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STATEMENTS

belonging to the dissertation
REPRESENTATIONS OF CHOICE SITUATIONS
by

Peter WAKKER

STATEMENT 1. The approach to game theory, in which payment is not assumed
to be in ("von Neumann-Morgenstern”") utility, but in a real quantity such
as money or a good, gives interesting research-problems.
Wakker,P.P.(1986), "The Existence of Utility Functions in the Nash Solu-
tion for Bargaining". In J.H.P. Paelinck & P.H. Vossen (Eds.), Axio-

matics and Pragmatics of Conflict Analysis (studies in Interdisci-
plinary Issues), Gower Press, Aldershot.

STATEMENT 2. The Impossibility Theorem of Arrow (see Arrow, 1978) is not
a surprising result if one realises that transitivity of a group-prefe-
rence relation is reasonable only if the group-preferences between alter-
natives x,y, between alternatives y,z, and between alternatives x,z, are
obtained under "ceteris paribus conditions", entailing among others that
the group, while obtaining the three preferences, always possesses the
same information, whereas the "independence of irrelevant alternatives"
condition entails to the contrary that the three preferences are based
upon different information.

Arrow,K.J.(1978), "Social Choice and Individual Values", 9th edition.
Yale University Press, New Haven.




STATEMENT 3. By means of optimization theory one can prove that a non-
. n
expansive map from a subset of R, to an, can be extended to a non-

expansive map from ® to R .

Wakker,?.?.(1?852, "Extending Monotone and Non-Expansive Mappings by
Optimization”, Cahiers du C.E.R.Q. 27, 141-151.

STATEMENT 4. Statistical testing by means of significance-tests does not

satisfy the "sure-thing principle”.

Wakker,P.P.(1981), "The Additivity Principle in Decision Making under
Uncertainty”, Report 81-35, Department of Mathematics, University
of Leiden. )

STATEMENT 5. The first remark in section 2 of Wakker(1981) indicates

that the part of section III.4 on top of page 43 in Savage(1954), has

not been read by many people.

Savage, L.J.(1954), "The Foundations of Statistics". Wiley, New York.

Wakker,?.?.(1?81), "Agrfeing Probability Measures for Comparative Pro-
bability Structures", The Annals of Statistics 9, 658-662.

STATEMENT 6. The "refutation" of skepticism, based upon the reasoning
that a skeptical person thinks to know that he knows nothing, thus
thinks to know something after all, (see 0'Connor & Carr, 1982, on top
of page 3), is not correct since a skeptical person only, taking for a
moment as point of departure that he may know something, comes to con-
clude that he knows nothing, and does not consider the resulting contra-

diction a refutation, but to the contrary a confirmation, of his attitu-

de.

0'Conner,D.J. & B. Carr(1982), "Introduction to the Theory of Knowledge".

University of Minnesota Press, Minneapolis.

STATEMENT 7. According to the criterion that empirical scientlsts should be
concefned only with matters leading to observable, i.e. verifiable or falsi-
fiable, results, empirical scientists should not be concerned with the crite-
rion that empirical scientists should be concerned only with matters leading

to observable, i.e. verifiable or falsifiable, results.

i
STATEMENT 8. If one wants to consider thinking sports, such as chess, as scien-
cés, and one wants to consider for example the supposition in chess that a win=-
ning position for white results if in the beginning position the black queen

and a white knight are removed, as a law of these sciences, then these sciences

belong to the inductive, and not the deductive, sciences.

SiAT‘MENT 9., In the game of chess, after the beginning moves 1.e4 = e6. 2.d4 -
d5. %.Nd2 - Nf6. 4.e5 - Nfd7. 5.1d% - 5. 6.¢3 - Ncb. 7.Ngf3 - f6. 8.Ng5 - fgb!,
not white has a won position (as many books on opening theory claim, see HMata-
noviec, 1981, footnote 109 at variation C05-21), but black, because after 9.QhST
- gb. 10.ngT - hg6.11.Qg6T'- Ke7 black has the contra-sacrifice N7xe5, for
example 12.Nc4 - N7e5!, as in the game H. Otten - P.Wakker (1982, Leiden, 5d
round of the Notenboomtournament), or 12.Nf3 - N795!.13.Bg5T - Kd7.14.de5 =
BeT.15.h4 - Qg8, or 12.Ne4!?(H.J.Goeman) - Nde5;13.Bg5T - Kd7.14.Nf6T - KeT7.
15.0es8t (15.de5 - Ne5) - Ka7.16.5861 - Ko7.17.Ne8T - Qe8!.18.Qe8 - BgT.
Matanovic, A.(Ed.,1981), "Encyclopedia of Chess Openings €, Vol. I. Second edi-
tion." Batsford, London.

With thanks to international chess-grandmaster John van der Wiel for ¢hecking

and approving of the above Statement (and for refuting some other new opening
variations).

STATEMENT 10. For the acquisition of knowledge of oneself, possession of a con-

science is a hinder.
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PREFACE AND SUMMARY

In decision theories the assumption is usually made that a
decision maker maximizes some quantitative goal function. Depending on
the context, such a function may be called a profit function, utility
function, representing function (this will be our term), etc., and is
usually assumed to possess certain desirable properties, such as con-
tinuity, concavity, etc.

The purpose of this monograph is to show a way to make the above-
mentioned assumption operational. To this end, choice behaviour of the
decision maker is taken as observable primitive. In Chapter I we shall
give the conditions under which choice behaviour can be represented by
a preference relation. This preference relation then will be taken as
primitive in the following chapters, in the formulation of the so-called
"representation theorems" given there.

After specification of the presupposed context, these represen-
tation theorems will show equivalence of (usually) two statements. The
first statement, numbered (i), says that a representing function, with
certain desirable properties, exists. The second statement, numbered
(ii), characterizes statement (1), i.e. gives the properties of the
preference relation, necessary and sufficient for the truth of (i) .
Thus statement (ii) gives the criteria for verification/justification,
or falsification/criticism, of the assumption that the desired represen-
ting function in (i) exists. At the end of the representation theorems
usually so-called "uniqueness results" are listed, i.e. results which
describe in how far a representing function in (i) is uniquely deter-
mined.

We have as much as possible formulated the representation theorems
in such a way that the reader can understand them without consulting
Other parts of the text. The proofs of these representation theorems
not only show the existence of representing functions, but they also

indicate how to construct the (quantitative) representing functions
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(qualitative) information that is reflected by the preference

from the

relation.
The main subject of study in this monograph is subjective expected

utility maximization, in the context of decision making under uncer-
tainty. Subjective expected utility maximization is notorious for the
many vivid discussions about its appropriateness. The first well-known
representation theorems for (subjective) expected utility maximization,
in von Neumann and Morgenstern (1944), and Savage (1954), have had
great influence in economic literature, and have shocked the statisti-
cal literature because of their profound implications for the foun-
dations of statistics. It should be emphasized that representation
theorems as such are not only useful for advocates of the use of some
special kind of representing function, but just as well give the
operational tools for criticisms.The independence condition of von
Neumann and Morgenstern, and the sure-thing principle of Savage, gave
valuable tools to critics, see for instance Allais (1953, 1979).

The theorems of Savage, and von Neumann and Morgenstern, (and
Anscombe and Aumann, 1963,) apply to special circumstances, where the
state space is well structured, or where many lotteries are available.
Such special circumstances are usually not present in economic contexts.
The main purpose of this monograph is to provide representation
theorems for subjective expected utility maximization, under special

circumstances that dre usually present in economic contexts.

First, in Chapter 0, we give some elementary definitions.

In Chapter I we relate preference relations to choice behaviour
by means of the "revealed preference" approach, which has originated
from consumer demand theory. In order to achieve maximal operationality,
we define our "revealed preference" relations slightly differently from
the way most usual in literature; and we derive the characterizations
with the aid of these. For intuitive purposes, choice behaviour in
our view is a more appropriate primitive for decision theory, than a
preference relation. Hence we discuss the "paradigm" of decision theory
in terms of choice behaviour, in Chapter I.

In Chapter I we do not assume any structure (other than set-
theoretic) on the set of alternatives. In the following chapters, more

and more structure will be introduced on the set of alternatives. Then

— e e ———————— e i i e e ———— e

not only the preference relation, but also this structure on the set of
alternatives, will be considered observable. No structure will ever be
introduced which is not present in our main intended application: the
one where the set of alternatives is a Euclidean space.

One reason to consider spaces, more general than Euclidean spaces,
is to increase applicability. With the exception of section VII.6, all
of our work is applicable to decision situations where no {physical)
quantification of the alternatives is available. A second reason to
consider general spaces is that, even if the only ultimate purpose is
to obtain theorems for Euclidean spaces, then theorems for more general
spaces may still have value as intermediate means. For example, if we
would have formulated the main result of Chapter VI, Theorem VI.5.1,
for Euclidean spaces only, then in its proof (Proposition VI.7.4, and
subsection VI.7.2), we would still have needed the results of Chapter
III for more general topological spaces.

In Chapter II the structure is introduced which will be the central
subject of study of this monograph: the set of alternatives is assumed
to be a cartesian product. Each coordinate of an alternative describes
a relevant aspect. For making his decisions, the decision maker is to
weigh the advantages and disadvantages of the several aspects against
each other. The cartesian product structure plays a central role, and
our work may find application, in very many fields of science. Section
II.1 gives six economic examples, amongst them decision making under
uncertainty.

In sections II.2 to II.5 we study monotonicity properties. An
alternative which is best in each aspect, should be the best alternative,
by monotonicity. In section II.6 we take up the approach, followed in
the remainder of this monograph: the only preference relation, taken
as observable, is the one on the set of alternatives. In section II.6
we then show that the only observable implication of the monotonicity
broperties is "coordinate independence".

Sections II.2 to II.6 are included, firstly because they contain
new material that unifies the many versions of monotonicity occurring
in literature; and secondly, because we think these sections give the
most appropriate way to gain comprehension of coordinate independence,

a property central for all of the remainder of this monograph.
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In Chapter III topological structure is introduced. We assume
that the set of alternatives is endowed with a connected product topo-
logy. From then on, in all our main theorems, the preferenée relation
will be continuous and complete (, either as a presupposition, or as
a consequence of otherxr suppositions). Section III.1 gives some comments
on the fact that the properties of continuity and completeness are of
a technical nature, and are not fully operational.

In sections III.3 and I1I.4 we characterize the existence of
continuous additively decomposable representing functions. Our results
generalize some well-known theorems from literature.

In Chapter IV, a further structural assumption is added. It is
assumed that all coordinate sets are identical. (This assumption will
be dropped in sections VII.1 to VII.4 only.)} Theorem IV.3.3 gives a
main result of this monograph: a characterization of subjective ex-
pected utility maximization by means of a new property for preference
relations: cardinal cooxdinate independence. Let us, for the moment,
take for granted the, in economic contexts common, assumptions of
continuity of the utility function, and continuity, completeness, and
transitivity of the preference relation. Then Theorem IV.3.3 shows
that subjective expected utility maximization can be justified (; or
verified; or criticized; or falsified) if and only if cardinal coor-
dinate independence of the preference relation éan be. This is all
done under the assumption that the state space is finite. The adap-
tation te infinite state spaces will be given in Chapter V.

In the remainder of Chapter IV, and in Chapters V and VI, many
generalizations of Theorem IV.3.3 are obtained. Also applications to
contexts other than decision making under uncertainty are given. For
instance we give, for dynamic contexts, alternative characterizations
of a representation, characterized before by Koopmans (1972).

The main result of Chapter V, Theorem V.6.1, adapts the results
of Chapter IV to infinite state spaces. Thus it provides the most
general characterization of subjective expected utility maximization
with continuous utility, presently available in literature. This is
done both for finitely additive, and for countably additive, proba-
bility measures.

Chapter VI extends Theorem IV.3.3 to "capacities", i.e. "non-

R R R R REEEEEAEESSSBmZIZImIIIIRRERRR SRR

additive probability measures". The use of nonadditive measures has
been initiated by Schmeidler (1984 a,b) , where motivations concerning
declsion making under uncertainty are also given. Further the applica-
bility to welfare theory has given motivation. Our contribution to
Schmeidler's work is like the contribution of our Theorem IV.3.3 to a
theorem of Anscombe and Aumann (1963): we replace the restrictive
assumption that many lotteries are available, by the restrictive
assumption that utility is continuous. Section VI.11 characterizes
strong sub- or superadditivity of the involved capacities.

In Chapter VII a further structure on the set of alternatives is
added: a mixture-space-structure. Again, the most well-known examples
are convex subsets of linear spaces. We use this structure to define,
and characterize, concave additively decomposable representing functions,
by means of the "concavity assumption”. Such (representing) functions
are frequently used in mathematical programming, consumer and producers
theory, and decision making under uncertainty (to characterize risk
aversion). Still no characterization of them was yet available in
literature,

In section VII.6 we assume that the coordinate sets are convex
subsets of the set of real numbers. Thus here the alternative sets of
this monograph, endowed with most structure, are dealt with. In section
VII.6 it 1s then shown that assumptions on (nonincreasing) risk aversion,
current in economic literature, simplify in a surprising way the cha-
racterization of subjective expected utility maximization.

Finally, Chapter VIII gives some mathematical results on functions
on intervals, used, and referred to, at many places in this monograph.

For the most part, for the understanding of chapters, consultation
of elementary definitions in previous chapters is sufficient. Only
Sections III.2, III.3, IV.2, IV.3, and perhaps II.1, are needed for
understanding of the sequel.
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CHAPTER 0

ELEMENTARY DEFINITIONS AND NOTATIONS

In this chapter we give elementary definitions and notatlons. The

reader familiar with them may wish to skip this chapter, or only look
at the standard notations at the end, and may in case of doubt consult

this chapter by way of the subject index.

A binary relation on a set X is a subset of X X X. For

relation » on X we usually write x » y instead of (x,y) € >.

relation » extends another binary relation >', if > D >'.
A binary relation > on X is:
transitive if [x>y and y » z] = [x » 2] for all x,y,z € X.
conmplete if x> yorysx for all x,y € X.
reflexive if x> x for all x € X.
irreflexive if not [x > x] for all x € X.
symmetric if [x > y] =» [y » x] for all x,y € X.
asymmetrie if [x > y] = not [y » x] for all x,y € X.

anttsymmetrie if [x > y andy > x] » [x = y] for all x,y € X.

Throughout this monograph > denotes the asymmetric part of »

1)

(i.e. x>y iff"’ x >’y and not y > x) and » is the symmetric part of

» (i.e. x my iff x » y and y » x). Further notations are x <y for

Yy > x, and x <y for y > x. If a binary relation » is endowed with

1) Iff: if and only if.
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indexes, then without further mention >, &, <, and <, when endowed

with the same indexes, are defined analogously.

A weak order 5 is transitive and complete. Hence it is also
reflexive, its symmetric part is an equivalence relation (i.e. is
transitive, reflexive, and symmetric), its asymmetric part is
transitive, irreflexive, asymmetric, and we have x » y iff not y > x.

Some further terminology: » is trivial if x » y for all x,y, it
is the identity(relation) if x » y & x = y. The identity can of course
also be considered as a function. A pair of elements x,y of X is

incomparable (w.r.t. ») if neither x » y nor y » x.

In Chapter I we shall deal with choice functions. A choice

function C is a function from a collection D of subsets of a set X, to

2X, such that @ # C(D) € D for all D € . Of course this implies ¢ € D.

An interval V is a subset of R that is convex (u,v €V, 0 < X <1,
then Ap + (1-A)v € V), and that may be open, closed, or half-open, and
bounded or unbounded, both from the left and the right. By [u,v] we
denote the interval {A € R: u < A < v}, by ln,v[ the interval
(A € R: p < X < v}l. & nondegenerate interval is an interval with more
than one (so infinitely many) elements. R, = {p € R: u > 0}, R,, =
{u € R: n > 0} .

Now let V be an arbitrary subset of R, and let ¢ : V > IR. Then
¢ is strictly increasing if, for all u > v in V, ¢(u) > ¢(v); it is
strictly decreasing if, for all p > v in V, ¢{(u) < ¢(v). Furthermore
¢ is nondecreasing if, for all pu > v in V, ¢(u) > d(v); ¢ is non-
increasing if, for all ¥ > v in Vv, ¢ () < ¢ (V).

The function ¢ as above is convex if, for all 0 < A <1, and p,v,
and Ap + (1-A)v in V, ¢(Ap + (1-0)v) < Ap(u)} + (1-X)¢(v); ¢ is concave
if -¢ is convex; and ¢ is affine if it is both convex and concave.

The function ¢ is affine iff there exist real o0,T such that ¢ : p b

op + T. Note that we also allow 0 = 0. Further ¢ is positive affine if
0 above is positive. The function ¢ is quasiconvex if, for all
0<A=<1, and u, v, and Ag + (1-2)v in V, ¢(Ap + (1-A)V) <

max{¢ (W), ¢$(v)}; ¢ is quasiconcave if ~¢ is quasiconvex. A convex

function is quasiconvex, a concave function is quasiconcave.

Let (X,T) be a topological space. X 1s (topologically) separable

if there exists a countable dense subset of X. For E € X, Znt(E) is
the topological interior of E. X is connected if there do not exist
open nonempty subsets V, W of X such that VN W = @, VU W = X. This
is iff no closed nonempty subsets V, W of X exist such that VN w = ¢,
VUW-=X, i.e. 1ff the only subsets of X, which are both open and
closed, are @ and X. If X is connected, and g is a continuous function
from X to another topological space, then g(X) is connected too. X is
arcwise connected, or arcconnected as we shall usually write, if, for
every X,y € X, there exists an arc from x to y, i.e. a continuous
function ¢ : :[0,1] - X with ¢(0) = x, ¢(1) = y. If X is arcconnected,
then it is connected. ‘

If X is a cartesian product X C,, where every Ci is endowed

i€1741
with a topology T,, then the product topology on X is the smallest
topology contalning all subsets of X of the form Ei X (xj#icj) with

ik I€ T, Ei € Ti' An elementary result for this:

LEMMA 0.1. Let E < X = X,.C, be open [respectively closed] with

respect to the product topology on X. Let A< I, z € X. Then

vV := {xA € XiGAci : E containe the element v of X which hae v, = x,
for all i € A, v, =z, forall 1 ¢ A}

18 open [respectively closed] with respect to the product topology on

c

X ;.
i€A71

PROOF. Let X, € V. There must exist open Ei’ for all i1 € I, with
Ei # Ci for only finite many i, such that the v, as defined above, is

in xiGIEi’ and such that the latter is a subset of E. We see that

L]
X, € XiEAEi C V. Only finite many Ei s being different from Ci, xiEAEi
is an open neighbourhood of x, within V.

A

Next we give some measure-theoretic definitions. A collection A
of subsets of a set I is an algebra if I € A, and for all A,B € A also
€ and A UB € A. Then @ € A, and for all Aj,e. By € A also U?=1Aj and
n?=1Aj are in A. A is a o-algebra if furthermore, for all (Aj);=1 €A,

U;=1Aj is in A. A function P on an algebra A is a probability measure
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if P(I) = 1, and if furthermore P is finitely additive, i.e. for all
disjoint A, B € A, P(A U B) = P(A) + P(B). Note that we do not assume
"o-additivity". P is v-additive (, or countably additive,) if, for

0

any (A.) € A with A S A for all mand N._,A = @#, we have
j m m=1"m

j=1 m+i 1
lim P(Am) = 0. If I is finite, say I = {1,...,n}, then we usually
Q;:ume, without further mention, that A = 21. Note that then the pro-
bability measure P is completely determined by (pj)?=1
P({j}) for all j. Finally, a partition P = (Al""'Am) of a set I is

, with Pj =

a sequence of disjoint subsets of I, with union I. We do not exclude

Aj = @ for some j's.

In a cartesian product XiEICi' I is called the Zndex set, and the

Ci's are coordinate sets. For an element (xi)i€I of such a cartesian

product, %, is the i-th coordinate of x. Other indexes than those

referring to coordinates are uswally indicated by superscripts.

Some standard notations in this monograph are the following. X is

a nonempty set, elements of which are called alternatives, and are
usually denoted by %, y, v, w, s, t, z, and sometimes by a, b, c, 4.
Usually a binary relation », called preference relation, is present on
X. Then x » y is pronounced as: "x is weakly preferred to y", or: "x is
at least as good as y"; x >y : "x is strictly‘preferred to y", or:

"x is strictly better than y". And x ™ y: "x is equivalent to y" (even
though in general ®~ does not have to be an equivalence relation), or:
"x and y are equally good." In Chapters II to VII, X is a cartesian
product XiEICi' and with the exception of Chapter V, I is the finite
set {1,...,n}, for some n € WN. Often all Ci's equal a set C; then we
also write a, B, vy, 6, and sometimes y, v, 0, 1, for elements of C.
Subsets of I are usually denoted by A, B, C, D. By E, F, G, H we
usually denote subsets of C, or X. Real numbers are usually denoted

by Greek characters u, v, A, 0, T, or sometimes by a, b, ¢, d.
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CHAPTER 1

FROM CHOICE FUNCTIONS

TO BINARY RELATIONS

I.1. CHOICE FUNCTIONS, THEIR USE, AND INTERPRETATIONAL COMPLICATIONS

The following simple exampie of a choice problem will illustrate

several questions to be addressed in the sequel.
I.1.1. EXAMPLE

Suppose a consumer T is in a fruilt-store, and has to decide
whether to buy nothing (n), an apple (a), or a pear (p). It is his
custom to buy an apple if only apples are available (so to choose a
from {a,n}), because he thinks apples look nice. Furthermore T prefers
buying a pear to buying an apple (so he chooses p from {p,a}), because
pears are more juicy than apples. Hence his first inclination is to
buy a pear (so to choose p from {n,a,p}).

However, not sure about his true motives, T strongly imagines
what his choice would be from {n,p}. There is no doubt: it would be
n, T would not buy the pear, he does not like pears enough. T's point
of view is: if from {n,a,p} I actually choose p, then from {n,p} I
should also choose p! (I.e., T wants to satisfy IIA, see Definition
I.2.8.) An introspection follows, and the conclusion is that the
choice of a from {a,n} was not truly motivated. T rather chooses n

from {a,n}. Hence finally n is chosen from {a,p,n}.




i
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I.1.2. ELEMENTARY FORMALIZATIONS AND SOME ASSUMPTIONS

By T we denote a decision maker, T is usually assumed to be a
single person. But also T may stand for an animal, a computer, an
extraterrestrial being, a firm, a society, etc. In the example of
subsection I.1.1, T was a consumer.

We study models for situations where from some nonempty set D
of (available) alternatives, T chooses exactly one element. (This is
modified in subsection I.1.4, to simplify work.) It is intended that
T is completely free to choose the alternative which he wants. In
the example D was {n,a,p}. In several special contexts there are
special terms for alternatives, such as: options, prospects, acts,
securities, allocations, strategies, commodity bundles, tests,
estimators, responses, etc. If there is a possibility "choosing
nothing", then we just represent this by an element of D, such as n
above.

We shall not use sequential models. If analogous, or other,
choice situations will (repeatedly) occur, and have significance for
the one choice situation presently considered, then this significance
should appear in the appropriate places, such as in descriptions and
valuations of the alternatives. We neither assume, nor exclude,

repetitions; it is only that they are not central in our study.

I.1.3. THOUGHT EXPERIMENTS

Although our work is intended to be applicable if decision maker
T one time has to choose one element from one set D, this one choice
is not enough to build a meaningful theory. To show the meaning of
entities such as preference relations and utility functions, more
decision situations must be considered, at least as thought
experiments, and comparisons between them must be made. This is in
fact what we do by working with choice functions, (and by considering
binary relations as representations for choice functions).

It is very useful to imagine what would have happened if some
actual problem at hand would have been different in this or that

respect, to compare it to other analogous problems, and to base a
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model on this. This is a common practice in many sciences, it teaches
one what the essential parameters of the problem are.

In the example of subsection I.1.1, not only the actual decision
situation, with available alternatives {n,a,p}, is considered, but
also situations with available alternatives {a,n}, {p,a}, {n,p}, and
comparisons between these are made. If n is chosen from {n,p}, and P
from {p,al, then n should be chosen from {n,a,p}l, so was supposed
there. From the reasoning used here, and Corollary I.2.12, one may
conclude that the preference relation of T, a weak order, is an
essential parameter.

In this chapter we shall concentrate on decision situations that
differ from the actual one with respect to the set of available
alternatives. Usually in the hypothetical decision situations the set
of available alternatives, D', is a subset of D, the one for the
actual situation.

As usual in science, a "ceteris paribus" assumption must be made.
We assume that the (hypothetical) cause, restricting D to D', does
not change other relevant exogeneous aspects of the situation. For
instance in subsection I.1.1 the restriction of {n,a,p} to {(n,a}l
(say often the fruit-store has no pears in store) should not change
the person that T is, his desires, his knowledge, etc. We consider
IIA (see Definition I.2.8) and monotonicity (Chapter II) as concrete
expressions of the ceteris paribus condition.

As usual, the supposed changes are described accurately, but the
relevant things that should not be changed remain, at least for a
part, unspecified. The more science proceeds, the more can be said
about the "relevant things" to be controlled for the ceteris paribus
condition.

Let us compare the above to classical mechanics. The formula of
Newton, F = m.a (F force, m mass, a accelleration) is intended to be
applicable in every single situation. Essential for its significance
are comparisons to (hypothetical) analogous situations such as: if
some (hypothetical) cause would make F twice as big, then also
accelleration a should become twice as big. The ceteris paribus
condition should anyway entail that m is kept constant.

lot always does the above doubling of F have to be only a

hypothetical experiment. Sometimes it really can be achieved in an
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(1971, page 31, third paragraph).

: ] riment is a different event, happening at = X
experiment. Such an experi WIEFP o We shall be interested in C(D), and shall represent this, in the

i d lace. Not only is F doubled, and a too; there
another time and/or p ¥ i sequel. This meets the, admitted, problem, that not C(D), but only

is an infinity of other differences. These must then be assumed to .
Cf(D), is observable.

concern irrelevant matters.
In normative applications of representation results, the

Also, for our work the other considered choice situations are . .
consequences of the preliminary-choice-problem are not serious. A

t al ly thought i X h. 11 ]
not agkays onty s g perimentsr-hlgolhexe they may hayel really representation yielding the prescription to choose an alternative

occurred, or have been hieved i i ts. Still we use the term X
’ ag HEXPertments b . from C(D), without specifying which one, is not seriously deficient

"th ht i ". A i is i i fusi ith \
S fEEe et reason for this is o avoid confusion wi in this, because it does not matter which element is chosen. All

repetitio hoi i i g i
peti ns of choice situations. The difference between thought elements of C(D) are equally good.

experiments and repetitions is e d in s ion I.3.
Xp P Xxposed in sectl Far more serious are the consequences of the preliminary-choice-

; : £ h . T 1 lent
For the Qerivation of mathematical results it is often convenien problem for descriptive applications. Here it can never be falsified

h_E,: & 59 inijnite a%tefnative set? (YsuaLly Endeked Withya fopo%ogy) from observed choice making, that T was completely indifferent
' | - —= such asIR+. Continuity assumptions can then be made to simplify the (C(D) = D for all D € D) and made all his choices arbitrarily. Here
] technical work and to give convenient uniqueness results. Thus some- is a subject for further investigation, to derive "sensible" prefersice
wa i ! times hypothetical alternatives which were not present in the actual el sTlcRE Eronnebserved Kheleas Cf(D), and to find out in how far
E%' | D, but which have informative properties, are introduced. Then the set the choices must have been arbitrary. Work like Cooke and Draaisma
4 = - | X of all considered alternatives contains more elements than only (1984),, comparing numbers of arbitrary preference relations to numbers
:!!_ o _ igae) S sernariues kst axe SEFeLLy, BUTEbTE £ D of preference relations with "nice" properties, can be useful for
..; fl == S5 AL wilLT ?omet%mes ?e oF W18 Lo afsume tha? s P this. For predictive applications it is a disadvantage to obtain only
o ffF a?pects of t?e ehgreg 51tuaflon e be.varled. Hes 1n?taéce fo5. 5he the prediction that T will choose an element from C(D), and not the
- binary relations >h' to be introduced in Cha?ter II, it is useful to prediction which element that will be.
s imagine that certain coordinates of the alternatives can be ignored. A way to circumvent the problem of preliminary choice is to
TLJl ' This may be because a consumer is completely satisfied with respect to simply communicate with T, and ask him what his C(D)'s are. This
.5_ the "commodities" corresponding to these coordinates; or because the approach falls outside the scope of this monograph. We shall base our

extra information is obtained that "states of nat e e i ; "
e statss RatirSir SeTrSsponcing representations solely on choice behaviour.

to these coordinates, are untrue.

I.1.4. THE PRELIMINARY-CHOICE-PROBLEM

I.2. FROM CHOICE FUNCTIONS TO BINARY RELATIONS

For theoretical purposes it is convenient to consider the case
where T may choose a nonempty subset from D, instead of just one

e, . , ., g . . .
elemen Such a choice is called a preliminary choice, or just choice In this section we indicate how to represent choice functions by

if i i 5 i i !
no confusion arises. Thus for a choice function C, the C(D)'s may binary ("preference") relations.

contain more than one element. C(D) is interpreted as the set of all
elements from D, which T would be willing to choose. His finally

chosen alternative is one arbitrary element from D, say Cf(D). Cf is
called a "selection function" in Basu (1980, p.50). See also Richter
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I.2.1. THE CONGRUENCY PROPERTY

Let X be the nonempty set of all considered alternatives,
Dc 2x\{¢} the nonempty collection of all considered choice situations.
For D € D, elements of D are available alternatives (with respect to D).
We assume that C : D » 2% is a choice function, (see Chapter 0). C(D),
the choice set for D, contains exactly those elements of D that T is
willing to choose from D. Elements of C(D) are called chosen
alternatives (from D),

An example of this can be found in consumer demand theory. There
T is a consumer, X = Iii, alternatives are commodity bundles, choicé
situations are budget sets, the choice function is the demand multi-

function, and the choice set is the demand set.

DEFINITION I.2.1. A binary relation > on X represents C if C(D) =
{x €D : x>y for all y € D} for all D € D.

We have chosen the term "represent" instead of the more
customary term "rationalize" for the sake of unity of terminology in
this monograph.

In the following chapters binary relations will be assumed to
represent choice functions, and will be called preference relationg.
They may be interpreted to stand for T's opinion about alternatives.
In literature it is custom to let a choice function stand for choice
behaviour of T, more or less intended to actually take place, and
to consider the possibility that T's preference relation does not
represent his choice behaviour. If then the preference relation
(notation ») ddes represent T's choice behaviour, (X, », D) can be
called a "rationalization” of T's choice behaviour. In Ruys (1981)
rationalizability is proposed as criterion for calling choice
behaviour "rational". In von Wright (1963), preference relations are
placed between the "anthropological" (acting) level and the
"axiological" (assessing) level.

The following definition shows a way to derive binary relations
from choice functions. Such relations are called "revealed preference

relations".
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DEFINITION I.2.2. We write xRy if there is a D € D such that x € C(D),
y €D, or if x = y; we write xPy if there is a D € D such that x € C(D),
y € D\C(D); we write xIy if there is a D € U such that x and y € C(D),

or if x = y.

The above definition does not forbid occurrence of both xRy and
yPx. In example I.1.1,T originally considered C{a,n} = {al}, c{p,a} = p,
ci{p,a,n} = p, and ¢{n,p} = n. The last two choices give pPn, and nRp
(even nPp).

There are many other ways to derive binary relations from C, see
Sen (1971). Often first a relation analogous to R above is defined,
and then P and I are defined as the asymmetric, respectively symmetric,
part of R, see for instance Weddepohl (1970). We have chosen the above
definitions to achieve maximal operationality. As soon as we observe
x € C(D), y € D\C(D) for some D € D, we can now conclude xPy. Had we
defined xPy by "xRy and not yRx", then for verification of "not yRx"
we would have had to observe the choices from all D € D, containing
both x and y. This may be an impossible task if most of the choice
situations, involved, are hypothetical (see subsection I.1.3). In the
sequel we adapt the results of literature to our deviating definitions.
Theorem I.2.5 (vi @ i there, and iv ® i) shows that one way to
characterize the desired representation in (i) there, is to require
that our deviating definition of P leads to the same P as in
Weddepohl (1970), where P is defined to be the asymmetric part of R.

DEFINITION I.2.3. We write xﬁy if there exists a finite sequence
+

(xo,xl,...,xn) such that x0 = x, xn =y, ij xj !
j=0 = _
for at least one 0 < j < n-1. Finally, we write xIy if xRy

for all 0 < j < n-1.

We write x§y if a sequence (x
xJij+1

as above exlsts, with furthermore
and yﬁx.
So R is the smallest transitive extension of R, P and T are

transitive extensions of P, respectively I, but usually not the

smallest.
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DEFINITION I.2.4., The choice function C is congruent if, for all
%,y € X : [xRy = not yPx].

The congruency property, and the main result (i) & (iii) below,

were first obtained by Richter (1966, Theorem 1).

THEOREM I.2.5. For the choice function C the following siz statements
are equivalent:

(1) There existe a weak order », representing C.
(ii) There exists a transitive »', representing C.

(iii) C Zs congruent.

(iv) R represents C, P is the asymmetric, I the symmetric part of R.
(v) R represents C.
(vi) P 78 the asymmetric part of R.

Furthermore, > of (i), and the smallest reflexive extension of >' of
(11), are extensions of R, their asymmetric parts are extensions of

P, and their symmetric parts of I.

PROOF, First the furthermore~statement. By Ehe definition of R, » of
(1) and the reflexive extension of »' of (ii) are extensions of R. By

transitivity they are of R. So their symmetric parts extend f, the

symmetric part of R.

Now suppose xﬁy. To prove x >y and x >' y.

0 i J+
Let x = x Rx1 ... RxIpx] 1R ee. RXT = y. We write > both for » of (i)
and for the reflexive extension of »' of (ii). x3 >rxj+1
all 0 < 3 <n-1, and x* 3 x* for all 0 <k < 2 < n. Were now y ¥x,

follows for

then by transitivity xk gﬁxg for all 0 <k < & < n, contradicting
j_ g+1 =
JPxJ . So x >3y, and >?must extend P.

X
The equivalence of (i), (ii), (iii) and (v) is derived in Richter
(1971, Theorems 5 and 8). For (vi) = (iii), suppose xPy. Then xﬁy, L)
by (vi) not yﬁx. So (iii) follows.
For (i) = (vi), first note that by (i), xfy implies, by the

furthermore-statement, x > Y, so not y » x. Hence, again by the

furthermore-statement, not yﬁx. Since xfy = xﬁy is always true,
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= = = = = 0
xPy = xRy and not yRx follows. And if xRy and not yRx, then x = x

n n-1 0
Rx1 ces Rxn = y can be arranged. Now to prevent y = X RX ... Rx = x,

J+1

: . So xPy. So (vi) is derived, (vi) is

there must be j such that x”Px
equivalent to (i), (ii), (iii), (v).
Of course (iv) = (v) is direct. For (v) = (iv), note that I by

definition is the symmetric part of ﬁ, and that (v) implies (vi).

I.2.2. OTHER PROPERTIES OF CHOICE FUNCTIONS

The characterization by means of congruency, obtained in Theorem
I1.2.5, was completely general. In this subsection we consider properties
for choice functions, simpler than congruency. We show that, under
certain restrictions, they imply the existence of a representing weak

order; by relating them to congruency.

DEFINITIONS.

I.2.6. C satisfies the strong axiom of revealed preference (SARP) if

j +
no sequence (xJ);.l=o exists such that x)px’ L

0

Px for all 0 < j < n-1, and
anx
I.2.7. C satisfies the weak axiom of revealed preference (WARP) if
XRy = not yPx.
I.2.8. C satisfies independence of irrelevant alternatives (IIA) if
for all D,.D, € D with D, = D,, C(D2) n D, = g or C(D2) n D, = C(Dl).
WARP has been introduced in Samuelson (1938), and SARP in
Houthakker (1950) and Ville (1951-1952, earlier 1946). These authors
studied the special context of consumer demand theory, the origin of
revealed preference theory. There the assumption was often made that
C(D) contains exactly one element, for every D € D. Then indeed SARP
implies WARP. The extension of these notions to choice functions C
with not always !IC(D)|| = 1, is not unique, and has been done in
several ways in literature. In the above way SARP does not imply WARP
anymore. To the author's knowledge, Arrow (1948) was the first to
introduce IIA; see C4 in Arrow (1959). (Arrow himself uses the term

IIA for another property, in his impossibility theorem in Arrow, 1978.
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other early references are Nash (1950a, 1950b), and Luce (1959,

section I.C.l.c.).

LEMMA I.2.9. The congruency property implies SARP, WARP, and ITA.
WARP implies IIA.

PROOF. Congruency forbids the existence of (xj)
that x7 € c(3*l), It € pItt
"€ C(DO), x0 € DO\C(DO). SARP forbids this only for the special
case that xj+1 € Dj+1\C(Dj+1) for all 0 < j < n-1
only for the special case that n

only for the special case that n

D1 c DO.

LEMMA I.2.10. If C(D) contains exactly one element for all D € D,
then SARP implies congruency.

PROOF'. Assume SARP, and let C(D) contain exactly one element, for all
D€ D. Let xORx
be such that x

J
out subsequent identical alternatives, to obtain x 0.

Since C(D) contains only one element for all D € D,

fact have x

LEMMA I.2.11. If D contains all two- and three-point subsets of X, or

2f D is union~closed, then IIA implies congruenty.

PROOF. Assume IIA, and let xORx1
As in the above Lemma, we may assume xj # xj+1

(otherwise take again (le)t_o instead of (xj)q
exist such that xj € C(Dj+1): :

n

(DJ)IJ.I=o , such

for all 0 < j < n-1, and

WARP forbids it
1. IIA can be seen to forbid it

1 and furthermore D0 < D" or

n_ 0
.+« RX Px . We derive a contradiction. Let j
n )
X . We now simply leave

we must now in

0 . X
. This contradicts SARP.

... Rx". We prove that not x° Px

for all 0 < j < n-1. If

0 n 0
X =X, or not x Rx , then also not <" Pxo. So let us suppose
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x # xO and x" Rxo, i.e. DO exists with x" € C(DO), xo € DO. To prove
is that xO € C(DO).

