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Abstract

- It is shown that assumptions about risk aversion, usually studied under the pre-
supposition of expected utility maximization, have a surprising extra merit at an
earlier stage of the measurement work: together with the sure-thing principle,.
these assumptions imply subjective expected utility maximization for monotonic
continuous weak orders.

1. Introduction

There has not yet been obtained a characterization of subjective expected utility
maximization in the literature that is fully satisfactory in the sense of using necessary.
and sufficient conditions that are all empirically meaningful and have a clear intuitive
meaning. The main nonnecessary condition used by Savage [7] is his P6, a kind of
continuity condition, requiring some structure on the state space, which must be
“fine”. The main nonnecessary condition used in Wakker [9—11] is a continuity
condition, requiring structure on the consequence space, which also must be "fine"
in some sense.

Because of the frequent use of subjective expected utility models and all kmds e

of special forms of these, further “derivations” seem desirable. A derivation of a
(specified form of a) subjective expected utility model gives a list of. conditions
sufficient for the applicability of the model. It is desirable that the list be as short as
possible, with as many as possible behaviourally meaningful conditions (such as
Savage’s P3, the "sure-thing principle”, and his P4, ensuring the existence of a “more
probable than” relation; or Wakker’s “cardinal coordinate independence”, a strengthen-
ing of the sure-thing principle), with few technical conditions (such as the “Archimedean
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axioms” in Krantz et al. [5], see Adams et al. [1]), and with as few conditions as
possible that have an unclear empirical status (such as P6 in Savage [7], and con-
tinuity in Wakker [9—11]).

In this paper we shall restrict attention to preference relations of decision
makers who face uncertainty about the monetary consequences of possible actions.
We shall derive, for finite state spaces, the subjective expected utility model with
risk aversion and nonincreasing (or nondecreasing; or constant; or constant relative)
risk aversion. It will be shown that these assumptions on risk aversion simplify the
derivation of subjective expected utility maximization by making superfluous Savage’s
P4 or Wakker's cardinal coordinate independence strengthening of the sure-thing
principle. The only nonbehavioural and nonnecessary condition that we shall use is
continuity of the preference relation, amounting to continuity of the utility function.

The proof of our main result, theorem 3.3, is based on the adaption of theorems
of Pratt [6] to the case of continuous (not necessarily differentiable) utility functions,
and to the context of decision making under uncertainty (without all probability
distributions available), as it has been given in Wakker et al. [12]; on a theorem of
Debreu [2] for additively decomposable representing functions; and on a theorem
of Debreu and Koopmans [3] on differentiability properties of additively decom-
posable quasiconvex functions.

Subsequent theorems use a result of Stehling [8] on additively decomposable
homothetic functions.

2 Decision making under uncertainty

Let § ={s,,...,s,] denote afinite state space, elements of which are (possible)
states (of nature). Exactly one is the true state, the others are untrue. By ‘¢ we denote
a nondegenerate interval, i.e. a convex subset of IR with more than one, so uncount-
ably many, elements. Elements of ‘¢ are consequences, and are interpreted as amounts
of money. Flements of " are called acfs. An act x = (x,, . - . ,x,) yields conse-
quence x; if state j is the true state,

Let & be a binary relation on ‘6" that denotes the preference relation of a
decision maker who is uncertain about which state of nature is the true one. We write
x=2yforysx, x=yfor [x=yand y £x], x =y for [x £y andnot y £x],x3y

=

for y = x. We call & a weak order if it is complete (x =y ory & x forall x, y) and
transitive., Further, & is continuous if {x:x & y}and {x:x < y} are closed for all y,
and & is convex if {x:x =y} is convex for every y. In this paper, & will always be
strongly monotonic, ie. x &y whenever X; = ¥ for all 7, and x 5 y. This implies
that no state of nature is considered impossible, and that all coordinates are “essential”
(see definition 2.8), i.e. have influence on the preference relation.

A function V:€" = IR represents = if [x =y ¢ V(x) = V()] for all
x, y € @™ V is addirively decomposable if there exist Vi 6 = R, j=1,...,n,
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such that V(x) = El/j(xj) for all x. Such V}’s are called additive value functions
(for = )if V also represents & .

NOTATION 2.1

: For 1 <i<n x€ %" a€ %, x_;ais (x with x; replaced by «). If further
1<j<nj+Ii €€, then (xﬂl-,]-oa,,ﬁ) is (x with x, replaced by o, x; by B).

NOTATION 2.2

Fora € 6, ais(a, @, . .. ,q).

