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It is proved that, under a nontriviality assumption, an additive function on a Cartesian 
product of connected topological spaces is continuous, whenever the preference relation, 
represented by this function, is continuous. The result is used to generalize a theorem of 
Debreu (( 1960). Mathematical methods in the social sciences (pp. 1626). Stanford: Stanford 
Univ. Press) on additive representations and to argue that the algebraic approach of KLST to 
additive conjoint measurement is preferable to the more customary topological approach. 
Applications to the representation of strength of preference relations and to the charac- 
terization of subjective expeeted utility maximization are given. ! ! ?  1988 Academic Press, Inc. 

1. INTRODUCTION AND LITERATURE 

A large number of problems from many fields of science come down to the 
question of how to aggregate several attributes. The simplest and most common 
method of aggregation is the additive approach, in which every alternative is 
evaluated quantitatively with respect to every relevant attribute, and then the 
obtained values are summed to result in the evaluation of the alternative. Some 
examples, among many others, are French and Vassiloglou (1986) for the context 
of examination assessment, Wakker (1984a) for the context of decision making 
under uncertainty, Tversky (1977) for the measurement of similarity, and Koop- 
mans (1972) for dynamic decision making. Because of the multitude of applications, 
it is desirable to find conditions by which to test the appropriateness of such 
additive evaluations, e.g., with preferences, “represented” by the additive 
evaluations, as primitives. Tests of additivity are described in Adams and Fagot 
(1959; a variation on the Thomsen condition, see Definition 4.2, is tested), Coombs, 
Bezembinder and Goode (1967; in their Table 3, triple cancellation, see Definition 
4.3, is tested), Tversky (1967), Tversky and Krantz (1969), and Lukas (1987). 
Falmagne (1976) introduces probabilistic choices in additive conjoint measurement, 
which are desirable when dealing with error in measurement. Necessary and suf- 
ficient conditions for additive representations have been obtained in Scott (1964) 
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and Tversky (1964; see also Krantz, Lute, Suppes, and Tversky (KLST), 1971, 
Sect. 9.2) for the case of finite structures. Unfortunately, these conditions in fact 
constitute an infinite sequence of axioms, so that there is no straightforward way to 
test them. For an algorithm to test additive representability, see for instance 
Roskam (1987). Also, for infinite models necessary and sufficient conditions have 
been obtained in Jaffray (1974a, b). These are still more complicated than those for 
the finite models. 

For this reason approaches other than those which gave the necessary and 
sufficient conditions are usually used. These other approaches use simplifying 
nonnecessary conditions. The most common nonnecessary conditions are of a 
topological nature, requiring continuity. The major advance in the use of this 
approach was the result of Debreu (1960, Theorem 3). Debreu required continuity 
with respect to a “connected” and “separable” topology. (For elementary 
topological definitions, see Kelley (1955).) By themselves these topological 
assumptions are merely “technical.” They have no empirical implications and 
cannot be verified or falsified by observations. Technical assumptions, while not 
very satisfactory, are not very bothersome either. They merely serve to make 
mathematical machinery work smoothly. They are void of empirical meaning, and 
so do not entail obscurity. 

However, when one requires a list of conditions, then one should not judge each 
condition separately, but one should judge the conditions in combination. We give 
an example (Example 7.3) where, paradoxically, each individual condition involved 
is not falsified by the observations, but the combination of the conditions is 
falsified. As it turns out in this example, continuity, in the presence of other con- 
ditions, may have empirical meaning. It is very bothersome that usually the exact 
empirical meaning of simplifying nonnecessary conditions such as continuity is 
unclear. 

An alternative approach has been established, and initiated, by KLST. They also 
use nonnecessary simplifying assumptions, but these are of an algebraic, instead of 
a topological, nature. Instead of continuity with respect to a connected (separable) 
topology, KLST use a solvability axiom (in which we omit the term “restricted”) 
and an Archimedean axiom. There also is obscurity about the empirical content of 
these conditions, in the presence of other conditions, as is again illustrated by 
Example 7.3. Still, this obscurity is somewhat less than that of continuity, as at least 
the Archimedean axiom is purely technical (we will get back to this near the end of 
Section 7). 