First for the case that D contains all two- and three-point
subsets of X. Since {xj, xj+1} c Dj+1, by IIA : <3 € C{xj,xj+1} for
all 0 < j < n-1. In particular xo € C{xo,xl}, x1 € C{xl,xz}. Consider

2 1 2 1 2
1,x2} # @. If x° is in it, then by IIA and {x ,x“} c {xo,x ,x71,

! 1

c{xo,x

)
,x“}, then by IIA and
1

also x1 € C{xo,xl,x2}. If x° € C{xo,x

2 1
{xo,xl} < {xo,xl,x }, also x0 € C{xo,x

0
,x2}. So always x € C{xo,x ,x2}.
By IIA,x0 € C{xo,xz}. Analogously we obtain xo € C{xo,xj} for

0 0
j=3,4,...,n. Since {xo,xn} = DO, IIA and x" € C(DO) imply x € C(D).

e’ B
Next for the case that U is union-closed. Consider C(D UD“) # ¢.

z 2
If there is y° € D2 such that y2 € C(D1UD“), then by IIA and
D2 c D1 V] D2, x1 € C(D1UD2). So always there is y1 € D1 such that
2
L u D2, hence always xO € C(DlUD )
1

y1 € C(DlUDz). By IIA and D1 <D
Analogously (substitute D1 u...u Dj-1 for D
abové, etc.) we obtain x0 € C((DIUDZU...UDj—l) U Dj) for j = 2,3,...,n,
and x° € c((0!0...0™ U D% . since 0° = (blu...Uo"Up?), by IIA :

xo € C(DO).

2 DJ for D2, xj_1 for x1

COROLLARY I.2.12. If D contains all two- and three-point subsets of
X, or if D is union-closed, then the following four statements arve

equivalent:

(i)  There exists a representing weak order for G.
(ii) cC Zs congruent.

(iii) C satisfies WARP.

(iv) C satiefies IIA.

If c(D) contains exactly one element for every D € D, then the

following three statements are equivalent:

(v}  There exists a representing weak order for C.
(vi) c 78 congruent.
(vii) ¢ satisfies SARP.
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PROOF. By the previous theorems,lemmas and propositions in this

section.

For the case where D contains all two- and three-point subsets
of X, the equivalence of (i) and (iv) above can also be obtained
from the proof in Arrow (1959), which was meant only for the case
where D contains all finite subsets of X. Sen (1971, bottom of page
312), noted that this proof remains valid in our case. For the case
where D is union—closed,.the equivalence of (i) and (iv) above is
given in Theorem 15.4 in Fishburn (1973), or Hansson (1968), or

Weddepohl (1970, Theorem 3.9.6, without K5 and K7).

In the following chapters we shall work with binary relations,
intended to represent C, and called "preference relations". Note that
binary relations do not specify the domain of C. Also note that
representing weak orders, as in (i) of Theorem I.2.5, do not have to
be uniquely determined. Hence properties, characteristic for such a
weak order, do not have to be characteristic for C, see page 48 of
Richter (1971). If D is rich enough, for instance contains all
2-point subsets of X, then > of (i) oflTheorem I.2.5 equals R (even

R) of (v) there, and is uniquely determined.

I.3. COMPARISON WITH OTHER SET-UPS

In Luce and Suppes (1965) a distinction is made between
"probabilistic" (= "stochastic") and "algebraic" approaches. In the

first approach there is randomness in the choices of T, for example

it is considered that T chooses C(D) = D1 C D from D with
probability %—and C(D) = D2 < D from D with probability %. Our

approach is algebraic, T's choices do not involve random mechanisms.
Also there is no randomness or uncertainty in the alternatives

that result from T's choices. T can choose any available alternative
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he wants, and then be sure to obtain this alternative. We d® consider
uncertainty in the sequel, in fact that will be the major subject
of this monograph. The uncertainty, made explicit and studied by us in
the sequel, will concern what "consequence" will result from an
alternative, see Example II.1.l1. There may be further, "implicit",
uncertainty in such consequences. We neither assume, nor exclude, the
existence of such uncertainty, only we do not study it. As an
illustration, suppose a person T can choose a bet in a boxing-match,
such that he gains $3 if boxer 1 wins, and he gains $-7 (i.e. looses
$7) 1f boxer 2 wins or the match is a tie. Then other approaches may
call the amounts of money $3 and $-7 alternatives,and say T is
uncertain about which alternative will result from his choice. For
the set-up of this monograph it is more convenient to call the bet
alternative , the amounts of money $3 and $-7 "consequence" (or
coordinate, see section II.1 and Example II.1.1). We do not exclude
or assume the existence of uncertainty about what will result from a
consequence "gain $3"; only such uncertainty will not be central in
our study.

Our set-up is ordinal in the sense that everything in the sequel
will be derived solely from the preference relation of T on the set
of alternatives (where the preference relation again is derived from
the choice function), and structure of the set of alternatives. Nothing
cardinal-like has been introduced "from outside". No strength of
preference relation is presupposed. Also no addition-like operation
on alternatives is used. For example we do not use repetitions.

A typical thought experiment for the repetitions approach, as
for instance in Shapiro (1979) or Camacho (1980; see also Wakker,

1985 c) is as follows. Let D, = {a,p}, D, = {p,n}, D, = {a,n}. It is
now assumed that T has to deal with all three of these choice
situations, and for instance he must choose between two "possibilities".

The first is that he obtains a from Dl' n from D2, and a from D the

37
second that he obtains p from D1, p from D2, a from D3. The first
possibility could then be denoted as a ® n ® a, or (2 ® a) @ n, the

second as p @ p ® a, or (2 ® p) ® a. Here ® and ® are formal operations.
One sees that here not in each one of the choice situations Dl’ D2, D3,

T is free to choose. If T wants a from D1, then he must take n from D2.
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In our set-up T 1in each single situation chooses what he thinks
best there. For instance, if in the transitivity assumption we assume
that choices a from D1 and p from D2 should imply the choice a from
D3, then all these choices are intended to agree with T's freedom of
choice in each single choice situation.

Also we do not use lotteries on alternatives. For the approach

with lotteries see for instance Fishburn (1970, 1982).

25

CHAPTER 11

CARTESIAN PRODUCT STRUCTURE,

MONOTONICITY, AND INDEPENDENCE

II.1. CARTESIAN PRODUCT STRUCTURE

In this section we introduce on X, the set of alternatives, the
main structure of interest in this monograph. We shall assume

throughout the sequel that X is a cartesian product Xi Ci' with I an

€1
index set. We shall nearly always, with Chapter V excepted, assume
that I is a finite set {1,...,n}, n € W. Many definitions and results
of this chapter are directly applicable to infinite I's.

The idea is that every alternative is described by a list of
properties, indexed by I. For instance alternative x = (XI'XZ’X3’X4)
may describe a car, where %y is the maximum speed, X, the price,

X3 a description of what the car looks like, x, the fuel consumption;

X » y means that x is thought at least as good4as y. Let us emphasize
that no physical quantification of the coordinates is needed for our
work. What the car looks like may be described in non-quantitative
terms.

In applications, one of the central matters is to find an
appropriate list of properties, to be indexed by I. The list should
be large enough to contain all relevant aspects of the alternatives;

and small enough to be tractable. Also, in our set-up, each property

should have a meaning on its own. If in the above example it were

impossible to give a meaningful description of X3 what the car looks

like, independent of maximum speed, price, and fuel consumption,
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then the list of indexed properties used above would not be well-

Theory.
suited for our set-up. Throughout this monograph we shall assume that EXAMPLE 1I.1.5. Welfare Theory .
i i i i i i i or grou
the cartesian product structure has already been obtained. Here x is an allocation or social situation, I is a socie % . gt p
i i . indicates
In the sequel of this chapter, we shall study monotonicity of agents/players, every i € I is an agent/player, and.x?1955)
ili t i under x. See Harsanyi .

properties. These may be considered formal reflections of the the wealth or utility for agent i

requirements mentioned in the above paragraph.

‘ ; 5 2 ndexes.
For many fields of (economic) science the cartesian product EXAMPLE II.1.6. Price Ind

i indi service, x, is the price of good or
structure is a central matter of study. Examples: Here every i indicates a good or r Xy

service i at the time, or in the place, described by x. Here a price

I.1.1. Dec s10om ! a;CL” und@l' une t t Vv v v (e} prices 1s
T g - ervain y (DMUU) . 'Lndex , assigning to e ery X a measure for the level f I3
an act + I a state Space icg e tat f v > H v i time or P lace x
i ’ Ia (posstb Z ) statve (0 usually the Prlmltl e. X y: the level of prices in
’ e o ers are untrue is at least as hlgh as that in Y- See Fisher ( 1927 b) -
nature) . Exactly one state is the true state th th

Act x yields consequence X if i is the true state. T, the decision

s other examples can be thought of. The
maker, is uncertain about which of the states is true. Usually in this 98 COUESS ja RUNSECH P i ntroduced
: oduc

context Ci = C1 =: C for all i. As an example one may think of a modelling of uncertainty, as in Example II.1.1, haslzij? l; z -

. : . Note a

horse race. Of n participating horses exaétly one will win. Here i LpSeCpon e ILACEEature joy Sauags (1955, and Arsew f titative

x = uantitati

indicates the "possible state of nature" that horse i will win. in.Exangies TITL S aad Hlaey=EC 18l custon e Caks ? at d of »
ing: initi IIL2.2) V as primitive, instead of .

@ Ci = R for all i, and x = (xl,...,xn) is a gamble (= act) that will (representingp peenBelinition L 4 . ' as is

ﬂ!ﬁ g d leave T with $x., if the j-th horse wins. See Savage (1954). The relation between such quantitative representations, and » ,
3 ]

the central topic of this monograph.

EXAMPLE II.1.2. Consumer Theory.

Here x is a commodity bundle, i indicatés a kind of commodity,

X € I{F the amount of commodity i in x; x > y = consumer T thinks

TERNATIVES, CONSEQUENCES, AND PREFERENCES
X at least as good as y. See Katzner (1970). II.2. ALTERNATIVES, SUBAL ) .

BETWEEN THEM

EXAMPLE II.1.3. Producers Theory.

Here x is an input vector, i indicates a production factor, x, is the

i is chapter, with the exception of the
input (rate) of production factor i (also x; may refer to output). The remainder of this P , . .
V : X+ R is a production function, assigning to evexry x the definition and notations of this section, and Definitions 5 .4;
.6.4, is not needed for understanding of the
(maximally attainable, one-dimensional) output V(x). x > y: x gives I1.6.3, and Theorem I1I1.6.4,

at least as much output as y. See Shepard (1970). follow chapters.

Ac I, x. is the element of
EXAMPLE I1I.1.4. Dynamic Applications. NOTATION II.2.1. For x € X ,C., and . Xy

€1°i

. 3 .
X.E C. with i-th coordinate x ’
i indicates a pO’Lnt 0’ tﬂme, X is the Consumpt] on/productjon/jncome Subaltelﬂnatbve.

at point of time i. See Koopmans (1972).

for all i € A. We call X, a
Here x i1s a consumption/production path, stream of income, etc. Every

L to
If one considers x as a map from I to UiEICi , &ssigning x,
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every i € I, then one can consider X, as the restriction of x to A.

Of course X{i} = xi, Xp = X; coordinates and alternatives are special

forms of subalternatives. We assume throughout this section, as well as

in sections II.3, IT.4, and II.5:

ASSUMPTION II.2.2. For every A © I a reflexive transitive binary

relation >, on xiEACi is given. These >A's are called subpreference
relations. We often write >1 instead of >{i} , and also call these
binary relations coordinate preference relations; further we also write
> instead of >, this is the usual preference relation. a7 <ar Sar R
are as usual (see Chapter 0). For all these binary relations, we often

leave out index A if no confusion is likely to arise.

Note that, for the time being, we do not assume any connection

between different >AIS' They do not have to be derived from >i

way. The monotonicity properties, considered in the sequel, will enable

in any

such a derivation, see Proposition II.6.1. Also note that we
emphatically do not assume completeness for the >h's. (Recall that
in (v) of Theorem I.2.5, we found a representing ﬁ, that was transitive,

reflexive, but not necessarily complete.) Thus, the assumption of the

presence of all these >A's does not have to be considered a serious

restriction: some of them may simply be the identity relation.
The assumption that all these >h's are given, deviates from the

main strategy in this monograph, to consider only » on X as given. One

reason for this deviation is that the work under this assumption

serves as a preparation for the work in section ITX.6, where we again

assume that only > is given. But we also hope that our work under this

assumption has interest on its own.

The interpretation of xA >h yA is something like: for as far as
only the coordinates with indices from A are concerned, alternative x

is weakly preferred to alternative y. In consumer theory, one may

imagine that attention can indeed be restricted to the coordinates

with indices from A, if the coordinates with indices from A° (say in a

thought experiment) are fixed at some standard level, for example a

level of total satisfaction. In DMUU, coordinates with indices from A®

can be left out of consideration if A° is untrue (i.e. every state of

nature in AS is untrue) and furthermore this has become known to T by
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the acquisition of extra information. The ceteris paribus assumption
c ] ]
should entail that the fixation at A~, or the extra information that

Ac is untrue, does not affect other essential matters.

DEFINITION II.2.3. Let Al'
x1 Y xk subalternatives. The subalternative, compounded of
B A
l :
x1 i xk , notation x1 xi or xk , 1s the subalternative
roees
5! By R B
assigning xi to i1 € Aj, j=1, ..., k.

r Ak be mutually disjoint subsets of I,

NOTATION II.2.4. Let A ceay Ak be mutually disjoint subsets of I,

1!
¥ T xk subalternatives. Then we write
By B :

k

k
and x x>, wwwy X for the
(A U...UAk)c 4 =
1
1 e X %

Al,.--,A] A1 Ak
N X
(AlU...bAk)c A, A

x an alternative, x

X for x
—Al,...,Ak

alternative x

If necessary, we add parentheses in the above notations. And as

often, we write i instead of {i}. Thus for instance:
x .v, is (x with x, replaced by v,). (I1.2.1)
-i'i i i

and, for i # 3,

i i d by v,, x, by w.). (1I1.2.2)
(x-i,j vi,wj) is (x with X, replaced by i %y 4

I1.3. TERMINOLOGY FOR MONOTONICITY

Throughout literature one finds very many forms of monotonicity
properties, and properties closely related to them, with widely
varying terminologies and meanings. We think it would be useful if a
unifying terminology for these would be developed, and if the several
logical relations for them would be mapped out.

The terminology, developed below, should be considered only as
a first indication that such a unification may be possible. We would
welcome alternative approaches from other authors. In special contexts

one may adhere to (small) deviations from a unified terminology, to
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increase tractability. For instance in a context where never any form
of monotonicity occurs other than cA monotonocity (see (II.3.1), and
Definitions II.3.7 and II.3.8) one may for convenience leave out "ca"
from terminology.

Let us first give the most simple and well-known example of

monotonicity:
If X, >'yi for all i, then x » y.- (IT.3.1)

We shall vary this monotonicity in three aspects. Firstly, the
involved preferences can be varied. We can have strict preferences
instead of weak preferences, etc. Secondly, we can replace coordinates
and/or alternatives by subalternatives. Thirdly, we can vary what may
be called the "direction of aggregation". We can for instance assume
that [xi >=yi for all i > 2, and x < y] implies [x1 < yi]. Then the
preference concerning x and y (or, more generally, the "longest”,
"most aggregated", subalternatives) is not in the conclusion, but in
the premise.

The abbreviations that will be used in the terminologies, are:

ABBREVIATIONS: ¢ stands for coordinate, A for alternative, s for
("short") subalternative, and S for ("long") subalternative; mon

stands for monotonicity.

We also use capital A to denote subsets of I; this is unlikely
to give confusion. The general form of the terms, introduced in

subsection II.3.1 below, is
(ggi)mon (I1.3.2)

Here d is the generic variable for "direction of aggregation".
This is either aggregated, or disaggregated. Further p is the generic
variable for the kind(s) of involved preferences, weak, strict, or
equivalence; p may also stand for "strong". Finally 1l refers to the
Zength of subalternatives, and stands for sS, ¢S, sA, cA, or SZS.

In the aggregated monotonicities we often leave out the term
aggregate. Also we often leave out the term disaggregate, and then

show this by replacing ca by Ac, sA by As, and sS by Ss.
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Further we often use symbols instead of words for p above; then
disaggregated monotonicities are distinguished from the aggregated

ones by a dash through a symbol.

11.3.1. DEFINITIONS

First we give the strongest monotonicities, with sS for 1. We

start with aggregated for d in (II.3.2).

DEFINITIONS II.3.1. (Aggregated) s(ubalternative) s(ubalternative)

monotonicities. AAd after every definition below:

for all B € I, partitions (Bl""’Bm) of B, (IT.3.3)

alternatives x,y.
We say {>h : AC I} satisfies:

¢ 88) mon (or strict sS mon) if:

Xg > Yg for all k = Xp > Yg
k k

(> 8S) mon (or weak sS mon) if:

X b ¥g for all k = Xp > ¥p
k k

(~ 8S) mon (or equivalence 8S mon) 1if:

X, ~ Y for all k = xB [~ YB

Bk Bk

(> 8S) mon (or strong sS mon) if:

Xy > ¥p for all k, Xg > ¥ for some k = x_ > ¥g

k k k k

B

total sS mon if:

(a}y ..., (d) above are all satisfied

One may add "aggregated" before every definition above. Next we
will let d in (II.3.2) be disaggregated. Each disaggregated
monotoni;I£y property is closely related to the corresponding
aggregated monotonicity property. The only difference between the two

can be caused by incomparability, as will be demonstrated in

Proposition II.4.1. This may have been a reason that the disaggregated

monotonicities, to the author's knowledge, have not yet appeared in
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literature. Still, they will be an indispensable tool for our work in

the sequel (as we shall see in the comment after Theorem II.6.5).

DEFINITIONS II.3.2. Disaggregated s(ubalternative) s(ubalternative)

monotonicities. Add after every definition below:

for all B € I, partitions (Bl""’B ) of B
m

+ 1 <3 <m, and alternatives x,y.
We say {>h : A C I} satisfies:

(a) (# Ss) mon (ox strict Ss mon, or disaggregated strict sS mon) if:
Xg > ¥ for all k # j, Xy < Yp = % < ¥
k k j 3
(# Ss) mon  (or weak Ss mon, or disaggregated weak sS mon) if:
Xg >=yB for all k # j, Xg < s & Xy < Wy
k k 3j 3j

(x Ss) mon (or equivalence Ss mon, or disaggregated equivalence
sS mon) if:

Xp ™Y for all k # j, [xB > Yp Or X

Xk X B

J J J

(> # Ss) mon  (or strong Se mon, or disaggregated strong sS mon) if:
ka > yBk for all k # j, Xy < Yp = Xg < g

i 3
total Ss mon (or disaggregated total sS mon) if:

(a), ..., (d) above are all satisfied

Pronounciation does not distinguish between sS and Ss, hence we
think for spoken language the second terms in (a) and (d) , and the
first term in (e), are less suited.

The following, weaker, versions of monotonicity are straight-
forward variations on the previous ones, so are not written out. The

idea is, to replace in the (dp(sS)) monotonicities above s by ¢, and /
or S by A.

DEFINITIONS II.3.3,(a) to (e). (Aggregated) c(oordinate) s(ubalternative)

monotonieities. Obtained from Definitions II.3.1 by substitution every-

where of ¢ for s, and by restriction to Bk's with llBk|| =1, so to

< YB] = [xB'> Yy ©OF Xp < ¥ ]
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coordinates x

r Yo -
Bk Bk

DEFINITIONS II.3.4, (a) to (e). Disaggregated c(oordinate)
s(ubalternative) monotonicities. Obtained from Definitions II.3.2 in
the same way as Definitions II.3.3 have been obtained from Definitions

I1.3.1.

DEFINITIONS II.3.5, (a) to (e). (Aggregated) s(ubalternative)
a(lternative) monotonicities. Obtained from Definitions II.3.1 by
substitution everywhere of A for S, and by restriction to B equal I,

so to alternatives Xp = X, Yy < Y-

DEFINITIONS II.3.6, (a) to (e). Disaggregated s(ubalternative)
a(lternative) monotonicities. Obtained from Definitions II.3.2 in the
same way as Definitions II.3.5 have been obtained from Definitions

I1.3.1.

Since the monotonicities, introduced in the following two
definitions, only involve the >i's, and » , we sometimes ascribe them
to {>i:-i € 1} U {»}, instead of to all of {>h : A< I}. Definition
II1.3.7.b equals (II.3.1}.

DEFINITIONS II.3.7, (a) to (e). (dggregated) c(oordinate) a(lternative)
monotonicities. Obtained from Definitions II.3.1 by substitution
everywhere of ¢ for s, A for S, and by restriction to B equal I,

m = n, and Bk = {k} for all k; i.e. by restriction to coordinates

g T Xypr ¥y

= Yy and alternatives x
k k

g~ Xr¥g © Y-
DEFINITIONS II.3.8, (a) to (e). Disaggregated c(oordinate) a(lternative)
monotonicities. Obtained from Definitions II.3.2 in the same way as

Definitions II.3.7 have been obtained from Definitions II.3.1.

We shall show in Proposition II.4.3 that the (dp(sS)) °
monotonicities are implied by those that are restricted to m = 2. So

we define:
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DEFINITIONS II1.3.9, (a) to (e). (Aggregated) twofold s(ubalternative)
s (ubalternative) monotonicities. Obtained from Definitions II.3.1 by

restriction to m = 2, and with this indicated by an index 2 above the

2
small s, so (> s”S) mon, etc.

DEFINITIONS II.3.10, (a) to (e). Disaggregated twofold s(ubaltermative)
s(ubalternative) montonicities. Obtained Ffrom Definitions II.3.2 in
the same way as Definitions II.3.9 have been obtained from

Definitions II.3.1; this gives (* SsZ) mon, etc.

In following chapters we shall deal with cases where all

monotonicity properties, introduced so far, are satisfied. Hence we

define:

DEFINITION II.3.11. {>h: A C I} satisfies total monotonicity if
Definitions II.3.1 to II.3.10 are all satisfied.

II.4. ELEMENTARY CONNECTIONS BETWEEN MONOTONICITIES

In this section some elementary logical relations between the
several monotonicity properties are given. It is not our plan to
elaborate this extensively. We mainly aim at minimal assumptions
to guarantee total monotonicity. Let us repreat that throughout we
make Assumption II.2.2, i.e. every >, is transitive, reflexive, not

necessarily complete. First we relate aggregated monotonicities to

disaggregated monotonicities.

PROPOSITION II.4.1. Let every = be complete. Then (aggregated pl) mon
holds if and only if (disaggregated pl) mon holds.

Here one can substitute strict, weak, equivalence, strong, or

N 2
total for p: and for 1 one can substitute sS, cS, sA, cA, or s S.

PROOF. We only give the prodf for p: strong, and 1l: cA. The other cases
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are similar. In the definition of (> % Ac)mon, let X, > vy for all
. . ’ -
i# 3. Now [x <y = Xy < yj] is equivalent to [not %3 <y;=n ]
AR : > v].
x < y]. By completeness this is equivalent to [xj> yj] = [x Yy
This gives (= > cA)mon.
o

Since every coordinate and alternative is a subalternative, we

immediately have:

PROPOSITION II.4.2. (dp(sS))mon implies (dpl)mon, for every
1 € {85, eS, sA, cAl.

Here one can substitute aggregated or disaggregated for d, and

for p one can substitute >,»,x, » >, or total.

PROPOSITION II.4.3. (dp 828)mon holds if and only if (dp sS)mon holds.

Here one can substitute aggregated or disaggregated for 4, and

for p one can substitute >, » ,~ , »=> , or total.

p 2 , .
PROOF. That an sS mon implies the corresponding s S mon, is direct.
') .
So we assume (dps S)mon, and derive (ggss)mon. We do it for two cases
only: d is aggregated and p isstrong; or d is disaggregated, and p is
X > . CI-
equivalence. In either case, let (Bl""me) be a partition of B

2
Now assume first that (= > s S) holds, and assume ka P yBk for

all k, x_ >y for some k, say k = 1. To prove is, for (> > sS)mon,

B B

k k

¢ llows. If now for
that Xg > Yp- By (> > s S)mon, xleB2 > yBlsz fo
i < m we have proved that xB1 o B xB‘ > yB1 - yBi,
i
]

((BIU S UBi)’ B, ,) as partition in two parts of BIU e LBi+1’

then we take

i+1
apply (> > s2S)mon, and obtain that xBl = xBi+1 > YB1

> Y+ which is what (> > sS)mon requires.

e ¥
Bis1

We end up with Xg

For the second case we first give a new notation, for this proof

i i <t.].
only. For any s,t € X, C<C I, we write scgtc if [sc > tc or sc C

We now assume that (& szs)mon holds, and want to derive (% sS)mon.
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So let x_, w~ Y for all k # j, and ngyB.To prove is Xy Ay - Suppose

Bk Bk g 3
3 = 1. Since B = (B1U =% UBm—l) u Bm yXg w Yg - and Xy -
P m m
(# s"S)mon gives that (x 2 2. X Yaly weld W ). If now for
B B =B B
1 m-1 1 m-1

i > 1 we have proved that x s Yp oo then we write
i
2 g
i—1) u Bi; xBi =3 yBi, and (5% s S)mon give
- We end up with x_ qy_ , which is
-1 BBy

vss X gy
By By Ay

(B1U A UBi) = (B1U ... UB

that x o - X qy. .
By Bim By

what (% sS)mon requires.

<+ ¥g
1

We now turn to the logical relations between the dpl monotonicities

that differ with respect to P , and have d and 1l the same.

PROPOSITION II.4.4.
{a) (d strong 1l)mon implies (d strict 1)mon.
(b) (d weak 1)mon implies (d equivalence L)mon.,

(e) (d strong L)mon and (d equivalence Lmon together imply (d weak )

mon.

Here one can substitute aggregated or disaggregated for 4, and

for 1: ss, cs, sA, chA, or szs.

PROOF. (a) is trivial. For (b), we consider first (aggregated) weak
CA mon, and derive equivalence cA mon. If now xk ~ Yy for all k then
[xk > Yy and Yy > xk] for all k so, by twofold application of weak
cAmon, [x >y and y > x], i.e. x n Y. This is what equivalence ca
mon requires.

The second, and final, version of (b) that we derive, is the
version where 4 stands for disaggregated, and 1 again for cA. Let
disaggregated weak cA mon be satisfied. Let xk ~ yk for all k # 3,
[x >y or x <yl. say x > Y. Then by disaggregated weak cA mon
xj > yj follows. So certainly [xj > Yj or yj > xj], which is all that
disaggregated equivalence monotonicity requires,

For (¢), we again consider two cases, again both with i = cA.

First we assume (aggregated) strong cA mon and equivalence cA mon.

To derive is weak cA mon. So let X, > ¥y for all k. If X, > v for
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some i, then by strong cA mon X > y. So certainly then x » y, which

is what weak cA mon requires. If X > v, for no i, then X, RY, for
all i. Here we apply equivalence cA mon, to obtain x & y. So certainly
x » y, which is what weak cA mon requires.

Finally, as a second case of (c),we assume disaggregated strong
cA mon and disaggregated equivalence cA mon, and derive
disaogregated weak cA mon. So let Xy > Yy for all k # j, x <y. Of
course x < y, so disaggregated strong cA mon gives xj = yj. If now
X R Yy for all k # j, then disaggregated equivalence mon (since
¥, > y. cannot hold) gives xj < ya, which is what disaggregated weak

cA mon requires. So suppose Xy >-yi for some i. Now xj ~ y. cannot

hold: then we would have X, > ¥y for all k # i (also for k = j), which
together with x < y by disaggregated strong cA mon would imply

i i t hold
X, < Yy- This contradicts Xy > vy- Apparently xj = yj does no old,

l :
and x, < y. follows. This is what disaggregated weak cA mon requires.
j 3

[m]

II.5. TOTAL MONOTONICITY

In this section we give sets of monotonicity properties,
sufficient to imply total monotonicity (i.e. all other monotonicity
properties). Again, throughout we make Assumption II.2.2. First one

preparatory result, less elementary than those of the previous

section.

PROPOSITION II.5.1.

(a) = sAymon and (> ¥ As)mon together imply (> sS)mon and (> 3% Ss)mon.

(b) (> > sA)mon and (¥ As)mon together imply (> > sS)mon and (# Ss)mon.

iti f B<C I. We write
PROOF. Throughout let (Bl’ ...,Bm) be a partition o
B_ := B°. Always z is an arbitrary fixed alternative. In the proof we

0 . .
shall often change subalternatives into alternatives by compounding

them with pieces of z.
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For (a), we first derive (> sS)mon from the assumptions there.
So let x, > Y s «w=r Xg & Vg »

Bl "5 m m
By (> sA)mon,(zB Xy -ee Xp )y > (zB g eee X ). Now, since
01 m 01 m
z, < Zg (> % As)mon implies (xB es Xp ) > (yB ere Yo ), which
0 0 1 m 1 m

is what (> sS)mon required.

Next, for (a), we derive (> # Ss) from the assumptions there. So

let xBﬁ P YB 7 e By xB -~ yB , and xB < yB. This latter, and
2 2 m m
z <z by (> sA)mon implies z_ x_ < z . This, and x_ »
B B ' Y. v A%
0 0 B0 B BO B Bk Bk
for k = 2,...,m, implies by (> % As)mon z_ x_ < z_ y_ . From this,
o~y LB By
zB < zB for all k > 2, and (> sA)mon, follows zB xB zB e zB <
k k 071 72 n
Zy ¥g Zp -e Zg . Finally, this, zg > zg for all k # 1, and
0172 n k k
(» ¥ As)mon, give Xy < Yy - This is what (> # Ss) required.
1 1

The proof of (b) is analogous, and left to the reader.

THEOREM II.5.2. The following four (sets of) conditions for {>A : Ac1I}
are equivalent:

(i) total monotonicity.

(i1) &> sgs) - (> # Ss2) - (x sZS) ~, and (% Ssz)mon.
(iii) (> s4) =, (# 4s) -, (»> sh) -, and (> ¥ As)mon.

(iv) (x s4) -, (& A8) -, (> sd) -, and (> ¥ As)mon.

PROOF. (iv) = (iii) is by Proposition II.4.4.c. (iii) = (ii) (even
the stronger version of (ii) without indices 2) is by Propositions
I1.5.1, and II.4.4.b.

For (ii) = (i), first we see that by Proposition II.4.3, (ii)
implies its stronger version without indices 2. That this implies all
sS monotonicities, is by Proposition II.4.4. This of course
(Proposition II.4.2) implies (i).

Of course, (i) = (iv) is by definition.
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Under special circumstances it may be possible to weaken the
properties in (ii), (iii), (iv) above, such that (i) is still implied.
For instance, if all >A's are known to be complete, then Proposition
TI.4.1 enables us to leave out the disaggregated monotonicities. We

give a result, useful for the case of antisymmetry:

PROPOSITION II.5.3. If every >, 18 antisymmetric, then (d strong 1)mon

implies d weak 1 mon.

Here one can substitute aggregated or disaggregated for 4, and

2
for i: sS, sA, ¢S, cA, s S.

PROOF. We consider only the case where 1 = cA. First we assume
aggregated strong cA mon. To derive is aggregated weak cA mon. So

assume X, b Yy for all k. If x, = ¥ for all k, then x =y, and x » y

follows. If X # Yy for some kf then by antisymmetry of >k we have
in fact xk > yk. By aggregated strong cA mon then x > y, so certainly
again x » y. x » y, as required by aggregated weak cA mon, always
follows.

Next we assume disaggregated strong cA mon. To derive is

disaggregated weak cA mon. So assume x, > for all k # j, x <y.
Yk

k

Then x < y, and by disaggregated strong cA mon xj < yj follows. The

proof is completed if we derive contradiction from the assumption that

not x, <y.. If not x, <y,, then x, ¥ y., i.e. x, = y.. Further then
9 = 5 p= G s i~ M

for any i, from x < y, X > Yy for all k # i (also k = j) and

disaggregated strong cA mon, X, < ¥y follows. So X P Yy and X < Y,

for all i. Then apparently X, T Yy for all i, so x = y, in contra-

diction with x < y.

The above proposition shows that antisymmetry enables one to leave
out, in Theorem II.5.2, the weak and equivalent monotonicities in (ii),
(iii) and (iv).

Note that it depends on the involved cartesian product, whether
a subalternative can be called consequence or not. Suppose that
(Bl' e [o] 7 Bm) is a partition of I. We can write Xi C, as

€11
B Ci), and consider only the cartesian product over k. Then

m
X . (X
k=1"'"4

i€ "
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Xy is considered a consequence, whereas originally it was not if

k
||Bk[| > 1. In contexts, where any cartesian product structure

m . PR 5
Xk=1(xiEB Ci) is as natural as the original XiEICi' the subalternative
alternative monotonicity properties may be considered to be as natural
as the consequence alternative monotonicities. For those contexts (iii)
and (iv) of Theorem II.5.2 are useful characterizations of total
monotonicity. This is the more so in view of the main strategy in
this monograph, to formulate as much as possible all conditions in
terms of the preference relation » on the alternatives: (iii) and (iv)

at least partly involve » .

IT.6. COORDINATE INDEPENDENCE AS THE OBSERVABLE CONTENT OF TOTAL
MONOTONICITY

In this section we want to return to the main strategy of this
monograph, to consider only the preference relation » on the set of
alternatives X as observable, together with structure of X. Then the
>A's, for A ; I, are not directly given. The most we can do is derive
them from » , under the assumption of total monotonicity (, see
Proposition II.6.1). And the most we can do about verification or
falsification of total monotonicity, is to find properties of > that
enable a verification or falsification of the existence of >A's, for
all A ? I, such that {>h: A C I} satisfies total monotonicity. The
necessary and sufficient property of > for the existence of such >h's,
is "coordinate independence"”, see Definition II.6.3, and Theorem
II1.6.5. The following proposition shows that, under total monotonicity,

all >A's can be derived from »>.

PROPOSITION II.6.1. Let {>h: A c 1} satisfy total monotonicity. Let z
be an arbitrarily fixed element of X. Then Xy > Yy if and only if

X_ 2z »y. .z .
A
A aC aC

: 2
P y impli .
ROOF. Since zAc - zAC ' [xA - yA] by (> s S)mon implies [XAZAC b yAzAc]_si
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2
For the converse implication, since z >z ,ly <x] by # 8s%)

A A
mon implies [yA < xA].

Since >§ is independent of the particular z N that we fixed in
. A :
the above proposition, we see that the following property of 2 is

necessary for total monotonicity:

DEFINITION II.6.2. > satisfies independence of equal subalternatives
if:

[x.v _»>y,V _®xXW >»yW C]
A AC A AC A AC A A

for all x, y, v, w € X, A c I.

For the idea of the above definition let s := xAv <! jo S
A

Then, as soon as we know that s and t are identical in AC, we do not

have to consider the particular common value s = tAC = v _in aC any
A A

further. It does not matter if this is VAC or wA ,cor whatever. The

preference between s and t is independent of the A~ < I where & and t

are identical.

For finite cartesian products, there is a simpler, equivalent,

formulation for independence of equal subalternatives.

DEFINITION II.6.3. > satisfies independence of equal coordinates, or

shortly coordinate independence (CI), if:

[x_ivi >y_ v, ex_ v > y_iwi]
for all x, y € X, VoW € Ci' i € I. Also we then say that > is

coordinate independent (CI).

THEOREM II.6.4. > satisfies independence of equal subalternatives if

and only if it satisfies CI.

PROOF. Since any coordinate is a subalternative, independence of
equal subalternatives implies CI. For the converse implication,

assume > is CI. Let x, y, V, w, A be as in Definition II.6.2. Let
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jjAc|| =m <n. For m = 1 the result is direct. Now suppose m > 2, and

for m-1 the result is proved. Let j € A. Then [xAv . YV c] ©
A A

[((xAW Vj)]. Now by CI the latter preference holds

e e
if and only if waAc > yAwAc.

)_jvj) > ((yAw =

The above two properties are central in our work and will nearly
always hold in following chapters, Chapter VI excepted. A related
property was introduced in Sono (1945, 1961) and Leontief (1947 a,
1947 b) in terms of derivatives of a (presupposed, representing (see
Definition III.2.2)) function. See also Samuelson (1947, pp 174-180).
Already Fleming (1952), for the context of welfare theory, formulated
essentially the independence of equal subalternatives of length n-2
in terms of a (presupposed, representing) function, but without using
derivatives. In Debreu (1960) CI was formulated in its present, more
appealing, form, in terms of the preference relation, thus again
without differentiability assumptions. Before, Savage (1954) had
introduced the "sure-thing principle"” for DMUU. This principle is in
fact identical to independence of equal subalternatives, as is well
known nowadays. It can be seen to underly the "likelihood principle"
in statistics, which is central in the discussion about Bayesian
statistics. See Berger and Wolpert.(1984). Debreu, and some other
authors, have used the term independence. A further usual term is
(strong/strict) separability. Katzner (1970) uses the term additivity.
For an extensive study of generalizations, and many applications of
CI, see Blackorby, Primont, and Russell (1978). See also Mak (1984,
1985) . Gorman (1976, p. 212, 224) argues for the importance of CI in
economic theory. Krantz et al. (1971) mention Fisher (1927.a, p.175 £f)

as an early place where the basic idea of CI can be recognized.

THEOREM II.6.5. Let » on X be transitive and reflexive. Then there exist

transitive reflexive >,'s on X Ci (A © I) such that {>A: Ac 1}

i€a
satisfies total monotonicity, if and only if » is CI.

PROOF. The only-if part is by Proposition II.6.1, Theorem II.6.4,

and the remark above Definition II.6.2. So, we next assume that » is
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cI, and we derive existence of >h's as in the theorem. Let z be an
arbitrarily fixed element of X. We define Xy Za Yy whenever

xAz > yAz e’ Note that >I thus coincides with ». Reflexivity and
c

A A

transitivity of » imply the same for any >A' Finally we must derive

total monotonicity. By Theorem II.6.4 we have independence of equal
subalternatives.