DEFINITION 2.3

We say & satisfies the sure-thing principle if for all x, y€E €", 1 <i<n
a,f €€ ’

bl

xazyaex =y 0

One can see that = satisfies the sure-thing principle if and only if:
[x &y ©® v =w] whenever for each i either [x; =v; and y; = w;] or [x; =y; and

. g 354 . . ) g

v; = w;] . This latter condition is derived from the sure-thing principle by (Finiteness of
LS“ aild) substitution, one by 91163 of vy and w; for x; and y,, for all those i for which
X; = ¥;, v; = w;, and by application of the sure-thing principle afterevery substitution.
The second formulation of the sure-thing principle is the one used in Savage [7].

DEFINITION 2.4

| er call [6”, é_—,(pj J,-”:I, Ul a subjective expected utility (SEU) model
(for =) if the D; ’s are nonnegative real numbers, summing to 1, and U is a function

from € to IR, such that & is represented by the function V:%€" — IR, defined by

V(x): = Z/- p;U(x;) for all x.
N We t-hen call p; the (subjective) probability for state s;, U the (subjective)
utility function, and V(x) the (subjective) expected utility of x.

. lenFor a given SEU model [€”, &, (p; ;1:1, Ul, = is risk averse if, for all
x E g7

L] n
x 3 (]z p].xf.,...,z p]-xj) . (2.1)

=1 ji=1

It should be noted that this property requires the probabilities to be known. We have
the following well-known characterization:
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THEOREM 2.5

=y

and & strictly monotonic. Then the following three statements are equivalent:

Let [€¢", =, (p;)=;, U] beanSEUmodelfor &, with n > 2, U continuous,

(i)  "Uis concave”.
(i) "= isrisk averse”.

(iii) "= isconvex".

The properties introduced below usually are considered only in the presence of
risk aversion. We prefer to introduce them in general.

DEFINITION 2.6

The preference relation & has nonincreasing [respectively, nondecreasing; or

constant| (absolute) risk aversion if for all e = 0 [respectively, e < 0; or ¢ € IR],
and forall x, x +€in €", o, a + € € 6, we have:

xra=>x+esate.

DEFINITION 2.7

The preference relation = has constant relative risk aversion ifforall A € IR,
x, Ax € 6" o, Ao € ¢, we have:

X&E @@= Ax & Aa.

The latter property, while conceptually different, can formally be identified
with the condition of “homotheticity” from consumer demand theory. The following
property will be used only in reference to other papers:

DEFINITION 2.8

Coordinate (or index) i is essential if there exist x, a such that x _; a & x.

3 Subjective expected utility for nonincreasing or nondecreasing
risk aversion

In the lemma below, V'™ () [respectively, V*(a); or V' ()] denotes the right-
derivative [respectively, the left-derivative; or the derivative] in « of a function V.
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LEMMA 3.1

Let n = 2. Let ¥V}, . . . ,V, be continuous strictly increasing additive value
functions for &. Let & be convex, and have nonincreasing risk aversion. Let
« € int (‘€), f € int (¢), « > B. Let i # j. Then:

ACIACERACYA) (3.1)
whenever the derivatives are defined.

Proof

We take (6®)p_,, (t¥)7_, € R,, such that: 6% } 0, 7% 4 0, a +7, and
B — g are in € for all k, V(B + %) — V;(B) = V:(B) — V(B — g ) for all k. Such o
and 7% exist by continuity and strict increasingness of ¥; and Vi. For all k, it follows
that

(B, ;(B+7%), (B— %)) ~ .
By nonincreasing risk aversion, it follows that:
(a_; j(@+75), (@ =0") = a;

ie.,

Vit %) = V(@ 2 V(@ - V(a- o)
for all k. We obtain:

@V ()= lim [V + 1)~ V@] [V() = V(8= 0")] /7"

> lim [V(@) = V= o] [V +1%) = Vi(B)] /0" 7" = VAV (6).
s O

REMARK 3.2

If one replaces nonincreasing risk aversion in the above lemma by nondecreasing
risk aversion, then

VI @VA® < @V (®). (3.2)

The proof is analogous to the one above.

We are now ready for our main theorem.
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THEOREM 3.3

Let n = 3. The following three statements are equivalent for the nondegenerate
interval € and the preference relation & on 6" :

P, > 0, and with U continuous, strictly increasing, concave; further-
more, foralla = 8 = v > 6 in G, the function

(i)  "There exists an SEU model [4", &, (p; f’zl, U] for &, with all

e [Ulate) — UB+e)]/[U(y+e) — UG +e)] (3.3)

1s nondecreasing on its domain”.

(ii) “There exists an SEU model [¢", z,(pj)}"'zl, U] for &, with all
p; >0, U continuous, strictly increasing. Further, & is risk averse, and
has nonincreasing risk aversion”.