Whereas the derivations in the topological approach either, as in Debreu (1960), 
use results from web theory or, as in Gorman (1968), use results from the theory of 
functional equations, the derivations in the algebraic approach are based upon 
algebraic results, such as a variation of the Lemma of Holder in KLST. KLST, 
in Theorem 6.14, showed that whenever the topological approach of Debreu, 
assuming continuity with respect to a connected (and separable) product topology, 
can be applied, then the solvability and Archimedean axiom of KLST are also 
satisfied, so that also the algebraic approach can be applied. KLST also give 
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examples where the algebraic approach, but not the topological approach, can be 
applied (see Examples 7.1 and 7.2 in this paper). This is one reason for considering 
the algebraic approach to be more general. Furthermore, KLST show that, even 
without the requirement of topological separability, the algebraic approach can still 
be applied. This is a second reason for considering the algebraic approach to be 
more general. However, contrary to what is suggested in KLST above Theorem 
6.14 (compare our Section 6), these two reasons are not yet sufficient for concluding 
that their results are more general than those of Debreu (1960) because Debreu 
also derived continuity of his representation; in KLST this is not done. The present 
paper aims to supply this last detail to the work of KLST. So we establish, in our 
main result, Theorem 3.1, continuity of additive representations, on the basis of 
which it can be decided definitively that the algebraic approach has led to more 
general results than the topological approach. With this established, in Sections 4 to 
6 we obtain generalizations of previously published results using the topological 
approach. 

At first sight it may appear that the result of Theorem 3.1 is trivial. To the best of 
our knowledge, it is not. First let us note that, contrary to what is sometimes 
thought, continuity of a binary relation does not automatically imply continuity of 
any representing function. Any (strictly) increasing, noncontinuous function on the 
reals shows this. However, Debreu (1964) showed that there always exists a con- 
tinuous representing function, if the binary relation is continuous. But then, there 
still is no reason to suppose that the additive representing function considered in 
Theorem 3.1 will be such a continuous representing function. Let us also point out 
here that the Cartesian product structure is so dominant in the proof of Theorem 
3.1 that, contrary to what might be expected, the derivations of continuity results 
for “non-Cartesian products,” as in Debreu (1964), Bowen (1968), and Jaffray 
(1975), have not been of direct use in this proof. Jaffray (1974a, Sects. V.7.2 and 
V.8) obtained a characterization of continuity of additive representations in terms 
of an L( . , . , . , . ) function, which measures more or less proportions of differences 
of utilities. Using this, Jaffray (1974a, Sect. VI.2.2) supplied continuity for the 
derivation of the additive representations of Lute (1966), for the case of two coor- 
dinates. Jaffray (1974a, p. 97) already dispensed with topological separability when 
he dealt with the result of Debreu (1960). 

2. PRELIMINARIES 

Throughout the sequel we assume: 

ASSUMPTION 2.1. V, , . . . . %?” are connected topological spaces, with n an arbitrary 
fixed natural number. The Cartesian product X;=, gj is endowed with the product 
topology. By 3 a binary relation on X;=, $ is denoted. 

Let us recall that a topological space ‘$ is connected if ~5 and q are the only 
subsets of g which are both open and closed. Examples of connected topological 
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spaces are Ry, or R. For an element x of X;= 1 gi, xj is the jth coordinate of x. 
Some standard notations for 3 are the following. 

We write x$y if y+x; xxy if x+y and y+xx; x>y if x+y and not y+xx; 
x < y if y > x. We call 3 a weak order if it is both complete (x 3 y or y 3 x, for all 
x, y E X;= 1 qi) and transitive. Then = is an equivalence relation. We call $ con- 
tinuousif (x~X;=,%~:x$y} and {xE~=~~?~:x<~} areclosedforallyEX;=,+?i. 

Notation2.2. F~~xEX;:=~%~, l<i<n, 1dj<n,Vi~%i9 WjEC&>X_iViis(~with 
xi replaced by vi), and for j# i, (xAi,,vi, w,) is (x with xi replaced by ui, and xj 
replaced by wj). 

DEFINITION 2.3. Coordinate (or index) i is inessential if X-~V~Z x for all 
x E XT= 1 wj, vi E Vj. The opposite of inessential is essential. 

The following property is known by many names, such as (preferential) 
independence, additivity, strong (strict) separability, and the sure-thing principle. 
The term below abbreviates “independent of equal coordinates.” 

DEFINITION 2.4. We say $ is coordinate independent (CI) if, for all x, 
YEX;=~%~, l<i<n, vi,wiESi, 

xpivi* y-iui 0 xpiwi* y-,w,. 

