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ABSTRAGT. In this paper two versions of 'equivalence independence'’
for binary relations on Cartesian products are introduced to
characterize special kinds of representing functions. The obtained
results are used to characterize quasilinear economic indexes, and
several specified forms of these.

1. INTRODUCTION

Many problems from many fields of sclence come down to one and the same kind of
mathematical problem: finding a function V of several variables to the reals that
has certain desirable properties. These desirable properties can often be expressed
in terms of functional equations, the mathematical theory of which is treated for
instance in Aczél (1966). One example from economiecs is production theory, where
variables are in- or outputs, and the function V is a production (efficiency)
function. Another example is the theory of (statistical) price indexes. Here the
variables are prices or consumed quantities of goods or services, at base ox
comparison times or locations, and the function V is a (statistical) price index or
purchasing power parity. In the measurement of Inequality the variables are the
shares of total welfare, allocated to individuals, and V is a measure of inequality.
In decision making under uncertainty the variables are consequences, contingent on
the occurrence of some state of nmature, and V describes or prescribes the decision

making of an individual, facing uncertainty; e.g. V is an expected utility index.
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reflect the policies of the Netherlands Central Bureau of Statistics. Most of the
work described here was done at the University of Nijmegen, Department of
Mathematics,
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In some fields of science it is custom to take a binary relation ('preference
relation’) as primitive, and to search for characterizations (i.e. properties of the
preference relation, necessary and sufficient) for the existence of a representing
function V with desirable properties. Other fields take V as a primitive. We shall
call such a V an index. One then searches for indexes that have desirable
properties.

In sections 2, 3, and 4 we glve some representation theorems for preference
relations. In subsection 5.1 we indicate how such theorems can be reformulated for
situations where indexes, instead of preference relations, are primitives, so that
characterizations of the ordinal character of the indexes result. From these
characterizations we derive, in subsection 5.2, characterizations of some well-known
general kinds of indexes, all in an ordinal vein. Section 6 gives some conjectures.
Finally, in subsection 6.3 we indicate that our results can also be used as a
starting point for deriving 'non-ordinal' results, by the addition of a, usually

weak, non-ordinal condition (i.e. 'test', 'axiom’, ‘property’).

2. BASIC DEFINITIONS AND RESULTS

In this section we give definitions and state some preparatory results. Let T
be a non-empty connected topological space. [For topological definitions, the reader
is referred to Kelley (1955). Readers, not interested in topological details may
simply take T' to be a convex subset of R®, Such a I' satisfies all the tepological
assumptions made in this paper (e.g. in Assumption 2.3 below.)] Let nelN. The
Cartesian product I'™ is endowed with the product topology. Its elements are called
alternatives. An alternative xeI™ has i-th coordinate x, .

A preference relation = is a binary relation on ™. As usual we write x<y for

yzx, x=y for [x=y & y=x], x>y or y<x for [x>y & not y=x]. The preference relation =

is a weak order if it is complete (x=y or y=X for all x,yel™) and transitive. If so,

then =~ is an equivalence relation. The preference relation = is continuous if

{xelP: x>y} and {xel™: x<y} are open for all yeI™,
A function V:I"+TR represents = if [xzy <=> V(x)=V(y)] for all x,yel™. A
representable preference yrelation is necessarily a weak order. In the literature

a representing function is often called a 'utility function'. To settle terminology
further, we call, for ACR, a real-valued function @:A*R increasing if (a)>p(f)

whenever o>f.

NOTATION 2.1. For l<i=n, ael, xel™

x;a = [X with x, replaced by al.
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DEFINITION 2.2. Coordinate (or index) i 1is inessential if x_,a = x for all ael',

xel™, If i is not inessential, then it is essential.

For weak orders > inessential coordinates do not have influence on the
" . A
desirability’ of an alternative. They may therefore be ignored and suppressed. That

we shall do. For easy reference we state:

ASSUMPTION 2.3. All coordinates are essential. I' is a connected topological space;

' is endowed with the product topology. If n=1, T' is topologically separable.

