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1. INTRODUCTION

From a mathematical point of view many results from game theory and
decision making under uncertainty are equivalent. An example is the cha-
racterization, as the class of "balanced" games, of the class of coopera-
tive games with side-payments which have nonempty core. This was found
by Shapely (1967); earlier Bondareva (1963, in Russian) had obtained this
result; see also Driessen (1985, section 2.8). In Huber (1981, Lemma
10.2.2) the same result, obtained independently, is giwven for the context
of decision making under uncertainty. Many other results have been for—
mulated for one of the two contexts, but seem to be as interesting when
formulated for the other context. One such example, not elaborated in
this paper, is the theory of "belief functions" of Shafer (1976) , formu-
lated for the context of decision making under uncertainty. We think
that notions such as the "degree of internal conflict" of a belief function,
as developed by Shafer, are of utmost interest when studied for game
theory. For a concise introduction into the basic concepts of Shafer's
theory, see Zang (1986, section 1).

This paper presents new approaches to several topics in game theory.
The obtained results have in common that they have been derived, by simple
translation algorithms, from results on probability theory and decision
making under uncertainty. Section 5 will show how this was done. Further
in section 5 proofs will be indicated.

The aim of this paper is to show the usefulness of the adopted trans-

lation algorithms.
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2. ORDERING COALITIONS IN CCOPERATIVE GAME THEORY

First we present the basic definitions of the theory of cooperative
games with side payments. Let N = {1,...,n} be a nonempty finite set of
players, and 2N the set of coalitions. A function v : 2" -+ R with v(@g) =
0,8 2T = v(s}) 2 v(T), and v(N) = 1 is called characteristic function; the
second (monotonicity) condition, and the third (normalizing) condition,
are not generally assumed in literature, but for convenience will be assu-
med throughout this paper. The gquantity v(S) may designate for instance
the power, or earnings, or (negative) costs of a coalition S, or the num-
ber of publications of $ in the International Journal of Game Theory; in
this paper v(S) will be called the wort# of the ccalition S. An element
X = (xl,...,xn) € R? is an allocation, and is interpreted as a function,
assigning xj to player j, for all j. 1In this paper:R+ is the set contai-

ning 0 and all positive real numbers. The gquantity xj may for instance
n

L X

=13

the worth of the "grand" coalition {1,...,n}, and x is called efficient.

stand for money. If £ = v(N), x may be interpreted as a division of
A central question in the thecry of cooperative games with side payments is
the question which efficient allocation is "fair" for a characteristic

function v. The usual procedure to determine this is to compare the amount

x(8) = X allcocated to the coalition S, with the worth v(S) of the

jEs*5”
coalition S, and,feor instance, to take as a criterion that every x(S)
should be at least as large as the worth of the coalition. 1In that case
X is called a core allocation.

This paper will propose criterions of a different character. The idea
of our criterions will be that the central notions to be considered are
the orderings of coalitions as induced by the worths and allocations, and
not the worths and allocations themselves. As an example where this may
be natural think of the many cases, e.g. in politics, where an (inefficient)
allocation (5,5,...,5) over a set of persons with equal worth is preferred
over an allocation (6,7,6,7,...), simply because the second allocation would
induce "unjust" inequalities, and tensions. As a second example think of
definitions of wealth which say that a person is rich if she (or he) belongs
to the 20 percent of most wealthy persons in her country. B&Again it is the

ordering induced by allocated money which is relevant, not the absolute
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amounts of money.
Let us now consider some criteria of the new kind. They all express

the idea that more worthy ccalitions should get allocated more.

DEFINITIONS 2.1. An allocation x is

Almost agreeing with v if, for all coalitions S,T,
[v(s) 2 v(T) = x(8) 2 x(T)];

Strictly agreeing with v if, for all coalitions S,T,
[v(s) > v(T) = x(s) > x(T)];

Agreeing with v if, for zll coalitions S,T,

[vis) 2 v(T) ® x(S) 2 x(T)].