: 2 o {FE
First note that xA i.yA iff xAz c > yAZAC’ xA n yA i
xAz c R YpZ o - By Theorem II.5.2, (ii) = (i), it is sufficient to
A A
2 2 2
derive (= > szs) -, #8s) -, (= s“s) -, and (4 Ss”)mon. So let
: . _ o c
1 n B2 =g, Blzu B2 = B C I. We write Bo =11B=
For (» > s“S)mon, suppose that xB >b1 yB P xB >B YB . To prove:
1 1 2 72 2
X_ X > v, Y., . We have x > Y. = z X5 zB > zB yB
B, "B, "B UB, "B;"B, By By "By BBy By 0By

(by independence of equal subalternatives):

B

V-4 =
B,
4

II.6.1
Z_ X_ X_ > zy Y ( )

B, B, B

X, 5
) o By By

Further , we have x_ > Y ®2zg zg X >z z_y_ = (by independence

B2B2 B B, B B, B,”B

2 071 72 012
of equal subalternatives)

2. Y., X, >2Z_ V. Y_. (II.6.2)
By'By By Bp'ByBy

(IT.6.1) and (IX.6.2) imply Zy Xp Xp > zBOyBlsz, i.e.

172
X_ X

> Y. Y. , as desired.
B1 B2 131UB2 ]31 B2
(~ s“S)mon is analogous, and not elaborated.
2
For (> % Ss”)mon, suppose X_ »_ Y_ , X_ X Yy, v, - To
B1 B1 B1 B1 B2 <81U32 B1 B2

prove is x vy, - We have y_ < X, =zZ_Y. 2 < z X zB =
B, <;Bz By By By By BB B, " "By'B,"B,
(by independence of equal subalternatives)

Zp Yp Yp < 2Zp Xp ¥p - 11.6.3)
BO 131 132 BO 131 132 (

Further, we have x_ X Y. V., = Z_ X_ X <zZ_ V. Y., -

B1 B2 <51UB2 B1 B2 BO B1 82 Bo B1 52

< vg - By independence of
2

2

This and (1I.6.3) imply zBoxleB zBOxB1

equal subalternatives, z_ z_ x <2z zZ Vv results, i.e. xB <B YB ’
By By By By BBy 3 By "By
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as desired.

2 y
(% Ss”)mon is analogous, and not elaborated.

Observe in the above theorem that the disaggregated monotonicity
properties are essential. For any arbitrary binary relation S onx
that is reflexive, there exist >h's to make {>h : A c I} satisfy all
aggregated monotoniciﬁy properties, with >I = » : simply let for any
A#£1I, Xa >h yA if and only if Xy = Yp-

Of course, should all >A's be complete, then matters are
different. By Proposition II.4.1 the disaggregated monotonicity
properties can then be left out. That independence of equal
subalternatives then is sufficient for the existence of >A's to fulfil
aggregated monotonicities, (and that independence of equal
subalternatives for finite cartesian products is then equivalent to
CI,) is known, (1971, Lemma 6.1.4.1,

see Krantz et al. (iv) there

resembles (> ¥ cA mon)), or, when a representing function (Definition
III2.2) is presupposed, see Blackorby, Primont and Russell (1978,

section 3.3).
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CHAPTER III

ADDITIVE VALUE FUNCTIONS

III.1. INTRODUCTION

This chapter, and following chapters, can be read independently

of the previous two chapters. Only some definitions of the previous

two chapters are used. When needed, we shall mention these.

In the first three sections of this chapter we give some well-
known results from literature. In section II1I.4 new results will be
presented.

As before X, the set of alternatives, is a cartesian product

X C.. With the exception of Chapter V, I will be a finite set

i€171

{1,...,n}. By » , a binary relation on X, we express the "preference

relation" of decision maker T on X. As before, » shall always, in our
main results, be transitive, and from now on always complete, either

as an assumption, or as consequence of other assumptions.

Furthermore, we shall from now on assume that every Ci is a
connected topological space. E.g. Ci is a convex subset of a Euclidean
space, such as B?i, or R. X is always endowed with the product
topology, hence is connected too (see Kelley, 1955, Chapter 3, problem O).
In our main results » will be continuous (Definition III.2.1), either
as explicit assumption, or as consequence of other assumptions.

In section I.1.3 we indicated that the set X would sometimes
contain hypothetical alternatives, not present in actual situations.

In the set-up of Chapters I and II it was not harmful to let X be "too"

large. We could then simply let the preference relation ignore the

redundant part of X, by letting every redundant alternative of X be

incomparable to every other alternative, or by adding only those
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preferences, involving redundant alternatives, that are necessary to
maintain monotonicity and transitivity. Since we, from now on,
usually deal with complete preference relations, "ignoring by
incomparability"” is no longer possible.

A consequence of our topological assumptions is that, if not all
of the alternatives are equivalent, then X must be uncountable. This
will follow from the remark after Theorem III.3.1 (,combined with the
fact that the Y there is separable, if countable).

The above two paragraphs indicate that the combination of
completeness and continuity of » can be a serious restriction. In
Schmeidler (1971) it is shown that transitivity of » , and continuity
(defined appropriately) with respect to a comnected topology imply
completeness or symmetry of »>. Sonnenschein (1965) gives conditions
under which completeness and continuity imply transitivity. A further
indication of the restrictiveness of completeness and continuity of »
may be the implication (ii) = (i) in Theorem III.3.7 in the sequel;
this usually is conceived as a surprisingly strong result.

In Krantz et al. (1971), instead of topological assumptions two
other assumptions are made, the so-called "Archimedean" and "restricted
solvability" (see Definition III.2.12) assumptions. These are less
restrictive than our topological assumptions, but still allow the
derivation of the results in the sequel of this monograph. We have
chosen to use the topological assumptions because they are more
customary in literature. Our Proposition III.2.15 will enable the
application of the theorems of Krantz et al. (1971) in our topological

set-up.

III.2. ELEMENTARY DEFINITIONS AND RESULTS

In this section we give elementary definitions and results from
literature. Since we will sometimes use them for other binary relations
than just the preference relation > on X, we formulate some of them

for a general binary relation »' on a general set Y.
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DEFINITION IIL2.1. A weak order »' on a topological space Y is
continuous if {x € Y:x >' y} and {x € Y : x <' y} are open for all

y € Y.

A weak order »' is, of course, continuous if and only if
{x €Y : x<'yland {x €Y : x > y} are closed for all y € ¥; this

follows by taking complements.

DEFINITION IIL2.2. A function V : Y + R represents a binary relation
>' on Y if, for all x, y € ¥, [x>' y & v(x) > v(y)].

For the above function V, the term utility function is most usual
in literature. We shall however reserve this term for a somewhat
different notion in decision making under uncertainty. (See Definition
Iv.2.2.) Throughout the sequel of this monograph we shall study
preference relations for which (special kinds of) representing functions
exist. Obviously these preference relatiomnsmust be weak orders.

We shall almost exclusively study representing functions of the

following kind:

DEFINITION III.2.3. A function V : x2=1ci > R is additively decomposable
if there exist v, : Ci + R, i=1,...,n, such that V(x) = 22=1Vi(xi)

for all x € X2=1Ci. If this V represents » , then (vi)‘;=1 are called
additive value functions (for »).

Usually we are not only interested in the existence of a(n array

of) function(s) having certain properties, ({such as being representing,
continuous, additively decomposable, or whatever a context requires),

but we are also interested in uniqueness results.

TERMINOLOGY III.2.4. A function V is ordinal [respectively continuocusly
ordinal] (with respect to some properties) if the class of all functions
having these properties, consists of all strictly increasing

[respectively continuous, strictly increasing] transformations of V.

TERMINOLOGY III.2.5. A function V is cardinal (with respect to some
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properties) if the class of all functions having these properties,
consists of all positive affine transformations of V.
An array of functions (vj)§=1 is simultaneously cardinal (with
respect to some properties) if the class of all arrays of functions
n n
(Wj)j=1 j=1
which real Tj' j=1,...,n, and positive ¢ exist such that Wj = Tj+ch

having these properties, consists of those (wj) , for

for all j.

‘ To give examples, we define V : ZR2-+ IR by V : (xl,x2)'-> x1+x2,
and we let » on R2 be represented by V. We shall refer in these
examples to theorems, given in the next section. V is ordinal with
respect to the property of being representing, as is easily derived
from the observations V(x) > V(y) ® x » y, and x > y # W(x) > W(y),
for any representing W. V is continuously ordinal with respect to
the properties of being continuous and representing, as follows from
Theorem III.3.1. V is cardinal with respect to the properties of being
continuous, representing, and additively decomposable, as can easily
be derived from Theorem III.3.6. Finally, with V1, V2 : R »+ R being
identity, (V1,V2) is simultaneously cardinal with respect to the
properties of being continuous and being additive value functions,
again by Theorem III.3.6.

In the sequel we shall use NoFations IT.2.1 (subalternative xA,

for A< I), and II.2.4 (x_ etc., and lines below this Notation);

aYn
Definitions II.2.3 (xAlyA2 is compounded of X and yAz), IT.6.2
(independence of equal subalternatives), 1I.6.3 (CI); and Theorem

I1.6.4 (equivalence of last two notions). With these we define, deviatin

in a harmless way from Chapter II, some binary relations on xi€ACi'

DEFINITION III.2.6. For every A < I, and X0 ¥ in Xi€ C., , we write

A Al
> < <

xy >h Ya [respectively Xy > Yp 0 OF X < ¥p or X, <, ¥, r OT

IS i i :
X, My yA] if there exists a znc such that zAzAc b YAZAC [respectively
xz >yz ,orxz <yzZ ,O0rXZ WY Z _ ,0CX7Z ®NYyZ 1.
A c c

Ac A A A A A ﬂc A Ac A Ac A Ac A Ac

If > is CI, the main case of interest in this monograph, then the
binary relations defined above coincide with those in Chapter II,

denoted in the same way (by Theorem II.6.5 and Proposition II.6.1).

R VO, WS S ——— — — ————
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Furthermore, >A

> s usual. As al = =
of N’ as u always, >i >{i} , and >I - .

is then the asymmetric, and Rp the symmetric, part

LEMMA III.2.7. Let » be CI. If » is a weak order, then so is any >

If further » is continuous, then so is any >

PROOF. Let A< I, z € X is arbitrarily fixed. Let » be CI. By CI,

X >A yA iff XAZ c P YpZ ol If » is complete, then xAz & P YAZ o oF

A A A A
yAzAc > xAzAC , SO xA >AyA or yA >A Xpr for all x
of >A follows.

n’ yA. Completeness

If > is transitive, then x i
¢ A Za Yy and ¥y > v, (Lee. xAzAc = yAZA
and y 2 » v_z ) together imply x. z > v_z i
2% 7 A% e PLy X, R G 1.e. x3 > Vpo

Transitivity of >ﬁ follows.
The above observations about completeness and transivity show
that > being a weak order implies that any >A is a weak orxder.
Next suppose that » is continuous. We derive continuity of >h'

{xA N >A yA} = {x_ : X,z > Y,z c} = {xA :

" XyZ € c}, with C the

( A A A
closed set {w : .
w > yAZAc}

By Lemma 0.1 the set {xA DXy >y yA} must be closed too.

Analogously {xA N <% yA} is closed. Continuity of >, follows.

The following definition of inessentiality of i expresses the
idea that a coordinate has no influence on the "desirability" of any
alternative, so that this coordinate may just as well be ignored for

the preference relation.

DEFINITION III.2.8. Coordinate (or index) i is inessential (with
respect to ») if X_jVy R XKW, for all x € X, A € Ci. Otherwise

i is essential (with respect to »).

For a weak order » , i is essential if and only if v, >, w,
i ii

for some v,, w,.
i i
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LEMMA III.2.9. Let m be an equivalence velation. Let. x5 =¥y for all

esgential j. Then x N ¥y.

PROOF. Let there be k inessential coordinates, say {1,...,k}. Then

x & (XY m (x ) ® o m (% ) =y. Apply

-1,2¥1'¥> 1,...,k%1 " ¥

transitivity of m.

The above Lemma shows that the inessential coordinates may just

as well be suppressed from notation. That we shall sometimes do.

LEMMA III.2.10. Let ~ be an equivalence relation. Then » is trivial if

and only if no coordinate is essential.

PROOF. If no coordinate is essential, then Lemma III.2.9 gives
triviality of ». If » is trivial, then x_ivi ~ x_iwi for all x, i, vi,

wi : no i is essential.

We now formulate the topological assumption that we shall mostly

use in the sequel.

ASSUMPTION III.2.11. (Topological Assumption.)
Every Ci is a connected topological space.
X = X!i1=1Ci is endowed with the product topology.
If exactly one coordinate i is essential, then furthermore Ci is

topologically separable.

DEFINITION III.2.12. > satisfies restricted solvability if, for every
X .8, »y»x .t., there exists z, such that x .z, ~ y.

-1 1 -1 1 1 =11
LEMMA II11.2.13. Let the topological assumption III.2.11 hold. Let'» be

a continuous weak order. Then » satisfies restricted solvability.

PROOF. Let x ,s, »y» X .t,. Let V :={v, €C, : x ,v, >y}, and
-i%i -ii i i -i'i
W:={w, €C, : x ,w, <y}. Thens, € Vand t, € W, so V and W are
i i -1 i i

PR, P S — e —— . .20 e e i it —— —— —
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nonempty. By Lemma 0.1 they are closed. Their union is Ci. By

connectedness of Ci’ VNW#@. Let z, €Evnu.

LEMMA III.2.14. Let the topological assumption III.2.11 hold. Let »
be a continuous weak order. Let X_p8, >y > x_,t,. Then z, exists with

x_AZA ~ Y-

PROOF. Apply Lemma III.2.13 to the cartesian product

(xj€ACj) x (xieACi).

The following proposition will be used as a supplement to results
of Krantz et al. (1971, Chapter 6), so that we can use their results

in our topological set-up, where we need continuity.

PROPOSITION III.2.15. Let the topological assumption III.2.11 hold.
Let > be continuous, and let at least two coordinates be essential.

Let (vj)rjl=1 be additive value functions. Then all vj's are continuous.

PROOF. Suppose V, is not continuous. Contradiction will follow. Say

1
VII(]U, =[) is not open; then neither it is empty, nor does it equal

C,. Also there can be no sequence (Vl(xi)); in Ju, «[ , converging

1 =1 .
to u, because then Vll(]u, o[) would equal Uj{z1 2z > xi} and so

be open by the easily verified CI, and Lemma III.2.7. So
inf(Vl(Cﬂ N Ju, «[) =: v € R must be greater than u. We now show:

0 < V.(x.) = V.(y.) < v - for no j 1, x. e (I1I1.2.1)
J(xJ) J(yJ) N i#1, 50 ¥y

If, to the contrary, j # 1 and 0 < Vj(xj) - Vj(yj) < v-yu, then,

with z € X arbitrarily fixed, and a, such that Vj(xj)-Vj(yj) >

1
Vl(al)—v >0, ¢y such that V1(c1) < U, we obtain:
(

,xj) < (?—l,jal'yj) < (z—l,jal’xj)'

%.1,3%
by substitutions of inequalities in terms of the Vj's. By restricted

solvability (Lemma III.Z.13), (z-l,jbl'xj) ~ (z al,yj) for some bl'

_llj
This would imply v > Vl(bl) > u, in contradiction with the definition
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of v. (IIIZ.2.1) is derived.

Now j # 1 exists that is essential, so has Vj not constant. Say
Vj(xj) > Vj(yj). There must, as a consequence of (ITI.2.1), be a zj
such that V_(x.) > V_.(z,), and V_(x,) > V_ (v.) > V,(z.) for no v, €C

373 33 373 i3 73 ]
This finally gives a partition ({vj PV <j zj}, {vj Py >j xj}) of
Cj' consisting of two nonempty closed sets. This contradicts

connectedness of Cj.

ITII.3. BASIC RESULTS ON ADDITIVE DECOMPOSABILITY

The representation theorems from literature, given in this

section, underly all results in the sequel.
IIT.3.1. LESS THAN TWO ESSENTIAL COORDINATES

The following theorem, proved in Debreu (1954, 1964) does not
consider cartesian product structure.
THEOREM III.3.1. (Debreu). Let Y be a connected separable topological

space. For a binary relation >' on Y the following two statements are
equivalent:

(1) : There exists a continuous representing function ¢ : Y > R.

(i) : »' ©s a continuous weak order.

Furthermore, ¢ in (i) <g continuously ordinal.

From this one sees that, if ¢ is not constant, then $(Y) is a
nondegenerate interval, and Y must be uncountable. That the connected-
ness condition above cannot be dispensed with, is indicated in

Fleischer (1961) and Wakker (1985a) . We shall use the fbllowing small

variation of the above Theorem.
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COROLLARY III.3.2. Let at most one coordinate be essential. Let the
topological assumption III.2.11 hold. For the binary relation > on

& .C. , the following two statements are equivalent:
i=171

. n
(i) There exiat continuous additive value functions (Vj)j=1 for »>.

(ii) > i8 a continuous weak order.

Furthermore, the V.,'s in (i) are continuously ordinal, and » in (ii)

3)
satisfies CI.

PROOF. (i) = (ii) is straightforward. So we assume (ii), and derive (i)
and the Furthermore-statement. If no coordinate is essential, then >
]

is trivial by Lemma III.2.10. Then we can, and must, let all Vj s be
arbitrary constant functions, and everything follows.

So suppose one ccoordinate i is essential. By Lemma III.2.7, >i is
a continuous weak order. By Theorem III.3.1 there exists a continuous,
ard continuously ordinal, function ¢ : Ci + IR that represents >i' We
can let Vi = Yop for any continuous strictly increasing ¢ : ¢(Ci) + IR ;
and for all j # 1 let V. be any constant function. Then, for any

3 % n i hich is iff

i £V, (x,) >V, (y,), w
x, v € X, Zj=1vj(xj) 3_Zj=1vj(yj) 1EE v, (x;) 2 Vi lyy)s
X, >i Yy The latter is iff there exists z such that z_ixi > z_iyi.
Inessentially of all j # i, by Lemma III.2.9, gives Z_yX; R X and
n
z .Y, & Y. We conclude that Z? vV, (x.,) 3_2_~1v.(y.) & x » y. Indeed,
=3 3 3=17373 3=1"373° _
(V.)? 1 are additive value functions. They are continuous too, and (i)
1 3=

follows.

For the Furthermore-statement, note that any Vj must represent
».. Hence for all j # 1, Vj must be constant; and Vi must be a strictly

J

increasing, by Lemma VIII.5 continuous, transformation of ¢. Finally,

that » in (il) satisfies CI, follows from (i), and the observation

> 5,,.V.(y.) ex B>y .B.
that X_jory_o® Zj#ivj(xj) LA TR T J(yj) -1 -i

III.3.2. EXACTLY TWO ESSENTIAL COORDINATES

The previous subsection, with at most one essential coordinate,

hardly dealt with the cartesian product structure. In essence, we only
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had to deal with the essential coordinate. In this subsection we con-
sider the case of two essential coordinates. It turns out, as in Krantz
et al. (1971), that then the requirement of topological separability can
be dropped.In this section we give the, completely straightforward,
adaptation of results in literature for the case of exactly two
coordinates, both essential, to the case of n coordinates, two of them

essential. The following property is 1llustrated in Figure III.3.1.

DEFINITION III.3.3. If » has exactly two essential coordinates i,3,

then > satisfies the Thomsen condition if (x_i jai
r

& (X—i,jbi’vj) & ({i,jci,tj) together imply (x—i,jai

for every x € X; a;. bi, cy € Ci; sj, tj, vj € Cj.

,tj) = (x—i,jbi’sj)
,vj) ~ (x_i’jci,sj);

! !
ay by c,

FIGURE III.3.1. The Thomsen condition for n = 2, 1i=1, j=2. Curves
indicate equivalence classes. The solid curves through O-points are
presumed; the broken curve through O-points is implied. One can inter-

pret (a,,t;) m~ (b,,s,) to mean: substitution (1) of t, for s, is as
good as substitution®(2) of b, for a . And (bl,v ) (cl,qg 3
substitution (3) of vy for ty is as good as subsgitution (4) of ¢, for
by. The conclusion (ag,vy) = (c,,s,) : the "concatenated" substitution

[5] of vy for s,, is as good as thé “"concatenated" substitution [ 6] of

c1 for a, .

g
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At first sight the above definition may seem asymmetric for i and j.
Interchanging i and j, and interchanging the first two equivalences =3,

shows that symmetry for i and j does hold.

LEMMA III.3.4. If > has exactly two essential coordinates i and j, and

. ) Y . satisfies the
if additive value functions Vi) =1 exist for >, then > £

Thomsen condition.

= Zea, 3V

=3I 4. Vo(x) + V. (c,) +
+ Vj(sj) and Zk#i,jvk(xk) + Vi(bi) + Vj(vj) )#1,3 7k Pk s ey

) + Vi(bi)

v + V. (t))
PROOF . Zk#i,jvk(xk) + i(ai) 308y

v,(tj) together imply .
) ) =V, (c,) + V.(t.)).
Vi(ai) + Vj(tj) =Vv,(b,) + Vj(sj) and v, (b,) + Vj(vj) FCH 5 (85
summing and cancelling gives:
= + V. (s, or :
Vi(ai) + Vj(Vj) Vi(ci) J( J),

Vk(xk) + Vi(ai) + Vj(vj) Vk(xk) + Vi(ci) + Vj(sj).

=3I . .
Z:kiéj-lj k#i,J

The following property is a preparation for cardinal coordinate

. ; 2 n
independence (Definition IV.2.4) and is illustrated in Figure III.3.2.

DEFINITION III.3.5. If > has exactly two essential coordinates i, Jj,

then » satisfies triple cancellation if (s—i,jai

. .b.,w.)} tbgether
ci.xj) > (s_i'jdi,yj) & (S_i'jai,vj) > (5—1,3 1%

)&
xg) < oy, 0¥y

-irj
imply (s—i,jci’vj) P (s—i,jdi'wj)'
Again, the property can be seen to be symmetric in i and j, by

interchanging second and third preference.
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a, by

FIGURE III.3.2. Triple cancellation for n = 2, i = 1, j = 2. Cuxves
indicate equivalence classes. A poiﬁt above or on an equivalence class
is at least as good, a point below or on it at least as bad, as the
points on the equivalence class. The solid curves through and above/
below O-points are presumed, the broken one through and above D-points
is implied. One can interpret (a v,) & (b ,w ) to mean: substitution
(1) of v, for w, is at least as goo as s tution (2) of b, for a.
And (&lrxzi =< (g ¥, ) : substitution (2') of b for a, is at least as
good as substitu ion 3 of x, for y,. Further f(c ,x )%F (d P
substitution (3') of x, for y, is at least as good as substlﬁution (4)
of d, for ¢,. The conclusion (c ,v ) & (d "y ) : substitution [1'] of

vy for W, is at least as good as substitu%ion [4'] of dl for 01

Again it can easily be demonstrated that existence of additive
value functions implies triple cancellation. The term "triple
cancellation" comes from Krantz et al. (1971). In Keeney and Raiffa
(1975) the term “corrésponding tradeoffs condition" is used for the
same property with oy instead of » or < everywhere. This is closely

related to the "Reidemeister condition" in Blaschke and Bol (1938).
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THEOREM III.3.6. Let the topological assumption III.2.11 hold. Let
exactly two coordinates be essential. For the binary relation » on

= 1C., the following three statements are equivalent:
i=1 1

o e . n
(i) There exist continuous additive value functions (Vj)j=1 for »>.

(1i) > is a continuous weak order that satisfies CI and the Thomsen

condition.

(iii) > ©s a continuous weak order that satisfies triple cancellation.

Furthermore, (Vj)? 1 in (1) 4s simultaneously cardinal.

PROOF. (i) = (ii) and (i) = (iii) are straightforward. For (1ii) = (i)
and (ii) = (i), let i and j be the two essential coordinates. The
other coordinates do not affect the preference relation, e.g.

i b,,y. for all s,t.
(S-i,] llx ) > (t—l :] lly ) iff (a Ix ) >{l J}( ,Y )I ’
Hence, the Thomsen condition (respectlvely CI; or trlple cancellation)

for » implies the same condition for >i 3 So by Lemma III.2.7, (ii)

r
(respectively (iii)) for > implies (ii) (respectively (iii)) for

.o osn-

{lljgow (ii) for >{i,j] implies the existence of simulaneously
cardinal additive value functions (Vi, Vj) for >{i,j} on Ci x Cj’ as
can be derived from Theorem 2 of section 6.2.4 of Krantz et al. (1971),
in the same way that Theorem 14 of section 6.11.1 of that book is
derived from Theorem 13 there. The reasoning of section 6.2.13 there
applies literally for n = 2. See also exercise 34 of chapter 6 there.

Also (iii) for >{i,j} implies the existence of simultaneously
cardinal additive value functions for >{i,j}' A hint in this direction
is given at the end of section 6.2.4 of Krantz et al. (1971).

For every k # i,j we can, and must, let Vk be any constant
function. It then follows that indeed (Vk)k 1 are simultaneously
cardinal additive value functions for », if (V V ) are for >, %,
Continuity is by Proposition III.2.15. So (ii) 1mp11es (i), (iii)

implies (i) too; and the Furthermore-statement holds.
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IIT.3.3. MORE THAN TWO ESSENTIAL COORDINATES

Surprisingly, when there are three or more essential coordinates,
the structure turns out to be rich enough to enable a further weakening
of‘the conditions which we met in the previous subsections.

The following theorem is essentially due to Debreu (1960). We
give it in a slightly stronger form, by leaving out the assumption of
topological separability, an assumption made and essentially used in
the proof by Debreu. Krantz et al. (1971, Theorem 6.14) showed that
without that assumption, still additive value functions exist. Combined

with Proposition III.2.15, this gives:

THEOREM III.3.7. (Debreu, 1960). Let the topological assumption III.Z.11
hold. Let three or more coordinates be essential. For the binary

relation > on x:; Ci' the following two statements are equivalent:

1
(1) There exist continuous additive value functions (Vj)g=1 for ».

(ii) > Zg a continuous CI weak order.

Furthermore, (Vj)? , of (1) is simultaneously cardinal.

PROOF. By Theorem 14 of section 6.11.1 of Krantz et al. (1971), and

Propesition III.2.15.

I1r.4. SOME FURTHER RESULTS ON ADDITIVE DECOMPOSABILITY

The results of this section are from section 3 in Wakker (1985b),
and will be used only in section IV.4. They may have interest of their
own, since they can be considered stronger than previous results

(Theorems III.3.6 and III.3.7) in this Chapter.
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DEFINITION III.4.1. > satisfies weak separability if X_v, > x_jw, =
Yy_yYs > Y_;Yy for all x, y € X, 1 < i <n, Vi W, € Ci.

The above property expresses some sort of monotonicity of > with
respect to the >i's (> cA mon, in the terminology of Chapter II, see
(III.4.1) in the sequel). It is well-known that the above property is
necessary, and under some further assumptions sufficient, for the
existence of functions ¢j E Cj + IR, and a function F that is strictly
increasing in each variable, such that x F(¢1(x1), S i ¢n(xn))
represents » . Also weak separability is implied by CI; it is in fact
the independence of equal subalternatives property, restricted to equal

subalternatives of length n-1.

DEFINITION III.4.2. > satisfies equivalence-coordinate independence

(eq=CI) if: [x_ivi RY_V,®x_ W y—iwi] for all x, y, i, vy, w,.

To see that this is implied by CI, let x (ViR Y V- Then
x_ivi > y_ivi and y_ivi - x_ivi , by twice CI we obtain x_iwi -

.w, and W, P X W, i.e. x ,w, w,.
Y_i¥i Y 3% -i'i’ -iYi MY ¥y

For the property defined below, in view of Definition II.6.3 (CI),
III.4.2 (eq-CI), and also in view of Definitions IV.2.4 (CCI) and
IV.2.6 (eq~CCI) of Chapter IV, the name "equivalence-triple
cancellation", derived from "triple cancellation" (Definition III.3.5),
could have been chosen for it. We deviate slightly from literature by
formulating it for the case of two essential, instead of two,
coordinates. Also in literature the property is usually formulated in

terms of a (representing) function, instead of in terms of > .

DEFINITION III.4.3. If » has exactly two essential coordinates i, 7,

then > satisfies the Reidemeister condition if (s_; jai'xj) ~
r

(S_iljbllyj) & (S_. .C

i, j_’xj) N (s | d.,yj) & (s

~1,4% v.) x (s b.,w.)

-i,374i"73 -1,37i"73
i,jdi’wj) for all s, ai, bi’ ci, di'

together imply (s , .c.,v. S
Py faly o0yl =G

X, . 3 .
3’ er VJ: WJ

Again, this is implied by triple cancellation: The first three

equivalences  , & , & imply < , > , > , and hence, by triple

e —




cancellation, give (s—i,jci’vj) > (s—i,jdi'wj)’ and they also imply
» , <, <, togive, by triple cancellation, (s_i jci'vj) <
r
(s ., .4,,w.).
-1i,J 1 7]

LEMMA III.4.4. Let the topological assumption III.Z2.11 hold. Let »
be a continuous weak order. The following two statements are

equivalent:

(i) > satisfies CI.

(i1) > satisfies weak separability and eq~CI.

PROOF. We have already seen above that (i) implies (ii). So we assume
(ii) , and derive (i).

First let us show:

if Vj >3wj for all j, then v > w. (IIT.4.1)

This follows, by repeated application of weak separability, from v >

V_gwy > (v_gw) oW, > ((V_lwi)_2w2)_3w3 > ... >

Now suppose x_;Vy >y Vit To derive is x

1

W, >y .w,. Let A =

ivi -i"i

{3 #1: %, >j yj}. Say A = {1, ..., k}, and i = n; with 0 < k < n.

For all j € A, not X, >, y., so z .X, > 2 .
4 l 579 Y50 -373 -3¥3

follows for ghese j. By {III.4ii; we obtain (x—AyA)—nVn < B <

X v.Letx =x v ,x = (x."y,) for all 1 <1 < k. By weak

-n n -nn 0 1 =1 =1 X = S

separability X v =X X » ...>»x = (x

such that xl_l

for no z, and x, <. Y.
! 3y 4

—AYA)—nVn' Let now 1 be

- y_nvn - xl. By restricted solvability (Lemma III.2.13)
1 1
th . - ;
ere exists zl such that x_lzl = y_gvn Now x_lz1 has n-th coordinate
v r SO by eq—Ci_Ye obtain y_ v~ (x_lzl)_nwn. That x, >1zl

follows
= ~ xl
from X_ X, =% > Y_.V, ™ X[;2;. Apparently (x_ w ). >, ((x ) _w)

-nnij jJ -1%1’ -n"n 9
for all j. By (III.4.1), (x_nwn) > (x , the latter was

& z.) W
-1"1"-n'n
equivalent to y_nwn.

The implication (ii) = (i) above does not have to hold if the
continuity assumption does not hold. This can be seen from » , defined
as follows. First, let V : ]R3-> R be defined by
V:xe x1+x2+x3+min{x1, X, x3}. Then define x » y whenever V(x) >

Viy), or V(x) = V(y) and x;, > y,, or V(x) = V(y) and x, =y, and

%, >y, OF X = y. Then x & y only if x =y, and egq-CI is trivially

satisfied. For every e >i = > , and weak separability follows. But

(9,1,1) > (5,5,1) and (9,1,9) < (5,5,9) violate CI.

LEMMA III.4.5. Let the topological assumption III.2.11 hold. Let »
be a continuous weak order, and let exactly two coordinates i, J

pe essential. The following two statements are equivalent:

(i) > satisfies triple cancellation.

(ii) > satisfies weak separability and the Reidemeister condition.

PROOF. The implication (i) = (ii) can be obtained by elementary means;
or as a corollary from Theorem III.3.6. So we assume (ii), and derive
(i) . We suppress inessential coordinates from notation. Say the first
two coordinates are essential. Let now (ai'x2) < (b1’y2)’(c1’x2) -
(dl’y2)’ (a1,v2) > (bl,wz). To derive is (cl,vz) > (dl,wz).

. - 1
If we can find ai >1 a. bi <1 bl’ ci <1 Cyr di >1 di’ v, <2 Vo
1

wé >2 Wy such that (ai,xz) ~ (bi,yz), (ci,xz) ~ (di,yz), (ai,vz) ~
(bi,w;), then we may conclude from the Reidemeister condition that

4
(ci,v;) 8 (di,wi), and, by weak separability that (cl,vz) > (ci,vé) ~
(di,wé) -~ (dl'w2)' which 1s what is desired. So all that remains is

to find ai, . ope s wé as above.
First we use (a1,x2) < (bl'y2) and (ci,xz) - (dl,yz) to find
ai, bi. If (cl,xz) > (bl'y2)' then by restricted solvability (Lemma
III1.2.13) from (a1,x2) < (bl,y?) < (cl,xo) we conclude that ai must
i 1 o ' [ - ko
exist such that (al,x2) ~ (bl'y2)' Here aj >1 a,. We then take b1 b1

). Then we take a! = c, if (cl’x°) >

1°¥2 1 1
if (al,x2) > (c1,x2). We then, in any way, have

The other case is (Cl'x2) < (b

(al,xz), and ai =a,
(dl'y2) < (ai,x2) < (bl,yz). Restriced solvability gives existence of
bi such that (bi,yz) o~ (ai,xz). Again here bi <1b1, also ai >1 a,. So

always a!, bi are found such that ai >1 a, bi <1 bl’ and (ai,xz) ~
(b!

1IY2) .
Analogously one uses (d1,y2) < (cl,xz) and (bl’y2) > (al,xz) to

find di and ci as desired.
Analogously (exchange the role of the first and the second
coordinate), one uses (bi’WZ) < (ai,v2) [since ai >1 a s b1 >1 bi] and

(bi,yz) > (even x) (a],x,) to find v} and wj as desired.

n]
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A straightforward consequence of the above Lemmas is the

following theorem.

THEOREM III.4.6. Let the topological assumption III.5.11 hold. For

the binary relation > on x2= Ci’ the following two statements are

1
equivalent:

(1) There exist continuous additive value functions (V )?=1 for > .

3
(ii) > s a continuous weak order that satisfies weak separability,

eq—CI, and, in the case of exactly two essential coordinates,
the Reidemeister condition.

The following uniqueness results hold for (Vj)§=1 of (1).
If two or more coordinates are essential, then (IIT.4.2)
(vj)?=1 is simultaneously cardinal.
If exactly one coordinate is essential, then (I11.4.3)

the Vj's are continuously ordinal.

PROOF. By Corollary III.3.2, Theorems III.3.6, III.3.7, and the Lemmas
IIT.4.4 and I1I.4.5.

III.5. HISTORICAL REMARKS ON ADDITIVELY DECOMPOSABLE REPRESENTATIONS

In Blaschke and Bol (1938) the following problem of "web theory"
was studied: suppose F1' FZ' F3 are three families of curves in the
plane, such that through every point of the plane, for every family Fj’
exactly one curve from Fj goes through this point. When can continuous
transformations V1 and V2 be applied to the first and second
coordinates, to transform the three families of curves into three
families of parallel straight lines? If one now lets Fl correspond to
lines with constant first coordinate, F2 to lines with constant second

coordinate, and F3 to equivalence classes of the preference relation,

63

then the matter is closely related to the problem that we addressed in
subsection III.3.2, for the case that n = 2, C1 = C2 = R, and where >
should satisfy, for example, strong cA monotonicity.

In Blaschke and Bol (1938) conditions like the Thomsen condition
already appeared.

Debreu (1960) showed the way, with Theorem III.3.1 as a starting
point, to use the above results to obtain characterizations of
continuous additively decomposable representations for binary relations
on cartesian products of separable connected topological spaces. He
proved that coordinate independence (together with continuity,
transitivity and completeness) is the necessary and sufficient con-
dition for the case of three or more essential coordinates. By this,
Debreu also extended earlier work of Leontief (1947 a,b),who considered
Euclidean spaces, presupposing the existence of "smooth" representing
functions, and then obtained conditions requiring that rates of
substitution of pairs of coordinates be independent of other
coordinates. Results as those of Leontief had earlier been obtained
by Sono (1945, 1961), but this had not been well-known. See also
Samuelson (1947, pp. 174-180). Further already Fleming (1952; treated
in section 4.9 of Harsanyi, 1977) had obtained a derivation of additive
decomposability, on:R:. His main characterizing property was even
weaker than coordinate independence, it was, essentially, independence
of equal subalternatives of only length n-2, formulated in terms of a
(presupposed, representing) function, already without the use of
derivatives; see his Postulate E.

Gorman (1968,a,b) showed, for cartesian products of topologically
separable arcconnected spaces, how in fact coordinate independence
can be weakened, still remaining strong enough together with the other
assumptions, to imply coordinate independence. His weakening requires
the independence of equal subalternatives condition for only certain
subsets A of I. In Vind (1971) the extendability of Gorman's Theorem

to cartesian products of separable connected (instead of arcconnected)

topological spaces is indicated. See also Gorman (1971) and Murphy (1981).

Another result can be found in Krantz et al. (1971, chapter 6).
They use an algebraic approach, employing a theorem of HSlder (19C1)
on the possibility to embed archimedean ordered groups into the reals.

First they use reasonings such as those below Figures III.3.1 and
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I11.3.2 to derive differences or concatenation - like operations on
every coordinate set Ci' Next they use this and results such as the
Theorem of HSlder to construct the additive value functions on the
coordinate sets. They ascribe their method of proof to Holman (1971).
For further history on their approach, see section 6.2.5 of their book.

In Keeney and Raiffa (1375, sections 3.4 to 3.6) omne finds, for
Euclidean spaces, an appealing sketch of the main ideas of the proofs.
Another appealing proof for Euclidean spaces is provided in Koopmans
(1972) . For the case of two essential coordinates, there is a proof
in Roberts (1979).

Many results on weakenings of coordinate independence fqr Euclidean
spaces in the spirit of Gorman's weakenings are given in Blackorby,
Primont and Russell (1978).

Necessary and sufficient conditions for the existence of additively
decomposable representations, without any restrictive assumptions, have
been obtained in Jaffray (1974). For the case of finite Ci's, such
conditions have longer been known, see Scott (1964, section 1). They
can be obtained from separating hyperplane theorems, and standard ways
of application of these to the solution of systems of inequalities.
Jaffray used an Archimedean-like strengthening of Scott's conditions,

excluding "infinitesimally small" differences.