We shall be interested only in (increasing transforms of) functions of the

following kind:

DEFINITION 2.4. A function V:Im-+R is additive if there exist VJ:F*IQ (j=1,...,n)
such that V:XHZJZIVJ(XJ).

The following property goes under many names, such as (preferential)
independence, additivity, strong (strict) separability, and 'sure-thing principle’.

The present name abbreviates 'independent of equal coordinates’,

DEFINITION 2.5. The binary relation > is coordinate independent (CI) if for all

i,x,y,a,8 we have

[x.ja = yje] <=> [x ;8 =y.,8]

The idea is that, once two alternatives have the same i-th coordinate, the
preference between them does not depend anymore upon this particular coordinate, be
it «,B, or whatever. The idea can already be recognized in Fisher (1927, page 175)

The following theorem is mainly due to Debreu (1960). We give the slightly
stronger result of Wakker (1986a, Theorem III.3.7), which supplies Krantz et
al. (1971, Theorem 6.14) with continuity, thus shows that the assumption of
topological separability, made in the original formulation of Debreu, can be

omitted.

THEOREM 2.6 (Debreu), Let n=3. Under Assumption 2.3 the following two statements

are equivalent for the binary relation z on I'™:

(i) There exists a continuous additive function on I'* which represents the

binary relation =.

(ii) The binary relation = is a continuous weak order which satisfies CI.
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The following property has been introduced in Wakker (1984), where an exactly far enough to obtain a characterization of (i) without restrictions on the
elucidation of its meaning is given. The chosen term is motivated, firstly, by the P;'s. For this we first strengthen Debreu's Theorem 2.6 to a result which uses as
observation that under reflexivity of z the property implies CI (set x=y, a=f, 7=§ much as possible the equivalence relation =~ instead of the preference relation >
below), and secondly by the observation that the condition adds to CI a (see Theorem 3.10 below). Because of the importance of Debreu’s theorem, this
preservation of first-order differences of utility, also independent of coordinates, result may have interest of its own.

which is known to imply cardinality in the presence of continuity w.r.t. a

connected topology. See also Wakker (1984, section 3; 1986a, section 4.2; and 1986b,

formula (3.3)) where reformulations are given in terms of a strength of preference

relation, derived from the preference relation. 3. CHARACTERIZING ADDITIVE REPRESENTATIONS VIA EQUIVALENCE

DEFINITION 2.7. The binary relation = satisfies cardinal coordinate independence

(6oT) if for all i,j,x,...,6 we have : In this section we shall replace the CI condition in Debreu’s Theorem 2.6 by
[ T i & ] a weaker condition, using the equivalence relation = instead of the preference
gl relation =. Since it is easier to test for equivalence = than for 'dominance’ =
thi . - e
. U vyl is may be of use in the testing of additivity of representations and indexes.
DEFINITION 3.1. The binary relation = is e
. . > quivalence coordinate ind
The idea of the condition is that the left two preferences reveal that the 1 7 @ incependent (ROD
if for all i1,x,v,a,B8 we have

strength of preference of @ over B is not larger than that of v over §. Further, by
X, = = e

this the right preference above should imply the lower preference. The following (Xyo =y a] <> [x,8=y,p].

theorem is the main result in Wakker (1986a; Theorem IV.3.3). Its main application

1ies in decision making under uncertainty where it characterizes subjective LEMMA 3.2. If 2 satisfies CI, then it satisfies ECI.

expected utility maximization, obtaining subjective probabilities and utilities

PRCOF, = i &
as Savage (1954) did. Theorem V.6.1 in Walkker (1986a) extends the Let > satisfy CI.Then [x_,a = y_;a] iff [x ja =y o & y ;o = x_,a], which,

simultaneously,

by t i i
result to arbitrary, possibly infinite, state spaces, i.e. to possibly infinite y twofold application of CI, holds iff [x.;8 > y.;f8 & y;f = x;f]. The latter

holds i =
Cartesian products. As compared to Savage's result, this theorem replaces alds ALF [x48 = y.yPls

