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Rutional expectations models thus often sacrifice descriptive
accuracy in the hope that the models would exhibit stability in
the presence of interventions of the kind envisioned by makers
rnment macroeconomic policy. The models may not be
well-suited to forecasting when the policy regime is
. They are most appropriately considered policy
Is. /."
ROBERT/J. SCHILLER
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expected utility and mathematical expectation. 1. Expected
utility theory deals with choosing among acts where the
decision-maker does not know for sure which consequence will
result from a chosen act. When faced with several acts, the
decision-maker will choose the one with the highest ‘expected
utility’, where the expected utility of an act is the sum of the
products of probability and utility over all possible
consequences.
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The introduction of the concept of expected utility is usually
attributed to Daniel Bernoulli (1738). He arrived at this
concept as a resolution of the so-called St Petersburg paradox.
It involves the following gamble: A ‘fair’ coin is flipped until
the first time heads up. If this is at the kth flip, then the
gambler receives $2*. The question arose how much to pay for
participation in this gamble. Since the probability that heads
will occur for the first time in the kth flip is 2 ~* (assuming
independence of the flips), and the gain then is $2*, the
‘expected value' (i.e. the mathematical expectation of the gain)
of the gamble is infinite. It has been observed though that
gamblers were not willing to pay more then $2 to $4 to
participate in such a gamble. Hence the ‘paradox’ between the
mathematical expectation of the gain, and the observed
willingness to pay.

Bernoulli suggested that the gambler's goal is not to
maximize his expected gain, but to maximize the expectation
of the logarithm of the gain which is £2, 27/ log 2/, i.e. 2 log
2(= log 4). Then the gambler is willing to pay $4 for the
gamble. The idea that homo economicus considers the expected
utility of the gamble, and not the expected value, is a
cornerstone of expected theory.

In the next section the approach of Savage to decisions
under uncertainty is presented. In section 3 the von
Neumann—-Morgenstern characterization of expected utility
maximization for the context of decisions under risk is given.
Section 4 bricfly mentions some related approaches. Section 5,
the Appendix, defines (mathematical) expectation.

2. EXPECTED UTILITY WHEN APPLIED TO DECISIONS UNDER
UNCERTAINTY; SAVAGE'S APPROACH

2.1 The main ingredients of a decision problem under

Suppose that a decision-maker has to choose one of three
feasible acts f, g, h. Act f leads to one (only) of the two
consequences a and b. Act g leads to a or ¢, act & to bord.
Thus the set of consequences, C, is in this example {a, b, c, d}.

The matching of feasible acts to consequences is expressed
by the concept of ‘state of nature’, or ‘state’ for short. More
precisely, a given state of nature indicates for each feasible act
what the resulting consequence will be. In the above example,
there are three feasible acts f; g, h, each leading to one of two
possible consequences. See Table 2.1.

TABLE 2.1 The eight logically possible matchings of feasible
acts to consequences

States
Acts SIS 8 S S5 5% 05 Sy
f a a a a b b b b
g a a c c a a c c
h b d b d b d b d

A state of nature completely resolves the uncertainty relating
acts to consequences. If the decision-maker would know for
sure which state of nature is the true one, then he would
choose an act which results in a most desirable consequence.
The desirability of a consequence neither depends on the act
nor on the state of nature leading to it.

In constructing a table like Table 2.1 some of the states of
nature may be deleted if the decision-maker is certain that they
cannot occur. H
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The next step in the process of selecting the best act is to
construct ‘conceivable’ acts, which are not feasible. Thus the
set of acts, F, in Savage’s set-up consists of all functions from
the set of states of nature, S, to the set C of consequences. In
our example there are 48 acts. Of these, three acts f, g and A
are actually feasible: The additional 65533 acts are only
conceivable. The construction of the conceivable acts and the
possibility of ranking all acts of F is a basic assumption of the
present approach. For the sake of presentation we will in the
next subsection assume the validity of the expected utility
theory and then we will return to the rationale of our
construction.