If + is CI, then the following notation is useful: 

DEFINITION 2.5. The binary relation + i on Vi is defined by u,+~w~ if there exists 
an XEXJ=,G~;- such that XPiV;+x-iWi. 

The binary relations >i, c i, T I, < xi are derived from +i in the same way as that 
was done without the index i. 

LEMMA 2.6. Let + be a CI weak order on XJ= I W,. Then we have, for every 
l<i$n: [v~+~w~ox~~v~+x-~w~] for all X; >i is u weak order; <;, .(i, Zi, Zi 
can be derived from 4, <, >, z in the same way as 3 i is derived from >; if + is 
continuous, then so is +i. 

Proof: All these results are elementary; some of them are given as exercises in 
KLST (Section 6.1.4). The last statement can be inferred from the proof of Theorem 
6.14 in KLST. 1 

DEFINITION 2.7. We say + satisfies restricted solvability if, for all x-,ai+ y + 
xeici, there exists a bi such that xpibiz y. 

The following result is derived in the first lines of the proof of Theorem 6.14 in 
KLST. 
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LEMMA 2.8. If > is a continuous CL weak order, then it satisfies restricted 
solvability. 

Next we give some standard terminologies for a function V: X;=, Wi + R. V 
represents 3 if, for all X, y E X7= 1 %?ii, [X *y o V(x) 2 V(y)]. V is additive if there 
exist V,: Vj + R, j = 1, . . . . n, such that V(x) = c,“= 1 Vj(x,) for all x. The following is 
verified straightforwardly: 

LEMMA 2.9. If > can be represented by an additive function, then > is CL 

3. THE MAIN THEOREM 

The following result is central to this paper. 

THEOREM 3.1. Let V: X:= 1 gi + R. Let the following five conditions hold. 

(i ) V is additive. 

(ii) GF?, , .,., qn are connected topological spaces. 

(iii) q=, %?; is endowed with the product topology. 

(iv) The binary relation + on X;= L gi, represented by V, is continuous, 

(v) At least two coordinates are essential. 

Then this additive function V is also continuous. 

Proof Forj= 1, . . . . n, let V,:q + R be such that V(x) = c,“= 1 Vj(xj) for all x. It 
is sufficient to prove that every Vj is continuous. So we suppose that V, is not 
continuous, and derive contradiction. 

For some ,UE R, either V;‘(] - CO, p[) is not open or V; ‘( ]p, co [) is not open; 
say the latter. Then certainly 

4z V,‘(lPL, co[)#~~. (3.1) 

Also there can be no sequence (V,(x:))~= 1 in ]p, co [, converging to ,u, because 
then, V, representing +,, V;‘(]p, cot) would equal Uk(zl:zl>, x;k>, so that by 
Lemmas 2.9 and 2.6 ( +i is a continuous weak order) openness of V; ‘( ]p, CO [) 
would result. We conclude that 

inf V, (Vi ) n ]fi, co [ =: v satisfies v > p. (3.2) 

Next we shall derive 

0-c V,(x,)- vj(yj)<v-p for noj# 1, xi,yj. (3.3) 

If, to the contrary, j # 1 and 0 < Vj(.xj) - Vj( y,) < v - p, then, with z E x;= 1 Q$ 
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arbitrarily fixed, with a, ~55’~ such that V,(x,) - V,(y,)> V,(a,)- v 20, and with 
c,E%, such that V,(C,)Q~ (by (3.1) such a c1 exists), we get for these a,, c, 

by substitution of inequalities in terms of the V;s. By restricted solvability 
(Lemma 2.8), there exists a b, such that (z ..,,,b,, .yi) 2 (z_~,~ a,, y,). This would 
now imply v > V,(b,) > p, in contradiction with the definition of v. Apparently (3.3) 
must hold. 

There is a j# 1 which is essential, from which it follows that V, is not constant. 
Say Vj(x,)> V,(y,). As a consequence of (3.3) a zj must exist such that Vj(~xj)> 
Vj(zj), and Vj(x,)> Vj(uj)> Vj(zj) for no u,E%?,. This finally gives {ui~Vj: 
vj dj z,} = {v, E qj: vj <., -xi>, where this latter set contains zj so it is nonempty, does 
not contain xi so it does not equal Vj, and is both open and closed by continuity of 
the weak order ki. Contradiction with connectedness of wj follows. 1 

4. APPLICATIONS TO ADDITIVE REPRESENTATIONS 

The first theorem of this section extends Theorem 3 of Debreu (1960) and 
Theorem 6.14 of KLST. 