restrictions concerning the state space by the restriction of continuity, a O
restriction usually satisfied in economic contexts.
We shall also need the following implication of CI:
THEOREM 2.8. Under Assumption 2.3 the following two statements are equivalent for
the binary relation = on T®: DEFINITION 3.3. The binary relation > is weakly separable if, for all i,%,y,a,f,
we have
(i) There exist positive (pj)f , summing to one, and a continuous function
o e [0 2 x 8] <=> [y e=y B8]
U:T-R, such that xr) lpJU(xj) represents the binary relation =.
.
(ii) The binary relation = is a continuous CCI weak ordet.
& LEMMA 3.4. If = is a weak order, then CI implies weak separability.
PROOF. CI allows one to replace in every preference any single pair of equal
For contexts other than decision making under uncertainty the restriction om coordinates, thus by repetition, any arbitrary number of pairs of 1
. . ’ ’ s of equa
the p;'s in (i) above may be undesirable. For instance in production theory ome coordinates. Weak separability allows only the replacement of (m-1)-tuples
would want some pj's (those associated with inputs xd} to be negative. In the of pairs of equal coordinates
theory of price indexes omne would want the weights py., associated with base prices
O

x5, to be negative. In section 4 we shall weaken the ©CI condition for = in (ii)



316
The following definition is useful for weakly separable weak orders.

DEFINITION 3.5. For any l<i=n, 2, is defined by

[a 2, B] <=> [there exists x such that x_;a = %_; f].

One easily verifies, with >, the asymmetrie part of =;, = the symmetric part,

a<,f iff =, and a<; B iff f>;e:

LEMMA 3.6. If the binary relation > is a weakly separable weak order, then every

> is a weak order; further

[x, = y; for all 1] = [x =z y]
and
[x; = y; for all 1 &x > ¥ for some 1] = [x>v¥].
o
The following property, defined in Krantz et al. (1971), will be used in our
analysis.

DEFINITION 3.7. The binary relation = satisfies restricted solvability if for all

i,%,y,o,7 we have!

[x ;0= y 2% 7] => [there exists B such that x ;8 = y].

LEMMA 3.8. Under Assumption 2.3 a continuous weak order = satisfies restricted

solvability.

PROOF. See Krantz et al. (1971, section 6.12.3).

LEMMA 3.9. Let the binary relation = be a weakly separable ECI weak order.

Let Assumption 2.3 hold. Let 2 be continuous. Then =z is CI.

PROOF. Suppose x_,o& = y_po. We must show that %8 = y.,B. (It is mno restriction to
take the i of Definition 2.5 equal to n.) Let A:= (j<n: x;>;¥;1. Without loss of
generality, suppose A={1,...,k} for some O<k<n. Define x0 1= x_, o, xt:= ngyf for
1<f<k. Then, by Lemma 3.6, «0sxlz., . >xk . Further, since (y_,a); Z; (x*); for all LI
yo,ozxk. Sox? =y oz %k, Let £ be such that Wl y az x4, By restricted
solvability (Lemma 3.8) there exists z, such that xgﬂz! = y_,«. Since

(xgﬁz!)n = a, by ECI we obtain (x@gz,)_nﬁ = y_,fB. From

xtyx, = 241z y o= xyz, it follows that x,>,z,. Hence

(x.aB)y Z5 ((xdgz)) oB)y for all j. By Lemma 3.6, x..8 = (x%jz)) 8.

N7
The latter is equivalent to y_,f§.
O
THEOREM 3.10, Let n=3. Under Assumption 2.3 the following two statements are
equivalent for the binary relation =z on I™:
(1) There exists a continuous additive function on I™ which represents the
binary relation =.
(ii) The binary relation = is a continuous weakly separable weak order which
satisfies ECI.
PROOF. The implication (i) => (ii) is straightforward. The implication (ii) => (i)
is by Lemma 3.9 and Theorem 2.6.
a

The characterization in Theorem 3.10 is stronger than that in Theorem 2.6 in
the sense that, firstly, statement (ii) in Theorem 3.10 follows elementarily from
that in Theorem 2.6 (by Lemmas 3.2 and 3.4), whereas the converse is not true

without essentially invoking continuity, as the following Example shows.