The first criterion above might be called "socialistic" since it allows
for the occurrence of coalitions S,T with x(8) = x(T) while v(8) > v(T),
whereas v(S) = v(T) will always imply x(S) = x(T); thus equality is in-
creased by it. The second criterion might be called "capitalistic" since
it allows for the occurrence of coalitions S,T with x(8) > x(T) while

v(8) = w(T), whereas v(S) > v(T) will always imply x(S) > x(T)}. Obviously
an allocation is agreeing if and only if it is both strictly agreeing and
almost agreeing. Also one elementarily verifies that x is almost agreeing
with v if and only if, for all coalitions S,T, [x(S) > x(T) = v(5) > v(™ ],
and strictly agreeing with v if and only if for all coalitions S,T,

[x(s) 2 x(T) = v{s) 2 v(D)].

It will be observed that nct for every characteristic function v there
exist agreeing allocations x. For example let N = {1,2,3}, and let v
assign 1/3 to every one-player coalition, 1/2 to {1,2}, and 2/3 to every
other two-player coalition. Then, to be agreeing, X will have to assign the
same to every one-player coalition, which will imply x{1,2} = x{2,3}; howeve:
v{1,2} < vi2,3} should imply x{i,2} < x{2,3}. The characteristic function

just described does not satisfy the following condition (set S = {1},

T = {3}, v = {2} in the definition below ):

DEFINITION 2.2. The characteristic function v is ordinally additive if,
for all coalitions S,T,Vwith SNV =¢=TNV :
v(S) 2 v(T) & v(s U V) 2 v(T UV).
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It is straightforwardly verified that this condition is necessary for the
existence of an agreeing allocation. Still, it turns out not to be suffi-

cient, as the following example shows.

EXBMPLE 2.3. (Kraft, Pratt & Seidenberg). Let N = {1,2,3,4,5}, and let

v(ig) = 0, v{1} = 2/32, w{2} = 3/32, v{3} = a/32, w{1,2} = 5/32, v{1,3}=6/32,
vi4} = 7/32, v{1,4} = 8/32, v{2,3} = 9/32, {5} = 10/32, v{1,2,3} = 11/32,
viz2,4} = 12/32, v{3,4} = 13/32, v{1,5} = 14/32, v{1,2,4} = 15/32, v{2,5}=
16/32, v{1,3,4} = 17/32, v{3,5} = 18/32, v{2,3,4} = 19/32, v{1,2,5} = 20/32,
v{1,3,5} = 21/32, v{4,5} = 22/32, v{1,2,3,4} = 23/32, v{1,4,5} = 24/32,
v{2,3,5} = 25/32, v{1,2,3,5} = 26/32, v{2,4,5} = 27/32, v{3,4,5} = 28/32,
v{1,2,4,5} = 29/32, v{1,3,4,5} = 30/32, v{2,3,4,5} = 31/32, v(§) = 1.

I

1t is straightforwardly checked that this v is a characteristic function
which satisfies ordinal additivity. Still, nc agreeing allocation x

exists since the inequalities x{1} + x{3} < x{4}, x{1} + x{4} < x{2} +=x{3},
2{3} + x{4} < x{1} + x{5}, =x{2} + x{5} < x{1} + x{3} + x{4}, when added up,
reveal a contradiction.

In the above example there does exist an almost agreeing efficient
allocation, viz. (1/16,2/16,3/16,4/16,6/16) . Theﬁe do exist characteristic
functions for which no almost agreeing efficient allocation exists, and
characteristic functions for which no strictly agreeing allocation exists,
whereas these characteristic functions do satisfy ordinal additivity.
Further it can be seen that for all cooperative games with side payments
with less than five players, ordinal additivity is sufficient for the
existence of agreeing allocations. For all cooperative games with side
payments with less than six players ordinal additivity is sufficient for
the existence of an almost agreeing efficient allocation. The reader may
want to check these facts by writing a computer program on his personal
computer which checks all cases.