2.2 Suppose for the present that the decision-maker, in
choosing between acts, indeed computes the expected utility of
cach act, and selects a feasible act with the highest expected
utility. Thus we are assuming that he has assigned probability
P(s) to every state of nature s in S, and the utility U(c) to every
consequence ¢ in C. So, given an act fin F, the expected utility
EU(S) of f equals £, 5 P(s)U[f(s)]. More generally, if the set
S is infinite, then P is a finitely additive probability measure
defined on all events (i.e. subsets of S), and EU(S) equals
[ULf(s)]dP(s) (assuming the integral to exist; say U is
bounded; see the Appendix, on Mathematical Expectation,
section 5). So in fact in this case the decision-maker has a
well-defined ‘preference relation’ (i.e. binary relation) > :on.the
set of acts F, with, for all f,g in F:

(2.3) frg ITEU(S)=EU(g)

It is easily seen that the preference relation, defined in (2.3), is
not affected when the utility function U:CR is replaced by
any positive linear transformation of it (say U:crsal(c) + B,
for some real f and positive o).

2.4 If a preference relation, Z, over acts is derived from
comparisons of expected utility as in (2.3), then it must satisfy
several properties. We follow the terminology and order of
Savage (1954). He listed seven postulates, five of which (P1 up
to P4, and P7) are implied by (2.3). Postulate P1 says that the
preference relation is complete (f Zgorg 2= [ for all acts f, g)
and transitive. Postulate P2 is referred to as the sure-thing
principle. It says that, when comparing two acts, only those
states of nature matter, on which these acts differ. In other
words, for the comparison between two acts, if they coincide on
an event A, it really does not matter what actually the con-
sequence is for each state in A, Thus P2 makes it possible to
derive a preference relation over acts, conditioned on the event
AS; this for any event A.

Postulate P3 entails that the desirability of a consequence
does not depend on the combination of state and act that lead
to it; hence the possibility to express the desirability of
consequences by a utility function on C.

P4 guarantees that the preference relation over acts induces a
qualitative probability relation (‘at least as probable as’) over
events, which is transitive and complete. P7 is a technical
monotonicity condition.

P5 and P6 are Savage's only postulates which are not a
necessary implication of (2.3). P5 simply serves to exclude the
trivial case where the decision-maker is indifferent between any
two acts. P6 implies some sort of continuity of the preference
relation, and non-atomicity of the probability measure; the last
term means that any non-impossible event can be partitioned
into two non-impossible events. Hence there must be an
infinite number of states.

Savage’s great achievement was not to assume (2.3), but to
show that his list of postulates P1-P7 implies that the
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preference relation over acts has an expected utility
representation as in (2.3). Savage argued compellingly for the
appropriateness of his postulates, Furthermore, Savage
showed that the probability measure in (2.3) is uniquely deter-
mined by the preference relation >, and that the utility function
is unique up to a positive linear transformation.

2.5. The significance of Savage’s achievement is that it gives
the first, and until today most complete, conceptual
foundation to expected utility. Savage’s conclusion, to use
expected utility for the selection of optimal acts, can be used
even if we do not have the structure and the seven postulates
of Savage. Indeed, the assumption needed on consequences,
states, acts, and preferences, is that they can be extended so as
to satisfy all requirements of Savage’s model. Also other
models, as mentioned in section 4, can be used to obtain
expected utility representations.

Given a decision problem under uncertainty, if we assume
that it can be embedded in Savage’s framework, then it is not
necessary to actually carry out this embedding. In other words,
if the decision-maker is convinced that in principle it is
possible to construct the conceivable acts as in subsection 2.1
and the ranking of all acts in accordance with the postulates,
then this construction does not have to be made. Instead one
can directly try to assess probabilities and utilities, and apply
the expected utility criterion. As an example, suppose a
market-vendor has to decide whether to order 50 portions of
ice-cream (f), or not (g). One portion costs $1, and is sold for
$2. If the weather will be nice the next day, the school nearby
will allow the children to go to the market, and all 50 portions,
if ordered, will be sold, yielding a profit of $50. If the weather
is not nice, no portion will be sold. We assume that the
ice-cream cannot be kept in stock and hence bad weather will
yield a ‘gain’ of $—50 if the portions have been ordered.