)
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CHAPTER IV

CARDINAL COORDINATE INDEPENDENCE

Iv.1. INTRODUCTION

‘ In this chapter we shall assume that X = Cn for some connected
topological space C; so, in comparison with previous chapters, we add
the assumption that Ci = C for all i. We shall study representations
of the form x Z§=1AjU(xj). Our main intended application lies in
decision making under uncertainty (DMUU). Hence we shall use
terminology of DMUU in this chapter, and chapters V and VI; with the
exception of section IV.4 and part of section IV.5. For DMUU, Theorem
IV.3.3 (given in Wakker, 1984a, for C = R ; and in Wakker, 1986 , for
C any connected topological space), the central result of this and
following chapters, shows for the case of a finite state space, that
a person with a continuous weak order as preference relation maximizes
subjective expected utility, if and only if his preference relation
satisfies cardinal coordinate independence (Definition IV.2.4). The
more complicated conditions for infinite state spaces are given in
Chapter V. Thus we have characterized subjective expected utility
maximization under only one restriction: continuity of the utility
function, with respect to a connected topology (e.g. a Euclidean
topology) . Like Savage (1954) we derive probabilities and utilities
simultaneously, without supposing that any of them are known in
advance.

In section IV.4 we characterize the above representation for the

case where some

of the Xj's may also be negative. This result, and
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he th £ ic 1 called the subjective probability for state j, U the (subjective)
lications to the theory of economic indexes, are given in Wakker ) : e .
o ’ utility function, and i% p.U(x.) the subjective expected utility of
{ (1985b) . Here we indicate an application to dynamic contexts: a =173 J
: characterization, alternative to the one in Koopmans (1972), of a ek &g
: representation of the form x ¥ ZXJU(x.).
2 A notation, only applicable in the present context, where all
In section IV.5 we obtain a stronger result than Theorem IV.3.3, e c
g dinate sets are one same (:
by restricting the involved indexes i and j in cardinal coordinate SRS i
independence. Again we apply this to the dynamic context, to - i .
’ NOTATIONS IV.2.3. For o € C, a € C" is the act with all coordinates
characterize a representation as in Koopmans (1972), mainly by letting - -
i to o. We write a » B if a > B.
every point of time be "CCI-related" to the previous point of time, and egnal’to
by letting the amount $a at a point of time, in preference equivalent s
The act o with certainty gives consequence o. Note that, by the
to $1 at the previous point of time, be the same for all points 6f time. n . o
i above notation, the binary relation » on C induces a binary relation
In section IV.6 several other ways to strengthen Theorem IV.3.3 .
on C, also denoted by >. This notation will not cause confusion.
are suggested without elaborations. One could investigate how to A :
The remainder of this section is devoted to elucidations, and
combine the many ways, mentioned above, to strengthen Theorem IV.3.3. N
: tary results, for the following property.
Because of the size of this task, we do not take it up. clementary d
In section IV.7 we compare our derivation of SEU maximization to . b F
DEFINITION IV.2.4. > satisfies cardinal coordinate independence (CCI)
the most well-known other derivations, available in literature.

if:

¥oi
and x_,Y b Y_15

| IV.2. CARDINAL COORDINATE INDEPENDENCE imply V-jY > w_j $

|

| .

a < y ,B and v 48 > w_jB

for all acts x, y, Vv, w, all consequences o, B, Y, 6, all states j,

and all essential states 1i.

Let us first repeat the terminoly of DMuU.

ELUCIDATION. Replacement, in x_.o <y .8, of «,B by Y,8, changes <
TERMINOLOGY IV.2.1. We use the term (possible) state (of nature) s =

into », to give x .Y » ,0. We imagine that replacement, in
instead of index, and act instead of alternative. Elements of C are n < g -i Y_3

+ "
O W of (a,B) by (v,8), should thus kind of "reinforce" >,
called consequences, and denoted by Greek characters o, B, vy, & V—J o -JB' (@, 4 .

to v .y > w .§. So the replacement should certainly not induce a
sometimes they are also called coordinates, and denoted as xi, v,, etc. -3 -3

H

reversal of breference, into v_jY < w_jﬁ.

The following definition gives the most known approach to DMUU. .
Let us emphasize that the above Definition does not have a

: . ial

. . restriction i or 1 = j. If exactly two coordinates are essential,
DEFINITION IV.2.2. We say [C", >, (p)%_,, Ul is a subjective expected BEEicE 73 ? . _

3,3=1 th ing 1 = j essential, in Definition 1IV.2.4, gives triple
L1t ; . en putting 3j
utility (SEU) model (for ») if the p.'s are nonnegative real numbers .
v cancellation. The proof of Lemma IV.2.5 in the sequel may serve as
that sum to one, and U : C + R is a function, such that % lo6T
a further illustration of the meaning o .

x>ye Z?_lij(xj) z_Zg_lij(yj)] for all acts x,y, Then P, is €

To obtain an example of a binary relation » , satisfying CCI, we




lef) AS€ B O EEDLEEARYY &= Ry o5 T ot - 1€ F fy FUFCHET 1S b Then I, P U(V,) + p,U(@) > I .p Ulw) + pUB), or pylU) - V()]
reprezented by the "Cobb-Douglas" production function (xl,n-,xn) g > ):k;éjpk[u(wk) - U(vk)], By (IV.2.4) we obtain pj[U(Y) - U(s)] >
n ; n . . . =
Hj=1xj3_ Then, with Py := aj/zi=1ai, j=121,...,n; and U : u & log Wy, Zk#jpk[U(wk) - U(vk)], or Zk#jpkU(vk) + ij(Y) 3_2k¢jpkU(wk) + pju(a).
> is also represented by x Z‘j‘=1ij(xj) . Lemma IV.2.5 will show that RS, PEEE:
indeed » satisfies CCI.
v .y »w .6, (IV.2.6)
An example of a continuous weak order, satisfying CI and triple =J -3
cancellation, but violating CCI, is obtained by taking n = 2, C = ]0,1[, So indeed (IV.2.1), (IV.2.3) and (IV.2.5) imply (IV.2.6), as is
and » represented by (xl,x2)0+ X,~X,X,. One may think of the inter- required by CCI.
pretation where x1 is a share of total income before tax, allocated to E
a person, Xx, 1s tax rate, and xl—xlxq is the share of total income
after tax. Here » is also represented by (xl’x2) » log x1+log(1-xﬁ), Formula (IV.2.4) is an indication that comparability of utility
LA
) so by Theorem III.3.6, > is a continuous weak order satisfying CI and differences underlies cardinal coordinate independence. The following
triple cancellation, and the Thomsen condition. We have (%y%d < (%Q%q, property is obtained from cardinal coordinate independence by replacing
11 13 11 22 11 21 e . <, and all >'s, by ™ .
(8'2) - (4,4)7 (513) - (513)1 but (EIE) < ('ng)l S0 bY 1= 1’ J.= 2!
_16_3 hld_l 1 _ 3 _ 1 _ 2 ; . : . . 3
*=3 P T Y TG 0T Xy = ¥y =40 vy =5 Wy =5 this gives DEFINITION IV.2.6. We say » satisfies equivalence-cardinal coordinate

a violation of CCI. independence (eq-CCI) if for all acts x, y, Vv, w, all consequences

o, B, v, §, all states j, and all essential states i, x_.a ~ y_iB &

i
Lemma IV.2.5. If an SEU model [C", >, (pj)’.l=1, Ul exists for > , then |

3 x_iywy__é & v_.amw__B imply v_.y ~w__4.
; > satisfies CCI. . J . ] .

This property will be studied extensively in section IV.4. For

PROOF. Suppose: the next section, we now only need:

1 is essential. (Iv.2.1)

LEMMA 1V.2.7. CCI implies eq~CCI.

Then there must exist z, 0, T such that z .0 > =z iT' i.e.

i
I, 4P U(z,) + p.U(0) > Z ,.pU(z ) + p,U(r). This can hold only if:
ks k =5 kA1 Tk N PROOF. Replacing, in Definition IV.2.6, the first three equivalences -

Py pl- (1Iv.2.2) by < , » , and » , shows that, by CCI, v_jy > w_jd. Interchanging
Next let: everywhere left and right sides of the equivalences, and writing again
< , » and » instead of the equivalences, gives by CCI that
x_;o < y_iB and x_;Y > y_iG. (Iv.2.3) ! = !

w_jd > v_jy.
Then Zk#ipku(xk) + piU(a) 5-Zk#ipku(yk) + piU(B) and zk#ipku(xk) +
pUY) E_Zk#ipku(yk) + p;U(8). Taking these together: pi[U(a) - U(BR)]

j_Zk#ipk[U(yk) - U(xk)] j_pi[U(Y) - U(8)]. By (IV.2.2) we may conclude:
U(a) - U(B) < U(y) - U(d). (Iv.2.4)
Finally let:

v .0 > w _B.
il =J
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Iv.3. THE MAIN THEOREM

Let us first note that the existence of an SEU model
[c*, >, (Pj)?=1’ U] for > implies the existence of additive value
functions (Vj)Ijl=1 for », by the definition Vj .= ij for all j. In
section III.3 we saw that CI, and triple cancellation for the case of
exactly two essential coordinates, were necessary (and sufficient)
for a continuous weak order to have additive value functions existing,
under the topological assumption III.2.11. So CCI, the property of a
continuous weak order that will be shown to be necessary and sufficient

for the existence of an SEU model, must imply CI and triple cancellation.
LEMMA Iv.3.1. Let =~ be an equivalencerelation. Then CCI implies CI.

PROOF. Let x_ja > y_jQ, and B € C. To derive is x_jB > y_jB. If no
coordinate is essential, then by Lemma III.2.10 indeed x_jB > y_jB.
So let i be an essential coordinate. Then, for arbitrary z, z_ia <

Z_j0r z_jB >z /B, X = Y_4%s and CCI imply x_jB > y_jB.

LEMMA IV.3.2. Let exactly two coordinates be essential. Then CCT

implies triple cancellation.

PROOF. Substitute, in Definition III.3.5, x = (s & jai,xj), a = a;
“Li,

= bi’ Y = cyr § = di, v = (S—i,jai'vj)'

,wj), and let both i and j of Definition IV.2.4 correspond

y = (S_i,jbi,Yj): B
w= (s ., .b,
-i,j71
to the i of Definition III.3.6.

Before we formulate the main theorem, let us repeat that the
topological assumption III.2.1l1 entails that C is a connected
topological space which is topologically separable for the case of

exactly one essential coordinate.
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THEOREM IV.3.3. Let the topological assumption III.Z.11 hold. For the

binary relation » on Cn, the following two statements are equivalent:

(i) There existe an SEU model (e™, >, (p 2 ul for », with U

3t 3=t'
continuous.

(ii) > ©s a continuous weak order on C" that satisfies CCI.

The following uniqueness results hold for u, (Pj)§=1 of (i):
If two or more states are essential, (IV.3.1)

then (pj)?=1 e uniquely determined; and U is cardinal.

If exactly one state i is essential, (IV.3.2)

then p, = 1, py = 0 for all § # i; and U Zs continuously

ordinal.

If no state is essential, (IV.3.3)

then (pj)g=1 can be taken arbitrarily, as long as

p. > 0 for all j, Z;3=1; U can be any constant function.
=

PROOF. For (i) = (ii), suppose (i). Then the function, assigning to
every act x its expected utility ijU(xj), is continuous, and
represents ». So certainly » is a weak order. For every vy,
{x:x»>y}l=1{x: ijU(xj) z_ijU(yj)} is closed; so is {x : x < y}.
Consequently » is continuous. By Lemma IV.2.5 »» satisfies CCI. So
(ii) follows.

Next, let (ii) hold. We derive (i), and the uniqueness results.
First the case of no essential i. Then by Lemma III.2.10, » is trivial.
We can let (pj)le=1 be completely arbitrary, as long as they are
nonnegative and sum to one. Further we can let U be any constant
function. Also, U mist be constant, U{a) > U(B) would imply a > E.

So for the case of no essential state, (i) and the uniqueness result
(IV.3.3) hold.
Next the case of exactly one essential i. By Corollary III.3.2

' n
there exist continuous additive value functions (Vj)j=1 for ». From

X 0 > X kB o Vk(u) > Vk(B) we see that Vi must be nonconstant, and

k
that Vk is constant for all k # i. By the uniqueness result of
Corollary III.3.2, for piU, hence for U, of (i), there must exist a

continuous strictly increasing transformation ¢ such that U = ¢°Vi. So

U must be' nonconstant. For every k # i, PkU must be constant, so Py
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must be zero. Consequently p;= 1. Purther, any continuous strictly
increasing transformation U of Vi , together with pi =1, Py = 0 for
all k # 1, gives additive value functions (pkU);=1 for », so makes
(i} valid. So for the case of exactly one essential coordinate, (i)
and the uniqueness result (IV.3.2) are verified.

Finally, the case of two or more essential states. First we show:
There exist continuous simultaneously (IV.3.4)

1

For the case of two essential coordinates, this follows from

cardinal additive value functions (Vj)?— for ».

Lemma IV.3.2 (giving triple cancellation for ») and then from Theorem
I11.3.6. For the case of three or more essential coordinates, it
follows from Lemma IV.3.1 (giving CI for ») and then from Theorem

II11.3.7. Now let i be essential. We next show:

For all j : Vj = ¢j o Vi' for a continuous (IV.3.5)

nondecreasing ¢j.
Suppose Vi(a) 3_vi(6). Then, for arbitrary x, v, x_iB < x_iB,

. g .
x_ 0 > x_iB, V_jB > V_jB, and CCI imply v_ja > v_jB. So Vj(u) > Vjﬂﬁ
Now (IV.3.5) follows from Lemma VIII.4.

Our following step is to show:

Every ¢j is affine. (IV.3.6)

If j is inessential, then Vj is constant, and affinity of ¢j
follows. Of course, if j = i, then ¢j is identity, so affine too.
So let j # i, j essential. Vi and Vj are not constant, so the
connected Vi(C) [respectively Vj(C)] must contain an interval with
length di > 0 [respectively dj > 0]. Let now Vi(a) € int(Vi(C)) be
arbitrary. Since ¢j is continuous, there exists € > 0 so small that:
€ :_Gj; W o= ]Vi(a)—e, v (a)+el € v, (C); and
¢j(Vi(a)+€) - ¢j(vi(a)—5) <8,
Now let 0 < T € W. There exist B, vy, § € C such that:
Vi(B) =0, Vi(d) =T, Vi(y) = (o+1)/2.
We can take aj,b. € C such that:
V.(b,) - V.(a, V. (B) -V, =V, -V.(8) <e<§,.
J( J) J( J) l(S) l(Y) l(Y) l( ) e < 5
And we can take ci, di such that:
= = e < .
v, (@) = viey) vj(S) Vj(Y) <8
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All these choices lead, for arbitrary fixed s € Cn, to:
s . .B,a,) ™~ a Gk ~ g Qe Iv.3.
( -1,3 ,aJ) (s_i,jy,bj) &(S_lljcl,B) (5—1,3 ;0Y) (Iv.3.7)

& (s , . ) o~ . .6,b,
( -l,JY'a]) (5—1,3 ' J)

as follows from substitution of (Vk)£=1. Equivalence-CCI (Definition Iv.
2.6) with s_jaj in the role of x,s_jbj in the role of y, (B,Y,Y,8) in
the role of (o,8,v,8), s_ici in the role of v, and s_iai in the role
of w, gives (s—i,jci'Y)N(séi,jdi'G)' This implies vj(y) - Vj(G) =
V.(d,) - V. (c.). We have chosen d, and c, to have the latter equal
i'i 1'7i i i
to Vj(B) - Vj(Y). So Vj(B) - Vj(Y) = Vj(Y) - Vj(d) has been derived.
This means: ¢j(0) - ¢j(w+T)/2) = ¢j((0+1)/2) - ¢j(T), or:

¢, ((o+1)/2) = [¢j(o) + ¢j(r)]/2. By Corollary VIII.3, with v for

1 N

Vi(a), p = 3 affinity of ¢j follows: (IV.3.6) is demonstrated.

So now we have nonnegative (cj)?—l’ and real (Tj)?_ , such that

3j 1
Vj = Tj+0jVi for all j. We can now define:
-_— = .= n S
U =V Bl t oj/(zk=10k) for all j. (Iv.3.8)

(Note that oi =1, so Eok > 0.) Because of simultaneous cardinality,
this gives additive value functionS~(ij)?_ for ». Thus (i) follows.
n 1

j=1" u'] be

another SEU model. Then (pBU')?=1 are additive value functions for >

1
For the uniqueness result (IV.3.1), let [C", >, (pé)

too. By simultaneous cardinality, (‘rj)le_1 and ¢ > 0 exist such that

p%U'= cij + Tj for all j, i.e., with o arbitrarily fixed:
p%[U'(B)-U'(a)] = opj[u(s)—u(u)] for all B. (Iv.3.9)

Since U is not constant, we can take B such that U(8) # U(a). Then
Py = P} [ur®) - u'@] / (o.[u(B) ~ U@ ]) for all j. Since
ij = Zp3 5 pj = pé for all j follows. For Pj > 0, (Iv.3.9) now shows
that [0'(B)- u'(a)] = olu(B) - U(a)]. Hence U'(-) = olU(-)-U(a)]+U" (a)
must hold: U' is derived from U by multiplication with a positive o,
and addition of U'(a) - oU(a), as (IV.3.1) requires it.

Conversely, that every such U' instead of U verifies (i), is

straightforward.
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IV.4. EQUIVALENCE-CARDINAL COORDINATE INDEPENDENCE

In this section we give a characterization of the representation
x b Z?zlij(xj) with some Aj's possibly negative. Our characterization
is an alternative for the one in Krantz et al. (1971, Theorem 6.15).
Our eq-CCI is stronger than their "standard-sequence-invariance". By
this, we only have to add weak separability, instead of the stronger
coordinate independence; and we do not have to treat the case of two
essential coordinates separately.

For DMUU, this representation as such has little interest, since
negative Xj's are not suited to be interpreted as probabilities. For
other contexts it may be desirable to allow negativity of some Aj's,
see Wakker (1985b). The interest of this representation for DMUU lies
in the possibility to apply it in special contexts where the preference
relation has further properties (such as monotonicity) that imply the
Aj's, mentioned above, to be nonnegative after all. We then obtain,
for these special contexts, a characterization of SEU-maximization by
means of weaker properties than in the previous section. See Corollary

Iv.4.4.c.

The main property used to derive the desired representation is
eqg-CCI.

LEMMA 1IV.4.1. Let = be an equivalence relation. Then eq~CCI implies
eq~CI.

PROOF. As in Lemma IV.3.1, with all preferences replaced by

equivalences.

LEMMA 1V.4.2. Eq-CCI implies the Reidemeister condition.

PROOF. With the same substitution as in Lemma IV.3.2.

The main theorem of this section:
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THEOREM 1V.4.3. Let the topological assumption III.Z.11 hold. For the
binary relation > on c", the following two statements are equivalent:

(1) There exist real Aj, j=1,...,n, and a continuous U : C + R, such

that x + Z?= AjU(xj) represents >.

1
(i1) > 28 a continuously weakly separable weak order that satisfies
eq-CCI.

The following uniqueness results hold for U, (pj)g‘=1 of (1):

If two or more coordinates are essential, (IV.4.2)
((Aj)?=1,u) can be replaced by ((pj)?=1,w), if and

only if real v, o, T exist with vo > 0, such that

w = vxj for all 3 and W = 1+0U.

If exactly one coordinate is essential, then (IV.4.3)
((Aj)g=1,u) can be replaced by ((pj)gzl,W), if and

only ©f positive v and continuous strictly increasing

¢, or negative v and continuous, strictly decreasing ¢,

exist such that Hy = vxj for all 5 and W = ¢oU.

If no coordinate is-esgsential, then all Aj's are 0, (IV.4.4)

or U 18 constant.

PROOF. (i) = (ii) is, as usual, straightforward, so we assume (ii),

and derive (i) and the uniqueness results. The case of no essential
coordinate is direct. If exactly one coordinate i is essential, then
Aj = 0 for all j # i, and everything follows from Corollary III.3.2.

In the sequel we shall assume:
Two or more coordinates are essential. (Iv.4.5)

There now exist simultaneously cardinal additive value functions

(Vj)rjl_1 for », by Lemma IV.4.1, IV.4.2, and Theorem III.4.6. As usual,
we suppress inessential coordinates j from notation, they get assigned

Aj = 0. So all (remaining) coordinates are essential, and the Vj's

are nonconstant. If now, for any i, Vi(a) = Vi(B), then, for any
j, x, by eq-CCI, {x_ia MX_ O & X 0 x_iB & x_ja ~ x_ja} imply
X_.o N x_jB, i.e. Vj(a) = Vj(B). This means that for any i, j,

J

= . . | £
Vi ¢ij ° Vs for ¢ij : Vj(C) - Vi(C). Here ¢ij is the inverse o

¢ji’ so all ¢ij are bijective. By Corollary VIII.1O0 they are
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continuous. The derivation that they are affine, by Lemma VIII.8, is
completely analogous to the derivation of (IV.3.6).
We can, for arbitrary o € C, set Vj(a) = 0 for all j; existence

for all j, follows. Take U := V The

1 1°
uniqueness result (IV.4.2) follows from the simultaneous cardinality

of (A.)? such that vV, = A,V
j 3=t j 3

of the additive value functions.

Below we make some observations that follow straightforwardly
from substitution in (i) above. First note that, in the above theorem,
we can always arrange Z?=1Aj > 0; if ZAj < 0 we replace ((Aj)?glv
by ((—Aj)?=1,—u). We then have a > B = U(a) > U(B). The assumption

u)

in the beginning of the following Corollary IV.4.4 serves to avoid
uninteresting cases such as triviality of », or negativity of

Z?=1Aj which would make U some kind of "anti-utility" (or "loss")
function. The following corollary shows that the above theorem can be
used to characterize several representations, studied in literature,

which in fact are special forms of (i) above. This is done by the

addition of, usually weak, conditions to (ii) above.

COROLLARY IV.4.4. Let (i) of Theorem IV.4.3 hold. Assume that o,8 € C
exist with o > B, and let U(a) > U(B). Then we have, for every ji:

(a) Aj > 0 if and only if there exist v > § and x such that
Y > S,
x']Y X_J
() A, >0 if and only if there exist Y > § and x such that
Y > S,
Xyt 7 Xy
Furthermore,

(c) There exists an SEU-model for » if and only if x_5% > x_jS
for all x,j.

The characterization of subjective expected utility maximization,
obtainable from (c) above and Theorem IV.4.3,(ii), is preferable to

the one in Theorem IV.3.3 in the sense that all conditions used here

" follow straightforwardly from those in (ii) of Theorem IV.3.3, whereas
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the converse derivation is not elementary since it essentially needs
continuity, see the text after Lemma III.4.4.

Characterizations of > on C2 by (xi,xz)l+ U(xl)—U(xz), with >
interpreted as strength of preference relation [i.e. (xl,x2) > (yi’yz)‘

is preferred to x, more strongly than ¥y to y2] have received much

X
atl:tention, and have zften been discussed, in literature, see Frisch
(1926), Lange (1934), Alt (1936), Scott and Suppes (1958), Debreu
(1958), Suppes and Zinnes (1963), Fishburn (1970, Chapter 6), Krantz
et al. (1971, Chapter 4), Shapley (1975), and Fuhrken and Richter
(1985) .

A new characterization of the above representation can be obtained

as a corollary of Theorem IV.4,3:

COROLLARY IV.4.5. Let n = 2. Let (%) in Theorem IV.4.3 hold. We can

obtain X, = 1, A, = -1, <f and only if one of the following holds:

1 2
(a) (a,B) > (y,8) = (8,y) » (B,a) for all o, B, Y, §.
() (a,B) > (B,Y) = (v,B) » (B,a) for all o, B, Y.
(c) o~ B forall o, B.

(d) If there exist a, B, v such that (a,y) > (B,Y), then there also

exist such o, B, y with furthermore o = B.

Finally, in dynamic contexts (see Example II.1.4) representations
of the form (x1,...,xn)'+ Z§=1Aju(xj), with 0 < A < 1, have received
attention. There A is interpreted as a discount factor. A well-known
characterization, for the case of an infinite cartesian product qu,
by means of a "stationarity assumption", has been obtained by Koopmans
(1972) . We can characterize, for our finite cartesian product (so only

finitely many points of time) the analogous representation.

COROLLARY IV.4.6. Let (%) in Theorem IV.4.3 hold. There exists
0 < A < 1 such that we can take Aj = AJ for all j, if and only if >

ig trivial or it satisfies a weak stationarity assumption, t.e. there

; a»B>y 0 <i<n.
exist x, o » B > vy such that x—i,1+1B’Y R x—i,i+1Y’a for all 0 < i

o
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The weak stationarity assumption above is weaker than the one
used by Koopmans (1972), mainly because we only have "there exist
i a, E, ?, ...", whereas Koopmans' stationarity assumption requires
analogous things "for all ... ." Of course, this weakening is possible
only because in (ii) in Theorem IV.4.3 we require properties for >,
far stronger than those which Koopmans uses next to his stationarity

assumption.

IV.5. CCI-RELATED EVENTS

In this section we consider relaxations of cardinal coordinate
independence that moderate the "for all i,j" part in the definition
(Iv.2.4) of cardinal coordinate independence. This weakening will be
used to strengthen Theorem IV.3.3. The next definition will also be
of use in Chapter V. First we introduce a notation in the spirit of

Notation II.2.4; see also (II.2.1).

NOTATION IV.5.1. For Ac I, x € X, o € C, X_p0 denotes (x with X,

replaced by o, for all i € A).
With this we can define:

DEFINITION IV.5.2. Let A, B < I. We say A is CCI-related to B if for
all x, y, v, w, &, B, v, 8 : x_pot <‘Y—BB & x_pY > y_BG & V_Ad > w_Aﬁ
imply V_aY > w_AG.

The binary relation, introduced on the set of events by the above
definition, usually is not symmetric or transitive or reflexive. With,
as usual, i instead of {i}, every nonessential i is CCI-related to
every essential j, and a coordinate j is CCI-related to a nonessential
i if and only if j itself is nonessential, as one can see. CCI holds

if and only if every j is CCI-related to every essential i.
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LEMMA IV.5.3. Let » be reflexive. Let i be CCI-related to some j. Then
[x_ia >y oo x B> y_iS] for all x, y, o, B.

PROOF. z_ja < z_ja & z_jB > z_jB & x_;0 > y_ia must imply x_iB > yhiB.

o

THEOREM IV.5.4. Let the topological assumption III.2.11 hold. Let
n > 3, and let all coordinates be essential. For the binary relation

> on C", the following two statements are equivalent:

(i) There exists an SEU model [C", >, (pj)?=1, ul for >, with U

continuous.

(11) > is a continuous weak order on C", every i > 2 is CCI-related

to i-1, and 1 is CCI-related to itself or some other j.

PROOF. CI follows from Lemma IV.5.3. By Theorem III.3.7, additive

value functions (Vj)Ijl= exists for ». To show that Vi+ is an affine

1 1
nondecreasing transformation of Vi' for i = 1,...,n~-1, is exactly as
the derivation of (IV.3.5) and (IV.3.6) (take j = i+l there). We can

give all Vi's a common zero. V. = uivi— for some Hy > 0, follows for

1
all i > 2, i.e. A= Aivl' for some Ai > 0 follows, for all i > 1.
By essentially of all coordinates, Ai > 0 for all i. We take U =V

n A
Pj = Aj/(Zi=1Ki) for all j.

1’

The above theorem also can be derived for n = 2, but then a more

complicated proof is needed. The main complication is that only a weak

version of triple cancellation can be derived, so that the additive value

functions cannot be obtained directly from Theorem III.3.6. Further
the assumption of essentiality of all coordinates can be omitted, if

in (ii) we require the first essential coordinate to be CCI-related

to some other essential coordinate, and every other essential coordinate

to the preceding essential coordinate. Also in (ii) above we could
have assumed that every coordinate was CCI-related to coordinate 1,

or that, for an appropriately chosen sequence of subsets (Al""'Al)

of I, Ak+1 is CCI-related to Ak for all k < 1-1. We do not elaborate
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these matters.

Let us formulate a corollary of Theorem IV.5.4 that gives another

characterization of the representation of Koopmans (1972), adapted to

our finite cartesian product. Our main requirement is that every

coordinate (point of time) is CCI-related to the previous coordinate

(point of time), and that the consequence a (say amount of dollars) on

some point of time, equivalent to one dollar on the previous point of

time, is independent of that point of time.

COROLLARY IV.5.5. Let n > 3. Let 3 be a binary relation on R, that

i8 strongly cA monotonic (i.e. x >y if %y z_yj for all j and xj’> vy

for some j). The following two statements are equivalent:

(1) There exists 0 < A < 1, and a continuous U : R + IR, such that

x b Z)\JU(xj) repregents .

(i1) » s a continuous weak order, every i > 2 is CCI-related to i-1,

1 28 CCI-related to some i (e.g.,i =1, or i =n), and o > 1
o) for all i < n-1.

extsts such that o=~ ©_ (541

PROOF. (i) = (ii) is straightforward. Let (ii) hold. All conditions in

(ii) of Theorem IV.5.4 hold, so a representatlon x b ijU(xj) exists

for ». By strong cA monotonicity, posiiivity of the pj's and strict

increasingness of U can be arranged. Now )\ = [u(1)] / U(a) is chosen.

o

IV.6. FURTHER WAYS TO RESTRICT CARDINAL COORDINATE INDEPENDENCE

In this section we briefly suggest further ways to strengthen

Theorem IV.3.3, by weakening the cardinal coordinate independence

property in (ii) of Theorem IV.3.3. A first way may be to require

cardinal coordinate independence only "locally", i.e. only to require

that for every x € X there exists an open neighbourhood of x, such

that cardinal coordinate independence holds in this neighbourhood. The
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main problem then seems to be, to strengthen the results on additive
decomposable representations of Chapter III by considering the local
versions of the involved characterizing properties. That this may be
possible, has been mentioned in Debreu (1960, page 17, lines 2-4).
First one uses the local properties to obtain local additively
decomposable representations. Next these local representations must
be made to fit together to give a global representation. This however
seems to be a complicated operation (compare subsection VI.7.3) and
additional requirements as local connectedness of C are maybe needed
here. (Debreu, 1960, considered Euclidean spaces). Finally,
proportionality of the additive value functions is obtained by using
the local cardinal coordinate independence property for the certain
acts a.

A second way to weaken cardinal coordinate independence is by
weakening the part "for all o, B, v, 8". It is for instance sufficient
to require it for only one o. This does not complicate the proof of
coordinate independence, so, for more or less than two essential
coordinates, additive value functions must exist. For two essential
coordinates matters are slightly more complicated because triple
cancellation (Definition III.3.5) then no longer directly follows.
Once additive wvalue functions have been obtained, the derivation of
proportionality of.them is as in Theorem IV.3.3. Analogously one may
restrict the B's, or y's, or 8's, in Definition IV.2.4. Whether it
is sufficient to require Definition IV.2.4 for only those a, B, v, &,
for which B = v, or & = §, is an open question. In such a case no
readily available results on additive decomposability are present
in literature.
A third way to weaken cardinal coordinate independence is to
restrict the involved x, y, v, w. Maybe it is sufficient to require
matters for only a dense subset of X.

Also the question has been considered whether 1t is sufficient
to require cardinal coordinate independence on every two dimensional
subspace (obtained by keeping all but two coordinates fixed). The
following example, communicated to the author by A. Tversky in 1985,
shows that this does not work: Let C = R

++

. 2
represented by x P X X, + X, X4 + X X5 = (X 4%3) (Xy+x5) -~ Xy

, n = 3. Let » be
. Clearly,

s
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with xg fixed, » is represented by x M log(x1+x3) + log(x2+x3), 50
satisfies CCI. But » has no additive value functions, since (1,7,1) =~
(3,3,1) and (1,7,2) > (3,3,2) violate coordinate independence.
Requiring cardinal coordinate independence for every three - or more

dimensional subspace, seems to be sufficient.

Iv.7. COMPARISON OF OUR RESULT TO OTHER DERIVATIONS OF SUBJECTIVE
EXPECTED UTILITY MAXIMIZATION

A really satisfactory characterization, with appealing conditions
that are both necessary and sufficient, for subjective expected
utility (SEU) maximization in the context of DMUU (with "unknown"
probabilities) is not yet available in literature. Shapiro (1979),
Richter and Shapiro (1978), and Richter (1975) , indicate how difficult
this may be. SEU provides however the most used (and criticized)
approach in DMUU. Hence derivations (giving sufficient conditions)
are useful.

The best known derivation of SEU maximization, like ours not
Presupposing any probabilities or utilities, is the one given in
Savage (1954). Savage's assumption P3 allows the derivation of a
"qualitative probability relation" ("more probable than") on the set
of events, from the preference relation on the set of acts. Mainly
Savage's assumption P4 (the "sure-thing principle") guarantees
"additivity" (condition 2, at the top of page 32) of this qualitative
probability relation. The main restrictive assumption in Savage's
approach is P6, some sort of continuity condition, requiring structure
for the state space. For example this must be infinite, though not
necessarily uncountable, contrary to what is sometimes thought. The
major step in the proof of Savage is to use this qualitative
probability relation, and the structure on the state space, to derive
the probability measure. (Wakker (1981) pointed out some misunder-
standings in literature about this part of Savage's work.) Once the
probability measure has been obtained, the utility function is derived

analogously as this was done in von Neumann and Morgenstern (1947,
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1953, Chapter 3 and Appendix). For the consequence space Savage

hardly needs restrictions. Mainly must the utility function be bounded.
(This was discovered after publication of Savage (1954), see Fishburn
(1970, section 14.1).)

In economic contexts the consequence space is usually assumed to
be endowed with topological structure; for example it is l{f. Hence
in economic contexts derivations of SEU maximization, employing this
structure, such as our Theorem 1IV.3.3, and Theorem V.6.1 in the sequel,
may be valuable. Note that we did not use a qualitative probability
relation as intermediate in the derivation of the probability measure.
Our probabilities resulted from the "scale parameters” cj in the proof
of Theorem 1IV.3.3, (see (IV.3.8)); they are proportional to the scales
of the additive value functions (Vj)rjl=1 there.

Another derivation of the same representation as ours, in terms
of a derived "mean groupoid operation" on the consequence space, is
given in Grodal (1978).

An early derivation of SEU maximization has been given in de
Finetti (1931; see also 1937, 1972, 1974). De Finetti assumed that
consequences were real numbers (amounts of money). His "coherence
condition" requires the impossibility of a "Dutch book" to be made
against the decision maker, i.e. no positive linear combination of
bets, favourable in the view of the decision maker, should result in
a bet, giving with certainty a negative yield. This entails linearity
of the utility function. A major advantage of de Finetti's approach
above most others (including Savage's and ours) is that it gives useful
results for preference relations that are not complete.

Other approaches assumed consequences to be lotteries, or more
generally elements of a mixture space (see Definition VII.2.1). See
Anscombe and Aumann (1963), Fishburn (1982). Also Ramsey (1931) can
be placed in this group, if his "neutral event" is considered as a
%—— % lottery. These approaches used linear (affine; von Neumann -
Morgenstern) utility. The involved mathematics is in fact quite similar
to those of de Finetti. Compared to these, our Theorem IV.3.3 no longer
needs lotteries on the consequence space, or linearity of the utility
function.

Extensive surveys on expected utility are provided in Fishburn

(1981) , Schoemaker (1982), and Machina (1983).




CHAPTER V

SUBJECTIVE EXPECTED UTILITY

FOR ARBITRARY STATE SPACES

v.1. INTRODUCTION

In this chapter we extend the characterization of continuous
subjective expected utility maximization, given only for finite state
spaces in Theorem 1V.3.3, to arbitrary state spaces. This is the only
chapter where the index (= state) set I is not assumed finite. We
shall only consider acts which are in some sense bounded. In this way
we avoid the main complication for infinite state spaces: how to
handle acts with infinite, or even undefined, expected utility. In
our apprach the utility function itself is not necessarily bounded,
this contrary to Savage's approach.

The present chapter closely follows Wakker (1984c). We slightly

generalize the latter work by leaving out the condition that D, the

algebra on the consequence space C that we shall introduce in the
sequel, should contain all one-point subsets of C. This we achieve
by a small variation in the definition of "simple" acts. In this
chapter terminology will be as in decision making under uncertainty,
the primarily intended field of application of our present work.

The strategy in this chapter is to first, as much as possible,
assume properties and derive results for > on the "simple" acts,
which have finite range. The results then are extended to acts with
infinite range, mainly by "constant-continuity” and "pointwise

monotonicity".




86

v.2. ELEMENTARY DEFINITIONS

Acts, consequences, and states of nature, are as in Example
11.1.1 (DMUU; see also Terminology IV.2.1). To stay close to
probability theory we generalize our set-up by introducing measufe—
theoretic structure. We assume that an algebra A on I is given, i.e.
Ac 2I contains @, 1s closed with respect to fipite union and
complement taking; hence contains I, and is closed with respect to
finite intersection taking. Elements A,B of A are called events. Also
an algebra D on C is given, with generic elements E,F.

As an example, A may contain all subsets of I. Then all measure-
theoretic requirements, made in the sequel, are satisfied, and can be
ignored. This shows that the introduction of measure-theoretic
structure really is a generalization.

By F we denote the set of acts x that are gD— A—)measuiﬁ?le, i.e.
for every EE€ D, {1 €T = x; € E} € A. If A =27, then F = C". |

We say > is a weak order on a subset F' of X, if the restriction
of » to F', as binary relation on F', is a weak order. Then, in the
same way, & is an equivalence relation on Fr. . .

Throughout this chapter a partition P ='(Aj)j=1 will, w1thou%
further mention, be assumed to consist only of events. We then write

SER . A
Zm [ for the act, assigning consequence uj to every 1 € 3

jjzll?.%:,m, and call such an act simple. Simpie acts are elementsl
of F. The notation for simple acts is just a suggestive notation; it
does not designate any addition or scalar multiplication operation.
FS denotes {x € F : x is simple}. ) )

By Fb we denote {x € F : u,v € C exist such that X, > u and |
3> x. for all i}. Its elements are called strongly bounded. If > is
a wea; order on F, then F° < Fb. Note that, if I = N, C = Jo,1],

x, = 1/i for all i, then x is bounded in the usual sense, but not
sirongly bounded. Also note that, for any o € C, x € F [respectively
F®; or Fb], and A € A,'x_Au (Notation IV.5.1) is gn element of F
[respectively Fs; or Fb if » is a weak order on F 1.

Next we adapt a definition, given earlier for finite I, to the

present situation.
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DEFINITION V.2.1. An event A is simple~inessential, or s—inessential
(with respect to ») if x ™ y for all x,y € F° for which x;, =y, for

every i € A®. Otherwise A is simple-essential (or s—essential) (with
respect to »).

The following assumption will be used throughout this chapter.
For finite I (with A =

III.2.11.

I
27) it comes down to the topological assumption

It adds to this some measure-theoretic structure.