EXAMPLE 3,11, Let n=3, T'=R. Let W : x » )jj:lxj + min{x;: l<j=n}. Define = by
[x2y] <=> [x=y or (W(xX),X,,...,%,) >L (W(¥),¥z,....¥y2], with >, the lexicographic
order. Since x=y only if %=y, ECI is trivially satisfied. Further, for every i, z;
is the usual ordering of real numbers, from which weak separability follows. Still,
(1,9,1,9,...,9) = (1,5,5,9,...,9) and (9,9,1,9,...,9) < (9,5,5,9,...,9). This
violates CI.

REMARK 3.12. In literature (see Debreu,1960, Theorem 3, or Krantz et al., 1971,
Theorem 6.14) the Theorem 2.6 of Debreu in fact is formulated, more generally, for
a Cartesian product ﬁilri of connected topological spaces I'; which do not have
to be equal. All results of this section can also be formulated for such Cartesian

products, nowhere did we use the equality of the coordinate sets.

Let us finally note that an alternative proof of Theorem 3,10 could have been
obtained by simply going through all the proofs in literature contributing to
Theorem 2.6, and by checking that nowhere there is made essential use of
implications of CI other than weak separability or ECI. Because of the

complicatedness of those proofs we chose our present way of proof.
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4. EQUIVALENCE CCI

In this section we characterize representations of the form
X P EjZIAjU(Xj) where U is continuous and there is no restriction on the Aj's.
Our characterization is an alternative for the one in Krantz et al. (1971,
Theorem 6.15). The 'equivalence CCIL' condition that we shall use is stromger than
the 'standard sequence invariance’ condition of Krantz et al. (1971). On the other
hand, we have to impose only weak separability instead of the stronger coordinate
independence, and we do not have to formulate separately the theorem for the case

of two coordinates.

DEFINITION 4.1, The binary relation satisfies equivalence cardinal coordinate

independence (ECCI) if for all i,j,%,...,6 we have !
[ Xxyo =y f & Voja= w.;B & ]
KoY = ¥4 6

= [V-j')‘xw-j5]
This is as cardinal coordinate independence, with all preferences replaced by
equivalences.

TEMMA 4.2. Let = be ECCI. If = is reflexive (i.e. x=~x for all x) then = satisfies

ECI.

PROOF. Substitute x=y, oa=8, vy=§ in Definition 4.1.

The following theorem generalizes Theorem 2.8 to the case of possibly non-

positive weights. Motivation for it has been given below Theorem 2.8.

THEOREM 4.3, Under Assumption 2.3 the following two statements are equivalent for

the binary relation z on I'™:

(i) There exist real (lj)nl and a continuous function U:T-IR, such that
s

tzjnlljU(xj) represents the binary relation =.

(ii) The binary relation = is a continuous weakly separable ECCI weak order.

PROOF. The implication (i)=>(ii) 1is straightforward. So we assume (ii) and derive
(i). If n=3, then by Lemma 4.7 and Theorem 3.10 there exists an additive

representation V:xdezlvd(xj) for =. If n<2 then such a representation also

exists; elaboration is omitted here, and can be found in Wakker (1986a,

gection IV.4). If n=1 we take U=V, , X;=1, and (i) is established. So from now om we
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assume n=2. ECCI gives:

Vi@V (B) = T Vi 5 )V (%) ] = Vi ()Y (6)
& V_j (Q’)—VJ (ﬁ) = Ek#j[vk (wk)_vk (vk)] (4.1)

=> [ V3(@)-V;(8) = V, (1), (6) ]

Setting a=f, %=y, v=w, we have [V, (y)=V (§)] = [Vj(7)=Vj(5)]. Hence there exists ¢
such that vj=¢ovi. Analogously there exists ¥ such that Vi:¢ch. Thus,

@:V; (T)>V,(T) is bijective. Since V, and V; are continuous, so is ar(V; (@) ,V; (a)).
Consequently the graph of ¢, viz. [(Vi(a),Vj(a))eﬂRz: ael'}, is connected. This can
be seen to imply that ¢ has the intermediate value property. Therefore ¢, being
bijective and having an interval as domain, must be continuous; it must be either
increasing or decreasing.