THEOREM 4.1. Let %$, . . . . %,, be connected topological spaces; let X7= I 9Si be 
endowed with the product topology. Let 3 be a binary relation on X;=, Wi, with at 
least three coordinates essential. Then the following two statements are equivalent: 

(i) There exists a continuous additive representation for +. 

(ii) The binary relation 3 is a continuous coordinate independent weak order. 

Proof. The implication (i) * (ii) is straightforward, so we assume (ii), and 
derive (i). By Theorem 6.14 of KLST, there exists an additive representation. By 
our Theorem 3.1 this representation is continuous. So (i) holds. 1 

Next the results of KLST for the case of exactly two essential coordinates are 
adapted to the topological approach. For notational simplicity we shall assume that 
n = 2 and that both coordinates are essential. Inessential coordinates do not affect 
binary relations which are weak orders, and a function which represents 3 is 
independent of the inessential coordinates. Hence inessential coordinates may just 
as well be suppressed from notation. 

DEFINITION 4.2. Let n = 2. We say that $ satisfies the Thomsen condition if, for 
allal,bl,cl~~,ands2, t,,v,E%, (a,, t2)z(b,,s2)and (b,,u,)z(c,, t2) together 
imply (a,, 4 = (cl, h). 
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DEFINITION 4.3. Let n = 2. We say that 3 satisfies triple cancellation if, for all 
al,b,,cl,d,~~,andsz,t2,~2,w2~~2z,(a,,~2)~(~,,t2)and(~,,~2)~(d,,t2)and 
(a,, u2) k (b,, J+~~) together imply (cl, u2) 3 (d, , ~7~). 

THEOREM 4.4. Let %?, , ?Z2 be two connected topological spaces; let %7, x +Z2 be 
endowed with the product topology. Let 3 be a binary relation on G& x W2, with both 
coordinates essential. Then the following three statements are equivalent: 

(i) There exists a continuous additive representation for 3. 

(ii) The binary relation 3 is a continuous coordinate independent weak order 
that satisfies the Thomsen condition. 

(iii) The binary relation 3 is a continuous weak order that satisfies triple 
cancellation. 

Proof. The implications (i) =z= (ii) and (i) * (iii) are straightforward. To derive 
(ii)*(i) [respectively (iii) * (i)], we assume (ii) [respectively (iii)]. In the proof of 
Theorem 6.14 in KLST, it is shown that continuity of + w.r.t. a connected product 
topology implies restricted solvability and the Archimedean axiom/property there. 
Although this is done for a case with three or more essential coordinates, the 
reasoning literally applies to our case, with two essential coordinates. Hence, by 
Theorem 6.2 [respectively the indications at the end of Section 6.2.41 of KLST, an 
additive representation exists for 3, this being a weak order which satisfies restric- 
ted solvability, the Archimedean axiom, and further CI and the Thomsen condition 
[respectively further triple cancellation]. By our Theorem 3.1, the additive 
representation is continuous. 1 

Gorman (1968, Sect. 5, corollary of Theorem 2) strengthened Theorem 3 of 
Debreu (1960) (i.e., our Theorem 4.1 restricted to (topologically) separable q’s) by 
showing that the coordinate independence condition can be weakened. Gorman did 
this for separable arc-connected spaces gj. The question whether the above-men- 
tioned, and other, results of Gorman (1968) also hold for connected (instead of arc- 
connected) separable spaces initiated a discussion in the literature. Murphy (198 1) 
refers to Gorman (1971) and Vind (1971), and Sertel (1972) and Vind (1974); 
furthermore, Murphy gives an elementary proof to show that Gorman’s results do 
indeed hold for connected separable spaces. The results of this section suggest a 
topic for future research: Do (some of) Gorman’s results also hold for connected 
topological spaces which are not separable? 

We have not paid attention to uniqueness results. They are standard, and the 
additive representations V that we derived are all cardinal, i.e., can be replaced by a 
function V* if and only if a real r and a positive c~ exist such that V* = t + aV. This 
is proved in KLST. 
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5. AN APPLICATION TO THE REPRESENTATION OF STRENGTH OF PREFERENCE 

In this section we assume that n = 2, V, = wZ = %?. Greek characters denote 
elements of C. We interpret 3 on V2 as a “strength of preference relation”; i.e., 
(a, j?) 3 (y, 6) means that o! is preferred to fi at least as intensively as y to 6. The 
following two conditions of KLST are central to the characterization of a strength 
of preference relation through utility differences. 