The necessary and sufficient conditions for the existence of the seve-
ral kinds of agreeing allocations can be obtained by standard applications

of theorems of the alternative, (see for instance Scott, 1964), and are as

follows, with x =£ y if xj s Yj for all j,x >> y if xj > yj for all j,
and x > yv if x. 2 vy, for all j, and x # y.
# J J

THEOREMS 2.4. There exists an almost agreeing efficient allocation if and
only if : For every pair of sequences of coalitions (S;,....,S ) and
(Tl,...,Tn} for which every player cccurs in more coalitions in the left
sequence than in the right

not(v(s,) ..., v(S )) s= (V(Tl),---,v(Tn)). (2.1)

There exists a strietly agreeing efficient allocation if and
only if : For every pair of sequences of coalitions (51,-..,sn) and
(Tl,...,Tn) for which every player oceurs in at least as many coalitions in
the left sequence as in the right

not{viS,} ..., v(S )) >> (VT ey V(T D) (2.2)

There exists an agreeing efficient alloeation if and only
if : For gvery pair of sequences of coalitions (sl....,sn) and {Tl,...,Tn)
for which every player occurs in the same number of coalitions in the left
sequence as in the right

not(v(8,) ..., V(S )) > (VAT ) geenyVIT D). (2.3)

# ; o

Obviously the third condition in the theorem has to imply ordinal additivity
of v. Note that the only property of v, used in our analysis, has been the
way v orders the cocalitions. Thus we might also have taken an ordering of
the coalitions, instead of v, as primitive in our analysis. Note that
without the efficiency restriction there always exists an almost agreeing
allocation : (0,...,0). For agreeing allocations, and strictly agreeing
allocations, w{1,...,n} is positive, so x can always be normalized, and
the.reéuirement of efficiency in the above theorem does not induce any
restriction, so might have been omitted.

We end this section with a conjecture : there exists a characteristic

function which is ordinally additive, which has both an almost agreeing

and a strictly agreeing allocation but no agreeing one.
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3. BANKRUPTCY PROBLEMS

Let n €EN be fixed, n 2 3. Let E € N be fixed, and let
a = (dl,...,dn) E‘NE. E is an amount of money, to be divided among n
players (or claimants) 1,...,n where each player j has advanced a claim
of d.. For any d, by d+ we denote the total amcunt Edjsaf claims. A
division rule £ : Ng >R is a function which assigns to every claim
d = (dl""’dn) a sequence of proportions (fl(d),...,fn(d)), with fj(d) 20
for all j, and ij(d} = 1, such that player j will receive a portion
fj(d) % E of the amount E. Obviously one might think of other interpreta-
tions, e.g. where dj reflects the salary of a person j, and fj(d} the tax
which the person is to pay; also dj may stand for investment, cne-player-
coaliticn-worth, etc. Our set-up differs from the usual set-ups such as
pumann, R.J. & M.Maschler (1985), Moulin (1985a,b), Curiel, I., M. Maschler
& S.H. Tijs (1986), and Young (1987) in considering only natural numbers
as claims (and amounts) to be divided, and in leaving out of the analysis
variability of the amount E to be divided.

We shall now proceed to consider some conditions for division rules.

DEFINITION 3.1. We call f monoteone if, for all i and 4 -

£.4d

5 1""'di+l""’dn) >f£.(dy,.--d,-..,d ) -

b n
So if a player can increase her (or his) claim, it will give her a larger

portion of the amount E.

DEFINITION 3.2. We call a player i uninvolved for the division rule £ if,
for all j # 1 # k, and all 4 :

fi(d :---rd-+1:---fd I---'dn) = fi(dlr---rdjr—--rc‘i](+1;---ldn)-

1 j k
So if a player i is uninvolved, she has no interest in a replacement of part
of the claim of player j to another player k. Her proporticn fi(d) will
depend only on her own claim di and the total claim (d+ - di) of the othexr
players, as is easily verified. It protects player i against a manipula-
tion of the remaining players to increase the sum of their shares by re-

distributing amongst each other the sum of their claims. Moulin (1985a)
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introduced the condition that all players shall be uninvolved in a related

context and called it "No Advantageous Reallocation".