Now let V, ({) be an arbitrary element of V, ('), the domain of ¢. Recall that
all k are essential; hence no V, is constant, and all V, (I') are non-degenerate
intervals. Since n=2 and V;=@oV; with ¢ continuous, there exists an open interval
§ around V; ({) so small that for all V,(a), V,(8) in S, there are x and y for which
V; (@)-V; (8) = 2;#1[Vk(yk)—vk(xk)] and there are v and w for which
[0V, (@)p(Vy (BN] = V@)V, (8) = T, [V (0)-Vy (v)]. Setting p=y, and finding
appropriate x,y,v,w, by (4.1) we get, for all V,(a), Vi(f), V;(§) in S:

(Vi (@)-Vy (B) =V, (B)-V, (6)] => [V, (a)-Vy(B) = V (B)-V;(6)].
Thus, on 8, ¢ satisfies Jensen's equality: @((o+r)/2) = [p(a)+e(r)]/2. By
Theorem 1 of section 2.1.4 of Aczél (1966), or by (88) of section 3.7 of Hardy,
Littlewood,&PBlya (1934), ¢ must be affine on S. Hence it has derivative zero at
all V, (). Consequently ¢ must be affine on V,; (T).

We have shown that each V, is an affine transform of V,. The proof is
completed by specifying U and the A;’s as follows: For arbitrary fixed e and 8 in
' with V, (@)=V, (8), set U(.) := V,(.)-V, (a) and set
Ay = [V (B, (@) 1/1V, (B)V, ()], 3=1,....n.

5. RESULTS FOR QUASILINEAR TNDEXES

5.1. TRANSLATING RESULTS FOR PREFERENCE RELATIONS TO RESULTS FOR FUNCTIONS

We turn now to indicate how the theorems, formulated so far with a preference
relation as primitive, can be reformulated in a simple way to give results when

indexes are instead taken as primitives. Let v:I'+IR be a continuous index. We may
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ascribe all properties, introduced before for binary relations, now to vV by
replacing all preferences such as x=y by the corresponding inequalities V(x)=V(y),

replacing all equivalences %~y by equalities V(x)=V(y), etc. For example:

DEFINITION 2.7-FOR-FUNCTIONS. The fuction V satisfies cardinal coordinate

independence (CCI) if for all i,j,%,...,6 we have
{V{x_ia) < V(y. B) & V(v.ya) = V(v ;f) &}
V(x.,v) = V(Y. 8)
=> [V(V-j'l') 2 V(W_jg)]

Compare this to Definition 2.7 of CCL for =. We obtain new theorems,
Theorem 2.6-for-functions, ..., Theorem &.3-for-functions, from the corresponding
theorems for binary relations, by replacing 'represents the binary relation =' by
'is a continuous increasing transform of V!, '=' by 'V', 'binary relation =' by
 function V', and 'weak order' by t function’. These new theorems can be derived

straightforwardly from the corresponding theorems for binary relations. For example:

THEOREM 2.8-FOR-FUNCTIONS. Under Assumption 2.3 the following two statements are

equivalent for the function V on IM:

(i) There exist positive (pj)nl, summing to one, and a continuous function
=

U:~+R, such that xr+zjilij(xj) is a continuous increasing transform of V.

(ii) The function Vv is a continuous CCI function.

When treating a continuous index V this way we use only the information of V

contained in the preference relation represented by V. In other words, we are then
studying the ordinal character of V. The major part of the present paper 1is written
in this ordinal perspective. Such an ordinal approach is useful if one may, or

1f such ordinal information is

hould

wants to, use only ordinal information of indexes.
combined with other information (for example the information that the index s
be additive) then by the uniqueness results as in Debreu’s Theorem 2.6 (see

subsection 6.3) we may be able to determine the index up to a positive affine

transformation.

5.2. QUASILINEAR INDEXES

Throughout this subsection we shall assume that TcR is an interval, and we
shall study the properties of a continuous index V:I"~R. The following

definitions can be found in Hardy,Littlewood,&Pélya (1934), or Eichhorn (1978).