Instead of embedding the above example into Savage's
framework, the market salesman may immediately assess P,
(or 1— P,), the probability for good (bad) weather; next assess
the utilities of gaining $50, $0 and —$50; finally order the 50
portions if P,U(850) + (1 — P,) U(—$50) > U(30).

Theoretical conclusions can be derived from the mere
assumption of expected utility maximization, without an
actual assessment of the probabilities and utilities. Examples
are the theories of attitudes towards risk, with applications to
insurance, portfolio choice, etc. The validity of these
applications depends on expected utility theory, which in turn
depends on the plausibility of Savage's model (or other
derivations of expected utility).

Another important theoretical application of Savage's model
is to neo-Bayesian statistics. For applied statistics, in this vein,
the availability of a ‘prior distribution’, as proved by Savage's
approach, is essential.

3. EXPECTED UTILITY WHEN APPLIED TO DECISIONS UNDER RISKS,
THE VON NEUMANN-MORGENSTERN APPROACH

Special and extreme cases of decisions under uncertainty are
decisions in ‘risky’ situations. In decisions under uncertainty,
as exposited in the previous section, the decision-maker who
follows the dictum of expected utility has to assign utilities to
the consequences and probabilities to the states. He can do it
by mimicking the proof of Savage's theorem, or more directly
by organizing his information, as the case may be.
Decision-making under risk considers the special case where
the formulation of the problem for the decision-maker
includes probabilities for the events, so that he only has to
derive the utilities of consequences. As an example, consider a
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gambler in a casino who assumes that the roulette is really
unbiased, so that cach number has probability 1/37 (or 1/38).
Another example is the St Petersburg paradox, described in
subsection 1.2,

Within the framework of expected utility theory, for the
evaluation of an act, only its probability distribution over the
consequences has to be taken into account, Thus, for
decision-making under risk, with probabilities known in
advance, one may just as well describe acts as probability
distributions over consequences instead of as functions from
the states to the consequences.

3.1. Let us denote by L the set of probability distributions
over C with finite support. We refer to them as lotteries.
Von Neumann and Morgenstern (1947, Appendix) suggested
conditions on a preference relation > between lotteries, neces-
sary and sufficient for the existence of a real-valued utility
function U on C, such that for any two lotteries P and Qin L:

(3.2 P20 Ty P)U(c)= Y Q@)U(c)
ceC ceC

It is casy to see that the utility function, U, is unique up to
positive linear transformations. Before we present a version of
von Neumann-Morgenstern’s theorem, recall that for any
O<a <, and for any two lotteries P and W, R: =P +
(1-«)Q is again a lottery, assigning probability R(c)=
aP(c)+ (1 —a)Q(c) to any c in C. Also note that the assump-
tion that all lotteries are given, is sometimes as heroic as
Savage's assumption that all functions from S to C are con-
ceivable auts.

The first axiom of von Neumann-Morgenstern, NMI, says
that the preference relation over the lotteries is complete and
transitive. NM2, the continuity axiom, says that, if P>Q >
R, then there are a, fin ]0, 1[, such that «R + (1 — ) P 0>
BP + (1 — B)R. Here the strict preference relation > is derived
from 2 in the usual way: P>~ Q if P~ and not Q > P.

The third axiom NM3 is the independence axiom. It says
that for « in ]0,1], P is preferred to Q iff aP + (1—a)R is
preferred to @+ (1 —o)R. This condition is the antecedent of
Savage’s sure-thing principle, and is the most important
innovation of the above axioms.

3.3 Von Neumann and Morgenstern originally stated their
theorem for more general sets than L. They did it for so-called
mixture spaces, i.e. spaces endowed with some sort of convex
combination operation. This has been done more precisely by
Herstein and Milnor (1953).