DEFINITION 3.3. We call a pair of players i,j proportionally uninvolved
if, for all i # k # J :

fi(dl""'dk+1""'dn) fi(di""'dk""'dn)

fj(dll---rdkf--'rdn)

fj(dl....,dk+1,...,dn)

where one denominator being zeroc is to imply that the other denominator

is zero too; in the presence of monotonicity that can only happen if dj =0

So then the proportion of the portions that player i and j receive
from E depends only on di and dj, and is independent of the other claims.
This condition is somewhat stronger (in also restricting fi/fj if fi + fj
varies) than the consistency property as introduced in Kolm (1976, in a
context with varying number of players and nonrational claims and amounts
E); see also the consistency condition in Moulin (1985b). Now we charac-

terize the division rules with the above properties.

THEOREM 3.4. For a division rule £ the following two statements are
equivalent :
(i) There exist nonnegative constants Yl""’Yn’ summing to one, and a
nonnegative constant XA, such that for all i
A +
( Y5 di)

£, : dp

i (n =+ d+)

(ii) The division rule f satisfies monotonicity, every player is uninvol-

ved, and every pair of players is proportionally uninvolved. o

Note that fi as in (i) above can be considered to be a convex combination
of the amount Yi that player i would receive if no player would have clai-
med anything, and di/d+,the share of the total amount of claims that has
been advanced by player i, with weights respectively A and d+. An indica-
tion of a full proof is provided in subsection 5.2. Let us just sketch
here a way of proof. It is straightforward that statement (i) above im-

plies (ii). So we assume (ii), and derive (i). First one determines the
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constants Yl""‘Yn as fI(O,...,O),...,fn(O,...,O). Next one calculates

A from fl(l,D,...,O) = (lYl + 1)/(A + 1). Note that the division rule as
defined in (i) above is one division rule with the mentioned values
fl(O,...,O),...,fn(O,...,G) and fI(l,O,...,O), satisfying all conditions
of (ii). Finally the most involved part of the proof is to demonstrate
that the above-mentioned wvalues of f, together with the mentioned condi-
tions, uniguely determine all values £(d) with d+ = 1, next those with

d+ = 2; by induction with respect to d+, the uniqueness of f(d) follows
for all 4. 1In this the monotonicity condition serves to prevent that

certain equalities will reduce to the trivial 0 = 0.
4. BETTER AND WORSE ALLOCATIONS

As in the previous sections, we consider in this section the question
of how to choose between several possible allocations (xl,...,xn) over n
players. And, as in section 2, a characteristic function v will occur in
our analysis. Still the approach of this section will be different, and
in Theorem 4.2 the status of observability of v will differ from the usual
set-up in the theory of cooperative games with side payments.

Let us first sketch the approach by means of "Chogquet integrals" , cen-
tral for this section. For simplicity of exposition we shall assume that
an arbitrator will finally decide which of a set of available allocations

to choose.
4.1. The choquet—integral-approach

The approach of this subsection will be split up in six stages.
Stage 1. The arbitrator concentrates for a moment on one available allo-

cation x.

Stage 2. For this allocation x, the arbitrator takes a permutation T on

1,...,n such that x Z i.. 2 X So m(1l) is the richest

X 2 A
m(1) m(2) m(n)

player under allocation x, T(2) the one-after-the-richest-player, etc.

Note that we have not specified the way in which equally-rich players are

to be ordered according to M. They may be ordered in any arbitrary way,
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the approach sketched in the sequel will be such that this ordering is

immaterial.

Stage 3. The players will enter, one by one, a room where the arbitrator
is. First the richest player m(l) enters, then T(2), etc.
Step 3.1. After entrance of player T (1) the arbitrator pays to m{1l) the

amount x that T (1) receives more than player m(2).

- X
m(1) m(2)
Step 3.2. DNext player 7(2) enters the room, and the arbitrator pays to

{m(1),m(2)} the amount x that T(l) and m(2) still are to re-

m(2) ~ *r(3)
ceive more than player m(3).