DEFINITIONS. Let W:I™-+IR. Then W is:

5 i
(5.1) generalized quasilinear if there exist continuous strictly monotonic (i.e.

increasing or decreasing) functions ¢, By ,.::18a with appropriate domains,
such that W: i .

., Wixbo(R " By (%))

(5.2) quasilinear if there exist a real b, non-zero Xy,...,A, and a continuous

strictly monotonic U, such that WixbU (Y nlkju(xj)+b)'
i ;

(5.3) a quasilinear mean if it is quasilinear with b=0, %;>0,...,3,>0, T " X;=1;
+ Dyl

(5.4) a quasiaddition if it is quasilinear with b=0, A;=...=A,=L.

(5.5) In (5.2) (see however the next sentence), (5.3) and (5.4) the adjective

; :
quasi' may be omitted if U is the identity function.

If in (5.2) U is the identity function, then in this paper the function W will
be called linear only if b=0, and the term affine will be used for general b.

We shall show how the representation theorems of the previous sections can be
used to characterize the ordinal character of the functions introduced above. We
shall opt for 'additive’ formulations. We might just as well have used

multiplicative formulations. As an illustration, this is made explicit in (5.6.1v)

below,
THECREMS. Let T'CR be an interval, and V:I"-R. Then:

(5.6) The following four statements are equivalent:

(i) V is generalized quasilinear.
(ii) V is continuous, strictly monotonic in each variable, and GI.
(iii) V is continuous, strictly monotonic in each variable, and ECI.

(iv) There exist continuous strictly monotonic functions %, hy,...,h, with
appropriate domains, such that all h; are positive and
V:xHIP(szth (x;0).

(5.7) The following three statements are equivalent:

(i) V is a continuous increasing transform of a quasilinear mean.
(ii) V is continuous, increasing in each variable, and CCI.

(iii) V i1s continuous, increasing in each variable, and ECCI.

PROOFS. First note that the strict monotonicity of V in each variable implies weak
separability of =, and essentiality of all i. Further note that in Definition 5.1
one may always assume ¢ to be increasing. (For if ¢ is decreasing, we may replace
Biaot 5By DY —E1a ev =By and ¢ by § with p:ure(-p).) Thus, in (5.6),

(i)<=>(ii) follows from Theorem 2.6-for-functions, and (i)<=>(iii) from
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Theorem 3.10-for-functions. Finally, (i)<=>(iv) in (5.6) follows by setting
hj=exp(gj) for all j and yp=polog.

Next note that the function U in Definitions (5.2), (5.3) and (5.4) may be
taken to be increasing. (For if U is decreasing we may replace U by -U and b by -b.)
Thus, V in (5.7)(i) is increasing in each variable, and (i)=>(ii) and (i)=>(iii) in
(5.7) follow. Now we suppose (ii) or (iii) im (5.7) holds, and we derive (1) there.
By Theorem 2.8-for-functions or Theorem &4, 3-for-functions, there exist real Ay
j=1,...,n and a continuous function U such that XHZJZIAjU(XJ) is a continuous
increasing transform of V. We may assume, because of the increasingness of V in
each variable, that U is increasing and that all A;'s are positive. (If not,
replace U by -U, every A; by -A;.) Clearly, V is also a continuous increasing
transform of zj:lij(xj) where pj=Aj/(Ej:1Ai} for all j. This gives Ejzlpd:l'

The reason to replace (Aj%il by (Pj%il

, is that Z_nlij{xj) is in the
=
(convex!) range of U for all x so that U_l[z_nlij(xj)] is well defined. Now V
5=

. -1
must also be a continuous increasing transform of U [} >

(5.7) is established.

j=1ij(xj)]; thus (i) in

A complication in the proof of (ii)=>(i) and (iii)=>(i) in Theorem 5.7 above
was that U_l[z_nlkju(xj)l should be well defined. For characterizing quasilinear
y=
functions and quasiadditions, we shall need additional assumptions to solwve the

analogous complication.

DEFINITION 5.8. The function V satisfies unrestricted solvability if for all i,x,y

there exist a,fel' such that V(x_,a) <y < V(x_;8).

THEOREMS. Let I'cR be an interval, let V:Im"+R, Let either T' be compact, or let

V satisfy unrestricted solvability.