ASSUMPTION V.2.2. C is a connected topological space. D contains all
open subsets of (. If I is s—essential, and no two disjoint s-essential

events exist, then C is topologically separable.

The case where no two disjoint s-essential events exist, will be
treated in Lemma V.3.1. This case can be interpreted to be the case
of certainty. Of course D also contains all closed subsets of C. A
further adaptation of an earlier definition to the present situation:
DEFINITION V.2.3. » is stmple-continuous, or s—-continuous if, for any
o m
partition (Aj)j=1 and any act x = E?—Iﬂle » we have closedness of

R N oL 1 B e = ™ 2T
{(a, o) j=1%31a, > x} and {(10;1, o) €C Z.=1aj1Aj< x}
with respect to the product gopology on C.

One may formulate s-continuity as: the binary relation >' on Cm,
defined by (al,...,am) >' (61,...,Bm) if Z?=laj1Aj>E?=18j1A-' is continuous
with respect to the product topology on C®, The assumption Sf this
"finite-dimensional® continuity is not unusually strong since a finite-
dimensional product topology is not coarser than other usual topo-
logies. If C is a metric (for example Euclidean) space, then the finite-
dimensional product topology is equal to the sup-metric topology (for
example to the usual Euclidean topology) . Koopmans (1972) uses a sup-
metric topology on a denumerable cartesian product.

The main topological complications occur for infinite dimensions.
Then the product topology is coarser than other usual topologies, and
continuity with respect to this is then too strong for our purposes.

It would imply countable additivity of the probability measure P,
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to be derived in the sequel, and would quickly lead to boundedness of
the utility function U, to be derived in the sequel, if » is not
restricted to an appropriately chosen subset of X. In section V.4 we

shall deal with infinite-dimensional aspects. For that we use:

3 Frcct s
DEFINITION V.2.4. » is constant—continuous on
{a €C:a>x}and {a €C: o < x} are closed for all x € Fr.

Again, as s-continuity, this continuity is implied by the sup-
metric continuity assumption of Koopmans (1972), also by continuity
of » with respect to the producttopology on CI. In fact the only
consequence of it, that we shall use, is that there exists, for every

% which has o > x > B for some o, € C, a "certainty equivalent” Y & X.

The main tool in this chapter for the characterization of
subjective expected utility maximization is the following adaptation

of the CCI-relatedness property:

DEFINITION V.2.5. Event A is aimple—cardinal coordinate independent

related, or s=CCI-related, to event B, if for all o, g, vy, § € C, and
S : il

all X, ¥, Vs W €F :x o< y_BB & x_gY > X-BS & V_po > w_AB imply

v_pY > w_AG.

For finite I every act is simple, and Definitions v.2.1, V.2.3,
and V.2.5, without "s- ", coincide with the old ones; under the, for

I
Finite I usual, assumption that A = 27.

v.3. RESULTS FOR SIMPLE ACTS

First we handle the "degenerate" case where one state, or an

wultrafilter" of states (see (V.3.4)) is "certainly true".
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LEMMA V.3.1. Let there not exist two disjoint s-essential events.

Under Assumption V.2.2 the following two statements are equivalent:

(i) There exists a finitely additive probability measure P on A, and
. s t
a continuous U : Ct-> IR, such that Zj=1aj1A > Ek=16k13

s k
Zj=1P(Aj)U(otj) 2 5 P(BU) for all a,,>...B, .

o - - S
(ii) > i8¢ an s-continuous weak order on F.

Furthermore, if (i) holds, then every event is s—CCI-related to every
s—esgential event.

The following uniqueness results hold for u, P of (i):
If > is not trivial on F°, then P(A) = 1 for all (V.3.1)
gs-essential A, P(A) = O for all s-inessential A,
and U is continuously ordinal.

If > is trivial on Fs, then U must be constant, (v.3.2)
and P 18 arbitrary.

PROOF., (i) = (ii) is straightforward. So we suppose (ii), and derive
(i), and the results below (ii).
There exists no s-essential event iff x & y for all x,y € Fs,

i.e. » is trivial on Fs. In this case all of (Vv.3.2), and (i), follow.

So from now on we assume:
There exists an s-essential event. (v.3.3)

To derive P, we show:

The collection of all s-essential events is an o (v.3.4)
ultrafilter, i.e.

(a) I is s-essential.
(b) Event A is s-essential iff Ac is s~inessential.
(c) If events A and B are s-essential, then so is A N B.

Were I s-inessential, then » would be trivial on Fs, contra-
dicting (Vv.3.3). So (a) above follows. Were, for an event A, both a
and Ac s—inessgntial, then x & xAy & y would follow for all
X,y € F?, and > would be trivial oﬁch. This cannot hold, and (b) now

follows from the assumption that no two disjoint s-essential events




S0
can exist.
If events A and B are s—inessential, then so is A U B, since for
€ F® with x = N X s y. This and
all x,y aCnRC yAcnBc we have x ACyA y

(b) imply (c).
We define P(A) = 1 for all s-essential events A, and P(A) = 0

for all s-inessential events A. One easily checks that this gives a

finitely additive probabllity measure P.
Let U represent » on C, as defined in Notation 1v.2.3. By Theorem

IIT.3.1 such an U indeed exists, and is continuously ordinal.

(1) is demonstrated if we show that:

) s t
x = Zj=1aj1Aj > Zk=18le y & Z 1P(A )U(u y >
t
el
k 1P(B )U(B ). (VV )
_ t p
of the mutually disjoint (Aj n_-Bk)j=1'k=1 exactly one is
s-essential, say A1 n Bi’ Then x & a0y a3 61, P(Ai) =1-= P(Bl), and

(v.3.5) follows.

Now (V.3.1) follows from the observation that a U as in (1) must
represent & on C, and that P as in (1) must assign probability 0 to
every s-inessential event, thus 1 to every s-essential event.

The "furthermore-statement” in the lemma is by simple substitution

in (i). )

The next lemma shows how, on a "finite-dimensional" subspace of
the form {x € et x= Z? 1 J }, for a fixed partition (Al,...,A ),
the results for finite carte51aﬁ products can be applied.

LEMMA V.3.2. Let Assumption V.2.85 hold. Let > be an s—continuous weak
order on F°. Let every event be s—CCI-related to every s—egsential

event. Let P S (A e eBg ) be a partition with at Zeast two

s—essential events. Then ther'e exiat nonnegative (p ) -1’ summing to 1,

and a continuous U1 : C > R, such that:

s s
ZJ 1a 1 j b zj=16j1A

The pjl.'s are uniquely determined, and u! is cardinal.

s 11 s 1.1
L. A ; u .
3=1P3 0 (892754 P30 (By)
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PROOF. Define »' on C° by (a, )j > BT 1F 5D a1 8.1
_ j"3=1 5=1%3'ay % F3=1Pyla -
Then »' satisfies all requirements of Theorem IV.3.3. Thlg implies
all desired results.
o

Next we show that for two finite partitions P1 and P2, each with
at least two s-essential events, the representations resulting from
the previous Lemma, "fit together", i.e. the utility functions can be
taken the same and events occurring fn both partitions, have the same
probability in each representation. This we do by comparing Pl and P2
to a partition P3, finer than P1 and than Pz, and by showing that the
representations of P! ana P? ngie together" with that of P

lez:MMA v.3.3. Let, under the assumptions and notations of Lemma V.3.2,
pPe = (Byreen /B) be another partition with at least two s—essential

ezents. Let application of Lemma V.3.2 to p give (p )

and UZ. Then
¢ o U for a positive affine ¢, and if A,

= B, for some i,j, then
also pt B )
pi Pj'-

. 3
PROOF. Define P ;= (((A, N B ) ) ). First we show that P3 must

j k'k=1
have two or more s-essential events. Say A1 and A2 are s-essential.

Now s-inessentiality of all A1 n Bk’ k=1,...,s, would imply, by a
reasoning as used to derive (V.3.4.c), s-inessentiality of A,. So of

1

the A1 n Bk's, at least one is s-~essential. Analogously of the

A2 n Bk's at least one is s-essential.

Sz we can apply Lemma V.3.2 to P3 instead of Pl, yielding
s 3 t
((pJk K= 1)J 1 and U . Now, defining p = Zk 1pjk

.= g3
U := U2, we cbtain an array (p. )j -1 and a U, that satisfy 'all require-

for all j, and

1
ments for (p )j =1 and U in Lemma V.3.2. The uniqueness results of

1
that Lemma imply p = pj for all j, and 01 = ¢1° U3 for a positive

affine ¢

2 s ‘
An - : 2 2 3
alogouslg Py zj=1pji for all i, and U™ = ¢ o U” for a positive
affine ¢°. So U° = ¢ o y! for a positive affine ¢. And if A, = B, for
1 J

some 1,j, then py = p), =0 for allk # 3, 1 # ; P} = B> = p,,
follows. : 2
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Now we are ready for the main result of this section, a

. s
characterization of a subjective expected utility representation on F~.

THEOREM V.3.4. Under Assumption V.2.2, for the binary relation » on
¢t the following two statements are equivalent:

(1) Theve exist a finitely additive probability measure P, and a

continuoug function U : C +~ R, such that o aJl H EJ P(Aj)U(aj)

Il e

represents > on FS.

. . S .
(ii) > Ze an e-continuous weak order on ¥, and every event ig s—CCI-

related to every s-essential event.

The following uniqueness results hold for U, P of (i):

If two disjoint s-essential evente exist, then P is (V.3.6)
uniquely determined, and U s cardinal.

If I ie s—essential, but no two disjoint s-essential (V.3.7)
events exist, then P asgigns 1 to every s—-essential

event, 0 to every s-inessential event, and U is

continuously ordinal.

If I is s—inessential, then P is arbitrary, and U (v.3.8)

can be any constant function.

PROOF. As always, (i) = (ii) 1is straightforward. So we assume (ii),
and derive (i) and the uniqueness results. For the case (V.3.8), I
s-inessential, everything is straightforward. The case (V.3.7) is
covered by Lemma V.3.1. So we assume that there exist two disjoint
s-essential events. By Lemma V.3.2 there exist, for every partition
P = (Al,...,At) with at least two essential events, a probability /
measure PP on the algebra of events, consisting of unions of events
from P, and a utility function Up : C + R, continuous, such that

t

t
F] 1&31A g E.

can be ertten as Ej ajl .+ By Lemma V.3.3, PP and UP can be taken

PP(A.)UP(a.) represents » on the elements of F°, that

=1
independent of P. That we 30, and we leave out indexes P.

First we show that P is a probability measure P({#) = 0, P(I) =1
are obvious. Let A,B be disjoint. To show is: P(A U B) = P(A) + P(B).

:= B, A, := 2 n BS. Let C,D be two disjoint

We define A, := A, A 3

1 2
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s-assential events. Define B

A .
((( i n BJ):L 1 j =1)+ This P has, by a reasoning as in the proof of

Lemma V.3.3, at least two S—essential events. Let (p, )3
3 ij'g=1"4i=1
j=1p1]’ P(B) = I

= C, B, :=D, By := c® N, Let P =

and U
3

be as resulting from Lemma V.3.2. Now P(A) =X
j=1P25"

: =
and P(A U B) =
) Zj=1(p1j+p2j)

That now Z° .o 1 > = B 1

I
j=173 Aj k=1"k Bk
follows from consideration of a P, both finer than (A )

The uniqueness result (V.3.6) follows from Lemma V 3. 2

The following Corollary, a simple consequence of the above

theorem, gives properties which > has on F°

5 , but in general not on all
of F, or F°.

COROLLARY V.3.5. Let > satisfy (i) of Theorem V.3.4. Then, for all

x,y € F5, [x > y for all i € I=x>vyl. 4nd > s coordinate inde-
pendent on FS

V.4. RESULTS FOR STRONGLY BOUNDED ACTS

In this section we want to extend the representation of Theorem
V.3.4 (i) to more general acts, mainly those of Fb. We have in mind
an expected utility representation by means of some sort of integral
of U with respect to P. The approach to integration for measures that
are only finitely additive, as adopted in section I.III.2 of Dunford
and Schwarz (1958) or section 4.4 of Bhaskara Rao and Bhaskara Rao
(1983) does not seem to be suited for our purposes. This is because
We see no easy way to reformulate the properties of P and U o x,

there in the definition of an integral

used
;, in terms of our primitive,

i.e. ». The less general Stieltjes type integral, as exposed in

section 4.5 of Bhaskara Rao and Bhaskara Rao (1983) does serve our

purposes. In this, an integral, notation EU, of a bounded measurable

function U o x on I is obtained as a "lower integral", equal to

® 5P )UGE) > z; {PBIUGB,),

and (Bk)k e
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sup{EU(fs) : fs . I + R has finite range and is measurable, £° <F
U o x}, with <& pointwise dominance, i.e. 5 <P U o x whenever £2(4)
5_U(xi) for all i € I; or the integral is obtalined as an upper
integral, which is analogous and ylelds the same result for bounded
functions. If U o x is bounded below (above) but unbounded above
(below) , one may still define the lower (upper) integral, and see if
this is useful. Of course, what we have in mind is to let the fs above

be of the form U o xs for xs € FS. We handle pointwise dominance as

follows:

DEFINITION V.4.1. > is pointwise monotone on Fr e ¢t if x > y for
all x,y € F' for which ;I > ;: for all i € I.

Note that, in the terminology of Chapter II, this is weak cA
monotonicity, if we take >i = » for all i, and allow for infinite
cartesian products. Suppes (1956, A9) and Ferreira (1972, Ccl) also
used this kind of monotonicity. Note that it uses comparisons of
consequences X, to consequences Y, only if these consequences are
assigned to the same state of nature. This differs from assumption
"p7" in Savage (1954). The latter requires something like: x -y
whenever ;: >y for all i, or x > ;Z for all }. An advantage of our
set-up with pointwise monotonicity, over Savage's set-up with his P7,
is that in our set-up the utility function does not have to be
bounded, where in Savage's set-up it must be, see section 14.1 in
Fishburn (1970). An advaﬁtage of Savage's set-up is that, once
utility is bounded, Savage's set-up handles all acts, whereas our's
only handles all strongly bounded acts. For a further illustration
of this the reader is referred to the example (1) in section 5.4 of
Savage (1954), where no expected utility representation exists, but
where pointwise monotonicity can be seen to be satisfied.

The following example illustrates that pointwise monotonicity

on Fb is not implied by the other properties, introduced:

EXAMPLE V.4.2. Let I = Jo,1]1, C = R, A the Borel c-algebra on lo,11,

D the Borel o-algebra on R, U identity, and let P be Lebesgue measure.

Let » on Fb be represented by a linear functional V from F to &,
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with V(lA) = P(A) for all events A. Then » is a constant- and
s-continuous weak order, even » is coordinate independent on Fb. Every
event is s-CCI related to every s-essential event. Yet, without point-
wise monotonicity we are still completely free to let V assign to x,
with X, = i for all i, any real number, such as -1 since x is not in
the linear subspace, spanned by the indicator functions. Then x, > 0

i

for all i, but not x » 0, so pointwise monotonicity is violated.

LEMMA V.4.g. Let > be a constant-continuous pointwise monotone weak
order on F . Then for every x € F® there exists o € C such that x ~ a.

PROOF. {B € C : B> x} and {B € C : B < x} are closed by constant-
continuity, and nonempty if x € Fb, because then [N > x, > V for all
i] and pointwise monotonicity imply u to be in the first, v in the
second, set above. These sets, with union C, must have nonempty

intersection by connectedness of C. Let o be in this intersection.

b :

We can now, for x € F, simply take a as above, and define
EU(x) := U(a), with U as in Theorem V.3.4, under the appropriate
assumitions for ». Then x » y @ EU(x) > EU(y), and for any
x =L, ,o0.1 =

5=1%5 Aa, EU(x) £j=1P(Aj) U(aj). Question remains whether EU
can be considered a (Stieltjes-type) integral outside F°. Below we

shall see that it can.

T?EOREM V.4.4. Under Assumption V.2.2, for the binary relation > on
C”, the following two statemente are equivalent:

(i) There exist a finitely additive probability measure P, and a
continuous U : C >~ R, such that, on Fb, X fU(xi)dP(i)
represgents », with the integral well defined.

(ii) > isba eonstant—- and s-continuous pointwise monotone weak order
on F~, such that every event is S-CCI-related to every
s—esgential event.

Uniqueness results for (i) are as (V.3.6), (V.3.7), and (V.3.8) in
Theorem V.3.4.
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PROOF. We only show (ii) = (i). Let P,U be as provided by Theorem

v.3.4. Let x € Fb, U > ;T >V for all i € I. Let o N x, such an o

exists by Lemma V.4.3. Let EU(x) = U(o). We have to show that EU is
an 1ntegral If uw V tken by pointwise monotonicity x & u, so o R~ u,

U o x is constant, and EU(x) = ﬁU(xi)dP(i).
Now suppose ﬁ > v. For notational convenience we shall suppose

that U(p) = 1, U(v) = 0. We now construct a sequence of pairs of

simple functions (x Y ) m=1’ such that:
Y o v.4.1)
U(xi)-l/m < U(xy) < U(x,) < uly,) ﬁ_U(xi)+1/m (
for all i,m.
For any m, and 0 < k < m-1,

Ay = {i €1 :k/m<UKx,) < (k+1) /m}
is an event. Since U is continuous, and C connected, also Uty c R

is connected. So for any 0 < k < m there exists o, such that

U(a ) = k/m. We define

k
-t , and
x" 1= L= o“klAk ML {i:U(x.)=1}
m m—1
Yy == zk 0%k+1 Ak * oy {1 U (% y=1}" _ .

We then have U(x ) < U(x ) < U(y ), so x < x < y , for all i.
By p01ntwise monoton101ty %= < x < y . Hence EU(x ) < U(u) 2 EU(y ).
But also EU(y ) - EU(x ) = 1/m for all m. (See lines ébove ther

: m, . m
theorem.) We conclude that EU(x) = U(a) = lim EU(x ) = lim EU(y ).
Indeed EU(x) can be considered to be an integral of U w.r.t. P.

V.5. COUNTABLE ADDITIVITY

We shall give a continuity assumption, necessary and sufficient
for countable additiQity of the probability measure P of Theorems
v.3.4 and V.4.4. This adapts the known results, as presented in

section 6.9 of de Finetti (1972) to the more general case where
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C # R; with everything formulated in terms of the preference relation
#. Property F7 in section 10.3 in Fishburn (1982), and the "monotone
continuity" assumption of Villegas (1964), also used in Arrow (1971,

Lecture 1), are analogous.

DEFINITION V.5.1. A probability measure P on an algebra A 1is countably
. 3 N ©o .
(ox o-)additive if, for any sequence of events () 4 with A LR
for all m, and nm=1Am = @, we have lim P(Am) = 0.
Moo
The following lemma gives an equivalent formulation that is

well-known.

LEMMA V.5.2. P ts o-additive if and only if, for any sequence (B, )
of mutually disjoint events, with B = U°_B_1in A, we have P(B) =

m=1"m
m— P(B ).

PROOF. Substitute a B\ (U

), or Bm

i
3]
=
o

k=1 m+1°

The following definitilon will only be used in the definition

thereafter.

DEFINITION V.5.3. A set of acts {xJ R, €J is uniformly strongly bounded
if there exist p, v € C such that | > x >V for all i € I, j € J.

With this we define the property, characterizing o-additivity of
P. We could below have restricted attention to all simple xJ's, and
even to all acts with only two consequences in the range. This is the

only thing needed in the proof of Theorem V.5.5.

DEFINITION V.5.4. > is boundedly strictly continuous if for any

uniformly strongly bounded sequence of acts (x )
i

=1 ' and any pair of

acts x,y, for which x7 > y [respectively x y] for all j, and

lim xz = x; for all i, we have x > y [respectively x < y].

100
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Note that the above definition is weaker than continuity with

respect to the product topology, i.e. pointwise convergence. For we

only consider untformly strongly bounded converging sequences (and

no uncountable converging "nets") .

THEOREM V.5.5. Let (2) in Theorem V.4.4 hold. Then P can be chosen
o-additive if and only if > is8 boundedly strictly continuous.
PROOF. First we assume bounded strict continuity, and derive

If I is s-inessential, then U is constant, and we can
= 1 if and

og-additivity.
let P be any o-additive probability measure, €.g. let P(A)

only if A contains some fixed i € I.
Next suppose I is s-essential. Then o,B exist such that o > B,

otherwise pointwise monotonicity (or s-CCI relatedness) would imply

(=]
s-inessentiality of I. Now let (Am)m_1 be a sequence of events, such

: m_ — iz
for all m, and nAm = @J. Define x := alAm+ SIA; X B.

that A_ 2 A
m m
il > B for all m, so lim EU(xm) >

+1

By pointwise monotonicity < > X

U(R). (EU: see above Theorem v.4.4.) We now first show that the last

inequality is in fact equality.
Suppose lim EU(xm) > U(B). U(a) > U(B), so U(B) is not maximal

m>e . n . : J
in U(C). Since U(C) is connected, a Y must exist with 1lim EU(xm) >

u(y) > U(B). Now x2 > 7 for all m, so B = x > ¥ by bounded strict

continuity. This contradicts u(y) > U(R). It follows that

lim EU(x") = U(B).

m>

The last equality, and EU(x") = P(A)U(0) + (1-P(A_))U(B), imply

1lim P(Am) = 0; as required for o-additivity of P.

Conversel&, let P be o-additive. Then bounded strict continuity

follows from continuity of U and the dominated convergence Theorem

of Lebesgue (e.g. see Corollary 16 in section I.III.6.16 of Dunford

and Schwartz, 1958). This theorem is usually formulated fo
g-algebra

r o-algebras.

It can be applied to our context by taking the smallest

containing A, and taking the unique g-additive extension of P to this,

guaranteed by Royden (1963, section 12.2). The values of the involved

integrals of U ° X and U o x are not affected by this extension of

A and P.
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V.6. THE MAIN RESULT, CONCLUSIONS AND FURTHER COMMENTS

First we formulate our main result, combining the previous
results. Let us repeat that I is a nonempty set, A an algebra on I,
elements of A are "events", C is a connected topological space, D an
algebra of subsets of C that contains all open subsets of C. F < et
is the set of acts that are A- D measurable, F is the set of all
strongly bounded (section V.2) acts in F. > is a binary (preference)

relation on CI.

T?EOREM V.6.1. Under Assumption V.2.2, for the binary relation > on
C™, the following two statements are equivalent:

(1} There exists a finitely additive probability measure P on A, and
a continuous U : C >~ IR, such that, on Fb, x » SU(x,)dP(1)
i ’

(integral well-defined) vepresents >.

(ii) > isba constant— and s-continuous pointwise monotone weak order
on F~, for which all events are s-CCI-related to all s—essential

events.

Fu — gL
rthermore, in (i) we may replace "finitely" by "eountably”, if we

add in (1) the requirement that > ie boundedly strictly continuous.

Uniqueness results for (i) are as in Theorem V.3.4.

PROOF. See Theorems V.3.4, V.4.4, and V.5.5.

To our knowledge this is the most general characterization of
subjective expected utility maximization with continuous utility, now
available. The special case where C = R, and U is identity, is treated
in de Finetti (1972), a major source of inspiration for our work.

Theorem 3 of Grodal (1978) derives a representation as in (i)
above, so also for a possibly infinite state space, under the
supposition that a triple of disjoint s—essential events exists. The

conditions used there employ a (presupposed) measure on A, and a
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derived mean groupoid operation. Grodal's results also treat the case

where the set of acts is a subset of F (or Fb), as long as it is

closed under a certain mixture operation, and contains the constant

acts.

For not strongly bounded acts a representation as in (i) above
meets new complications. Say x is not strongly bounded. Of course,
if x ~ 0, for some o € C, which always occurs if ﬁ > x » v for some
u, v € C (under appropriate assumptions), we would still like to define
EU(x) = U(a). But now there is no justification to consider this as
an integral of U o x. If x is strongly pounded below (there is Yy such
that ;;'> 7 for all i) an integral value for U e x, its "lower inte-
gral", exists. This integral value is not greater than EU(x), may
equal EU(x), but may also very well be smaller than EU(x). If x & a,

but now x strongly bounded above , we can obtain an upper integral

value that may be "too" large.

Conditions for », strong enough to guarantee that » can be repre-
sented by an integral for all acts, are usually undesirably strong,
for instance they may simply imply boundedness of U, as turned out to

be the case in Savage (1954). They may even lead to impossibility

results, for instance if C = 10,1] = 1, > maximizes Lebesgue integral,

and one would let A = 2I and require continuity of » with respect to

the product topology on CI. Then this would require a c-additive

extension of the Lebesgue measure to 2]0'1], which is known not to

exist, see Banach and Kuratowski (1929), or Ulam (1930). Finally,
such conditions for » may restrict the set of considered acts strongly.

The integral representation can be extended to those acts x,

equivalent to some o, that have, for every B < x, a "sufficiently good™

consequence Y to ensure that the "“above truncation" x' of x at Yy (i.e.

X} =%, ifx_i<§, = = ifx_i>?) has B < x, and that have, for
every § > x, a "sufficiently bad" consequence V to ensure that the

if x. » 9V, x" =v if
1 1

"below truncation" x" of x at v (i.e. Xy = %
EZ < V) has x" < 1. This is the way to extend > to the class of all
acts with finite expected utility, a desirable result for instance for

statistical applicatiohs (see De Groot, 1970, end of section 7.9). For
brevity this is not elaborated here.
Other acts are difficult to handle. One quickly runs into problems,

related to the "St. Petersburg paradox"”.
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The application of our results of course is not restricted to
DMUU. For instance one may think of welfare theory, with agents in-
stead of states of nature, and with P interpreted as power index.

A major application of our results lies in dynamic contexts. Our
theorems are general enough to apply both to continuous and discrete
time. One may characterize "constantness” of the "discount factor" P,
where P corresponds to weights of a form ke_pt, by the addition of
an extra stationarity assumption. Such a thing is done in Theorem 4
of Grodal (1978). Compare also Corollary IV.4.6, or Corollary IV.5.5.
Dréze (1982) emphasizes the analogy between the "I= "
"I=set of points of time" interprZZations. ) e e e

We end with two conjectures:

CONJECTURE V.6.2. If C is topologically separable, then s—-continuity
is implied by the other properties of > in (1i) of Theorem V.6.1.

CONJECTURE V.6.3. In Theorem V.6.1(ii) one may weaken pointwise mono-
t 2 . = _— —
onicity to: [xi > yi for all i = x » y for all x,y € Fb].

The property in Conjecture V.6.3 is more closely related to the
"coherent condition" of de Finetti, see de Finetti (1974, section
3.3.6).
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CHAPTER VI
SUBJECTIVE EXPECTED UTILITY

BY CHOQUET INTEGRALS

VI.1. INTRODUCTION

In this chapter we shall characterize, in Theorem VI.5.1, sub-
jective expected utility maximization with continuous utility for the
case where the probability measure no longer has to be additive. The
main characterizing property will be "comonotonic cardinal coordinate
independence”. The "nonadditive probability measures” will be called
“"capacities", see Definition VI.Z.1. Choquet (1953-54, 48.1) has
indicated, for a special class of capacities, a way to integrate with
respect to these capacities. We shall adopt this way of integration.
For an alternative way to integrate with respect to capacities see
Gilboa (1985a).

Capacities play a role in cooperative game theory with side
payments, where I is a set of “players", a subset of I is a "coalitiomn"”,
and the capacity is a "characteristic function", or "game", indicating
productivity, power etc. See von Neumann and Morgenstern (1944), Luce
and Raiffa (1957), Driessen (1985). Capacities also play a role in
the study of robustness in statistics, see Huber (1981, section 10.2),
Huber and Strassen (1573).

Schmeidler (1984 a,b,c) applied capacities in decision theory.

One motive was to vary on expected utility maximization so as to avoid
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paradoxes such as the "Ellsberg paradox" (see Ellsberg, 1961) or the
"Allais paradox" (see Allais, 1953, or Savage, 1954, pp.101-103),
paradoxes that are often used to criticize or falsify expected utility
maximization. Another motive is the applicability in welfare theory.

Special kinds of capacities are the "belief functions" in Shafer
(1976, 1979), or the "plausibility" in Reschner (1976) .

In this chapter we shall again use terminology of decision making
under uncertainty. Schmeidler (1984a) has characterized subjective
expected utility maximization with nonadditive probabilities, for the
case where consequences are lotteries. He could start with an
application of the theorem of Herstein and Milnor (1953), and thus
immediately obtain a cardinal representing function for the preference
relation on the set of acts. (This induces "linear" utility for the
consequences.) After that he could apply to this representing function
the characterization of functionals that can be considered Choquet
integrals, as given in Schmeidler (1984c). See also Anger (1977,
Theorem 3).

We adapt, under the simplifying assumption that the state épace
is finite, the work of Schmeidler to the case where the consequence
space is a connected topological space, and utility is continuous,
not necessarily linear. In our work a (cardiyal) representing function
is not easily available, and a derivation of it will be the main
mathematical difficulty.

One can consider Schmeidler's work the adaptation of Anscombe
and Aumann's (1963) characterization of subjective expected utility,
to the case of nonadditive probability, and the results of this
chapter the adaptation of our characterization of subjective expected
utility, given in Theorem IV.3.3. Gilboa (1985b) adapts the
characterization of subjective expected utility maximization of

Savage (1954) to the case of nonadditive probability.
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VI.2. CAPACITIES AND THE CHOQUET INTEGRAL

Throughout this, and following,chapters, I is the finite set
{1,...,n}.
DEFINITION VI.2.1. A function v : 27 + IR is a capacity if:

v(g) = O. (VI.2.1)

v(I) = 1. (VI.2.2)

A< B = v(A) < v(B) (monotonicity). (vI.2.3)

Note that the range of v must be a subset of [0,1]. In literature
capacities are also defined when I is infinite; then usually continuity
with respect to increasing and decreasing sequences of events is
required. For our finite I this is trivially satisfied. Also the domain
of the capacity in literature is often taken to be the collection of
compact subsets of I, with I a (Hausdorff) topological space, or it
is taken to be an algebra on I. To follow this, we could of course
endow I with the topology, or algebra, 21. Finally, the normalization
(VI.2.2) is sometimes left out.

The following definition was essentially first given by Chogquet
(1953~54, 48.1).

DEFINITION VI.2.2. Let v : ZI + R be a capacity. Then, for any
f : I > R, the Choquet integral of £ with respect to v, fIfdv, is:

0
Zv({iEI s £(i) > tHa+ [ [v({i€I : £(i) > th-1lar. (VI.2.4)

Note that for nonnegative f£f the second term vanishes. And note
that for additive v the Choquet integal coincides with the usual
expectation of f with respect to v, as follows from integration by
parts. I being finite, (VI.Z.4) can be written as a sum. To this end
let T be a permutation, dependent on £, on {1,...,n}, such that
£(m(1)) > £(m(2)) > ... > £(m(n)). So 7 assigns to every i, con-
sidered as a ranking number, the state of nature with this ranking

number, where ranking is according to the values of f. States with
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FIGURE VI.2.1.(c) [ fdv = (VI.2.6) (Rewritten in (VI.2.7)).
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FIGURE VI.2.1. The Choquet integral.
I=1{1,2,3,4,5}, £ :1I~>mR, £(2) > £(3) > £(1) = £(5) > 0 > £(4).
m(1) =2, w(2) = 3, w(3) =1, w(4) =5, 1(5) = 4. We could also have
m taken m(3) =5, w(4) = 1.
A doubly marked part belongs to two areas. For example 8g€ in (a)
f(2) il belongs both to ||| &nd to ggg :
= A = "area". We always take area positive. In (a), A(//) = [£(2)-£(3)]
f (3) v ({2h; a0\ = [£(3)-£(5)] v ({2,3}); £(1) = £(5), hence == is an
empty set, A=) = 0.
Area is additive in the IR-axis, so in (a), A(= U H| ) = A(=) +
f(5)=f “) A(|||) . Area does not have to be additive in the I-axis, so in (a),
A=) # £ [v({1,2,3) + v({5})] may very well hold.
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FIGURE VI.2.1.(b). fIfdv = (VI.2.5) = A(///) + B(\\\) + A(=) +

A=) - Ao,
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equal f-value mutually can be ranked in any arbitrary way. Now (VvI.2.4)

can easily be seen to equal (see Figure vi.2.1, (a) and (b))
S CUEPREUC IR B CIC PRI AL (VI.2.5)

Note from this expression that the mutual ranking of states with
equal f-value is immaterial. After a reordering of terms, (VI.2.5)

becomes (see Figure VI.2.l1 (c)):

z§=1f(n(j))[v({n(1)....,w(j)}) - v (1), .., m3-1 . (VIL2.6)

and this will lead to the expression that will be most useful for

our work in the sequel. For this a new definition is needed:

DEFINITION VI.2.3. For a capacity v, and a permutation T on {1,...,n},
and 1 < j <n,

U . -1 -1 . . -1 . =3

Pl (§):= v({i€I : 7 (1) 27 (N} - v({i€T : W "(1) <7 (HbH.

Dependency of P“(j) on v is not expressed in the notation. One

may interpret P“(j) as the marginal contribution in capacity of j to
those states of nature which are ranked before j, by 7. By this we
can, with m as above formula (VI.2.5), rewrite (VI.2.6) as:

n .. .
Ej=1P (HYED) -

(VI.2.7)

Note that, for fixed m (and v), the P“(jf's above are nonnegative
and sum to one., One may consider ffdv as the integral of f over I with
respect to the (additive) probability measure P", induced by the
Pw(j)'s. This will lead to the main strategy of our approach to derive
the main result, Theorem VI.5.1: We shall consider subsets of acts,
that induce a same "ranking" permutation m. On such subsets we can
proceed as if we were dealing with additive probability Pﬂ, thus we
can apply well-known techniques there.

Let us now give some elementary properties of the Choquet integral,

that follow from the above expressions.

fAfdv = AJfdv for all X > O (positive homogeneity) . (VI.2.8)
S(A+£)dv = A + SJfdv for all A € IR (translation (VI.2.9)
invariance).

We also have:
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If £(i) > g(i) for all i, then Jfdv > fgdv (monotonicity). (VI.2.10)

The latter is most easily seen by taking A+f and A+g with A so
large that A+f and A+g are positive, and by applying (VI.2.9), and
(VI.2.4). Finally, if we consider the Choquet integral as a function
from If) to R, with (Al,...,ln) ¢ ®" interpreted as the function,

assigning Aj to every j, then we obtain the well-known:
PROPOSITION VI.2.4. The Choquet integral is continuous.

PROOF. First we derive continuity in each variable. Let 1 < i < n.
By (VI.2.10), the Choquet integral is nondecreasing in its i-th
variable. Let x € If& and € > 0. Let m be as above (VI.2.5). Since the
mutual ranking, by 7, of states j with value x, equal to x, , can be
chosen arbitrarily, we may assume that of thes:, w_l(i) isithe
sT?llest. Let § = min{e, xk-xi} where k is such that ﬂ—l(k) =
7 (1)1, if the latter is positive; let 6§ = ¢ if 7 >(i) = 1. Then
for all x_i(xi+A) with 0 < A < §, in the calculation of the Choquet
integral through (VI.2.7), we can use the same T, aﬁd thus P“(j)'s,
as for x. Thus fx_i(xi+k)dv - Ixdv j_P“(i)B <8 <e.
Analogously one shows that § > 0 exists such that for all
0 <A <3¢, every x_i(xi-A) gets assigned Choquet integral, not more
than € smaller than x. (This time let “—1(1) be as large as possible.)
The Choquet integral iS nondecreasing and continuous in each

variable. It must be continuous.

We shall need the following observation (VI.2.11) in the proof
of Theorem VI.B.8. Note that the Pn(i) of Definition VI.2.3 uniquely
determine v : for any.A Cc I, we take a m such that A = {w(1),...,m(i)},
then we have v{(a) = Z;=1Pw(n(i)). This also shows that if one takes
an arbitrary collection of real numbers Pﬂ(j), j=1,...,n, W€
{permutations on {1,.ﬁ.,n}}, then: there exists a (necessarily unique)
capacity v such that any P“(j) can be derived from v as in Definition
VI.2.3, if and only if for all i, w, 7':

n

T,

P (1) > 0; Zj=1P“(j) =1; {m(1),...,m(i)} = (VI.2.11)

] e i T, ., i ' ’
r'(),...,m" (1)} = 2j=1P () = 2;=1P" 3.
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VI.3. COMONOTONICITY

In the previous section we saw that for the Choquet integral, an
ordering on the states of nature, by the "ranking" permutation m,

plays a central role. Hence we define, with >on C as in Notation VI.2.3:

DEFINITION VI.3.1. For x € Cn, >k is the binary relation on I, defined

by i » Jj whenever x, » Xx..
X 1 J
If » is a weak order, then so is >§'

DEFINITION VI.3.2. For § © Cn, >S =

Thus i >sj if and only if xi - xj for all x € S. The following is

a central notion:

DEFINITION VI.3.3. A set C « C" is comonotonic if no x,y € C, i, € I

. - .
exist such that xi xj, yj > Yi
The following sets are "maximal" comonotgnic sets, as will follow.

DEFINITION VI.3.4. For a permutation 7 on I,
T n
is c “.— {xeC : X0 (1) > X0 (2) b R x“(n)}.
C = C with 7 identity.

We now obtain, with an ordering a weak order for which no
different elements are equivalent, the following Lemma. We shall use
only (i) and (iv) of it. Statement (iii) is added because it shows the
way to proceed in case I is infinite, a case for further research. (ii)
is added because it is used in the proof; and because it may be

clarifying.

LEMMA VI.3.5. Let S < C". Let > be a weak order. The following four

statements are equivalent:
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(1) S 18 comonotonic.
(ii) >§ 18 a weak order.

(1ii) There exists an ordering >*on the state space I such that:
P
[i 53 = x > xj] for all i, € 1, x € 8. '

\ m
(iv) s c ¢ for some pernutation w on I.

PROOF. (iii) follows from (ii) by letting Efbe any ordering such that

i jfj =i >b J. Such an ordering exists by Szpilrajn (1930), or Richter

(1966, Lemma 2) (applied to ¥,

(iii) = (iv) follows by taking T such that ﬂ(l).i F(2)_f e Py

If (iv) holds, then for x,y € s, X, > x, and y, > y, would im;iy

m{i) > m(j) and m(j) > w(i), which canngt hold? so Ti) follows.
Finally, (i) is assumed, and (ii) is to be derived. Transitivity

of >§ is from transitivity of >. So completeness of >S remains to be

derived. If not j >§ i, then there must be x € S with x, > xj. By
i

'o . . :
comonotonicity yj > yi for no y € 5, i.e. vy > yj for all y € S. So
i >é 3.

n . ,

DEFINITION VI.3.6. Let C < C°. Then i is inesgential (with respect to
>) on C i i is i ,

a if z_j0 N z_iB for all z_jo, z_iB € C. If i is inessential on
C', then we also call i m-inessential. If m is the identity, we write

zd—znessential. The opposite of inessential always is essential.