Step 3.i. Next player T(i) enters the room, and the arbitrator pays to
the present players m(1),...,7(i) the amount xﬁ(i) - xﬂ(i+1) that the
present players still are to receive more than player w(i+1).

Step 3.n. Finally player m(n) enters, all players are present now, and
get payed the remaining amount Xo(n)®
Stage 4. Now that the payment in stage 3 has been fixed for every step,
at every step the payment is valued by its product with the worth of the

involved group of players.

Stage 5. The allccation x is valued by adding up all valuations of Stage

4, to give, with x := 0

& T(n+1) .

Ei=1[(xﬂ(i) - xw(i+1)) x vlm(),...,mi)}] (4.1)
If we consider an allocation x as a function, assigning xj to every player
i, then the value in (4.1) is the Choquet integral of x with respect to
the characteristic function v, see for instance Wakker (1986a, formula
VvI.2.5). Indeed, if v happens to be "additive", then (4.1) reduces to

the usual integral.

Stage 6. For all available allccations a valuaticn is determined as it
was for x above. Then the allocation with maximal valuation is chosen.
If there are more allocations where the maximal valuation is attained,

from these an arbitrary choice is made. If the supremum value of the
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valuations is not attained by any allocation, then some allocation is cho-
sen which is close enough to the supremum in some sense. If the set of

available allocations is compact, then the maximum will always be attained

for some allocation.
4.2. A characterization by ordering allocations

In this section we characterize the approach of subsection 4.1. The
method of characterization will differ from that of section 2. 1In this
section we assume that the arbitrator takes a binary ("preference") rela-
tion 2 on;R?, the set of all allocations. Here x 2 y means that the arbi-
trator would be willing to choose x if only x and y were available, i.e.
she (or he) considers x at least as good as y. Next we consider conditions
which will characterize the approach of subsection 4.1.

The binary relation 2 is a weak order if it is complete (i.e. for all

et

Xy inR_ = x 2 yory 2 x) and trangitive (i.e. for all x,y,z in:Rz : it

b and y 2 z then x * z). As usual we write x > yv if x 2 y and not

I
L

b ) X R y ifx "yandy " x, x £y if y > x, and x <y if y > x. Fur-
ther = is strietly monotoniec if, for all allocations x,y,[x >y = x > yl,
and : is eontinuous if, for all allocations y, the sets

{x EZRE : x 2y} and {x € Ri : x £y} are closed.

We call a pair of allocations x,y comonotonic if for no players i,j
simultaneocusly xi > Xj and yj > yi. This is exactly the case where in
Stage 2 of subsection 4.1 there can be chosen a same permutation 7 for x
and y, see Wakker (1986a, Lemma VI.3.5, (i) « (iii)). A set of allocations
is ecomonotonic if every pair of allocations in the set is comonotonic.

The main characterizing cenditicn will be

DEFINITION 4.1. The binary relation 2 satisfies comonotonic independence
if for all comenotonic x,y,z and ¢ € (0,1) we have

[x >y=o0x + (1-0)z>ay + (1-a) z].

with this we get

ey

THEOREM 4.2. For the binary relation 2 on the set of allocations the

following two statements are equivalent :

(i) There exists a characteristic function v such that, for all
allocations x,y, x 2 y if and only if the Chogquet integral of x is at
least as large as that of y.

(ii) The binary relation 2 is a continucus strictly monctonic weak order

which satisfies comonotonic independence.
Furthermore the characteristic function v is uniquely determined. o

So, if the approach of subsection 4.1 applies, then 2 satisfies the
conditions mentioned in statement (ii) above, and reversedly, if 2 satis-
fies the conditions in statement (ii) above, then there exis8ts a charac-—
teristic functicon v such that by means of this the approach of subsection
4.1 applies. The implication (ii) = (i) above is mainly interesting in
contexts where the characteristic function v is not easily available. As
an example think of the case where players are ministers in a government,
who during some years have been choosing among allocations of money over
their departments. From their choices we can reveal "group preferences" of
the form x 2 y; if these preferences satisfy the conditiens in statement
(ii) abowve, then according to the above theorem we can derive from the
choices of the ministers the characteristic function v. Then for any

group S of ministers v(S) can be interpreted as an index for the power of

this group of ministers.
5. THE RECIPE FOR THE ABOVE RESULTS, AND LITERATURE

The results presented in the previous sections were simple translations
of results, formulated before in literature for decision making under un-

certainty. The following translation has been involved everywhere

Replace state of nature by player. (5.1)
5.1. The translation algorithm of section 2

In section 2 we translated results from a field of decision making under
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uncertainty which goes under the heading of "comparative probability theory".