(5.9). The following two statements are equivalent:

(i) V 1s a continuous increasing transform of a quasilinear function.

(ii) V is continuous, stricly monotonic in each variable, and ECCI.

(5.10). The following three statements are equivalent:

(1) V is a continuous increasing transform of a quasiaddition.

(ii) V is continuous, inecreasing in each variable, CCI, and o=f exist such
that V((a,...,a).18) = W((a,...,a)_;p) for all j.

(iii) V is continuous, increasing in each variable, ECCI, and axf exist such

that, for all j, V((a,...,a)_18) = V((a,...,a)_;8):
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PROOFS. Since U in Definitions 5.2 and 5.4 can be made increasing (see previous
proofs), (i)=>(ii) in (5.9) and (5.10), and (i)=>(iii) in (5.10) are immediate;
these implications do not need the additional compactness or unrestricted
solvability condition. Next we suppose (ii) holds in (5.9), or (ii) or (iii} in
(5.10), and we derive (i). The beginning of our reasoning will apply both to 5.9
and 5.10. If n=1, we may simply set U=identity, X\;=1 if V is increasing and A =-1
if Vv is decreasing, So from now on we suppose n=2. By Theorem 4.3-for-functions, V
is a continuous increasing transform of xHEjZIAjU(xj), with the A;'s real, and

U continuous. We may assume, by the strict monotonicity of V, that U is actually
increasing (otherwise replace U by -U, Aj by -3 for all j) and that no Aj is zero.
If V satisfies unrestricted solvability, then, n being = 2, U can be seen to be
unbounded from above and below. If T' is compact, then we can extend U to a
continuous increasing U':R-+IR that is unbounded from above and below. We then
write U for U’. Anyway, now UMI[ZJ:1A3U(XJ>1 is always defined. And V is a
continuous increasing transform of this; thus (i) in (5.9) follows.

Finally suppose (ii) or (iii) in (5.10) holds. We derive (i). V is a
continuous increasing transform of xH[zjzlij(Xd)] where U is increasing and
unbounded from above and below as we saw above. By the strict increasingness of V
in each variable, all the A;'s are positive. The 'a,fB-condition’ in (ii) and (iii)
implies that A=y for all j. So V is an increasing transform of Ejle(xj), hence
of the well-defined U ' [EJ:lAjU(Xj)].

The following example demonstrates why in Theorem 5.9 we needed an extra

assumption for the implication (ii)=>(i).

EXAMPLE 5.11. Let V(x) = exp(x,)-exp(x,) for all xeR%2. If, for some b,A;,A;,U,
this V is a increasing transform of x ~ Ejilij(xj) + b, then, as is easily
verified, XA;=-X, and there exist ¢,7 such that U = 7 + cexp with A,0>0. Suppose
X;>0. (The case of A,;<0 is analogous, instead of (0,x,) take (%,,0) with x, large
below.) Then ¢>0, and U is bounded below, unbounded above. Further there exists x,
so large that for x=(0,x,) the value ¥ &

-1
range of U. Thus the inverse Ul of Zj_lAjU<XJ}+b cannot be defined. That is,

AJU(xj)+b is too negative to be in the

although (ii) in Theorem 5.9 is satisfied, (i) is not.

THEOREM 5.12. Let TCR be an interval. A necessary and sufficient condition for
the function U in Theorems 2.8-for-functions and 4.3-for-functions to be linear, and
for the omission of ‘quasi’ in (i) in (5.7), (5.9), (5.10), is that for all (or
one) coordinates i, and for all a,B,ate,ft+e in T, and all x,y, the implication

[V(x_,o) = V(y_, (ate))] => [V(x. B) = V(y.,(B+e))] holds.
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PROOF. Obvious for n=1. For n=2 the necessary and sufficient condition can be seen
to be equivalent to the requirement that U 'locally’ satisfies U(at+e)-Ula) =
U(B+e)-U(B) for all «,B,e. Since U is continuous on a convex domain, this means that
U must be affine. Therefore U (and also its extension in the proof of Theorems 5.9

and 5.10) may furthermore be taken to be linear.