The proof of the following lemma is more complicated than that of
its "additive" analogue, Lemma III.2.9. The reason is that we are now
no longer "free to cross borders" from one C" to another. This is the

ma;n complicatiog in the work of this Chapter. a preparatory notation:

NOTATION VI.3.7. For a,B € C, a v B [respectively a A B] is a if o > 8
[respectively o < B), B otherwise.

Note that o VB # Bva if a & B and o # B. If > is a weak order,
then o v B &~ B v a for all o, B. Same things hold for A.
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™
LEMMA VI.3.8. Let » be a weak order. Let x,y € C, and X5 =¥y for

all m—essential j. Then x ~ y.

id 0 ._ 0 .
PROOF. Suppose x,y € C . Define x~ := X,¥ iy %r
j j-1 I 25 ) hat
For § = Byeeesm, X0 1= XIT(RV Y), Y7 am Yoy (g ¥ ¥y)- Ot S

and inductively,

for all id-essential j, x:| = yj = xJ v y . Note also that, for all
1 3
j> 1, x. vy, < xJ = , and x:J v y < y _q* S© that x y €ct for
J

] j-1
all j. We conclude: .
-1
X = xO 5 x1 L. xn = yn R~ yn L.y =Y.

LEMMA VI.3.9. Let > be a weak order. Let all i be T~inessgential for

all w. Then » ig trivial.

PROOF. Let x,y € C". Take any a € C. Since a € ¢" for all m, there
are m, m', such that x, o € C , and y, o € C for some T'. By the

previous Lemma, ¥ & o R Y.

vI.4. COMONOTONIC CARDINAL COORDINATE INDEPENDENCE

The definition of m-essentiality, given in the previous section,
is the key tool for the adaptation of cardinal coordinate independence

to the present context with (nonadditive) capacities:

DEFINITION VI.4.1. > satisfies comonotonic eardinal coordinate
independence (Com. CCI) if for all permutations 7,m' on {1,...,n}
all j and m-essential i, and all x _3%r y B, XY ¥ 16 € C , and
finally all s_ja, t_jB, s_jY, t ]6 ec :

3 a>t Bl =I[s .y>t_.8].
[x_ia < y_iB & X_,Y >y ;8@ 5_j -5 5 -3

A way to obtain intuitive insight into the condition, is to

consider the elucidation to Definition IV.2.4 (ccI), and to study the
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proof in section VI.5, in the sequel. The remainder of this section
is devoted to the study of consequences of Com. CCI. For this we

assume throughout this section, without further mention:

ASSUMPTION VI.4.2. (For this section). » is a weak order that satisfies

comonotonic cardinal coordinate independence.

The following is the analogue of coordinate independence. It is
more convenient to formulate it now in the spirit of independence of

equal subalternatives (Definition II1.6.2).

DEFINITION VI.4.3. > satisfies comonotonic coordinate independence

(Com. CI) if for all comonotonic {x t_, y_AtA} we have

-25a7 Yoa%ar *ata
o
[x_AsA > Y_a% x_AtA > y—AtA]'

LEMMA VI.4.4. > satisfies comonotonic coordinate independence.

PROOF. First we consider the special case that ||a|| = 1, say A = {k}.

Let x t, € c If k is mw-inessential, then

%k’ Yo%k ¥k Yk
X ksk N ox ktk' and y x5k Ry ktk' and everything follows. So let k be

m-essential. Then [x Sk S XS & Xt Fx_ b & XS > y_ksk] by

Com. CCI imply x_k " b y_k K"

. id
Next the general case. Say X_aSpe Y_pSu0 x_AtA, Y-AtA o E =
Define:
0 i O =y (0 [ 0 _
a := x_AsA, b := y_AsA, c := x_AtA, d” := y—AtA'
Then define, inductively, for j = 1,...,n:
If 5 € A, then (a),bl,c),ad) := (a3 1,p371,c371,437Yy.

If j € A, then (aJ,bJ,cJ,dj) := (a 3 a,bzgia,c_; a,dzgiaL with

o =8,V t,..
S i e T, [
The above construction has been such that ai = ck and bk = dk
for all k < j, and such that all new acts are in Cld. For instance if

j € A, then aj_l, bj_l, cJ_l, dj_1 € Cld imply, by simple manipulations,

@ < a; a<bl a< cg_l,a < d;_ . Further a" = ¢", b" = d".

j-1 1 v
By repeated application of the already handled case ||A|]
we conclude that:
ASA>YASA‘=a 5 bl BATT L@ o ST TR e B oP
n-1 n-1

0
e c‘ » d @ ... @ c 4 e x_ t >y AtA'
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By the above Lemma, the following definition is useful under

Assumption VI.4.2.

. i
DEFINITION VI.4.5. We write Xa >h Y

€c.

if there exists s c such that

; A
XS »Y.S , and x_58 , Y. S
AAC AAC AAC AAC

all s or which
LEMMA VI.4.6. If ﬁA >h Ypr then xAsAc b YASAC for . f
eicy . .

X_S , V.S
c
A AC A A

PROOF. Direct from Lemma VI.4.4.

The second and third consequence of comonotonic cardinal
coordinate independence are, with in the terminology of Chapter II,

"cA" omitted:

DEFINITION VI.4.7. > satisfies weak monotonicity (w.mon.) if x >y

whenever X, - vy for all i.

DEFINITION VI.4.8. > satisfies comonotonic etrong monotonicity
m :
(com.s.mon.) if for all comonotonic {x,y} €€ with X, > v, for all 1,

and x5 > ¥y for a m-essential i, we have x > y.
LEMMA VI.4.9. > satisfies weak, and comonotonic strong, monotonicity.

PROOF. First we derive weak monotonicity. In three steps:

id
a, {x,y} comonotonic, say x,y € C" ; x> o (VI.4.1)

Assume y = X_p
Suppose we have x < x ka. Contradiction is derived.

Define, for j = 0,...,n:

] I =2)= oo =2 =a. (VI.4.2)
z~ has 21 = e zj xk, zj+1 wwte zn
\ ; ‘ ’ X
Then all zJ are in Cld. By Com.CI, x < x_ka implies =z kxk <
zkka, dee, zk < zk_l. Each of the last three preferences implies
id-essentiality of k. Thus, by Com. CCI
k k k k 3
< 0 > z a]
[z_ka <z o0&z 0 >z X &z -
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implies zJ o > z xk , i.e. zj ol > zj, for all j > 1.
0 1 k-1 k k+1 n -
Apparently G=2 »>2 > ...>»z >~z >z & ...z = Xy -
This, finally, contradicts xk » o, The case (VI.4.1) 1s handled. Next:
Now assume y = x_) 0 X > a; say x € Cld. (VI.4.3)

So {x,y} no longer has to be comonotonic. Let 1 be such that
X > 0, xj < o for all j > 1. Then, by repeated application of the
\
result for case (VI.4.1), x > x . x » X . X 7 i.. X X > X 0O,

~k"k+1 -k k+2 -k™71 -k
since every two subsequent acts are comonotonic (e.g. x ka2 and
x_kxk+3 are in CTr with m(k+2) = k). The case (VI.4.3) is handled. The
third case is the general case where X > Wi for all i. Then, by
repeated application of the above result, x » X_1¥y - ((x-lyl)—2y2

cee > ((x_yy)) _oyy) .. o ¥ =y Weak monotonicity is proved.

) -

Next, to derive com.s.mon., suppose {x,y} comonotonic, say
id
{x,y} c* , further xj - yj for all j, and X, > Yy for an id-essential

k. To derive is x > y. Define:

z has zj = xj for all j <k, zj = yj for all j > k. (VI.4.4)

- ) id
Then both (z=) Z_ Xy and Z_.y, are in C" 7. By w.mon. X >z Xk >
z_kyk » v. It is sufficient for com.s.mop. to show that z kxk >z kyk'

Suppose to the contrary that we have z_kxk < z_ . We derive a

k¥k
contradiction.
Define zo,...,z as in (VI.4.2), with a = yk. Since k is id-
-k, k k J
essential, by Com. CcCI, [z z, ¥§ &z vy > Z X, & 214¥y >
zJJ ] implies z > z Jxk, ie. 2770 > zJ, for 'all j > 1. So
Yy b xk. This contradlcts X > Yy

COROLLARY VI.4.10. » s trivial if and only if o » B for all o,B € C.

PROOF. If » is trivial, then o > E, so o » B, for all o,B. Next assume
o » B for all a,B. Then for any x in any C , and any a € C, X, > a

for all i, and a € c" , hence by w.mon. we have x » .

Analogously x < 0. So x & 0. Also x N 4 R y for all x,y,a : > is

trivial.

COROLLARY VI.4.11. One m has a m-essential state, if and only if every
T has a m-essential state.
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PROOF. If one 7 has a T-essential state, then > cannot be trivial. By
Corollary VI.4.10 we have o < B for some o,f € C. Since a, B € C for
every T, Lemma VI.3.8 implies that every 7 must have a m-essential

state.

VI.5. THE MAIN THEOREM

Tn this section we give the main theorem of this chapter. After

the theorem we give a proof for the simplest implication (i) = (ii) in
it. The proof of (ii) = (i), and of the uniqueness results, will be
carried out in following sections, and completed in section VI.O.

A survey is given in section VvI.10.

THEOREM VI.S5.1. Let n € W. Let C be a connected topological space,
that is separable if every permnutation m on {1,...,n} has exactly one
n—essential state. For the binary relation » on C", the following two

statements are equivalent:

(i) There exist a capacity v on 2{1""’n}, and a continuous

U : C > IR, such that x [(U o x)dv represents ».
(ii) > Ze a continuous weak order that satisfies comonotonic cardinal
coordinate independence.

The following uniqueness results hold for U, v of (i):

If some m has two or more nm—eagential states, then U (Vvr.5.1)
. 4ig cardinal, and v s uniquely determined.

If » is not trivial, and no m has two or more (VI.5.2)
n-eggential states, then U is continuously ordinal,
and v is uniquely determined.
If » is trivial, then U is any constant funection, (VI.5.3)
and v ig arbitrary.

o

PROOF OF (i) = (ii) ABOVE. Suppose (i) holds. Obviously » 1is a weak
order.

o : .

he map x (U(xl),...,U(xn)) is continuous, so is, by Proposition
VI.2.4 : '
. . the map (U(xl),...,U(xn))'+ S(U o x)dv. The map x+ [(U o x)dv
is apparently continuous. This implies continuity of >.

All that remains is Com. CCI. For this, first suppose that:

X g ; ]
L0 S Y8 x_ v >y 8 {x_je, y_ B, x v, v 8} cc’; (VI.5.4)

i is m-essential.

The two preferences give, by (V;.2.7) (with the 7 in (VI.2.7)
}):

1
identi
ical to our present 7 since X, ”x, = U(xi) > Ulx

3 3

m i
La® (00D + P (U@ <5, P ()U(y,) + B (1)U(B)

I
k#1
and g

m
zk#lp (k)U(xk) + P"(i)U(Y)

These two imply:

| v

Lu® (000G + P (1)U(S).

v,
P (1) [u(@) ~ uB)] < P () [uly) - u(d)]. (VI.5.5)

LU
Were P (i) = 0, then by (VI.2.7) and the representation of >

by x » f(U o x)dv, i would be m-inessential. So:

P"(1) > o. (VI.5.6)
The last two numbered results imply:

Ufa) - U(B) < U(y) - U(I). (VI.5.7)
Now suppose, besides (VI.5.4), also:

§_.a>t_.B; " :
3 738 {s_ja, t__B, S_yVr t_jd} cc . (VI1.5.8)

b

The preference implies:

.n-l TI-I . 2 1 1]
s RUGs) + BT (3)U() 3zk#jp" (UL + P" (j)U(B). This, and

(VI.5.7), implies:
]

Z‘ L TI" . ."| ]

kpg? (UG5 + 2T IUM 23 2T mu(e) + P (3)U(s).

Or:

r s_jY > t_jG. This is exactly what, by Com. CCI, should follow from

(VI.5.4) and (VI.5.8).

Next we give some examples of decision making, discussed in Luce
and Raiffa (1957, Chapter 13, for instance page 282). These examples
have no expected utility representation with additive probability
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measures, but they can be represented by (i) in the above Theorem.

=1 if

EXAMPLE VI.5.2. Let 1 < k < n., Let v(a) =0 if Hal] < x, v(a)
1Ai| > k. Then [ (U o x)a@v = U(xj), with U(xj) the k-th highest value

i = ference relation
in U(Xl)""'U(xn)' P (m(k)) = 1, for all m. The pre

" O w_
imi isi i = maximax
belongs to a "maximin'-decision maker if k n, and to a

decision maker if k = 1.

EXAMPLE VI.5.3. Let 0 < A < 1. Let vig) =0, v(I) =1, v(B) = A for

all remaining A. Here Pn(n(l)) = Dy; Pﬂ(ﬂ(n)) = (1¥X) for all 7w, and

S(U o x)dv = A max{U(xj): 1 <3 <n}+ (1-A)min{u(xj): 1 < j <n}. The

preference relation belongs to a decision maker, adopting the "Hurwicz

criterion" with "pessimism-optimism index" 1-A, see Hurwicz (1951).

VI.6. PREPARATIONS FOR THE PROOF

n
LEMMA VI.6.1. Let C be a topological space, > a weak order on C~, .
continuous with respect to the product topology. Then for all x € C,
{0 €C :a>x}and {a € C : a<x} are open subsets of C.

n . .
PROOF. Let a > x. Then an open neighbourhood V & ¢ of o exists such

that y > x for all y € V. We may assume that V is of the form

n )
1= ives an open
xB with all Aj open subsets of C.Now A : nj=1Aj g P

. o > x}. The latter is open.

A X
LT
neighbourhood of o within {a €C

Analogously {a € C : a < x} is open.

.6.2. Let no ™ have two or more r—essential states. Let the
VI.5.1, and also (ii) there, hold. Then also

LEMMA VI

assumptions in Theorem
(1) and the uniqueness results there hold. If > is nontrivial, then

v only takes the values 0 and 1.

PROOF. If there is a 7 with no m-essential state, then by Lemma vVI.3.8,

for all a,B €C, a ~ B. By Corollary VI.4.10, » is trivial. Now (VI.5.3),
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and (i), follow straightforwardly.
So we assume:
Every 7 has exactly one m-essential state. (VI.6.1)

The binary relation on C, also denoted by >, and defined by
o > B if o > B (Notation Iv..2.3) obviously is a weak order. By Lemma
VI.6.1 it is continuous. By Theorem III.3.1 there exists a, continuous-
ly ordinal, ¢ : C - IR, representing » on C. We can set U := ¢, as we
shall see; so any continuous strictly increasing transform of U can
be used.

Next we define v. Let A © I be arbitrary. By nontriviality, there
are o and B such that o > B, If &A B - > E, we define v(A) := 1,
otherwise v(A) := 0. By com.s.mon. and Lemma VI.3.8 we see that
v(a) = 1, iff for any m with {w(1),...,7(k)} = A, A contains the 7-
essential state. This shows that v is independent of the particular
choice of o and B above. Also it follows that P“(j) = 0 for all m-
inessential j, and Pﬂ(j) = 1 for the m-essential j.

Now we show that with these constructions, (i) in Theorem VI.5.1
holds. Let x and y be two acts. Let x € C", y € C“l. Let i be the -
essential state, j the w'-essential state. Then, by Lemma VI.3.8,

X R ;:} Z_§ ;;. There now follows: .
x>y ex > e Ux) > Uy e 2 W) > " Wuly)
S(U o x)av > S(U o y)dv.

Finally we derive the uniqueness result (VI.5.2). We saw above
that U can be any continuous strictly increasing transform of ¢.
Since, obviously, U has to represent > on C, no other kind of U can
be taken : U is continuously ordinal.

For uniqueness of v, we consider an arbitrary m, and show that
Pﬂ(i) = 0 for all m-inessential i. Then Pﬂ(j) must equal 1 for the
m-essential j. These values P“(-) uniquely determine v. So let,
finally, i = w(k) be m-inessential. Let o > B. Let x assign o to
m(1),...,m(k), B to m(k+1),...,7(n). Then x and x_iB are in Cﬂ. By
T-inessentiality of i, x = x_iB. Since U(a) > U(B), by (VI.2.7) we

obtain P"(i) = 0.
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In cooperative game theory with side payments v's as above are

called " (monotonic) simple games", see Driessen (1985, Definition

v.3.1).

DEFINITION VI.6.3. o € C is maximal [respectively minimal] if § > o

[respectively B < a] for no B € C.

VI.7. ADDITIVE VALUE FUNCTIONS ON Cid

id. Of course, the same

In this section we derive results for C
results hold for any C“. Without further mention, we assume through-

out this section.

ASSUMPTION VI.7.1. The assumptions, and statements (ii), of Theorem
VI.5.1 hold. There are at least two id-essential states. Further we

assume that all states are id-essential. No maximal or minimal conse-

guences exist.

The assumption of at least two id-essenfial states is essential
for the sequel. The assumption that all states are id-essential is
only made for convenience. By Lemma VI.3.8 id-inessential states do
not affect the preference relation on Cid, and may just as well be
suppressed from notation. They will simply get additive value

functions V%d assigned that are constant, say zero.

DEFINITION VI.7.2. Let C & Cn. Let (Vj)?=1 be an array of functions,
each from a subset of C to the reals. Then (vj)§=1 are additive value
functiong (for »)} on C 1f x Z;=1vj(xj) is well-defined for every

x € C, and represents » on C.

VvI.7.1. ADDITIVE VALUE FUNCTIONS (V;);=1 ON THE EZ'S.

NOTATION VI.7.3. For z € c'&, E® := f X g % Eﬁ, with E] :=

=
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zZ
foe C:oa>2}, E :={0c€C:a<z .}, and forall j#1, j#n,

z n-1
i={a€C: 2z, <
zJ o < zj—l}'

=
[urs

Note that z plays no role in the above notatian. And z € E? < o4

z, )
The E 's are cartesian products, and they are comonotonic so that on
them the conditions of this chapter hold without the comonotonicity

premise. That enables us to apply the theorems of Chapter III.

PROPOSITION VI.7.4. For any z € c*? there exist continuous simul-

taneously cardinal additive value functions (v2)© 1 for > on E”.
J J=

PROOF. Since no maximal consequences exist, there is o > zy in ET.

Since no minimal consequences exist, there is B < z in E . Hence;
n

n-1
1@ >z >z B. This
-n

shows that 1 and n are essential on E°. Since Ez, and any subset of

by jd~essentiality of 1,n, and by com.s.mon., z

it, is comonotonic, the properties of Com. CCI and Com. CI all hold
without the comonotonicity restrictions. The topological assumption
III.2.11 on EZ will be guaranteed in the next subsection. Hence, for
the case of three or more essential states on Ez, Theorem III.3.7
gives all desired results. Otherwise only 1 and n are essential on EZ.
Then triple cancellation follows from (Com.) CCI, exactly as in Lemma

IV.3.2. And then Theorem III.3.6 gives all desired results.

In the proof of the above Proposition we have postponed one
matter: the topological assumption III.2.11. The problem is that, if
we take the restriction to E? of the topology on C, then E? will
possibly be no longer connected. For instance let (i) of Tﬁeorem VI.
5.1 hold, where C = IR with the usual Euclidean topology, n = 2, v is
the additive probability measure assigning ||A||/2 to every AC I,
and U : a P o sin o. Let z = (0,0). Then Ef = {a : U(a) > 0}, is not

connected.
VI.7.2. THE TOPOLOGICAL ASSUMPTION FOR PROPOSITION VI.7.4

NOTATION VI.7.5. The topology on C is denoted as T. By T(>) we denote
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the coarsest topology on C with respect to which # on C is con-

tinuous. By ... IE we denote: "restricted to E".
Of course T(») is coarser than T, so is connected too.

LEMMA VI.7.6. Any E < C of the form {a € C : 0 » a > 1},
(¢o€C:0»>a>1}, l0a€C:0o>a>1}, {a €C:0>a>r1l
(0€C:0>a}, {a€C:0>a}, {a €C:a>T],

or {0 € C : a >}, 18 connected with vespect to T(>) |E.

PROOF. Throughout this proof, "open" always refersto T(>) . Let E have
i = =EN F,.
a form as above. Let Fl' F2 be open in C. Let E1 EN F1, E2 2
= = ive a contra-
Suppose E1 £ 0 # E2, E1 n E2 =g, E1 u E2 E. We deriv ;

diction.
Let a, € E .oy € E,. T> does not separate between egquivalent
1 ! '
consequences, SO u1 A~ o, cannot hold. Say al < uz. Define:
G, = (r, N {o o <a< az}] Ul{e : a< al}], and
= : U :a»oa.}].
G, := [F2 n {o : @ <a< az}] [{o 9

Then G1 n 62 =@, G1 £ 0 # G2, and G1 U G2 = C since

{o : a, <a< az} c E.
First we derive openness of G1. For any element of Gl' an open
neighbourhood H of it within G1 must be” found. Let § € Gl' If § < o
i = 3 is taken.
take H = {0 : a < ul}, if & > o, H = F n {a : a, <o < az} is

So finally let § & o, - There must be an open neighbourhood H' of §

within F of the form {a : a>n}, or {oa : v>a>u}, or {a: v> o}

for some p,v € C. The first case is impossible since o, [ F1. so,

finally, F = {a : v > o} can be taken, in both other cases.
Analogously openness of G2 is derived. Openness of G1 and G2

contradicts connectedness of C.

The above Lemma shows that, if we use T(>) instead of T, then

every E? is connected. Next we show:

LEMMA VI.7.7. For any z € cid, >, restricted to Ez, i8 continuous with

Zl
respect to the product topology of the ‘I‘(>)|Ej s
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z ~
PROOF. Let x, y € E7, x > y. We construct an auxiliary x such that
; > y, and by means of this a subset F1 X Rlefs X Fn of {v € Ez v > y}

’
containing x, and with every Fj (= E? open w.r.t. T(>)IE%. For the

construction of ;1, consider:
= {a € C : (a,xz,...,xn) >y},

By Lemma 0.1 this is open w.r.t. T. V contains Xy so is nonempty. If
\ contains Z4 then ;1 =2z, and F1 = Ef is taken.

If V does not contain Zys then by connectedness of C w.x.t. T,
V cannot be closed w.r.t. T, so not of the form {0 : o > xl}, by
continuity of > on C (Lemma VI.6.1) with respect to T. Since V, by
w.mon., contains all o »» x1, V must contain an a < x1. This o cannot
be < 21 (that, by w.mon., would imply z; € V). So zy <a< Xy
o € E . Take x1 = a, F1 = E n{gpec: s > ol

Anyway, we have (xl, x2, H el X ) >y, and F1 is open w.r.t.

T(>) |E].

By analogous constructions we obtain xz, F2, W A xn, F , such
z
:?at (xl, x2, s <¥e i x ¥ xj+1, ceer X ) > y for all j, Fj = Ej if
X, =z otherwise z, < X, <x,and F, = {a : a > n E . Final
5 j¢ o 3 3 j and Fy { x } 3 nally,
(xl, . xn) > y. For every w € F1 X o 25 Fn, in partlcular w = x,

w3 > ;5 for all j. By w.mon.: w > X > Y.

So indeed, if x > y, we can construct F1 X ... X Fn (=
EZ N {w: w> y}] , containing x, and open w.r.t. the product topo-
logy of T(>)|E§,j =1,...,n. Hence {x € EZ : x >yl is open w.r.t.
the latter product topolbgy , for all y € Ez. Analogously {x € E® :

x <yl is open, for all Y. Continuity of > w.r.t. the product topology
of the T(>) IEJ? , follows.

We can now take care of the topological assumption III.2.11 for
Prop031tlon VI.7.4. On every E] we take T(>)|E . By Lemma VI.7.6, EJ
is connected on E® we take the product topology. By Lemma VI.7.7, >
on EZ is continuous w.r.t. this topology. So indeed we can apply the
theorems, mentioned in the proof of Proposition VI.7.4. These yield
additive value functions, continuous w.r.t. the T(>)iE§'s; so

certainly w.r.t. the T E?'s.
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z . id
VvI.7.3. FITTING THE FUNCTIONS Vj TOGETHER ON C

Our next step is to show that there exist V;d : C» R,
j=1,...,n, such that for every z and j, V; can be taken to be the
restriction of V%d to E?. This of course could never be done if there
were A < I, and i, t € Cid, such that (V?)jEA and (vg)j€A.w°u;d be
additive value functions for different binary relations on the "common
domain" (E n E ) . By comonotonic coordinaté independence (Lemma
vI.4.4) that never happens. Both (V ). jea and (V ) i jea are additive
value functions for » d, on approprlate domains.
LEMMA VI.7.8. There exist, simultaneously cardinal, v;d

y=1,...,n, that are additive value functions on EZ for every z € C

:C>+ R,

PROOF. On every E we are given additive value functions (V )J 1 for
>, that are simultaneously cardinal. So we may add to every V? an
arbitrary “location" constant Tj(z), and multiply the V?'s by one
common positive "scale" constant o(z), to obtain again additive value
functions. Our plan in the sequel is to choose,in 5 stages, scales and
locations such that all V?'s will "fit together", i.e. be the same on

common domains. They can then be considered the restrictions of one

array (Vld)g 1
C 0
There must exist Bl Bo € C such that Bl > B . We shall arrange
id(SO) = 0 for all j, and V (B ) = 1.

N =1
STAGE 1. Choice of scale and location on E- with r = 8

Iet r (“reference point") = B r ={o :a>8B }, contalns B E E

{a : o< B }. For all j # 1, j # n, Ej ={o : oo~ B } Of course we

choose scale and locations such that:

v?(so) = 0 for all j, v’;(s1) = 1. (vI.7.1)

z z
STAGE 2. Choice of scale on all Ez, and location for all V1, Vn'

Let now z € C 1d be arbitrary. By Com. CI, (Vl, Vn) and (Vl, V )
are additive value functions for the same >{1 ul on (E n E1) X

{E ne ) Note that both 1 and n are essential on [El n E1 n E ) x

(nrnEZ) o
{1,n}

n
M . By Lemma VI.7.6, E1 n El and En En are

id
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connected w.r.t. the restrictions of T(»), and by subsection VI.7.2
we may use the uniqueness result of Theorem III.3.6. So we can choose
the scale for (Vz, Vz), (and hence for all (V%)?_ ,) and the locations
z 2z & 18 r z r z 3 J_1r z r z
for (V,, V'), such that V, =V, on E, NE, , and V. =V _on E_ NE .
1 n 1 1 1 1 n n n n
Thus we have, even stronger:
S t t .
V1 V1 and V Vn on common domain (VI.7.2)
for all s, t € C d
Thls follows since, on (E n E ) x (E n E ), (V ; V ) and
(V1, V ) are additive value functlons for the same f{l n}’ hence they
can only differ w.r.t. their locations, and a common scale. However,
for 3 = 1,n, V? and Vg coincide (with V§) on E? n E; n Eg; hence they

coincide on common domains.

STAGE 3. Intermediate observation.

In fact, for all s, t, j, V? and V? now have the same scale, and

only differ w.r.t. their location, as we shall show:

There exist constants T (s,t) such that on Ej n E§ ’ (VI.7.3)
V? = T (s,t) + VJ for all s, t€c d, 1 <3j<n.

For j =1o0oxr j=mn, by (VI.7. 2), in fact Tj(s,t) = 0. So let
1 # 3 # n. Then (Vl, V?, V ) and (V :, VE) are additive value

functions for the same >?1 } on (E n E ) x (E n E ) x (E n E ) s

(3.0
So they can only differ by location, and common scale. Howaver, VT
t s =]

and V1 , and Vn and Vn , coincide on their common domain (which con-

tains more than one element). The common scales must be the same.

STAGE 4. Choice of location for all V?'s (j # 1,n), having BO in their
domain.

'

Of course for all V;'s as above we choose location such that

V?(BO) = 0. Then we have not only (VI.7.1) to (VI.7.3), but also:

If V? and V? have BO in their domain then they (V1.7.4)

coincide on common domain.

This is direct from (VI.7.3).
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z
STAGE 5. Choice of location for remaining Vj's.

Let now z € Cld and j be such that BO [ E§ , J#1, 3 #n.
EZ = {a : - >cx> z.}. Say 2y > BO (Zj— < 80 is analogous). Let

i
r(z) € Cid be such that (r[z]) = Zj*l for all i < j, (r(z))i - SO
for all i > j. Then EZ < Er(Z) {o : Zy_q > a > 80}.
In Stage 4 we arranged Vr(z)(ﬁ ) = 0. We now choose location of V?
such that V. = V§(z) on Ej' We now shall derive:
For all s,t € Cld, 1<3<n, V? and V; coincide (VI.7.5)

on common domain.

. 0, :
We check this only for the case where 1 # j # n, B is neither
in the domain of V?, nor in that of V? (other cases are treated

before, or are analogous), and s, > BC. Here E? is of the form

3
; s
{a : Sj - o> s }. For E; to have nonempty intersection with E. ,
r(s
we must have t, > BO. Now V° and VE(S) coincide on E? n E ( ), so do
r(t
vt and v*') on Bt 0 E5Y) a0 G0, by (vI.7.4), V2% a na VEE) o
3 J b j 3 J
E%(s) n E?(t). The latter contains E? n EF.
] J J J
id,n .
We can now define (Vj )j=1' For any oo € C, and 1 < j < n, we take

any z € Cld such that a € E§ 3 zj = o suffices. Then we define
V;d(a) (a). By (VI.7.5), this does not depend on the particular

id
choice of z, and every Vj is now the restriction of VJ to EJ.

Finally the uniqueness result. Any (I'\I'j"d]:::_.,i , for whlch real TJ '
id

j=1,...,n , and positive 0 exist such that wj = TJ+0Vj for all

j, satisfy the requirements of the Lemma. Conversely, b E (W;d) o1
id
satisfy all the requlrements of the Lemma, then so do UJ 1=

[w;d—w 891 / %Y - wtel.
From U (B ) =0, U (B ) = 1, and from rereading the proof, the
id id

reader w111 see that this uniquely determines Ujd, UJ Vj must hold

for all j.

Note that we may not yet conclude that (V, d)3=1 are additive

value functions on all C d
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id i
VI.7.4. THE FUNCTIONS (V] )?=1 ARE ADDITIVE VALUE FUNCTIONS ON ci9
LEMYA VI.7.9. For aZZ (id—essential) k:a>gevia > vkd(s).

Hence o > B ® ZV (a) > ZV (B).

PROOF. Let o, B, k be arbitrary. First suppose o » B. Let Xy = for

all j < k, xJ = B for all j > k. Then x = 6 and x_ x® € Cid, and
x_kB and x_ w € g*. By w.mon. and Lemma VI 7 8:
o N B =a > B and B » o = X_ 0 N X_ B = V (a) = Vid(ﬂ)-

By com.s.mon. and Lemma VI. 7 8-
o> B = X 0 > x_ B = V (a) > V (B)
Analogously.
a<B= V (d) < V (B)

All of this together implies that Vid

. Yepresents > on G-

LEMMA VI.7.10. Let x € ¢'9, x m 4. Then ™ vi%x) = 2" vi%a.
=13 3 J=173
PROOF. The case xj &~ o for all j is direct. The case xj > o for some
j and xj < a for no j, and the case xj < o for some j and x, > o for
J

no j, are excluded by com.s.mon.

So suppose j < i exist such that x, > a, x, +1 vee REOX, 1 N,
0 J -
xi < a. We define x such that xﬁ = xk for all xk % a, and
0 =
X o for all X N Q.
Now suppose, for some 0 <1 < n-2, xl € Cld has been defined such

1 id, 1 id
that x = a, and ZV (x b = ZVk (xk), with at least 1 coordinates of

1
X equal to o, and no coordinate equivalent but unequal to a. If in

1
fact ¥ has 1+l or more coordinates equal o, define xl+1 S xl. If
not, then, say:
1 1 _ 1 1 .
xa > a, xa+1 —l... = xb__1 = o, xb <1a, with b = a+1+1.
If now (x_ a) bu ™~ 4, define x +1 := (xlaa) b (= xl+2). If
1 = L
(x" o) o< a deflne o < xl+1 < xl such that:
-a '-b a
1+1 1 1+
X =
(X_ba)_a(xa L ~a.

1+1 1 . _
(ake 3,*! 4n (8 € C ¢ (xlo)_ B>} N{BEC: o _B<al,

both involved sets are nonempty; closed by Lemma (.1; they intersect

by connectedness.)
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1 - 1+1 1
If (x_aa)_bu > o, define o > Xy b Xy such that
Xl-l—l — (xl &) xl+1 i
2 hh 1 1+1 1 2
In any case, for z = x_aa, both x and x~ are in E, their a-th
coordinate is "between" xl and o, their b-th coordinate "between" o
1 i T 1+1 . id, 1+1
and Xp - Hence by Lemma VI.7.8, x (¥ a) N X implies ZVk (xk ) =
i) -
Finally we end up with xn_1 ~ a, with n-1 coordinates equal to a.

-1
Then by com.s.mon. the remaining coordinate of xn must also be

equivalent, so equal, to a. And:

id _ id, 0, _ _ id, n-1. _ id
LV () = BV = e = BV g ) = BV (o) follows.

Now, finally, to show that the (V;d)?=1 are additive value

functions on Cld, let x,y € Cid be arbitrary. First we find "certainty

equivalents."”

LEMMA VI.7.11. For every z € C" there exists o such that z ™ a.

PROOF. For z € C" there exist i,j such that Xy > X > xj for all k € I.
Let V ;= {0 €C : a>x}, W:={B€EC :x>RB}, Then VNW=4g. Vand

W are open by Lemma VI.6.1. Now Xy ¢ W and xj ¢ vV by w.mon. By

connectedness of C, there is an o € V U W; so o N x.

o
We now give the main result of this section:
THEOREM VI.7.12. There exist continuous simultaneously cardinal
additive value functions (V:j.d)le=1, for » on cid,
id g id,n
PROOF. Let x,y € C be arbitrary. Let (Vj )j=1 be as constructed
above. Let a,B be such that x & &, y & B (Lemma VI.7.11). Then x >y
iff & > B, which by Lemma VI.7.9 is iff zkvid(a) 3_zkv;d(s). The
. d i
latter by Lemma VI.7.19 holds iff I,Vy (%) 2 4V (y,)-
D
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The following Corollary is not needed for the sequel, but may
have some interest of its own. It considers, as all of this section
does, an example of an additively decomposable representation on a set
that is not a cartesian product, but only a subset of that. The only
literature on this subject, known to the author, is Krantz et al.
(1971, section 6.5.5); and Fishburn (1967, 1971) for the case where

coordinate sets are mixture spaces (see Definition VII.2.1).

COROLLARY VI.7.13. Let » be a continuous weak order on

_ n
X:= {x € R : X, 2%, > ... ixn}’ such that [xj 2 vy for all j and
x # y] implies [x > yl. Let n > 3. The following two statements are
equivalent:

(1) There exist continuous simultaneously cardinal additive value

functions for » on X.

(ii) > satisfies (comonotonic) coordinate independence.

PROOF. As Theorem VI.7.12. Weak, and (comonotonic) strong, monotonicity
are easily verified. We have all, so certainly three or more, coordi-
nates essential. For this case the only consequence of Com. CCI, (apart
from the monotonicities,) used in the proof of Theorem VI.7.12, is

Com. CI. Theorem VI.7.12 only considered Cid} and did not need any

assumption "outside" Cld.

VI.8. COMPLETION OF THE PROOF OF THEOREM VI.5.1 UNDER ABSENCE OF

MAXIMAL OR MINIMAL CONSEQUENCES

Throughout this section, with Theorem VI.8.8 excepted, we shall

assume :

ASSUMPTION VI.8.1. The assumptions, and statement (ii), of Theorem

VI.5.1 hold. There exists m with two T-essential states, say




n = identity. By m we denote an 1d-essential state. No maximal or

mlnlmal consequences exist. Let B > B pe two fixed consequences. For
every T with two or more T= -essential states, the continuous simul-
taneously cardinal additive value functions (V ) for » on C1r (that
x15t according to the prev1ous sectlon) are chosen such that

V (B y = 0 for all j, and T V (6 )y = 1.

j=1
MNote that we have changed "scale", as compared to the previous

section. There we had V (B ) =1, now E 1 j (B ) = 1. Note also that,

at present, we may not yet conclude for dlfferent %, m', and x € C“,

y € C“; that X > ¥ © Z V (x ) > Zj 1V (y ). The only consequences

of comonotonic cardinal coordinate 1ndependence that we used in the

previous section (comonotonic coordinate independence, weak monotoni-

city, and comonotonic strong monotonicity) probably do not suffice for

this purpose. We shall essentially use:

LEMMA VI.8.2. Let there be at least two m—essential, and two
m'-essential, states. Let k be ni—essential. Then for all 1 € I,
v: = ¢l ° VE' for a congtant or positive affine ¢1.
PROOF. Say 7' is identity. We write ¢ for ¢1. If 1 = n-inessential,
then VI is constant, and ¢ is the same constant. So assune:

1 is m-essential.

By Lemma VI.7. 9, (which applles to all essential k) V and V =

represent the same >, hence V = ¢ © v for a contlnuous strlctiy

increasing ¢. =
Note first that Com. CCI (Definition Vvi.4.1) implies the same

property with all preferences replaced by equivalences (compare Lemma

1vV.2.7). This we write out with additive value functions brought in,

and with ¢ o V;d for VI everywhere, to give:

id _ (L id _  id (2)
Vi (o) v (8) k[vj (yj) vj (xj)] (VvI.s.1)
id d
Vk (y) - Vk (6) ]
and
— be (3 m " .
| $ov Ya) - ¢ v 4(p) zj#l[vj(tj) vj(sj)] (VI.8.2)
imply

DEFINITION VI.8.3. For all a € C, U(a)
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5 v ey - vis (4) id a

alvyey) Vj(sj)] = 4oy () - povi(§) for all (VI.8.3)
id

x_ 0 Y B, x kY. Yy, 8 €C s ja, £ B, s Yt 18 € CrE

N
ow let Vk (1) be an arbitrary element of 1nt(V (C))

be seen to be an 1nterval S around V

There can

X (u), so small that for all

(a), Vk (B), Vv (Y), and V (6) € S, there exist x,y such that

X .0 id
k% y_kB, kY’ Y_ 6 are in C*, and such that gL is satisfied.