In comparative probability theory one considers a "more probable than" re-
lation Z on subsets (events) of the state space {1,...,n}, and cne searches
for a probability measure agreeing in some way with the more-probable-than
relation. So, besides the already mentioned translations, the following

translations are involved :

Replace event by coalition (5.2)
Replace S 1§ more probable than T by the worth cf § is higher

than that of T (5.3)
Replace probability by allocation. (5.4)

The condition of ordinal additivity has been introduced by de Finetti
(1931). For a long time it was not known whether this condition would
suffice, in presence of some "natural" presumptions, to guarantee the
existence of an agreeing allocation/probability measure, see for instance
Savage (1954, page 40/41). The matter was settled by Kraft, Pratt &
Seidenberg (1259), who provided the Example 2.3, and gave the necessary
and sufficient condition of (2.3). Their work used an algebraic notation
which may not be easily accessible for every reader. Later Scott (1964)
sketched a general procedure to use theorems of the alternative or sepa-
rating hyperplane theorems to solve inequalities such as those involved
in section 2, for finite state/player spaces. Since then, the conditions
as in Theorem 2.4 are well-known. Jaffray (1974a,b) gave a more general
approach by which also inegqualities for infinite state/player spaces can
be solved; by means of this technigue Chateauneuf (1985) ocbtained nece-
ssary and sufficient conditions for the existence of an agreeing probabi-
lity measure/allocation for general state/player spaces. The author of
this paper studied the topic in Wakker (1979) and Wakker (1981), mainly
for infinite state/player spaces. In Wakker (1981, Thecrem 4) it was
indicated that, with ordinal additivity presupposed, the characterization
of almost agreement in Theorem 2.4 also holds for infinite state/player
spaces. BAlso Gilboa (1985) considered guestions of this nature; in his
work a nonadditive characteristic function was interpreted as a distortion

of an additive probability measure. A recent and complete overview of
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comparative probability theory is provided in Fishburn (1986).
5.2. The translation algorithm of section 3

The results of section 3 were obtained by translating work of Carnap
on inductive reasoning, see Carnap (1962), Carnap & Jeffrey (1971), Fine
(1973, section VII.D), Stegmiller (1973), Koerts & De Leede (1973), or
Zabell (1981). As an example let us suppose that a die has been thrown
several times. In this subsection 1,...,n are the sides of the die;
after every throw exactly one side ("state of nature") will come up.
Further : 4 = (dl,...,dn) describes the number of times that the several
sides have been observed after d+ throws. BAnd fj(d) designates the con-
ditional subjective probability (Carnap preferred the interpretation as
logical probability) that the (d+ + 1)-th throw will give side j up, given
the result of the previous throws. So the following translations are in-

volved :

Replace claim of player j by number of previously observed oc-
currences of side j of the die (5.5)
Replace proportion for player j by condiiional probability for
side J of the die (5.6)

Like us, Carnap assumed monotonicity; so a new observation of a side of
the die makes a next occurrence of this side more probable. BAnd like us,
Carnap assumed uninvolvedness of every side/player. Instead of our pro-
portional uninvolvedness Carnap assumed "exchangeability", i.e. the pro-
bability of a sequence of outcomes depends only on the number of occurren-
ces of the several sides of the die, and is independent of the particular
order in which these sides occurred. This is egquivalent to the egquality,
for all 4,i,3j :

fi(dl,-..,di,...,dj,...,dn) bld fj(dl,...,di+l,...,dj,...,dn) =

fj(dl,...,di,...,dj,...,dn) x fi(dl,...,di,....,dj+1,...,dn),
since the left-side gives the conditional probability that, given d, first
side i will come up, next side j, whereas the right-side deals with the

reversed order of occurrence of i and j.
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In the presence of the other conditions, exchangeability is equivalent to
proportional uninvolvedness of every pair i,j. Let us only show the deri-
vation of exchangeability from proportional uninvolvedness, plus uninvol-

vedness. For any k such that i # k # j (such a k exists since n 2 3)