DEFINITION 5.1. The binary relation 3 on V2 satisfies the reversal condition if, 
for all 4 P, Y, 6 E Qf:, [(a, 8) + (Y, 6) - (6, Y) + (it a)]. 

DEFINITION 5.2. The binary relation + on g2 satisfies the concatenation 
condition if, for all tl, /?, y, tl’, B’, y’ E%‘, [(a, /I)> (a’, fl’) and (/I, y)+ (/I’, y’)] * 
Cl4 Y 13 (a’, ~71. 

With these we get: 

THEOREM 5.3. Let %? be a connected topological space, and let $ be a binary 
relation on V2. The following two statements are equivalent: 

(i) There exists a continuous function U: V -+ R such that > is represented 
by the function (a, 8) H U(a) - U(b). 

(ii) The binary relation + is a continuous weak order, that satisfies the reversal 
and concatenation conditions. 

Proof The implication (i) + (ii) is straightforward. So we assume (ii) and 
derive (i). In Definition 4.3 in KLST, conditions 1 (3 is a weak order), 2 (the 
reversal condition), and 3 (the concatenation condition) are directly seen to hold; 
conditions 4 and 5 are closely related to restricted solvability and the Archimedean 
axiom and can be derived from continuity of +, analogously to the proof of 
Theorem 6.14 in KLST. We do not elaborate on this. Once these live conditions are 
verified, by Theorem 4.2 of KLST there exists a function U: %? + R which, with the 
exception of continuity, satisfies all of statement (i). 

The continuity of U remains to be derived. If coordinate 1 is inessential, then U 
must be constant, and so continuous. If coordinate 1 is essential, then so is coor- 
dinate 2, by the reversal condition. By Theorem 3.1, the function which assigns 
U(a) - U(p) to every (a, /I) E V2 is continuous. So U is continuous. 1 

The above theorem shows how Theorem 4.2 of KLST can be used to generalize 
earlier results in the literature for topological contexts; see the beginning of Sect. 4.4 
in KLST for early references. In a more recent study by Shapley (1975; given in 
Shubik, 1982, Appendix 3), for the case that % is a convex subset of R, a charac- 
terization of (i) in the above theorem (with U strictly increasing) is given, in which 
the reversal and concatenation conditions are replaced by monotonicity conditions 
(implying CI) and a “crossover axiom” [(a, /I) z (y, 6) o (a, y) z (p, S)]. Shapley’s 
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work turned out to be a generalization of Alt (1936). We conjecture that Shapley’s 
result can also be extended to any connected topological space %?. 

In Sect. 6 of Wakker (1988) an alternative way to characterize (i) in Theorem 5.3 
is indicated. The main condition used there is equivalence cardinal coordinate 
independence, obtained from Definition 6.1 (introduced in the next section) by 
replacing <, and all +‘s, by x . 

Uniqueness results concerning the function U in (i) of Theorem 5.3 (this U is car- 
dinal) have been discussed extensively since this played a role in the cardinal versus 
ordinal utility discussion around 1930. Basu (1982) provides references on the 
history of this topic. A recent study of this discussion can be found in Cooter and 
Rappoport (1984; see also Little, 1985; Cooter and Rappoport, 1985). Basu extends 
the uniqueness result for the function U above by showing that continuity of U is 
not necessary: connectedness of U(V) is already sufficient. The approach of KLST 
shows a way to further extend this: the only nonnecessary condition (4), some sort 
of restricted solvability condition, used in the derivation of a cardinal utility 
function U in Theorem 4.2 of KLST, is implied by connectedness of U(W) and is 
essentially weaker than connectedness of U(V)), as can be inferred from the lines 
above Definition 6.14 in KLST (let %? be the set of rational numbers, U identity, 
etc. ). 

6. AN APPLICATION TO DECISION MAKING UNDER UNCERTAINTY 

We deferred until the end a further application of Theorem 3.1: it supplements an 
omission in a proof published earlier by the author. Let us assume that 
y= ... = %‘,, = V; again Greek characters denote elements of V. There is a set of n 
states of nature, of which exactly one is true; the others are untrue. An element 
x = (x, ) . ..) x,) of QY is an “act,” yielding “consequence” Xj~ %$ if the $h state of 
nature is the true one. The binary relation 3 is the “preference relation” of a 
decision maker, who is uncertain about which state of nature is the true one. 
Elucidation of the following condition is given in Wakker (1984a). A motivation for 
the chosen term can be inferred from the italicized part of the proof sketch of 
Theorem 6.2. 