Fo i
r this we use the ex1stence of an id-essential state i # k, which

implies nondegenerateness of the interval Vid(C)Of course, if i < k
i g ’ ’

then x, » i
1 Z o X, >, Yy > B, v, » 6 will have to hold. If i > k, the
converse has to hold. Furthermore, by continuity of ¢, S can be taken
so i
small that ¢(S) is small enough to guarantee existence of s and t

such
that s 1% t_ B, s 1Y, = 6 are in c" . and such that & holds.

We conclude for all V (d), (B), (Y) (5) € S:
id id .
v.%) - %) = vkdm - vt =

id
tovi (@) - povid(p) = 907 % m) - 4eviN(s) .

(VI.8.4) "

This i .
is is now shown by choosing x,y,s,t as above.(VI.8.4), only

for the case where B = vy, already suffices to show that on S, ¢

t . , . i~ ~ ~ ~ !
satisfies: ¢((o + §)/2) = [¢(a) + ¢(8)]/2. Corollary VIII.3 gives
affinity of ¢.

Fo. i
r all m with two or more m-essential states, we can, by Lemma

VI.8.2, and the fact that all Vg(BO)equal 0, define Av € R

' such that
with m id-essential: -
V“ _ vaid
i gVl (VI.8.5)
We define for all these m:
pn o / Z id
3 & 1 T*- (VI.8.6)
For m with exactly one m-essential state, say 1, we define:
L b .
.= 1 .= i
Py ' By 0 for all i # 1. (VI.8.7)

We now define U : C > R.
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LEMMA VI.S.4. For all w with two or more m-essential states, and all

a, V(o) = p;U(u). For all w, Zpg ="Hys
J

L
PROOF. Let T have two nm-essential states. Then p,U(a) =
m n idqrn id _ [T n id. .n id.,id - V? ). For
0 7 25 g3 1T vy (@1 = [ /7 2 3 2V (@)1 = vy
Ul L 1d | Tt id o1y - 4/1 =
such T, ;pj = ij / Zli = ZVj(B Yy / v, (87} 1/

For other 7, with only one m-essential state, [zp

= 1] is

. 5 =

direct.

LEMMA VI.8.5. Let x € C', x ~ &. Then Zp;U(xj) = U(a).

PROOF. If there are two or more T-essentlal states, then by Lemma VI.

Ul 4 i =] g = -
7.10, adapted to e, EVj(xj) = ZVj(a). Hence Eij(xj) zij(ﬂ) U (o)

If T has exactly one m-essentlal state, say k, then by Lemma VI.

— ) ™ _ -
3.8, x ™ X - Hence by Lemma VI.7.9, U(xk) = U(a), i.e. ijU(xj) = U(a).
o

T . ! n ™
LEMMA VI.8.6. Let x€EC ,y€C .Then x>y ® Zj=1ij(xj) 2
n m
I, U(y.).
J=11;>J (yj)

PROOF. Let (Lemma VI.7.11) x M a, y ™ B. Then x >y iff a > 8, which
by Lemma VI.7.9 is iff U(a) > U{B). By Lemma VI.8.5 the latter holds

ki m
i ) > Ip.U{y,).
iff Eij(xJ) 2 Ipy (yj

LEMMA VI.8.7. Let Ac I. Let A ={n(1),...,7(k}} = {nr (1), o0, (k) 3.

k m k !
I - = E Ll
Then j=1pj J=1PJ

0 , m
PROOF. Let x, = 61 for all j € A, xj = B” for all j € A. Then x € C
1 A
and x € C" . Apply the above Lemma with y = X.

The purpose of the last two sections has been to derive the

following result:
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THEOREM VI.8.8. Let the assumptions of Theorem VI.5.1 hold. Let (iZ)
there hold. Furthermore, let no maximal or minimal aonsequences.exist,
and let there be a m with two or more m-essential states. Then (i),
and (VI.5.1), of Theorem VI.5.1 hold.

PROOF. According to Lemma VI.8.7, and formula (VI.2.11), with P"(j) :=
p; for all w,j, there exists a unique capacity v in accordance with
Definition VI.2.3. Lemma VI.8.6, and formula (VI.2.7) now verify (i)
of Theorem VI.5.1.
To derive (VI.5.l1), say there are two id-essential states. Then
the fact that CPid(j)U)Ijl=1 are additive value functions for » on Cid,
id\n

and simultaneous cardinality of (V) ) in Theorem VI.7.12, give

j=1,

cardinality of U, and together with [ZPle) = 1] uniquely determine
id n T .

(p (J)j=1- Analogously (P (J))§=1 are uniquely determined for any m

with two or more m-essential states. If T has exactly one m-essential

state k, then P' (k) = 1 must hold, and P" (§) = 0 for all j # k.

VI.9. MAXIMAI, AND/OR MINIMAL CONSEQUENCES

In this section we derive the implication (ii) = (i), and the
unigueness result (VI.5.1) in Theorem VI.5.1, for the case where
maximal and/or minimal consequences may exist, and where furthermore,

as we assume throughout this section without further mention:

ASSUMPTION VI.9.1. The assumptions of Theorem VI.5.1 hold. Also (ii)
there holds. There exists m with two or more m-essential states, say

m = identity.

LEMMA VI.9.2. Let o, v € C be such that o > y. Then there exists B € C
such that o > B > y.




|
\
)
[
|
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PROOF. E := {B : B>y} and F := {8 : B < o} are open and nonempty.
Their union is C, for if B € FC then B » o so B > Y. Hence by

connectedness of C, E and F must have nonempty intersection.

*
NOTATION VI.9.3. C := {0 € C : o is neither maximal nor minimall.

™ = c" n (dHP.

Since T = id has a T-essential state (even more than one), there
*
exists o > B. By Lemma VI.9.2, C is nonempty, and has no ("new")

maximal or minimal consequences itself.

LEMMA VI.9.4. If i is essential on c" (i.e. m-essential), then it is
m*
on C .

PROOF. Say 7 is identity. There exist o, 8 € C such that o > B. By

Lemma VI.9.2, there exists y such that o > y > B, again Lemma vVI.9.2

gives § such that y > § > B. Let x € Cid have x, = Yy for all k < i,
id *

X = § for all k > i. Then X_; Yo x_iG are in Ci , even in C . By

com.s.mon. x .Y > x_,0.
-i -i

*
Next we show that, on (C )n, (1) in Theorem VI.5.l1 is satisfied.

PROPOSITION VI.9.5. There exist a capacity v, and a continuous

* * * * n
U : C + R, such that x» [(U o x)dv represents » on (C ) .

PROOF. By Lemma VI.9.2, C* itself has no maximal or minimal conse-
quences. By Lemma VI.9.4, essentiality of states on (C*)P is as on C".
The proposition now follows from Theorem vI.8.8, if the topological
assumptions in it can be guaranteed. This is done analogously to sub-
section VI.7.2. T(>)|C* is taken as topology on C*. Mainly by Lemma
VI.7.6 this preserves qonnectedness. Continuity of > on (C*)n w.r.t.
the product topology of the T(>)|C*'s, differs only in details from
Lemma VI.7.7:

* ~
Let again x >y, for x,y € (C )n. We construct x > y, and by means
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£ thi L '
of this a subset F1 : e ot ™% Fn of {w € iC ) ow > y},-containing X,
ad with every Fj c C , open w.r.t. ¥>|C . For the construction of ;1,
consider:

V:= {0 €C : (a, Rypeews X ) > v}. By Lemma 0.1 this is open w.r.t. T,

the "old" topology on C. V contains x, so is nonempty. If V = C, then

1

*
: . . i d
Xy € C not being minimal, we take X =0 for any o € C with a < x

If V # C, then by connectedness of C w.r.t. T, V cannot be closed

1°

w.r.t. T, so not of the form {a : a > Xl}’ by continuity of > on C
(Lemma VI.6.1) w.r.t. T. And since, by w.mon., V contains all a > 3
V must contain anNF < X Now take (Lemma VI.9.2) ;1 = B for any
a<B< X, Then X, €c*.
~ * ~ ~ :
So always Xy € C is found with X, < x4, (xl,x2,...,x ) > x. Let
ho. h n
Py := {a : o> xl}.

Further we proceed as in the proof of Lemma VI.7.7.

We plan to define U(a) := sup(U*(C*)) [respectively inf(U*(C*))]

for maximal [respectively minimall a. Hence:

LEMMA VI.9.6. If o 78 maximal [respectively minimall, then U*(C*) 18
bounded above [respectively below].

PROOF. Only for maximal o. Let i < j be two id-essential states. Let,
only in this proof, (B,y) denote the act z with z, = B for k < i,
Ek =y for k > i, for all B, y € C. By com.s.mon., for all vy € C*,
o > (o,Y).
Let vy € C* be fixed, let B (by Lemma VI.7.11) be such that
d*

14

- - = * i
(a,y) B (so B E€C ). Now for all p € ¢* with w7y, (4,¥) is in c*
and (1,y) < (@,Y) ~ B, so:

{1 . * * *
vi{l,ceo iU (W + [vi) - v({1,...,iHJu (y) <U (B). (VI.9.1)

. A i id *
Since i is essential on CT , v({1,...,i}) is positive, and
. *
(31.2.1) gives an upper bound for {U (u) : u € C*, U > v}, thus for
u (C). '
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* *
DEFINITION VI.9.7. If o € C is maximal, then U(a) := sup(U (C))y. 1f
* * *
o € C is minimal, then U(a) := inf(U (C )). If a € C , then

*
U(a) := U (a).
As we saw above, U(a) € R for all a. We denote:
+ * . . }
NOTATION vI.9.8, € :=C U{a € C : o is maximal’.
With this we obtailn:
LEMMA VI.9.9. For all x € (C+)n, and v € C with x =~ Y, J(uex)dv = U(Y).

PROOF. Say x € Cid. By com.s.mon., Y is not minimal, so Y € ¢*. 1f no
maximal o exists, Proposition VI.9.5 gives the desired result. So let
o be maximal. Let O < k < n be such that Xy S TR W N oo, X4 <o,
cves X < a. If y is maximal, then Yy & o, and by com.s.mon. k+1l,...,n
must be id-inessential. Then /[(Uox)dv = U(Y) follows.

There remains the most complicated case, where Y is not maximal,
so, neither being minimal, is in C*. First we show that JS{Uex)dv < U(Y).
By w.mon., for all u € C* with (a >)u » xk+1, we have
(u,...,u,xk+1,...,xn) <y, i.e. f(Uo(u,...,u:xk+1,...,xn))§v < u(y).
Writing for all 1 < j <k, U(xj) = u(a) = sup{fu(n) : w€C, u> xk+1}
shows that [ (Uox)dv < U(Y).

To see that J(uex)dv > U(y), we consider 8§ such that vy > §, so
x> 6. By standard arguments continuity of >, Lemma 0.1, and
connectedness of C, imply existence of uk such that xk > uk b xk+1,
and x_ b, > 8. Also, w _, exists such that x,_, > ¥y > u, and
(x—k,k—iuk' uk—l) > 35. Finally ﬁe end up with o > u1 > u, >...uk such
that (ul,...,uk,xk+1,...,xn} > 3. Hence, for all u € C such that
o>p o> u1{>...> uk), we obtain I(Ua(u,...,u,xkﬂ,...,xn})dv > U(E)-

Substituting, for 1 < j < k, U(xj) = U(a) = sup{U() : nEC,
H > ul}, shows that [ {(Uox)dv 3_U(6). This holds for all § < y. Hence

J(Uex)av > U(Y).
D

+. N
LEMMA VI.O.10. The map x v J(Uex)dv represents > on (C7)".
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PROOF. First for constant acts. Suppose Y > 8, with y maximal. Then,
by Lemma VI.9.2, Y >a>38 for some o € C. So U(y) > U(a) > U(6)
follows, the latter strict inequality by Proposition VI.9.5. All other
cases of Y > § & U(Y) > U(8) are straightforward.

Next let x,y € (C+)n be arbitrary. Let x 8 Y, vy & 68 (Lemma VI.7.
11). Then x > y @ y > § ® U(y) > U(8) @ f(Uox)dv > S(Uoy)dv, the latter
by Lemma VI.9.9.

Next we must turn to (C+ U{e €C : a is minimalH™ = Cn, and
show that also here x b [ (Uox)dv represents ». This is very analogous
to the above, elaboration is left out. We conclude that the implication
(ii) = (i) in Theorem VI.5.1 is now also proved if maximal and/or
minimal consequences exist. For the uniqueness result (VI.5.1) in
Theorem VI.5.1, we must show that for maximal [respectively minimal] o
no other choice for U(a), than sup(U(C*)) [or inf(U(C*))] can be made.
This can for instance be seen from the proof of Lemma VI.9.9. Let i > j
be id-essential states., Then, with o maximal, Ky = eee =X, = o,

o > %1 PR ] X0 the formula [ (Uox)dv = U(Yy)} there uniquely deter-

mines U(0). For minimal consequences matters are analogous.

VI.10. SURVEY OF THE PROOF OF THEOREM VI.5.1

The implication (i) = (ii) in Theorem VI.5.1 has been demonstrated
directly below the Theorem. The proof of (ii) = (i) for the case where
no m has two or more n-essential states, and the proof of the unique-
ness results (VI.5.2) and (VI.5.3), have been given in Lemma VI.6.2.
There remains the case where one m has two or more m-essential states.
The case of no maximal or minimal consequences is handled in Theorem
VI.8.8, the existence of maximal consequences is handled in Lemma VI.

9.10, the general case in the final lines of section VI.O.

.
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VI.11. STRONG SUB- AKRD SUPERADDITIVITY

In this section we study the following properties of capacities:

DEFINITION VI.11.1. A capacity v : ol + R is strongly superadditive
[respectively strongly subadditive] if for all A, B € I:
v(a U B) + v(A N B) > [respectively <] v(a) + v(B).

Other terms for strong superadditivity are 2-monotoniclty, or
(strong) convexity. This property has received much attention as it is
a sufficient property for v to be the infimum of all additive proba-
bility measures, dominating v; and even stronger, this property of v
is necessary and sufficient for the Choquet integral with respect to v,
to be the infimum of all integrals with respect to the additive
probability measures which dominate v (see Huber, 1981, Propositions
10.2.5, and 10.2.1 applied to v*(A) .= 1—v(Ac); or, for arbitrary state
spaces I, Schmeidler, 1984b, Proposition 3; or Anger, 1977) . Such
dominating additive probability measures are called "core-elements" in
cooperative game theory with side payments. For strongly superadditive
(= "convex") v's [that do not have to satisfy (VI.2.2) or (VI.2.3)],
core-elements are studied in Shapley (1972). For strong subadditivity,
other common terms are 2-alternating, or (strong) concavity.

The following lemma reflects ideas of nondecreasing (or non-
increasing) marginal measure, and is like (6) in Shapley (1972). P“(i)

is as in Definition VI.2.3.

LEMMA VI.11.2. For a capacity v : 2l + R the following four statements

are equivalent:

(i) v is strongly superadditive.
(i) v  UA, UR)) - via, UAy) > via, Ua) -via) for all disjoint

A A2 C N.

A
OI 1!
(1ii) v{{il} U A U {3h - v@a U (3D _>_v({i} U a) - v{a) for all disjoint

(i}, a, {3l}.
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(iv) Let 1 <k < n, and let =, ' be two permutations on N, such that
m=1x"on N\ {k,k+tl}, n(k) = m'(k+1), w(k+1l) = ' (k). Then
Pﬂ.(ﬂ(k)) Z_P“(W(k)).

The same holds if superadditive in (i) is replaced by subadditive,
and > by < everywhere.

PROOF. Only for strong superadditivity, and > everywhere. v is strongly
superadditive iff v(A U B) - v(A) > v(B) - v(A N B) for all A, B. This

is equivalent to (ii) above by the substitution A. = B\A, A, = A N B,

0 1
A, = A\B. The implication (ii) = (iii) is by {i} = Ay B = A, {3} = A,.

So suppose (iii), to derive is (ii).

, o I, sl
Let tZe;e be given disjoint Aj = {la}a=1' A, ang 32 = {jb}b=1'
. r = . ) . ) ’ =
We write A1 g {11,...,1a} U A1 U {31,...,Jb}. So A1 Al.
Furthermore:
_ _ k.1, _ 0,1, k a,1, . a-1,1
viag UR Uay) -vi@a, Uay =v@a ™) - v ') =z [va]’™) v (A y1.
Now for every a > 1, by (iii):
v(Aa’l) _V(Aa—l,l) = v(Aa,l—l) ~ v(Aa—l,l—l) > ... s v(Aa,O) _ V(Aa—l,O)-
1 1 = 1 1 - - 1 il
So the above summation is:
k a,0, _ . a-1,0, _ _ k,0 0,0, _
> )Ja=1[v(A1 ) v(a] ) = v(A1 ) = v’ = via, ] a) - va).

(iii) ¢ (iv) is by taking & = w(1), ..., n(k-1), i = n(k), § =
m(k+1).

In section VI.1.2 we chose, for the calculation of the Choquet
integral of Uex (wherxe x is an act) a permutation 7 such that a low
value ﬂ_l(j) indicated that state j was "favourable", i.e. had a
relatively highly-preferred consequence xj. With this in mind, one
may formulate (iv) in the above lemma as: the weight P.(j) of state j
(3 = m(k), in (iv)) does not decrease if j becomes less favourable.

This indicates a kind of pessimism.

DEFINITION VI.11.3. » is pessimistic [respectively optimistic] if for
all i # j, a > B >y > 8 [respectively a > v > B > 8], and comonotonic
{(X_i’jB,G). (y_;,4Y/8)} and {(X_i'jB,u). (& _of
o > Xy >§ fornoi#k # j, and a > Yy > 6 for no i # k # j, we have:

jy,a)} for which
r
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(x_i'jB.G) > (Y_i'jY:G) = (VI.11.1)

(x_i’jS.u) >y g, 4V

For an elucidation of the pessimism definition, note that in both

preferences, the i-th state assigns a better consequence to the left

act than to the right act, so may be interpreted as a positive argument
for preferring the left act. Further the j-th state may be interpreted

as a neutral argument. For the lower acts, state i is less favourable

than for the upper ones, it no longer being more favourable than state

j. So a pessimistic person will give at least as much weight to state

i when he is dealing with the lower acts, as when he deals with the

upper ones.

With this we obtain:

THEOREM VI.11.4. Let every m have at least three m-essential states.
Let the assumptions,and statements (i) and (i), of Theorem VI.5.1
hold. Then v is stronly superadditive if and only if » is pessimistic;
v is strongly subadditive if and only if > ig optimistic, and v 18
additive if and only if > is both optimistic and pessimistic.

PROOF. First suppose v is strongly superadd?tive. Let (x_i’jB,G) >
Y,8), where all conditions in the definition of pessimism, apart

vy . -
~1,]
from the implication there, are assumed to be satisfied. To derive is

(x_i'jB,a) > (y—i,jY’“)'

Let T be such that (x_; jB,G), y_;
!
mk) = i, T(k+1) = j. Let m' = m on N\ {k,k+1}, 7' (k) =], 7' (k+l)=i. Then

jY,G) € C", and for some k,
I

(x_; jB,a), (v_; jy,a) € c™". The first preference above implies:
r 14

Zm#i'jP“(m)U(xm)+P“Si)U(B)+P“(j)U(6) > (VI.11.2)

Em¢i'jPﬂ(m)U(ym)+Pw(i)U(Y)+P“(j)U(5).

This, P“,(m) = P“(m) for all m # i,3, and (Lemma VI.11.2.(iv))

P“.(i) E.Pn(i)' together implies:

Em#i,jPﬂ. (m)U(xm).+P1r. (i)U(B)+Pﬂ.(j)U(G) >

Em#i,jP".(m)U(ym)+P“.(i)U(Y)+PH.(j)U(u);

i.e. (x ., .B,0) > (y .Y,%) . Indeed » is pessimistic.
-i,3 -i,]

(vi.11.3)

Next suppose » is pessimistic. We derive (iv) in Lemma VI.11.2.
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N . 5
et k, m, 7' be as given there, i = m(k), j = m(k+l). Because of the
essentiality assumption in the Theorem, there exists m # i j with
P i i ’

Tr(m) > 0, and U(C) is an interval consisting of more than one point
S i .

o we can find x, y, @, B, v, 8 such that (VI.11.2) holds with
equality, and such that:
U(x > ..

) 2 2 Uy geqy) 2 0(0) > U(B) > u(y) > U(8) >

. Z

S ke2)) 2 oees 200G )
and such that the same holds with y instead of x. Hence (x . _B,3)
(v_, .8 €c" w  oF

-i,4Y" 7 (x_i'je,a), (y_i'jy,a) € C . By pessimism of > we
may conclude that (VI.11.3) holds. This, (VI.11.2) with equality, and
U >u i i i

; (v), imply Pﬂ,(l) 2 P (i). By Lemma VI.11.2, (iv) = (i) there,
v is strongly superadditive.

Analogously equivalence of strong subadditivity of v, and optimism

of >, is derived. The last statement of the theorem holds because
additivity of v is equivalent to the combination of strong sub- and

superadditivity of wv.

Note that the last statement in the above theorem gives a further
way to characterize subjective expected utility maximization with
(additive) probability. Finally we give an example to show that the

condition of the three m-essential states in the above theorem cannot

be omitted.

EXAMPLE VI.11.5. Let N = {1,2}, C = R, 0 < v({1}) = v({2}) < 1, U is
identity. Let > be represented by x b Sf(Uox)dv. Then > is bo;£ opti-
mistic and pessimistic; v is strongly superadditive and not strongly
subadditive for v({1}) < %, v is strongly subadditive and 70t strongly
superadditive for v({1}) > 3.




CHAPTER VII

CONCAVITY ON MIXTURE SPACES

-assumption in consumer and production theory, see section 1 in Debreu

VII.1l. INTRODUCTION

In this chapter we shall assume that X, the set of alternatives,
is a cartesian product of "mixture spaces", i.e. spaces endowed with
some sort of convex combination operation. Two main examples of mixture
spaces are, firstly, convex subsets of Euclidean spaces, and secondly,
sets of probability distributions, "lotteries” over a given set of
"certain outcomes". Mixture spaces have been introduced in von Neumann
and Morgenstern (1944), mainly as generalizations of lotteries, and
have almost exclusively been studied with the purpose to obtain results,
useful for lotteries. Fishburn (1982) contains many results. See also
Luce and Suppes (1965). The applicability of mixture spaces to fields
such as quantum mechanics, and colour perception in psychology, is
indicated in Gudder (1977) and Gudder and Schroeck (1980).

We shall study mixture spaces mainly as generalization of convex
subsets of Euclidean spaces. We shall also study concave and convex
(representing) functions on them. To the best of our knowledge con-
cavity and/or convexity of functions on mixture spaces have not yet
been studied in literature, whereas mixture spaces do have the natural
structure for the study of these notions.

The first five sections of this chapter closely follow Wakker
(1986) . The first four sections study (quasti)eoncave additively de-

composable representing functions. (Quasi)concavity is a very usual
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and Koopmans (1982). The recent study Crouzeix and Lindberg (1985)
nentions usefulness of quasiconcave additively decomposable functions
in mathematical programming.

Section 5 applies results to decision making under uncertainty,
where concavity is associated with risk aversion. Arrow (1953) has
already noted the importance of the assumption of risk aversion in the
analysis of equilibrium with uncertainty. Shubik (1975) remarked that
also without uncertainty the assumption of concavity of the utility
function (to be used in expected utility) is important. Without it, in
a Walras allocation the risk-loving agents would "create markets for
lotteries". (See Debreu, 1976, footnote 1.) See further Draze (1971).

The final section follows Wakker (1984b). It considers decision
making under uncertainty with monetary consequences, and characterizes
the most usual special case of expected utility maximization with risk
aversion: that with nonincreasing risk aversion. We shall see that
this further behavioural assumption simplifies the derivation of
expected utility maximization, and makes it possible to dispense with
the cardinal coordinate independence condition. Arrow (1971, Essay 3,
page 96) states that nonincreasing (in fact, decreasing) risk aversion
seems supported by everyday observation. Comments are given in Stiglitz
(1969a, 1969b). See also section 3 in Bernoulli (1738) . An empirical
study, finding nonincreasing risk aversion; is Binswanger (1981). Many
more references are given in Machina (1983). The case of state-dependent

utility functions is studied in Karni (1985).

VII.2. PRODUCT TOPOLOGICAL MIXTURE SPACES

The notations for mixture spaces that we shall adopt below will as
much as possible be as in Euclidean spaces, to be of most convenience for

readers interested only in this special case.

DEFINITION VII.2.1. Let C be a nonempty set, and 6 a map from C x [0,1]
%x C to C. Let ha + (1-A)B denote 6(a,X,B). 6 is a miwture operation
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if for all o,B € C, A,n € [0,1]:
Ao+ (1-0)B = (1-))B + ro (commtativity). (VII.2.1)
W(Aa+(1-A)B)+(1-u)B = (uA)a +(1-u))B (associativity). (VII.2.2)
la + 0B = o (identity). (VII.2.3)

Here (C,8), or simply C, is called a mixture space.

We write a/u for (1/u)a, and Aa/p for (A/u)o. We say Y 8 between
o and B if A € [0,1] exists such that y = Ao + (1-A)B.
The following result is proved in Fishburn (1970, section 8.4).

LEMMA VII.2.2. If C is a mixture space, then for all o,B € C,
Au,v € [0,1]:

o + (1-p)a = a. (VII.2.4)

Ao + (1-p)B) + (1-)) {va + (1-v)B) = (VII.2.5)
(Au + (1-M)v)a + (A(1-u) + (1-1) (1-v))B.

Some examples of mixture spaces:

EXAMPLE VII.2.3. C is a convex subset of a linear space over IR. 6 is

the usual convex combination operation.

EXAMPLE VII.2.4. C is a set of probability distributions ("lotteries")

over a measuxe space. For every P P2 € C, and 0 < A < 1, the proba-

1'
bility distribution kPl + (1—A)P2, assigning API(A) + (1-0)P,(R) to

every A, is in C too.

One can consider Example VII.2.4 as a special case of Example
VII.2.3. As Gudder (1977) indicated, not all mixture spaces are iso-

morphic to convex subsets of linear spaces:

EXAMPLE VII.2.5. Let C

{(xy,x,) € R x, =0, -1 <x <0} U
5 2 =x =
{(xl,xz) €ER :0 Xy <1, -xy <%, f_xl}. Let 6 be as follows:
(i) If X,¥; > 0, then 9((x1,x2).A,(Y1:Y2))

()\x1 + (1—A)y1, sz + (1-A)y2).
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(ii) If x,¥4 < 0, then 6((x1,x2), X,(yl,yz)) is the unique point in

{ux : 0 < u <1} v {py s C < < 1} with first coordinate

Xxl + (1—A)y1.

In the above example every "line segment” {z : z is between x,y}

can be considered isomorphic to {z1 € R: zy is between X, and yl}.

still C is not isomorphic to a convex subset of a linear space as

follows from 8((-1,0),1/2,(1,1)) = (0,0) = 9((—1,0),%,(1,—1)) whereas

of course (1,1) # (1,-1).

EXAMPLE VII.2.6. Let C = {g,u,b}, were g stands for "good", u for

"sndetermined", and b for "bad". Let Ax + (1-N)y = =
gif x =y =9, if A =1 and x = g, OF if A = 0 and y = 9;

bifx =y =Db, if A = { and x = b, or if A = 0 and y = b:

u in all remaining cases.

The following adaptations of well-known notions for linear spaces

to mixture spaces are straightforward. Let C be a mixture space. A

subset E of C is convex if A0 + (1-2)B € E for all o, €E, 0 <X <1,

A function V : E » IR is concave if VO + (1-0)B) > Av(e) + (1-2)V(B)

for all o,B € E, O <A <1l v is convex if -V is concave, and V is

affine if it is both convex and concave. We prefer the term affine to

Finally, V is quasticoneave if
A <1, The latter

the often used term linear.
v(do + (1-))8) > min{v(a), v(g)} for all a,B € C, 0 <

holds if and only if, for every H € ’R, {o € C : V(o) 3_u} is convex.

Every concave function is guasiconcave.

DEFINITION VII.2.7. A triple (¢, 7, 8), is a topologtical mixture space

if C is a nonempty set, T a topology on C, and 6 a mixture operation

which is continuous (with respect to the product topology on

¢ x [0,1] xO).

Often we simply write C instead of (C, T, 8). Again, any convex

subset of a Euclidean space is a topological mixture space. The

following lemma will be used for Corollary VvII.2.9, and in the proof

of Lemma VII.2.10.

LEMMA .
VII.2.8. Let C be a topological mixture space. Let o,8 € C. Then
¢ : [0,1] > C, defined by ¢ : A » ha + (1-\)B, s continuous.

PROOF. Let E © C be open. By continuity of 6,

{y.,A

Y.2,8) € Cx [0,1] x C : Ay + (1-1)8 € E} is open By Lemma 0.1

{1 € : i . ‘ -
[0,1] : Xa + (1-)A)B € E} is open. Continuity of ¢ follows

A direct consequence of Lemma VII.2.8:

COROLLARY VII.2.9. A to Ci LCTUPr C C S arcconn t
pOZOg’L al m ure Spa e 7
ec ed’ hence

The fOllONlIlg lemma is the St]:alghtforward generallzatlon of re
lated results fo e spaces omp mma VIII.2 and will be
r linear (C mpare Le ) 12

used in the proof of Theorem VII.3.S.

LEMMA VII.2.1G. Let V be a continuous function from a mixture space C
to IR. Let there exist n > 0 such that for all o,R € C with

0 < V(a) - V(B) < n, there exists 0 < A < 1 for which V(da + (1-1)B) >
AV(a) + (1-M)V(B). Then vV is concave. -

PROOF i
OF. Let v,8 € C be arbitrary. We must show that V(Ay + (1-1)8) >
AV({y) + (1-2)V(8) for all O < A < 1. By Lemma VII.2.8, ¢ : A H—Ay+:l A) S
l i~ el O, H -
i . _ .
s continuous. So W = Ve is also continuous. The proof is complete if
we show that W is concave.
L .
et u € ]0,1[ be arbitrary. W being continuous, there is an open
int ithi
nterval S around W within [0,1], such that |Ww(o) - W(t)| < n for all
o,T in S. So for all o,T € S, with, say, W(o) > W(T) -
C < V(oy + (1-0)8) - V(1 g ’
< Yy + (1-1)6 i
-~ )8) £ n. Hence 0 < X < 1 exists such
V(A -
(Mov+(1-0) 81+ (1-1) [Ty+(1-1) 81) > AV (0Y+(1-0) ) + (1-A) V(TY+(1-T) §)
T Y 'Y ]
o the left side of this inequality we apply (VII.2.5), to obtain:
V(LA - .
([ho+ (1-20) T]y+[A (1-0) +(1-2) (1-T) 18) > AV(0Y+(1-0)8) +(1-A)V(TYy+(1-T) )
Next we substitute W: .
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|
|

W(Ao+(1=-2)T) > AW (o) +(1-X)W(T) .
8 : (x,A,y) P (Ax -
( y) (Ax +(1 A)yl,...,xxn+(1_x)yn) =: Ax+(1l-\)y, ‘

By Lemma VIII.Z, W is concave.
w&ere x ; (xl,...,xn), Y= (yl,...,yn). We then call (x° ,C,,6), or
| simply xi=1ci’ the product mixture space. =% |
|I As in linear spaces, a binary relation > on a mixture space C is 1E the Ci's are topological mixture spaces, then X (., endowed !
convex if {x € C : x » y} is convex for every y € C. A weak order » with the product topology, is the product topological m;;iu;e space. l
| \
\
|
|
|

is convex if and only if [x > y] implies [Ax+(1-A}y & y] for all
THEOREM 824 o g .
A. This holds if and only if Ax+(1-My » x A ¥ (A: see Notation VII.2.13. A product mixture space is a mixture space. A product

topologi ; : . ’
then > is convex if and only if pological mixzture space is a topological mixture space.

le:
vI.3.7). If a function V represents 2,

VvV is quasiconcave. N
PROOF. Let
(Ci’ei)i=1’

forwar a 1s a ml operation. 1 | C. I3
W d that © xture P n Now et ] be a tOPO ogy on

6 be as in Definition VII.2.12. It is straight-

et » be a continuous weak order on a topological

LEMMA VII.2.11. L
i=1,...,n, let every Oi be continuous. We derive continuity of 6

for all x »y, 0 <A <1 exist such that

mixture space C. Let 3
14 s Let E, € T,. Then @ 1(E x C_ % ( equa after
1 1 2 am X ) equals, after a re- |

Ax+(1-\)y > y. Then > is convex. 1
ErpE g OF [FFE ISEoRCINEEes (5t (xg-lci) x [0,1] x x; 1C ), the set
b i=1"i

| o e
(6 "(E))) x (X n . i .

1)) ( C,) x (xi=2Ci), which is open. This can be shown, not |

|

PROOF. Let s,t € C be arbitrary. Let s > t. We shall demonstrate that i=2"1i
Ol ; .
nly for El’ but, mutatis mutandis, for any Ei € Ti' Continuity of 6

s := {u € [0,1] : us+(1-u)t > t} equals [o,1].
follows.

' By continuity of >, {z €C : z >t} is closed. By continuity of |
|

B [

|

|

|
8, {(v,u,w €C X [0,1] x C : pv+(1-W)w > t} is closed. By Lemma 0.1,
|

S is closed.

Let o,T € §, 0 # T. Say os+(1-0)t » Ts+(1-T)t > t. There exists |
|

0 < A < 1 such that:
VIii.3. THE
A[os+(1-0) £+ (1-1) [Ts+(1-T)£] > Ts+(1-T)t. THE CONCAVITY ASSUMPTION

By (VII.2.5) and transitivity this gives:

[Ag+(1—A)T]S+[A(1-o)+(1—k)(1-T)]T » t.
In this section we shall assume without further mention:

So S is a closed subset of [0,1], containing 0 and 1, and con-

taining, for every ¢ # T in S, an element between o and T, and different

from ¢ and 1. § = [0,1] follows.

ASSUMPTION VII.3. 2 >
I.3.1. Xi=1Ci is a product topological mixture space.

Furth i i i
er, as throughout this monograph, » is a binary ("preference")

relatio e i i
ion on xi=1ci' The following property is a generalization of

The terminology in the following definition will be justified by
. Theorem VII.2.13. "Axiom Q" in Yaari (1978, p. 109) which was formulated for the case
i where Ci = IR+ for all i, and for this case by some elementary analysis
DEFINTTION VII.2.12. For a sequence of mixture spaces (Ci'ei)2=1' e can be seen to be equivalent to our present definition. (See also
product mizture operation O : x2=1Ci x [0,1] x xril=1Ci + x2=1Ci, is Corollary, VII=3ets (11) belows)

defined by:




|

DEFINITION VII.3.2. » satisfies the concavity assumption if for all
Xy Yo i, Vi, Wi, and A:

X_;vy b y_i(xvi+(1—A)wi) = x_i(Kwi+(1—A)vi) > y_lwl.

If in the above definition the second preference » were replaced

by <, then it would seem that the "extreme" coordinates vy and LA were

coming off relatively better than the "intermediate" coordinates

AV, +(1 A)w and Aw, +(1 X)v . This seems not in accordance with con-

cavity, a concave functlon assigning relatively high values to inter-

mediate arguments, as in the sequel can be inferred from (VII.3.1). The

following Lemmas adapt to the present context some results of Yaari

(1978; the Remark at section 4, and the Lemma 2 of section 5 and, by

that, the implication of "axiom D" through "axiom Q").
LEMMA VII.3.3. The concavity assumption implies coordinate independence.

PROOF. Let A = 1 in the definition of the concavity assumption.

LEMMA VII.3.4. Let > be a continuous weak order, that satisfies the

concavity assumption. Then » is convex.

PROOF. By Lemma VII.2.11, it is sufficient to prove that v > w implies

v/2 + w/2 » w. For this it is sufficient to prove that even v/2 + w/2

» v, under the assumption:
v/2 + w/2 < w<V.
We define, inductively, for 0 <3 f.n.

vO = v/2 + w/2, vl = vzglv_; w0 =w, wl = (v /2 + w, /2)

This gives vn =v, wn = v/2 + w/2. For j 0 we have,by assumption,
wO > vO. Now suppose ]_1 >~ vj_i, for some 1 < j < n. Then:
i-1 3 j-1
(w =)y wlow, >v.(v./2 +w/2) (=v 7).
=33 =] 3/ J/ k
By the concavity assumption with = 1/2, this implies
(v /2 + w /2) > v Jv], i.e. w > vj.

j
peated application, W o> v? follows, i.e. v/2 + w/2 > v.

By re

151

If three or more coordinates are essential, the above Lemma can
al i
so be obtained as a corollary of Theorem VII.3.5 below. We are now

ready for the main result of this section:

THEOREM VII.3.5. Let the binary relation > on the product topological

mixture » 2
space xi=1Ci have at least two essential coordinates. Then the

following two statements arve equivalent:

(1) There exist continuous concave additive value functions (v )"
173

(ii) > is a continuous weak order that satisfies the concavity

assumption, and furthermore the Thomsen condition of exactly two

coordinates are essential.

Furthermore n L) € 3
s (Vj)j:1 of (i) is simulaneously cardinal.
PROOF. i ii
F'. Suppose (i). Then all of (ii), except the concavity assumption
follows straightforwardly, see Theorems III.3.6 and III.3.7.
F ' . )
or the concavity assumption, first note that twofold application

of . - .
concavity of Vi , and addition of inequalities, gives:
V., (Av_ +(1-A + -
5 5 )wi) Vi(Awi+(1 A)vi) Z_Vi(vi)+vi(wi). (VII.3.1)

If we now had:

X v, » (A -

Vi y_l( vi+(1 A)wi) and y_iv, > x_i(Awi+(1—A)vi),
then we could express these two preferences in inegualities of sums
of additive value functions, add up these two inequalities, cancel all
terms V, ! j i i

. j(xj) and Vj(yj) (j # 1), and end up with formula (VII.3.1)
with "<" instead of ">" : contradiction!

