4) of mixture-independence is 
required only when, through comonotonicity, it has been guaranteed that 
no ‘“disturbing” hedging effects will occur. 

This being understood, the intuition underlying the characterization of 
pessimism (and, analogously, optimism) comes to mind easily. A pessHmisr 
dislikes uncertainty, hence the reduction of uncertainty through hedging 
will lead to additional appreciation. An optimist, wslo expects uncertainty 
to turn out favorably, will not appreciate the reduction of uncertainty 
through hedging. So we formulate: 

DEFINITION 6 (See Fig.2). + satisfies pessimism-independence if imgiica- 
lion (4) is required only when ( g, h) is comonotonic, and 3 satisfies 
optimism-independence if implication (4) is required only when (4; k] is 
comonotonic. 

Indeed, for a pessimist noncomonotonicity of {ji h) will only induce an 
additional appreciation of the mixture @f-k (I - CX) h, so a stre~gt~e~~~g of 

FIG. 2. Independence. In O-points the decision maker must choose; in C-points chance 
(say a roulette wheel) chooses. The arrows > indicate preferences. According to mixture- 
independence the (very bold) preference 1 &odd imply preference 3. Comonotonic 
independence requires the implication of preference 3 by preference I only if all involved acts 
are comonotonic. The idea is that, because of vagueness, the mixing of acts may induce 
“disturbing” hedging effects. Hence, the implication is required oniy if hedging effects are 
excluded by comonotonicity. According to pessimism-independence hedging is always 
appreciated, so for noncomonotonicf, h the above implication should also hold as long as g, h 
are comonotonic. According to optimism-independence hedging is never appreciated; hence 
only acts f  and h need to be comonotonic. 
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the preference. For an optimist noncomonotonicity of {g, h > will only 
induce an additional depreciation of the mixture ag + (1 -a) h, so again a 
strengthening of the preference. 

For understanding of the difference between the above definition and the 
previous Definition 4 it is good to note that comonotonicity of (A g) is 
relevant in none of these definitions. it may be added or deleted in each of 
the definitions without affecting the implications. [19, Observation 201 
indicated, even stronger, that the implication (4) is needed only for the case 
where either f or g is constant. 

The following lemma contains the main new result of this paper. 

LEMMA 7. Let Choquet expected utility apply, with u linear and non- 
constant. Then the capacity v is superadditive if and only if pessimism- 
independence applies, and it is subadditive if and only if optimism- 
independence applies. 

ProoJ Set r := u(P). r is nondegenerate and convex. For every func- 
tion cp : S --f r there exists an act f such that EU 0 f = q. Comonotonicity of 
acts f, g corresponds with comonotonicity of the functions ElJaJ; EUo g. 
The lemma now follows from Lemmas 1 and 2. 1 

COROLLARY 8. In Theorem 5 we may add in statement (i) that u is super- 
additive if in (ii) we strengthen comonotonic independence to pessimism- 
independence. We may add in statement (i) that v is subadditive if in (ii) we 
strengthen comonotonic independence to optimism-independence. 

Yaari [24) characterized a nonlinear-probability approach to decision 
making under risk, where an objective probability measure P is given in 
advance. P is then transformed into a capacity, with the transformation a 
nondecreasing and continuous function from the unit interval onto the unit 
interval. Completely analogously to the above corollary, in Yaari’s 
approach optimism/pessimism can be characterized directly in terms of 
comonotonicity. We do not elaborate all details; the main issues are 
discussed in the Appendix. 

COROLLARY 9. In Theorem 1 in Yaari [24] we may add convexity of the 
transformation (“f” in Yaari’s notation) if we replace Axiom A5 by the 
(according to Yaari’s Proposition 3 equivalent, and economically more 
meaning;ful) Axiom A5*, and require comonotonicity only for v, w  there; we 
may add concavity of the transformation if we replace Axiom A5 by 
Axiom A5*, and require comonotonicity only for u, w  there. 
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TABLE I 

Note. Let the preference relation be a weak order and satisfy vNM-continuity. Then f~or 
each entry in the matrix the following holds: Choquet expected utility applies, with the 
capacity as described in the entry, if and only if the “independence” implication LO < s( i 1, 
f  > g =+- af + (1 - 01) h > ccg + (1 -a) h] holds for those f, g, h that satisfy the restrictions 
applying to the involved array and column. (Imposing comonotonicity off, g never adds a 
real restriction; see text above Lemma 7.) 

The results are summarized in Table I. 

5. APPENDIX 

[ 19, Theorem 111 strengthened Theorem 5 by weakening comonotonic 
independence to “maxmin-independence” in statement (ii). Corollary 8 also 
holds for that case, with an identical proof. 

[ 15) extended Theorem 5 to infinite state spaces, for “strongly bounded” 
acts; [221 gave the extension to unbounded acts, and mentioned an8 
solved some problems about measurability in comonotonic independence. 
For these works the results of this note remain valid. [24’] requires ~~~~~~e- 
ness of the state space. Again, this does not affect our results. 

The only structure of LP we used above was that it was a mixture space 
as defined in [9], w.r.t. which EU was linear. (It was for instance 
all essential that the lotteries were for money.) Hence we can directly 
the above analysis to the case of (;24], with acts assigning amo 
money instead of money lotteries to states and with again utility linear. 
Yaari considers the case where an objective ~rQbabiiity P is transformed ia 
a nondecreasing way (“anticipated utility”). As Yaari indicated on p. B%43 
this means that he is considering Choquet-expected utility with as capacity 
the t formed probability measure, f 0 P in Yaari’s notation. ([%I] shows 
that quet expected utility, when adopted in decision making under risk, 
in fact is identical to (Quiggin/)Yaari’s anticipated utility.) Our results can 
be applied to Yaari’s approach, characterizing for instance su 
(the case of subadditivity is analogous and will not be elabo 
transformed probability measure. It remains to be shown that that is 
equivalent to convexity of the transformation. It is straightforward to 
show that convexity of the transformation plies superadditivity of the 
transformed probability measure, The revers mplication, in general, does 
not have Ps hold. It may be impossible to have cp convex. It does however 

642/52/2-E 
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hold in the set-up of Yaari, as the following lemma shows. Note that the 
existence of atoms is excluded by Yaari’s “richness” requirement that all 
probability distributions can be generated. 

LEMMA 10. Let (S, SZJ, P) be an atomless probability space (with d a 
a-algebra, and P u-additive). Let, for some nondecreasing q : [0, 11 --+ 
CO, 11, 40 0 P be superadditive. Then cp is convex. 

ProoJ By [S, Theorems 86, 111, where “convexity” means midpoint 
convexity] it is sufficient for convexity of the nondecreasing q that cp 
satisfy midpoint convexity. I.e., for Oda<p,< 1 we must prove that 
&a + $1 G h-W + $P@). BY nonatomicity we can find (see for instance 
[16]) ‘nested” events A c I3 c C with P(A) = CI, P(B) = $x + i/3, P(C) = j3. 
Supperadditivity gives (p(P(C)) + q$P(A)) > q(P(B)) + q(P((C- B) u A)). 
Noting that P(B) = P((C- B) u A), one gets midpoint convexity. a 

If we combine the maxmin idea mentioned in the first paragraph of 
the Appendix and the real-number linear utility set-up of [24], then the 
resulting version of pessimism-independence can be seen to be related to 
the uncertainty-aversion axioms A.5 and A.6 in [3], axioms which have 
inspired us. 
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