DEFINITION 6.1. The binary relation + on V’ satisfies cardinal coordinate 
independence (CCI) if, for all X, y, u, w  E %?“; a, fi, y, 6 E %?; 1 <j 6 n; and 1~ i < n 
with i essential, the three preferences 

X-p4.L$3 V-jU*W-jfi, x-,y@y-j6 

together imply the fourth preference v-]y 3 w-~S. 

The following theorem characterizes “subjective expected utility maximization” 
with a continuous utility function. It was published before in Wakker (1984a) for 
the case where % is an open interval, and in Wakker (1986, Theorem 5.1) in its 
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present form. Unfortunately, in the proof of the latter there was an omission in the 
derivation of continuity of the obtained “utility function” U. The author was mis- 
taken in his belief that in (the proof of) Theorem 6.14 in KLST continuity of the 
representing function was also derived, as it was in Debreu (1960, Theorem 3). Out 
of this omission the present paper has evolved. Continuity of the function U below 
only now follows, after the derivation of Theorem 3.1, with the substitutions 
V, :=p,U. So we now have: 

THEOREM 6.2. Let 59 be a connected topological space, and + a binary relation on 
59” with at least two coordinates essential. Then the following two statements are 
equivalent: 

(i) There exist nonnegative pl, . . ..pn. summing to one, and a continuous 
function U: % + R, such that, for all (x,, . . . . x,) and (yl, . . . . y,,)~%?‘, 

(x 1, . . . . X,)3(Y,l -.,Yn)- i Pj”tx,) a i Pj u( Yj). 
j=l I=1 

(ii) The binary relation 3 is a continuous weak order which satisfies cardinal 
coordinate independence. 

Proof Sketch of (ii) + (i). The CC1 condition can be seen to imply CI, and triple 
cancellation for n = 2. Hence by Section 4 an additive representation V, say 
V: x H C Vj(xj), exists, with all Vi continuous. Now CC1 implies, roughly, that V 
orders (“first-order”) differences the same way across states (coordinates), by the 
V,‘s. As Basu (1982) showed, this implies the V,‘s to be in the same “cardinal class,” 
the Vi’s being continuous functions on connected domains. Giving the Vys a com- 
mon zero leads to statement (i). 1 

The adaptation of the above theorem to arbitrary, possibly infinite, state spaces 
has been given in Wakker (1984b). Grodal (1978, Theorem 3) gave an alternative 
characterization of subjective expected utility maximization with continuous utility 
in a slightly different model. The main difference from our result is that, instead of 
cardinal coordinate independence, she uses a condition in terms of a mean 
groupoid operation which is derived from the preference relation, using continuity. 

Again uniqueness results are standard, the function U above is cardinal, and the 
“subjective probabilities” p,, . . . . p,, are uniquely determined. 

7. EXAMPLES AND DISCUSSION 

A first contribution of Theorem 3.1 is one of a mathematical nature. It supplies 
the last tool needed to show that the topological result of Debreu (1960) can fully 
be obtained as a corollary of the algebraic approach, and that this alternative 
algebraic approach in fact leads to a more general result than the method of 
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Debreu (1960). Some generalizations of existing results that can be derived by this 
method have been given in previous sections. 

Let us now prepare for a discussion of the significance of Theorem 3.1 for the 
(non)testability of axioms. Analogous remarks apply to the results as derived from 
this theorem in previous sections. First we compare the algebraic approach and the 
topological approach. So we make a comparison between, on the one hand, the 
combination of solvability and the Archimedean axiom, and, on the other hand, 
continuity with respect to a connected topology. We give two examples of KLST to 
show that the algebraic approach is applicable to more cases than the topological 
approach. In the examples the algebraic conditions are satisfied, and the approach 
of KLST can be applied. The topological conditions of continuity with respect to a 
connected topology cannot be satisfied in these examples, for instance, because the 
examples concern countable spaces, whereas the continuous image of a connected 
topological space, if not degenerate, is an interval, and so contains an uncountable 
number of points. 