(iii) "“The preference relation & is a continuous strongly monotonic weak
order, it satisfies the sure-thing principle, is convex, and has nonincreasing
risk aversion”.

Proof

Part of the equivalence of (i) and (ii) follows from theorem 2.5. We concentrate
on the remainder of the equivalence of (i) and (ii). This does not follow from Pratt ([6] ,
mainly (e) in theorem 1), firstly because his U is assumed twice continuously differen-
tiable, and secondly because his context is decision making under risk, with all proba-
bility distributions available, whereas we have only a fixed and finite number of
probabilities p, ..., p, available. The only result in the literature known to us from
which (i) ¢ (ii) can be derived is Wakker et al. ([12], theorem 4.1 and lemma A.7.4),
mainly by comparing & with &', defined by x =’ y if x —€ & y — €, on an appro-
priate domain. For brevity, we omit elaboration.

The implication (ii) = (iii) is straightforward, so we finally assume (iii) and
derive (if).

By strong monotonicity, all (so at least three) coordinates are essential. Since
+ is a continuous weak order, satisfying the sure-thing principle, theorem 3 of
Debreu [2] implies that there exist continuous additive value functions (I/j' ]-"=1 for
s . Further, we may assume that for some arbitrary fixed u° € 6, T/;(,uo) =0 for all j.
By strong monotonicity, the I’s are strictly increasing. The main problem will now be
to show:

The V}’s are proportional.

To see this, first we note that the function ¥V, assigning E?:l I?(xj) to every X, repre-

sents a convex &, and hence is quasiconcave. It now follows easily from the n-dimen-
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sional analogue of theorem 3 in Debreu and Koopmans [3] that, forall i, on int(‘€):
I/;’ and V}Q are defined and finite, VI.T is continuous on the right, Vt-Q is continuous on
the left, and at every point outside a countable set £}, V is differentiable.

Let £ =UE,, so E is countable. On [int(€)]\ £, all V; are differentiable.
Hence, two applications of lemma 3.1 give, forall 7, j:

v @V (B) = V,—’(Of)V,-'(B) forall a,f € [int(‘€)]\E.

It follows from this that there exist j and real numbers (0;);/ | such that Vr.r = o,-l@’
on [int(‘¢)]\ £ for all i. Since E is countable and V', V" are continuous on the right
everywhere on int(‘€), ;" = Uilf;-' follows on all of int(“€¢); analogously, ViQ = G[-V]-Q.
Hence, V; — o,V has derivative 0 on int(¢), ard so is constant. Since V(") =0

= Ig(u”), the constant is zero, so continuity yields ¥; = ¢;¥; on all of "6, for all 7:

The ¥,’s indeed are proportional.

By strict increasingness of the F’s, all os are positive. We define

U= (Z}=,0)V; and p;:= 0;/Z% - 1 0. This gives an SEU model for & . Since, by
theorem 2.5, convexity of & implies risk aversion, everything of (ii) follows. O

In (iii) above, we have given a characterization of the quantitative model in
(i), completely in terms of properties directly in terms of the preference relation & .
Hence, we did not use the property of risk aversion in (iii), as this needs the proba-
bilities in its definition. In the context of decision making under uncertainty (unlike
the context of decision making under risk), probabilities are not primitives.

One can replace nonincreasing risk aversion by nondecreasing risk aversion
in (ii) and (iii) above if one replaces nondecreasingness of the function defined in
(3.3) by nonincreasingness. Analogously, one can of course substitute "constant risk
aversion” in (i) and (iii), and constantness of the function defined in (3.3). In the

latter case, either U is affine or exponential, as can be derived from theorem 3.5 in.

the sequel. Finally, if ‘¢ = R,,, one can replace “nonincreasing risk aversion” in
(ii) and (iii) above by “constant relative risk aversion” if one replaces the statement
on the function defined in (3.3) by the statement that U: a = loga, or U e+ Aa
as can be derived from theorem 3.4 in the sequel.

For theorem 3.3, we do not need the assumption of concavity in (i), of risk
aversion in (i), and of convexity in (iii) if ¢ = IR and we have constant absolute
risk aversion, or if ‘¢ = JR,, and we have constant relative risk aversion. First, we
give the latter result, this being directly derivable from Stehling [8].
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THEOREM 3 4

Let n = 3. Let 6 = IR, . The following two statements are equivalent for the
preference relation & on “€":

(i)  “"There exists an SEU model [€", &, (p;)/=;, U] for &, with all
p; > 0, and either U: a = Aa” for some A, p € IR with Ap > 0, or
U:a+loga”.

(ii) "The preference relation & is a continuous strongly monotonic weak
order, it satisfies the sure-thing principle, and has constant relative risk
aversion”.