REMARK 5.13. In Theorem 5.7 we may replace the term 'quasilinear' by
'quasiarithmetic’ (i.e. the Ay's of Definition 5.3 all equal 1/n) if in (ii) and
(iii) we add the same 'a,S condition' as in (5.10.ii). This characterizes
(5.10(ii)) and (5.10(iii)) without compactness or unrestricted solvability

restriction.

6. FURTHER RESULTS AND FUTURE RESEARCH

6.1. SPECIFIED FORMS OF QUASILINEAR INDEXES

Several indexes that have attracted interest in literature are specified forms
of quasilinear indexes. We can use Theorem 5.9 or 4.,3-for-functions, add to (ii)
there one extra condition which is weaker than those customary in the literature,
and obtain from (i) the desired specified form. For instance, if n=2, then the
case where V is a continuous increasing transform of x—U(x;)-U(x,), interpreted
as an index for 'intensity of preference' of x; over x,, can be characterized by
adding an extra condition such as V(a,a)=V(g,8) for all «,8 (or even just for some
a and B with V(a,B8)=V(B,B)). The case where V is a continuous increasing transform
of XHEJZIAJU(XJ), with 0<d<l, is useful in dynamic utility theory (see Koopmans,
1972), where X is the 'discount factor'. We can characterize such a V by an additio-
nal ‘weak stationarity’ assumption such as: there exist o,f,7 with V(a,...,a) =

VOB, .. B> V(v, .. .,y), and V{7, ..., 7)1 B) = V((¥, .+, 7) - (141y) for all 1 =n-l.
6.2. FUTURE RESEARCH

It is a large task, not taken up in this paper, to catalogue the indexes, used
in literature, which are specified forms of quasilinear functioms, and to determine
which non-ordinal conditions should be added in the statements, numbered (ii) or
(iii) in this paper, to characterize these specified forms. Results along this line
may be obtained from AczéléAlsina (1984), Stehling (1975), Eichhorn (1978, in

particular Chapter 2).
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We conjecture that our 'equivalence-separability condition’ ECI in
Theorem 3.10 can be weakened in the spirit of Gorman (13968). He showed that
coordinate independence in Theorem 2.6 of Debreu (allowing the replacement in
preferences of any one pair of equal coordinates, and thus by repetition of any
arbitrary number of pairs of equal coordinates), can be weakened to allow for
replacement of only certain subgroups of equal coordinates; see also Murphy (1981).

Probably in Theorem 5.10 the assumption of compactness of T' or unrestricted
solvability of V could have been omitted. The demonstration of that seems to be

tedious.

6.3. UNIQUENESS; ADAPTING OUR RESULTS TO NON-ORDINAL CONTEXTS

We have not formulated uniqueness results for the several functions that we
derived. These follow straightforwardly from the uniqueness result obtained by
Debreu (1960) and Krantz et al. (1971), who showed that the additive representation
V of Theorem 2.6 is cardinal, i.e. it is unique up to a positive affine
transformation.

If one wants to specify V further than (as in most of our results) unique up
to a continuous increasing transformation, then our results may still be useful.
This is because weak 'non-ordinal’ conditions will suffice, in addition to the
ordinal conditions, to give non-ordinal results. A condition such as
[V(x_yo)+V(y_,B) = V(x.,B8)+V(y.,a)] will enable one to replace 'V is a continuous
increasing transform of' in the theorems above by 'V is’, or 'V is a positive
affine transform of'. Multiplicative forms, with positive factors, are
characterized by conditions such as [V(x_jo) x V(y_ 8) = [V(x_8) x VW(y_,a)].

Analogously one may replace ECCI by

(V(x_yo) - Wy B) = Vi(x_;v) - V(y_ 6)] =
[V{v_ja) - V(w_;8) = V(v_y7) - V{w_;68)]

to derive cardinal additive indexes, or, for multiplicative indexes, by the

condition

[V(X-ia)/V(y_iﬁ) - [V(X-iT)/V(Y-iﬁ)] =
(V(v.ya) V(w3 8) = [V(v_ 37}/ V(w_;6)]
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