Von Neumann and Morgenstern introduced their theory of
decision-making under risk as a normative tool for playing
zero-sum games in strategic form. There the ‘player’ (i.e.
decision-maker) can actually construct any lottery he wishes
over his pure-strategies (but not over his consequences),

The theorem of von Neumann and Morgenstern, stated
above, is a major step in the proof of Savage’s theorem.

Recently there has been much research on decision making
under risk for its own é&nd. Some of this research is
experimental, subjects are asked to express their preferences
between lotteries. These experiments, or polls, reveal violations
of most of the axioms. They lead to representations different
from expected utility.

4. OTHER APPROACHES AND BIBLIOGRAPHICAL REMARKS

The first suggestion for expected utility theory in decision-
making under uncertainty in the vein of Savage was Ramsey's
(1931). His model was not completely formalized. The work of
Savage was influenced by de Finetti's approach to probabili-

ties, as in de Finetti (1931, 1937). The decision theoretic
framework to which Savage’s expected utility model owes
much is that of Wald (1951), who regards a statistician as a
decision-maker.

A model which can be considered intermediate between
those of Savage and von Neumann and Morgenstern is that
considered by Anscombe and Aumann (1963), Formally it is a
special case of a mixture set, but like Savage it introduces
states of nature, and gives a simultaneous derivation of
probabilities for the states, and of utilities for the
consequences. A consequence in this model consists of a
lottery over deterministic outcomes; this involves probabilities
known in advance, as in the approach of von Neumann and
Morgenstern. The Anscombe and Aumann theory, as well as
most of the technical results up to 1970, are presented in detail
in Fishburn (1970).

In the expected utility theory, described above, the
desirability (utility) of consequences does not depend on acts
or states of nature. This is a restriction in many applications.
For example the desirability of family income may depend on
whether the state of nature is ‘head of family alive’ or ‘head of
family deceased’. Karni (1985) summarized and developed the
expected utility theory without the restrictive assumption of
state-independent preferences over consequences.

Ellsberg (1961) argued against the expected utility approach
of Savage by proposing an example, inconsistent with it. A
way of resolving the inconsistency is to relax the additivity
property of the involved probability measures, Schmeidler
(1984) formulated expected utility theory with non-additive
probabilities for the framework of Anscombe and Aumann
(1963). Gilboa (1985) did the same for the original framework
of Savage. Wakker (1986) obtained expected utility represen-,
tation, including the non-additive case, for a finite number of
states of nature and non-linear utility.

5. APPENDIX: MATHEMATICAL EXPECTATION

5.1 Expectation with respect to finitely additive probability.
A -non-empty collection I of subsets (called events) of a
non-empty set § is.said to be an algebra if it contains the
complement of each set belonging to it, and it contains the
union of any two sets belonging to it. A (finitely additive)
probability P on Z assigns to every event in £ a number between
0 and 1 such that P(S)=1 and for any two disjoint events A
and B, P(A UB)= P(4) + P(B).

A random variable X is a real-valued function on S such
that, for any open or closed (bounded or unbounded) interval
I {seS|X(s)el} (or [X eI] for short) is an event i.e., in %.
Given such a random variable X, its (mathematical) expectation
182

) - 0
(5.2) E(X)=J P[X;a]da—J (1 - P[X > a]) da,
a -®

where the integration above is Riemann-integration and it is
assumed that the integral exist. The integrands in (5.2) are
monotonic, so E(X) exist if X is bounded. If the random
variable X has finitely many values, say x,,. .., x, then (5.2)
reduces to

(5.3) E(X)= i P(X = x)x,
i=1

However, an equation like that above may not hold if the
random variable obtains countably many different values. An
example will be provided in subsection 5.7.

5.4 a-additive probability. Kolmogorov (1933) imposed an
additional continuity assumption on probability P on X: To
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expected utility hypothesis

simplify presentation he first assumed that X is a o -algebra, i.c.,
an algebra such that for every sequence of events (4,)=, it
contains its union U2, 4,. He then required that P(UZ  A4,)
=ZJ | P(4,) if the A’s are pairwise disjoint.