EXAMPLE 7.1. Let X= (1, 2, 3)‘. Let (x,,x~, x,)+(y,,y2,y3) if and only if 
x, + x2 + x3 3 y1 + y, + y,. Obviously [ I’, = V, = V, = identity] yields an additive 
representation for 3. This is an example of an “equally spaced” structure as 
indicated in KLST. 

EXAMPLE 7.2. Let X=Q3. Again let (x,,x~,x~)&(~,,Y~,~~) if and only if 
x, + .x2 + x3 %J’, + y, + y,. Again [ I’, = V, = V, = identity] yields an additive 
representation for &. This example was indicated by KLST (1971, p. 302). 

Let us next point out a difficulty in the (non)testability of continuity and 
solvability. This was already explicated in KLST (1971, Sect. 9.1). 

EXAMPLE 7.3. Suppose a person has a preference relation 3 on R3, for the 
definition of which we lirst introduce functions V,, V,, V,: R + R. Let V,(p) = 1 for 
all p > 0, Vi (0) = 0, V,(p) = - 1 for all p < 0. Let V, = V, . Let V3 = 5 x Yr _ Suppose 
that in fact (x,, x2, x3) 3 (y,, y,, y3) if and only if CJ’= i P’,(x,) 2 I;=, V,(y,), with 
one exception. If V,(x,) = V,(J~~) = 1, V,(x,) = V,(y,) = 0, and V3(xJ) = V3(y3), 
then not (X~,X~,X~)Z(Y~,YZ~Y~), but (Xl,X2,x3)>(Yl,Y2,Y3). Obviously the 
preference relation is a weak order, and all three coordinates are essential. It is 
tedious, but straightforward, to check that the preference relation satisfies coor- 
dinate independence. It does not satisfy restricted solvability, as follows from 
(1,0,1)~(0,0,1)>(1,0,0)andthenonexistenceof~suchthat(1,0,~)~(0,0,1). 
Hence a fortiori it is not continuous. Now suppose a scientist wants to find out 
about this preference relation, in particular if it is additively representable. The 
scientist observes the following preferences: (1, 1, l)> (l,O, I)> (0, 1, l)> 
(1, -1,l) x (O,O, 1) z (-l,l,l) > (-l,O, 1) z (0, -1,1) > (-1, -1,l) > 
(1, 1,O) > (LO, 0) > (0, f,O) > (1, -1, 0) z (O,O,O) % (-l,l,O) > (-l,O,O) 
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= (0, -LO) > (-1, -LO) > (l,l, -1) > (LO, -1) > (O,l, -1) > 
(1, -1, -1) = (O,O, -1) = (-1,1, -1) > (-JO, -1) Z (0, -1, -1) > 
( - 1, - 1, - 1). These preferences indeed reveal that all coordinates are essential; 
and obviously they do not reveal a violation of coordinate independence, transi- 
tivity, or completeness. But neither can they reveal a violation of continuity or 
solvability. It is straightforward, but tedious, to construct a preference relation 
which satisfies continuity and hence solvability and which agrees with all preferen- 
ces as observed by the scientist. Suppose that the scientist would not be aware of 
the fact that continuity and solvability, while by themselves without empirical 
meaning, do add empirical meaning to the other axioms. Then he might think, on 
the basis of Theorem 4.1, that an additive representation exists for the observed 
preferences, or at least that his observations do not falsify additive representability. 
The scientist would be mistaken in this. Whereas no single condition of statement 
(ii) in Theorem 4.1 can be falsified, their combination can be, paradoxical as this 
may seem. 

To see this, suppose IV,, W,, W, would yield an additive representation. Then 
the preferences (-1,0,0)~(0, -1,O) and (1, -1,0)=(-l, LO) would imply 
the equalities W,( - 1) + W,(O) = W,(O) + W,( - 1) and W,( 1) + W,( - 1) = 
W, ( - 1) + W,( 1). Summing left sides, and summing right sides, and cancelling terms 
W,( - 1) and W,( - 1) yield W,( 1) + W,(O) = W,(O) + W,(l). This should imply 
(LO, 0) z (0, 1, 0), in contradiction with the observed (LO, 0) > (0, l,O). The finite 
number of observations does already falsify additive representability. If the scientist 
supposes that the preference relation is a coordinate independent weak order, then 
from a finite number of observations he can, on the basis of Theorem 4.1, conclude 
that the preference relation does not satisfy solvability, and therefore not continuity. 