Proof

Suppose (i). Then, for any p > 0, x € €", for the expected utility EU,
EU(ux) = u? EU(x) or EU(ux) = u + EU(x). Constant relative risk aversion and all
of (ii) follow straightforwardly from this. So we suppose (ii) and derive (i).

By strong monotonicity, every coordinate is “essential”. By theorem 3 of
Debreu [2], there exist continuous additive value functions (V]-)J?=1 for &. By strong
monotonicity, every V] is strictly increasing. Define V: %" = IR, ¢: € = IR,
W: %" - IR by:

V:x »ZV}.(x}.), bro V@), Wix+ ¢l o V(x)
Then V and W represent =; W(a) = a; [W(x) = a = x =~ a], so W assigns to
each x its “certainty equivalent”. Also, W(ux) = uW(x) for u > 0 (W is “linearly

homogeneous”, so ¥ is “homothetic”). By Stehling ([8], theorem 2), or Eichhorn
([4], theorem 2.5 .2), either:

V:x»w[u( x?f)}
p=1 ¥

n 1/p
Vix+ [( z o.xf’) for a continuous strictly increasing , (3.5)
positive o, ... ,0,, and nonzero p. ‘

for a continuous strictly increasing V,

positive i, and nonzero p, ..., p, (3.4)
that sum to one,

or:

In the case of (3.4), V is a strictly increasing transform of x + Ix/7 and so,

by taking logarithms, of x + Epjlog(x}-). By strict increasingness of every V;, every p;
is positive. So indeed we have an SEU model for &, with U: a + loga.
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Next, suppose (3.5). First, assume p > 0. Then V is a strictly increasing
transform of Zajx]!". We therefore have an SEU model for &, with p;:= oj/Ef: 10
for every j,and U: o+ a?,so A = 1in (i) above.

Finally, suppose (3.5), with p < 0. Then V is a strictly decreasing transform
of x = Zo;xf, so a strictly increasing transform of x + Yo;(—x/). We have an SEU
model for =, with p;:= 0;/Z}_ | 0, for every j, and U: a = —(a”), so in (i) above,
A= 1. (]

Froim this, we derive:

THEOREM 3.5

Let n = 3. Let ‘¢ = IR. The following two statements are equivalent for the
preference relation & on €™:

(i) “There exists an SEU model [€", ';;,(pf-)f:], U] for =, with all

p; > 0,and Uidentity,or U: &+ Ae”® forsome A,p € IR with Ap > 0.

(ii) “The preference relation = is a continuous strongly monotonic weak
order, it satisfies the sure-thing principle, and has constant absolute risk
aversion”.

Proof

Suppose (i). Then for any pu > 0, x € 6", the expected utility EU(x) has
EU(x +u) = ePEU(x) or EU(x +p) = u + EU(x). Constant absolute risk aversion
and all of (ii) follow straightforwardly. So now we suppose (ii), and derive (i).

Define L:IR!, = IR" by L:(x,,...,x,)+ (log(x,), . .. 1log(x,)), and
define = on IR" by x 'y iff L(x) = L(). Then it follows straightforwardly
that =' satisfies (ii) of theorem 3.4. We obtain, for all x,y € IR":

xzyeLl N (x) 2 LT (p) e 2 pUEY) = 2 p U,

with U, p;, and also A, p as in (i) of theorem 3.4. This implies (i) of theorem 3.5. O

Most probably, the last two theorems also hold for any interval ‘€ C IR,
respectively, ‘¢ C IR, but we do not know of a reference where the analogue of
Stehling’s [8] theorem, needed to prove this, is available.

We have not considered the case of n = 2. One may replace n = 2 by n =2
in theorems 3.3 to 3.5 if one adds the so-called “Thomsen condition” (see Krantz
et al. [5], definition 6.3) in (iii) of theorem 3.3 and (ii) of theorems 3.4 and 3.5.
For n = 1, the results are rather different; this concerns the case of decision making
under certainty (and ordinal utility).

Uniqueness results in our theorems are standard, the utility function is always
cardinal, and the subjective probabilities are uniquely determined.
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4, Conclusion

The approach by which the use of specified forms of subjective expected
utility models is usually justified reflects the historical development of the theory
of subjective expected utility maximization. Usually, in a first stage conditions are
found, and justified, that are sufficient (and possibly necessary) for the existence of
a subjective expected utility model without any further specification (for instance,
the conditions in Savage [7]). Once this has been done, in a second stage behavioural
conditions are found, and justified, which are sufficient (and possibly necessary) to
obtain the desired specified form of the subjective expected utility model.

This paper has shown that a one-stage approach may lead to stronger results
because assumptions on risk aversion, usually made in later stages, simplify the deriva-
tion in the first stage of the subjective expected utility model itself.
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