This last property is referred to as ¢-additivity of the
probability P. In this way Kolmogorov transformed large parts
of probability theory into (a special case of) measure theory.
Thus an expectation of a random variable X is

(5.5 E(X) =J. X(s)dP(s)
§

where the right side is a Lebesgue integral (if it exists...),
defined as a limit of integrals of random variables with count-
ably many values. Let ¥ be such a random variable with values
(#)i%Z, then

5.6) E(Y)=Y P(¥ =y,

if the right side is absolutely convergent.

5.7 An example will now be introduced of a finitely additive
probability, i.e. a probability for which (5.3) holds but (5.6)
does not hold. Let S be the set of rational numbers in the
interval [0, 1] and let X be the algebra of all subsets of S. (It is
in fact a o-algebra.) For 0 <a < f <1 define P(SN[a, f]) =
B — aand extend P to all subsets of Z. For each sin S, P(s) =0.
Since § is countable we can write § = {s,, 5,,...} and 1 = P(S)
>ZL72P(s) =0. Defining Y{(s;) = 1/i for all i, we get a con-
tradiction to (5.6). The finitely additive probability P has also
the property implied by Savage’s P6 (see 2.4): If P(4) > 0 then
there is an event B = 4 such that 0 < P(B) < P(4).

5.8 Distributions. A non-decreasing right continuous function
on the extended real line is called a distribution function if
F(—w)=0 and F(c0)=1. Given a random variable X, its
distribution function Fy is defined by Fy(z) = P(X S a) for all
real o. Then

] 0
(5.9) E(X) =f 1 — Fy(x)] da —f F(o) do

0 —-m
which is the dual of formula (5.2). If the distribution F,
is smooth we say that the random variable X has a density
Sx:R = R, which is the derivative of F,. In this case

(5.10) E(X).*—*jw af (¢) da

5.11 Non-additive probability. A function P:Z—[0,1] is
said to be non-additive probability (or capacity) if P(S)=1,
P(¢)=0 and for 4 = B, P(4) < P(B). Choquet (1954) sug-
gested to integrate a random variable with respect to non-
additive probability by formula (5.2).

DAVID SCHMEIDLER AND PETER WAKKER

See also ALLAIS PARADOX; MEAN VALUES; RISK; SUBJECTIVE PROBABILITY;
UNCERTAINTY, UTILITY THEORY AND DECISION-MAKING
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expected utility hypothesis, The expected utility hypothesis of
behaviour towards risk is essentially the hypothesis that the
individual decision-maker possesses (or acts as if possessing) a
‘von Neumann-Morgenstern utility function’ U() or ‘von
Neumann-Morgenstern utility index’ {U;} defined over some
set of outcomes, and when faced with alternative risky
prospects or ‘lotteries’ over these outcomes, will choose that
prospect which maximizes the expected value of U(:) or
{U,}. Since the outcomes could represent alternative wealth
levels, multidimensional commodity bundles, time streams of
consumption, or even non-numerical consequences (e.g. a trip
to Paris), this approach can be applied to a tremendous variety
of situations, and most theoretical research in the economics
of uncertainty, as well as virtually all applied work in the field
(e.g. optimal trade, investment or search under uncertainty) is
undertaken in the expected utility framework.

As a branch of modern consumer theory (e.g. Debreu, 1959,
ch. 4), the expected utility model proceeds by specifying a set
of objects of choice and assuming that the individual possesses
a preference ordering over these objects which may be
represented by a real-valued maximand or ‘preference
function’ ¥(), in the sense that one object is preferred to
another if and only if it is assigned a higher value by this
preference function. However, the expected utility model
differs from the theory of choice over non-stochastic
commodity bundles in two important respects. The first is that
since it is a theory of choice under uncertainty, the objects of
choice are not deterministic outcomes but rather probability
distributions over these outcomes. The second difference is that,
unlike in the non-stochastic case, the expected utility model
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