Let us emphasize that, of course, the exact empirical content which continuity 
and/or solvability add to other conditions depends on what these other conditions 
are. The statements in this paper all apply to the case of statements (ii)/(iii) in 
Theorems 4.1, 4.4, 5.3, 6.2. An alternative approach, very interesting in relation to 
the present discussion, is given by Fuhrken and Richter (1988). Instead of the CI 
condition in statement (ii) in Theorem 4.1, or analogous conditions in statements 
(ii)/(iii) in Theorem 4.4, they require conditions of Scott (1964), which is equivalent 
to requiring all “cancellation axioms” of KLST, rather than just one or two as is 
done in most other approaches, including that of our paper. These cancellation 
axioms are necessary and sufficient for additive representability in the case of finite 
structures. Furthermore, Fuhrken and Richter (1988) use topological connected- 
ness, already dispense with topological separability, and use a “sectional continuity” 
condition which is somewhat weaker than continuity. By requiring all cancellation 
axioms, Fuhrken and Richter (1988) succeed in making the continuity condition 
purely technical. A problem with the cancellation axioms is that they form an 
infinite list of axioms (Adams, Fagot, and Robinson (1970) refer to Titiev (1969) 
for this), so that their empirical verification remains problematic. Adams, Fagot, 
and Robinson (1970, p. 406, lines 12-13) consider a case where there are more non- 
necessary conditions in addition to continuity. In this case it remains unclear 
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whether continuity is purely technical. Narens (1985, Theorem 1.8.3) gives an exam- 
ple where an Archimedean axiom does add empirical meaning to other axioms. 

Now we can address the contribution of Theorem 3.1. Without this theorem one 
might at first sight conjecture the following. Suppose that continuity with respect to 
topological connectedness is satisfied, so that the algebraic approach can be adop- 
ted, but, at first sight, the topological approach possibly cannot be. Then one may 
conjecture that the algebraic approach will lead to noncontinuous representations, 
so representations intrinsically different from those that result when the topological 
approach is adopted. Then, to apply the results derived in the topologically orien- 
tated literature for the representations obtained there, one would still have to check 
the remaining condition of topological separability or determine continuity in 
another way. Theorem 3.1 shows that the conjecture as described above does not 
hold. The algebraic approach does not lead to an intrinsically different represen- 
tation, and one can indeed apply the results from the topologically orientated 
approach. An example of such results is, for the context of decision making under 
uncertainty (Section 6), the study of comparisons of risk aversion in the attitudes of 
people towards risk, as initiated by Pratt (1964) and Arrow (1971). That such 
results can be obtained under continuity restrictions, without the need for differen- 
tiability restrictions, has been shown in Wakker, Peters, and Van Riel (1985). 

Whenever both the algebraic and the topological approach can be used, they lead 

to the same representation, Thus, by Adams, Fagot, and Robinson (1970; 
analogous to their Theorem 3) at least part of the nonempirical implications of 
continuity has been identified by the algebraic approach: that contained in the 
Archimedean axiom. 

Another question concerns the appeal of the conditions. How close are the 
algebraic and topological conditions to an intuitive perception of human beings? 
We are not aware of actual experiments to determine this, so let us only give a per- 
sonal opinion and some references. We find continuity an appealing condition when 
formulated in a space with a natural metric. The condition of topological connec- 
tedness is less easy to appreciate. Solvability in our opinion is more directly related 
to intuition and preferences than to continuity with respect to a topologicaliy con- 
nected space. Let us finally refer to authors arguing for continuity in several con- 
texts, where one should realize that continuity has a much longer history. Savage 
(1954, p. 77, in particular line 16) argues for the naturalness and usefulness of using 
infinite models with continuity. Arrow (1971, p. 48, lines 25 on), in a different con- 
text with a Monotone Continuity condition, writes: “The assumption of Monotone 
Continuity seems, I believe correctly, to be the harmless simplification almost 
inevitable in the formalization of any real-life problem.” Richter (1980), for the con- 
text of ordinal measurement, argues for the use of general topology, rather than the 
less general metrical spaces, or the still less general Euclidean spaces. Our paper, for 
the context of additive representations, has argued for the still more general 
algebraic approach. 
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8. CONCLUSION 

This paper has studied additive representing functions and their specified forms. 
We have shown how results, obtained by the algebraic approach of KLST, can be 
applied to topological contexts. We have argued that the algebraic approach is 
preferable to the topological approach. 
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