£ e 5 &

gldyre-edyrdyd) ) £ (dyr-r8pendy, i) )
" C— O (— B . 23 N
i( 1° 'di dj+1 dn) fk(di" ,di, ,dj+1,_.,dn)
b < R ; SR - [ .

k( 1 dl dj, dn) _ fj(di" ,di,..,dj,..,dn)
fk(dl,..,di+1,..,dj,..,dn) fj(dl,..,di+1,..,dj,..,dn)

where the first equality follows from proportional uninvolvedness of i,k,
the second from uninvolvedness of k, and the third from proportional unin-
volvedness of § and k. The equality of the first and fourth gquotient im-
ply the equality given above as an equivalent of exchangeability.

Carnap showed that his conditions are equivalent tec statement (i) in
Theorem 3.4 (see for instance Zabell, 1981). This, together with the Jjust
derived observations, gives an alternative proof for our Theorem 3.4.

The author studied Carnap's work for its applicability in probability cal-
culations for the protection of statistical data files against anonimity

disclosure, see Wakker (1986Db) .
5.3. The translation algorithm of section 3

The work of section 3 was obtained by translating work of Schmeidler
for decision making under uncertainty, see Schmeidler (1984a,b,c). As an
example, suppose a horse race will be held. There will participate n num-
bered horses, j is the "state of nature" that horse j will win. BAn act
X €:Ri is a function from the states of nature to:R+, interpreted as an
investment (or bet, or whatever) that will result in a net gain of xj if
horse j will win. Now 2 denotes the preference relation of a decisicn
maker over the set of acts,x 2 y meaning that the decision maker considers
% to be at least as good as y. The characteristic function v is now in-
terpreted as a nonadditive subjective probability measure for the decision
maker; the higher v(S), where now S is an event, the more probable S is
considered to be by the decision maker. So now the following translations

are involwved

Replace event by coalition (5.7
Replace arbitrator by decision maker (5.8)
Replace allocation by act (5.9)

Replace characteristic function by subjective nonadditive
probability (5.10)

Schmeidler (1984a) showed the eguivalence of statements (i) and (ii) in
Theorem 4.2 in a slightly different context; in his work payment was not in
money, as in section 4 above, but in lotteries over some set. The genera-
lization of Schmeidler's work to the case where payment is in terms of
elements of a "mixture space" (see for instance Wakker, 1986 a, Definition
VII.2) is completely straightforward. One example of mixture spaces is
the case of sets of lotteries over another set, as in Schmeidlexr's work;
another example is R+, as in section 4 above. Hence in a mathematical
sense Theorem 4.2 is completely analogous to Schmeidler (1984a, The Theorem)
The author made use of Schmeidler's work on nonadditive probabilities in

wakker (1986a, Chapter VI).
6. CONCLUSION

This paper is based on the cbservation that the same mathematical
structure is underlying many problems in decision making under uncertainty
and in game theory. By simple translations, mainly by interchanging
"state of nature" and "player", many results derived for decision making
under uncertainty and game thecory can be interchanged. This paper gave
some examples. Admittedly, sometimes, such as in Definition 3.3, a minimal
amount of creativity was needed. Still, an author in lack of inspiration,

but in need of publications, may succeed with the following algorithm :

Take any theorems from a journal dealing with the topic of game theory, or

probability theory/decision making under uncertainty.
Carry out the translations as described in this paper.

Send the resulting theorems to a journal dealing with the other topic than
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the original journal.
Do not refer to the original journal.
Do not refer to this paper.
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