Next we assume (ii) above. To derive is (i), and the uniqueness
result. The existence of continuous additive value functions (V )n
3 . . . =1,
simultaneously cardinal, directly follows from Lemma VII.3.3 andJ

S350
Theorems III.3.6 and III.3.7. So only concavity of the V.'s remains
to be proved. ’

Rewriting the definition of the concavity assumption in terms of

additive value functions, with A = 1/2, gives:
(1)
V. (v,)=V, (v,
Vv v /2w /2) > Zj#i[vj(yj)—vj(xj)] (VII.3.2

(2}
T =
= j#i[vj(yj) Vj(xj)] < Vi(vi/2 + wi/2)—Vi(wi).

-1 for >,
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i be found to
This means that, for all Vi' wi, for which x,y can

1 N
make (>) hold with equality, we have:
y (VII.3.3)
2 <V, (v./2+w/2).
[Vi(vi) + Vi(wi)]/ = Mgl 5

. 9 g . b
At least one coordinate J # i is essential, so Vj(Cj) (, by

3 inui interval,) must have length
connectedness of Cj and continuity of Vj an "

greater than N for some n > 0. For any Vv, and W, with
—V.(X,) .
3¢

i ith v, (y.)
0 < V.(v.)-V,(w,) <n, we can find x., ¥, Wi 1Yy i
— i it itd J' 43 D i

i = 11 k # i, k¥ # j, gives
Vi(vi)—vi(wi). Taking X, = ¥y for a ALy :

equality.

lows from Lemma
Now concavity of Vi' analogously of any Vj , follo

VII.2.10.

The statement (i) above is equivalent to the statement that there

i iti epre-
exists a cardinal concave continuous additively decomposable rep

i ; i s from the following
senting function V : Xi=1Ci + R, as mainly follow

result.

C.+ R forall 1 <3j <n.Let V:x?"

PROPOSITION VII.3.6. Let Vj
v . 18 concave.
J

s v.(x.). Then V is concave tif and only if every
j=1"3"73

ny arbitrary z
PROOF. Let V be concave. Vl(kx1+(1-k)y1) equals, for any B

V(A(z_lxl) + (1-k)(z_1y1)) - Zj#lvj(zj)'
By concavity of V this is greater/equal
T -I,,,V.(z.).
v Vg, #1733 ity of V,, ana-
The latter equals Avl(xl) + (1—A)V1(y1). Concavity x
logously of any Vj’ follows.
Next assume: Every Vj is concave. Then every V%, assigning Vj(xj)

i i functions V! so V it-
to every x, is concave. V is a sum of concave -

self is concave.

In Yaari (1977) and Debreu and Koopmans (1982, Theorem 2, and end

of section 4) it is demonstrated that a guasiconcave additively de-

composable function has all but one of its terms concave. By Lemma
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VII.3.4, (ii) in Theorem VII.3.5 implies convexity of the preference
relation. This in turn implies quasiconcavity of the representing
additively decomposable function V, that exists according to section
II1.3. So now, by the theorem of Debreu and Koopmans, all but one of
the additive value functions in (ii) above are concave. At this stage,
we do not see an easy way to proceed to derive concavity of the re-
maining additive value function. Hence we have chosen a proof, which
does not employ the results of Debreu and Koopmans.

Also, from the above observations, one may divine that in (ii)
above we might replace the concavity assumption by three conditions,
as follows. First one uses coordinate independence (and the Thomsen
condition) to guarantee the existence of additive value functions.
Next one uses convexity of » to guarantee quasiconcavity of the sum of
the additive value functions, which by the result of Koopmans and
Debreu implies concavity of all but one of the additive value
functions. Thirdly, one adds one weak condition for » to guarantee
concavity of the one remaining additive value function. We have not
been able to find a weak condition for » as described after "thirdly"
above. Hence we have taken our alternative approach. Figure VII.4.1

(, mainly f3 there,) will show that a further (weak) condition as

after "thirdly" above, cannot be dispensed with. The earliest reference

for this observation, given in Debreu and Koopmans (1982), is Slutsky
(1915).

The following Corollary applies Theorem VII.3.5 to the case where
Ci = R,, for all i, and > is weakly cA monotonic (x; > y; for all i,
then x » y; see Definition II.3.7.b). The property after "furthermore"
in (ii) below is simply a reformulation of the concavity assumption,

so of Yaari's axiom Q, which may appeal to the idea of nonincreasing

marginal utility.

COROLLARY VII.3.7. Let n > 3, and let » be a binary relation on H€+ )

The following two statements are equivalent:

(1) There exist concave (so continuous) nondecreasing nonconstant

additive value functions (Vj)?zl.
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(ii) 3 ©s a continuous weak order, weakly cA monotonic, every coordi- =
| . . There exists an arr ; T
| nate is essential, and furthermore: ay of continuous concave additive (VII.4.1)
‘- value functions for ».
. | x_,o > y_iB = x_i(a—s) > y«i(B_E) whenever (o-B)e > 0.
: o
T?‘ m=1: counterexample (1), V = f5 By Th.VII.3.5
::: m=2: counterexample (2), V = f2 for m>2
Of course the results in this section can easily be adapted to i . gl
: . '1 m>3: correct by Theorem VII.3.5 analogously for m=1
deal with convex additive value functions; e.g. by replacing every-
where » by <, and Vj by ~Vj. Also results on concavity and results > satisfies the concavity assumption :
t I on convexity can be combined, to obtain results for affine additive (VII.4.2)
value functions. This, under the addition of continuity conditions, 1}‘ m=1: counterexample (3), V = fl -
gives characterizations, alternative to those in Fishburn (1965) . —9. - 3
U e ' e e fehanrEm .0} ' H fdm=2: counterexample (4), V = f3 Lemmas $ *
olla a eeney and Raiffa eore .4y . "
’ : : Ul (alBEE gountexexample (5)z W= [ VII.3.3 & VII.3.4
> 18 convex and CI. (VII.4.3)
@ VII.4. SOME COUNTEREXAMPLES 1Ar m=1: correct
P 1y
i 1) *dm=2:
!i, m=2: counterexample (6), V = f4 directd?
:l m>3: counterexample (7), V = f2
In this section we give all logical velations between the state-
ments (VII.4.1) through (VII.4.4) in Figure VIiI.4.1. Throughout we > 18 convex. (I
VII.4.4)
assume:
ASSUMPTION VII.4.l1. » is a continuous weak order on a product topological
n 5
mixture space X, ,C.. Further m < n is the number of essential coor- - . .
l i=1Y1 ay FIGUR? VII.4.1. > is a continuous weak order on R. , with m essential
diratesk cooFdlnates. In the counterexamples the function V-}epresents ». The
solid arrows downwards indicate implications that hold, the broken
arrows upwards indicate implications that do not al
i 3 Wi h 2
In the sequel of this section we shall give elucidations to the 1 <k <5, aluays! heldn” HoraiL
k
seven counterexamples of Figure VIL.4.1. £° is a function from R, to IR:
1 k2 =
fzfx} =1 if x1 sl 1, fi(x] = xl if xl > 1;
Counterexample (1). For m = 1, statement (VII.4.2) does not imply £9(x) = 23—1“3 + min({xj}? 1)7
= % s
(VII.4.1), even if a representing function V exists. This follows from f3(x) = (n-1) e ! + Z?_zlog X.;
= ]
Kannai (1977, p.17), or from f5 in the Figure. This function f5 is fd(x) = —(zg_l(xj_z))z;
| g . : X F s T
| 1 = - 2
| straightforwardly seen.to repre;ent a binary relation », satisfying £7 (%) Xy 1 for 0 < X, €1, fs(x} i {xi_l} for 1 < x, < 2,
the concavity assumption. Our £ is a minor variation on the example f5(x) =3 - x for x. > 2
; 1 g 22

i {1 | of Artstein in Kannai (1981 , p.562), where it is shown not to be

|
|
I
o 5
| | "concavifiable", i.e. », represented by £, has no concave repre-

| sentation.
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| counterexample (2). For m = 2, (VII.4.2) does imply (viIr.4.1) if
(l and only if > satisfies the Thomsen condition. That » represented by VII.
l_ A Y ’ 5. SUBJECTIVE EXPECTED UTILITY WITH RISK AVERSION
_:', £°, does not satisfy this for m = 2, hence has no additive value
f |
I ﬂ functions, can be seen from:
4 gere N cee 2 S e S . - ; .
:1 (1,4,9, ,9) 2,2,9, ,9), (2,8,9, ,9) (4,4,9, 9y In this section we assume C, = C for all i. So we have:
I (1,8,9,...,9) > (4,2,9,...,9). Still this > by some elementary 1 :
arguments can be seen to satisfy the concavity assumption. ASSUMPTION n .
| 1 VII.5.1. C is a product topological mixture space.
l | Counterexample (3). That >, represented by £, does not satisfy
i the concavity assumption, follows from 0/2,1,...,1) > (1,...,1) < In this section we again adopt the terminology of decisio k
. n making
i (3/2,1,...,1). under uncertainty. We combine cardinal coordinate independence and
| the concavity assumpti i
| Counterexamples (4) and (5). That f3 is quasiconcave, thus repre- - o ption to obtain a concise characterization of sub-
jective expected utili imi : : Mo
sents a convex >, can be derived from 6.28 of Arrow and Enthoven (1961). ] . ity maximization with "risk aversion", which here
| is simply defined to l Y
il Here £3 is a sum of additive value functions of which the first is not mean concavity of the utility function.

DEFINITI isfi
ON VII.5.2. » satisfies concave cardinal coordinate indepen—

‘”' concave. For m > 2 any additive value functions are positive affine
. transformations of the above ones, SO have the first one not concave.

dence if
for all acts x,y,v,w,all consequences a,B,Y,5, every A € [0,1]
. r
every state j, and every essential state i: '

I So », represented by f3 (,satisfying the Thomsen condition for m = 2,)
| must violate the concavity assumption.

] The observation that (VII.4.3) does not imply (VII.4.2) for m > 2, x o<y, B and v__ o >w B
X_; ¥ >y (Ay+(1-2)8) ) -]

|
1
il |
- il is closely related to the observation that guasiconcavity and additive

decomposability of V do not imply (VII.4.1), i.e. concavity of V. imply v _ (AS+(1-))y) > w .6
-3 ol

This latter observation has some times been made in literature. The

A earliest reference to this, given in Debreu and Koopmans (1982), is LEMMA VII.5.3. Let > be a continuous weak order. Let > satisfy concave

|
| cardi 2 ;
:! Slutsky (1915). dinal coordinate independence. Then » satisfies cardinal coordinate
| independence, and the c ; umptL ’
| Counterexample (6). That for m > 2, » as represented by f4, is not . REDARLLY @SSWRpLECHs

2) and

|
%il I coordinate independent, follows from (2,...,2) > (2:3:27200s PROOF. That CCI hold
g olds can be seen by setting A = 0 in initi
= Definition VII.

1 (1,2,0.4,2) < (1,3,2,...42) - °:2- 8
.2. So only the concavity assumption remains to be derived. Let:

| "
f _I | Counterexample (7). That for m > 3, the > as represented by £,
b ¥ >y By r e (VII.5.1)

_ !; is not coordinate independent, follows from (1,6,1,...,1) >
|l (3,3,1,-0s1), (1,6,3,...43) < (3,3,...,3). To prove is:

x_; (A8 + (1-)y) > y_,86. (VII.5.2)

If i is inessential this is immediate. So let i be essential.

Py

.}.:; . Suppose there are n € C wi i
e s T with x_in-< \’ic; if no such n,f should exist
-5.2) would be direct. Our plan is to find o, B in C such that:

-i -i (VII.5.3)




;‘
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1f we succeed in this, then we can apply concave cardinal coor-
dinate independence, with i = j, x = v, y = w, to obtain (VII.5.2).
So finally, by means of n, ¢ as above, we derive (VII.5.3) for some
o, B.

Suppose firstly that y_i(AY + (1-2)¢8) » X_jn. Then X_;Y >
y_i(XY + (1-2)38) » x_jn. By restricted solvability (Lemma III.2.13),
with B := Ay + (1-1)8, we obtain an a such that (VII.5.3) holds.

Secondly, suppose y_i(AY + (1-2)6) < X_iM- Then y_i(AY + (1-2)6)
< x_in < y_i;. By restricted solvability, with o :=n, we obtain B

such that (VII.5.3) holds.

With the above lemma we obtain:

THEOREM VII.5.4. Let at least two states be essential with respect to
the binary relation > on the product topological mizture space €™,

The following three statements are equivalent:

(1)  There exists a SEU model (e, >, (@ )g=1, ul for >, with U con-

3
cave and continuous.

(ii) > 18 a continuous CCI weak order; > satisfies the concavity

assumption, or » is convex.

(iii) > 18 a continuous weak order, satisfying concave cardinal

coordinate independence.

PROOF. We derxive (i) = (iii) = (ii) = (i). First assume (i) . Obviously
> is a continuous weak order. For concave cardinal coordinate
independence, let i be essential. Now x_ia < y_iB and x_iY >
y_i(XY + (1-2)¢6) imply
U(a) - U(B) < U(Y) - UMy + (1-1)§), compare (IV.2.4) in the proof of
Lemma IV.2.5. By concavity of U, the latter righthand side is smaller/
equal U(AS + (1-2)y) - U(8). Now U(a) - U(B) < UMS + (1-2)y) - u(d)
and v_ja > w_jB, imply v_j(kd + (1-N)y) » w_jG. Concave cardinal
coordinate independence is derived, hence (iii).

By Lemma (VII.5.3 the implication (iii) = (ii) follows. So finally

we assume (ii), and derive (i). By Theorem IV.3.3 there exists a SEU
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model for », with U continuous. Of course (p.U)r.l_1 are additive value
functions for ». If now » satisfies the conzavigy assumption, then,
» satisfying the Thomsen condition if exactly two states are essential,
by Theorem VII.3.5 there must exist simultaneously cardinal concave
additive value functions (Vj)§=1 for ». Further every V, then is a
positive affine transformation of P.U, and since at leait one p, is
positive, U must be concave. ’ ’

If > is convex, then it is well-known that U must be concave, see

for example Debreu and Koopmans (1982, near the end of section 1).

A derivation of the SEU model with concave utility, using

differentiability conditions, is given in Stigum (1972).

VII.6. SUBJECTIVE EXPECTED UTILITY WITH NONINCREASING RISK AVERSION

In this section we consider again the context of decision making
under uncertainty. In Theorem IV.3.3, we have characterized (roughly)
the class of all preference relations, representable by subjective
expected utility with continuous utility. Usually one is not interested
in all of this class, but only in a subclass of those preference
relations that furthermore have certain "desirable behavioural proper-
ties". For instance, in the previous section we considered "risk averse"
preference relations. For such further "desirable properties" of the
preference relation then necessary and/or sufficient properties of the
probabilities and/or utilities are searched, usually under the
presupposition that a subjective expected utility model exists.

In this section the further "desirable property" of the preference
relation that we shall consider, is (mainly) nonincreasing risk aversion.
Necessary and sufficignt properties of the utility function for this
are well known, from the work of Pratt (1964) and Arrow (1965, 1971).
Our aim in this section is to show a, surprising, extra implication of

nonincreasing risk aversion for an earlier part of the characterization




work: together with, mainly, the concavity assumption, nonincreasing
risk aversion implies subjective expected utility maximization, and
makes cardinal coordinate independence superfluous. This applies to

the context where consequences are real numbers (say, amounts of

money) :

ASSUMPTION VII.6.1. Let in this section C € IR be a nondegenerate

interval. Let Ci = C for all i.

vII.6.1. PREPARATORY RESULTS

DEFINITION VII.6.2. Let [Cn’ >, (Eﬁ)§=l' U] be a SEU model for ». Then

> is risk averse if x < & for all x and o with o = ijxj.
1f a decision maker T (i.e. his preference relation) is risk

averse, then T will never strictly prefer an act x to its "expected

value" 22=1ijj' The characterization (1) & (ii) below of risk aversion

is well known.

PROPOSITION VII.6.3.Let n > 2. Let ", >, (pj)rj‘=1, 0l be a SEU model
for », with all Py > 0, and U continuous. Then the following three

statements are equivalent:

(i) U is concave.
(ii) » is risk averse.

(iii) > satisfies the concavity assunption.

PROOF. (i) & (iii) is by Theorem VII.5.4, and (i) = (ii) is straight-
forward. Next assume (ii).
Let Yy = py© + (l—pi)B. By risk aversion, ; > (0,B,...,B), SO

U(pla + (1—p1)8) z_plU(a) + (1—pl)U(B). By Lemma VIII.1l, U is concave.
o

One may argue that the Definition VII.6.2 of risk aversion re-

flects more decision maker T's attitude towards the (linear structure

of) money, than his attitude towards risk or uncertainty. Statement

le1

(i) above supports this. Some authors, inspired by Kahneman and
Tversky (1979), have introduced new definitions of "risk aversion"
E

reflecting more T's attitude towards risk and probability, see Quiggi
i 7 1
(1982) and Yaari (1984). .

DEF ’ A
INITION VII.6.4. > has nonincreasing l[respectively nondecreasing,
. r
or constant] (absolute) risk aversion if for all € > 0 [respectivel
pat Y
e < 0; €
< 0; or ¢ € R], and for all x,x+c in C%, o,a + € € C, we have:

X>a=x+€E>a+eE,

3 -

ay a decision maker T has a preference relation with nonincreasing
risk aversion. If then he is willing to take a (possibly) risky act x

. ' 14
instead of a certain amount & of money, then certainly he is willing

to do so if his wealth is increased by an amount E.

DEFINITION VII.6.5. » has constant relative risk aversion if for all
K n
A€ R, x,Ax in €7, a,Aa € C, we have:

X > 4 = Ax > AG.

Now let decision maker T have a preference relation with constant
relative risk aversion. Say he is willing to invest an amount o into
a risky undertaking, instead of keeping amount o for himself; where
the risky undertaking gives him in return x./a per invested unit, if
state of nature j is the true state, Then, i% the amount to be invested
is Aa instead of o, he is still willing to invest it in the risky under-
taking. In other contexts than decision making under uncertainty, the
above property of preference relations is often called "homotheticity".
With » strongly cA monotonic if x > y whenever x, > y. for all j,
and xj > yj for some j, we have the following result,]mainiy due to

Pratt (1964) and BArrow (1965, 1971).

THEOREM VII.6.6. Let n > 2. The following three statements are equivalent

for the nondegenerate interval C, and the binary relation > on c:

. : "
(i)  There exists a SEU model [C, >, (Pj)?=1, ul for », with all

s 0 : . ] : .
Py , and with U continuous, strictly increasing, concave, and
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for all o > B >y > 8 in C:
e b [Ulare) - U(B+e)] / [uly+e) - u(s+e)]

is a nondecreasing function on its domain.

(VII.6.1)

(i1) There exists a SEU model [C%, », (p )iyr U1 for >, with all

i'3=1"
p. > 0, U continuous, strictly increasing. Further > is risk

averse, and has monincreasing risk aversion.

(iii) > ©8 a continuous strongly cA monotonic (CI weak order, it satis-—
fies the concavity assumption, and has nonincreasing risk

aversion.

PROOF. Apart from the statements on nonincreasing risk aversion, and

the statement on the function defined in (VII.6.1), everything is
straightforward from Theorem IV.3.3, and Proposition VII.6.3. The re-
maining statements do not immediately follow from, mainly, (e) in

Theorem 1 of Pratt (1964), because therxe U was assumed twice continuous-
ly differentiable, and because here we only have a fixed and finite
number of probabilities Pl""'Pn' The present results follow from
Wakker, Peters,and Van Riel (1985, Theorem 4.1 and Lemma A.7.4), mainly
by comparing » with »', defined by x >' y if X-€ > y—g. For brevity,

we omit elaboration.

We added the formulation in (iii) to give a "complete" character-
ization of (i), i.e. a formulation of necessary and sufficient conditions,
completely in terms of properties of the preference relation. Hence we
could not use the property of risk aversion in it, as this needs the
probabilities for its definition.

One can replace nonincreasing risk aversion by nondecreasing risk
aversion in (ii) and (iii) above, if one replaces nondecreasingness of
the function defined in (VII.6.1) by nonincreasingness. Analogously
one can of course substitute "constant risk aversion" in (ii) and (iii),
and constantness of the function, defined in (VII.6.1). In the latter
case either U is affine or exponential (a b T + Aap; concavity implies
p < 1), as can be derived from Theorem VII.6.12 in the sequel. Finally,

if C = R, s one can replace "nonincreasing risk aversion” in (ii) and
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(iii) above by "constant relative risk aversion", if ope 1 h
replaces the
statement on the function defined in (VII.6.1) by the stat h
ement that
Uu: o : g X
log ¢, or U : a Ao, as can be derived from Theorem vII.6.11

in the sequel.
VII.6.2. REMOVING CARDINAL COORDINATE INDEPENDENCE

The major mathematical difficulty of this section is dealt with

in the following lemma.

LEMMA VII.6.7. Let (U .) =1 be C’O?lt’bﬂuous 7ZO?Zd€Cl’eas'Lng add'l’/tlbve vaZue
JunctLO”S ,/01 >’ w’bth "11 a”d at Zeast one Othel' of the}”, 710”@0713tant.

Let, for j = 1,...,n, there exist f.
J

C ~ R such that v (a) - v_(B) =
s f.(1)at (Lebes . . : i
']B,a[ 5 gue integral) for all o > B in C. Let » have non-
inereasing, or nondecreasing, visk aversion. Then there exist 7. € R

5 ,

and o, € R such t = j
; b hat Vj Tj+(HV1 for all j > 2.

PROOF. First the case where > has nonincreasing risk aversion. By
Theorem 6 of Chapter VI of Hartman and Mikusiﬁsky (1961), every function
which can be written as an integral, so also every V., is Lebesgue
almost everywhere differentiable on every [o,B] = C;jhence on C. So
there is a subset E of C, with Lebesgue measure zero, such that for
every j, Vj is differentiable on C\E. We may assume that E includes

boundary points of C, and that fj vanishes on E, f, = V! on C\E, for
3 3 d

every j, by the above-mentioned theorem. Note that v! hence £ is
. :
nonnegative. d ,
First we derive an auxiliary result:
f.(a)f, = i,]
; (@) J(S) fj(a)fi(B) for all i,j, and a,B € C. (VII.6.2)
Because of symmetry in i and j, it is sufficient to prove:
If i # j, and o > B, then f
’ i(a)fj(B) i_fj(a)fi(s). (VII.6.3)

The result is direct if o or B € E, then f,(a)f.(B) = 0 =
i 3 D

f,.(a)f, " i i
J( ) l(B) So let «,B-in C\E, i.e. the fk's are derivatives of the

Vk's and o,B are in int(().

First we derive (VII.6.3) for those B for which 6 > 0 exists such
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that B - & € C, and Vj(B-G) V (B). Then VJ is constant on [B gl

and f (R) = V (B) = 0. Also then B J(8 -§) ~ B. We add a-B, apply non-
1ncreaslng rlsk aversion, and get o_ (a=8) > o. Consequently
V,{(a=8) > V, (), i.e. Vj is constant on [0-8,0]. Also fj(a) = 0, and
] 3
f (u)f By =0 f ()£, (B): (VIL.6. 3) holds.
Next we derlve (VII 6.3) for those B for which § > 0 exists such
11 that
that B + 6 € C, and Vi(8+6) = Vi(S). We can have § so sma .
B § B+8 i i i ion
o+ 6 €EC. Now B + 0= (B+6)_i8. By nonincreasing risk avers0 £ o
a+8< (&+§)_iu. Consequently V, (a+8) = v, (), and £.(a) =0 = £;(B),
and again (VII.6.3) follows.
Remains the case where V (y) < V (B) for all Y < B, and v, (y) >
A (B) for all y > B. For thlS case we flrst take (U )k 1 (T )k—

IR such that
++

k k

k
= .6.4
0, v 0, v B+) -V (B) =V (B) - V(B0 (VII.6.4)

for all k.

k k \
By continuity of V ’ Vj, indeed such o, T exist. Now, for all k,

(B (B+T ),(B o )) R E follows. By nonlncreaSLng risk aversion
(o, (a+T ), (a=0 )) > a hence V (a+r ) - V (o) > V (o) - V (-0 ),
-i,

for all k. We obtain: y .

£ (0, (B) = Lin[v, (@s7) = v, () 11V, (B) = V,(8=0) /70" >
L3t X k

1im[v, (@) - vy (a=0 )][v (8+7%) - Vi (Byl/o

ko .
So (VII.6.3) always holds, hence (VII.6.2) holds. Now we use this,

—'fj(u)fi(ﬂ).

W, = V i . We define

ith .| 1. Since 1 is not Constant, f1 ( ) > Q0 for some . 1

g := £ ( ) / £ ( ) for all i. By (VII.G.Z),With 8 = ' = 1, we have
. . 1

= dtr =
fi(a) = cifl(a) for all a € C. So Vi(a) - Vi(B) f(B a)f (t)dt

= -V follows. Of course now
Y o, £ (m)dr o, lv, (@) 1(B)]

(B,a)
T, iF Vi(n) e Oivl(n).
For the case where » has nondecreasing, instead of nonincreasing,
risk aversion, the proof is like above, with minor changes, mainly
reversals of inequalities and preferences. Let then a < B in (VII.6.3),

next let 8 always be negative, etc.

With this we obtain the main mathematical result of this section:

THEOREM VII.6.8. Let » have continuous nondecreasing additive value

functions (Vj)?=1, such that, for j =1
v.(a) ~ V. (B)
J J

re--,n, there exist f with

f]B, [f (r)at, for all o > B. Lot at least two states

be essential, and let » either have noninereasing, op nondecreasing,

absolute risk aversion. Then there exists a SEU moder (€™, » (p.)? 120
r j =
for »>.

PROOF. Say state 1 is essential, so V
VII.6.7, let U := Vv

1 is not constant,. Apply Lemma

n
17 ¢ =1, and pj := Oj/zi=1oi for al1 5,

In all characterization theorems of this monograph after Chapter
II, it has been our aim to use in the characterizing statements (mostly
numbered (ii)) only conditions directly in terms of the preference
relation. The above theorem as such is not well suited to be considered
a characterization theorem, because the assumption on the existence of
the fj's has to the author's knowledge no equivalent formulation in

terms of simple appealing properties of the preference relation. It

does however serve as a starting point to derive characterization

theorems.

COROLLARY VII.6.9. In (12Z) of Theorem VII.6.6, for n > 3 the CCI
assumption may be omitted.

PROOF. The strong cA monotonicity assumption there implies that every,
so (n > 3) at least three, states are essentiai. By Theorem VII.3.5,
the concavity assumption implies existence of continuous concave

additive value functions (V.)n=1. Strong cA monotonicity implies non-

decreasingness, even strict increasingness, of every Vj. By concavity
of every Vj' Corollary 24.2.1 of Rockafellar (1970) implies existence

of f, such that V. (a) - V,(B) = [ f.(t)dr for all o > B in int(C),
j b b 18,0l

e.qg. fj may be the right or left derivative of Vj. By continuity of Vj

this also holds for o and/or B boundary points of C, e.g. let fj := C

in boundary points. Theorem VII.6.8 gives existence of a SEU model,

which implies CCI.
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Of course, the same as above holds with nondecreasing, -instead
of nonincreasing, risk aversion. For characterization purposes, the
following conjecture, if true, would be useful. It would show
equivalence of (i) and (iii) in Theorem VII.6.6, if concavity of U in
(i) was left out, and CCI in (iii) was left out, further in (iii) the
concavity assumption was replaced by coordinate independence (= sure-

thing principle); for n > 3.

CONJECTURE VII.6.10. In Theorem VII.6.8, existence of the fj's can be

left out.

We do not need the "fj—condition" in Theorem VII.6.8 if C=TR
and we have constant absolute risk aversion, or if C = 1R++ and we
have constant relative risk aversion. First we give the latter result,

this being directly derivable from Stehling (1975) .

THEOREM VII.6.11. Let C = R _, . The following two statements are

equivalent for the binary relation > on ch:

(i) There exists a SEU model e, >, (p;)?_l, ul for », with all
3'9=
pj > 0, and etther U : o » Ao’ for some \,p € R with Ao > 0, or

U : ok log a.

(ii) » 8 a continuous strongly cA monotonic coordinate independent
weak order, satisfying the Thomsen condition if n = 2; > has
constant relative risk aversion.

PROOF. Suppose (i). Then, for any v > 0, x € Cn, for the expected

utility EU, EU(px) = upEU(x) or EU(ux) = u+EU(x). From this, constant

relative risk aversion, and all of (ii) follows straightforwardly. So

we suppose (ii), and derive (i).

If n = 1, the choice py = { and U = identity, by strong ch mono-
tonicity gives (i). So let n > 2. By strong cA monotonicity every
state is essential. By Theorems III.3.6 and III.3.7, there exist
continuous additive v%lue functions (Vj)rjl=1 for ». By strong mono-
tonicity, every V. is strictly increasing. Define V : Cn > R,$ : C

+ ®, Ww:C'> R by:
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Vo:xr IV, : o S
J(xj), ¢ :ob V@, W: xP ¢ L V(x).
Then V and W represent », W(a) = a, [W(x) =oa=xr a], W(ux) =
W te M5
WW(x) for u > 0 (W is "linearly homogeneous", so V is "homothetic")
By Stehling (1975, Theorem 2), or Eichhorn (1978, Theorem 2.5.2)
either: ’
vo:xbk oy [ pj]
. H j=1xj )] for a continuous strictly (VII.6.5)
increasing y ositiwv
, P e U, and nonzero Pl""’Pn that sum to one,
or:
Vo:oxb n py1/p .
| w[(zj=10jxj) ] for a continuous strictly (VII.6.6)
increasi iti
sing §, positive 01,...,0n, and nonzero Q.

In case of (VII. i i i i
. 5 (VITI.6.5), V is a strictly increasing transform of
xj . S0, by taking logarithms, of x# Ip.log(x.). By strict in-
] J ]
creasingness of ev i iti i
ery Vj, every pj is positive. So indeed we have a
SEU model for », with U : ar log a.

Next suppose (VII.6.6). First assume p > 0. Then V is a strictly
increasing transform of Xo P ; ] ;
e /Zn jxj . So we have a SEU model for », with
j° 3 i=10i for every j, and U : a up, so A =1 in (i) above.
Finally, suppose (VII.6.6), with p < 0. Then V is a strictly
decreast s
asing transform of x — onx_p, so a strictly increasing trans-
form of x » 2o, (- p )
. j( (xj )). We have a SEU model for », with
i =1 O/ L2 )
pJ J/ 1:101 for every j, and U : o+ —(ap), so in (i) above, X = -1.

u]

From this we derive:

THEOREM VII.6.12. Let C = R. The following two statements are

equivalent for the binary relation > on C°

(i) There exists a SEU = n
‘ EU modjé [c, », (pj)j=1’ ul for >, with all
. >0 B 3
?J ;and U : arw xe" for some A,p € R with ‘o > 0, or U
tdentity.

(ii) > 28 a continuous strongly cA monotonic coordinate independent
weak order, satisfying the Thomsen condition ©f n = 2; > has

constant absolute risk aversion.




&

the expected utility

n
PROOF. Suppose (i). Then, for any u > 0, x €eC,

EU(x) has EU(x+u) = epuEU(x) or EU(x+li) = U+EU(x). From this constant
absolute risk aversion, and all of (ii), follows straightforwardly. So
we suppose (ii), and derive (i).
o e o 1 X
Define L : RE+ > R by L : (xl,...,xn) H'(log(xl),. log( n))'
i it follows
and define >' on Hﬂl+ by x »' y iff L(x) » L(y). Then it fo
straightforwardly that »' satisfies (ii) of Theorem VII.6.11l. We
n
obtain, for all x,y € R : e -
= L ] L ith U, p, , and
x»yel (x)>» L (y)e ijU(e ) > ijU(e ), wi 1Py

also A, p as in (i) of Theorem VII.6.10.

Most probably the last two theorems also hold for any interval
Cc I@++,'respectively C € R, but we do not know of a reference fhere
the analogue of Stehling's (1975) theorem, needed to prove that, is
| readily available. For the study of the extendability of the above

results, for the case of constant risk aversion, to multidimensional

ll consequences, Rothblum (1975) may be useful.

CHAPTER VIII

CONTINUOUS FUNCTIONS ON INTERVALS

In this chapter we derive some elementary properties of functions
from nondegenerate intervals to the reals. These properties have been

used, and referred to, in many places in this monograph.

VIII.1. GENERALIZATIONS OF MIDPOINT COMVEXITY

The first two results give conditions sufficient for convexity of
a function ¢, by means of properties that are variations on "midpoint-
convexity" [¢((u+v)/2) < ¢(u)/2 + ¢(v)/2)]. When formulated for -¢,
these conditions of course are sufficient for concavity of ¢, and
when formulated both for ¢ and -¢, they are sufficient for affinity of
¢, see for example Corollary VIII.3. The first Lemma, and its elegant

proof, are due to Hardy, Littlewood and PSlya (1959, Theorem 88).

LEMMA VIII.1. Let S € R be a nondegenerate interval. Let ¢ : S > R

be continuous. For all o < 1 € S let there exist 0 < p < 1 such that

¢(po + (1-p)T) < pd(0) + (1-p)o(t). Then ¢ is converx.

PROOF. Suppose ¢ were not convex. Then we had A < 4 < v in S such that
the point (u,¢(u)) of the graph G of ¢ lies strictly above the straight
line 1 through (X,$(})) and (v,$(v)). Let then (0,¢(0)) and (T,$(1))

be the points of intersection of G and 1, closest to (u,¢$(n)), with

0 < Yy < T. Then A 5_0'< B < T < V. Between 0 and T all of G lies above

1, contradicting the existence of the p as in the Lemma.
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LEMMA VIII.2. Let 5 € IR be a nondegenerate interval. Let ¢ : § + R
be continuous. Let, for every v € int(S), an open neighbourhood W of
v within S be given such that for all o < T in W, there exists

0 < p < 1 such that ¢(po + (1-p)1) < pd(0) + (1-p)é(T). Then ¢ 18

convex.

PROOF. For every v in int(S) there must exist an interval Jv-8, v+68[
around v within S, such that for all ¢,T within this interval, a p as
in the Lemma exists. By Lemma VIII.1, ¢ is convex on Jv=6, v+8[. This
implies convexity of ¢ on all of int(s), for instance because ¢ has

a nondecreasing right derivative. By continuity, ¢ is convex on all

of S.

COROLLARY VIII.3. Let S ©€ R be a nondegenerate interval. Let ¢ : 8 > R
be continuous. Let, for every v € int(S), an open netighbourhood W of v
within S be given such that for all o < T in W, there exists 0 < p <1

such that ¢ (po + (1-p)T) = pd(0) + (1-p)¢(T). Then ¢ is affine.

PROOF. Apply Lemma VIII.2 to ¢ and -¢.

VIII.2. CONTINUITY OF TRANSFORMATIONS

The following results consider transformations ¢, such that

f = ¢og for two functions £, g.

LEMMA VITI.d. Let C be a comnected topological space. Let £, g : C + R

be continuous. The following three statements are equivalent:

(i) £ = ¢og for a mondecreasing ¢.
(ii) £ = ¢og for a nondecreasing continuous ¢.

(iii) g(a) > g(B) = £{a) > £(B) for all a, B € C.

PROOF. (ii) = (i) and (i) = (iii) are obvious. So we assume (iii). To

. derive is (ii). If g{a) = g(B), then g(a) > g(B) and g(B) > g(a), so

‘Property has been obtained.
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f(a) > £(B) and £(B) > f(a). £(a) = £(B) follows. Hence £ = ¢og for
some ¢. By (iii), ¢ must be nondecreasing. Continuity is postponed

to the next lemma.

Throughout the sequel we assume:

ASSUMPTION. C is a connected topological space. Further f and g are

continuous functions from C to R, and £ = ¢og for a transformation [0

We now investigate the kinds of properties that ¢ may have, such

as continuity.

LEMMA VIII.5. If ¢ <8 nonincreasing or nondecreasing, then it is

continuous.

PROOF. ¢ is a nondecreasing or nonincreasing function from the con-
nected g(C) onto the connected £(C), hence must be continuous. (It

cannot make "Jjumps".)

The following results are only used in section IV.4. Lemmas
VIII.6 and VIII.8, and Example VIII.7, were found, and communicated to
the author, by A.C.M. van Rooij in 1985,

LEMMA VIII.6. ¢ has the intermediate value property.

PROOF. Let G = {g(a), f(a) : o € C} :IR2. G is the graph of ¢. since
f and g, thus a » (g(a), £(a)), are continuous, G is connected. Now
let u < v, and let ¢(u) < ¢(v)[¢(n) > ¢(v) is analogous]. Let

$(W) < A < ¢(v) for some A. Let V= {(0,T) € G : 6 <y, or p <0 <V
and T < A}, and W = {(0,1) €G: 0>v,0ruc<o j_c-and T > ;}. ;ﬁen
VUW =06, (uém) €EVEP, (v,6(v)) €W # @, V and W are ;iosed sub-
sets of G. By connectedness of G, VN W # §. Let (o,T) € Vv N W. There

follows T = A and 4 < 0 < V. Since ¢(0) = T, the intermediate value




EXAMPLE VIII.7. ¢ is not necessarily continuous: Let ¢ : R - IR assign
0 to 0, and sin(%) to every M # 0. Let G be the graph of ¢. Let C = G.
Let £ be the projection cn the second coordinate, g that on the first.
Then indeed C is connected, f and g are continuous, f = ¢og; ¢ is not

continuous in O.

LEMMA VIII.8. If ¢ ¢s bijective, then it is strictly increasing or

strictly decreasing.

PROOF. It is sufficient to show, for any A < p < v in the domain of ¢,
that either ¢(A) < ¢(u) < ¢(v), or d(A) > ¢(p) > ¢(v). Say, for

A<y <v, $(A) < ¢(v). Now were ¢(u) < ¢(A), then by Lemma VIII.6 any
value between ¢ (A) and ¢(u), would be taken by ¢ at least two times:
once between X and u, and once between U and v. By bijectivity this
cannot hold. An analogous viclation of bijectivity occurs if ¢(y) >
d{(v). Also ¢(u) = $(A) or ¢(n) = ¢(v) violates bijectivity. Hence

$(A) < ¢(n) < ¢(v) follows.

The following lemma shows that in the main case of interest for
us, where C is a convex supset of a Euclidean épace, ¢ must be con-

tinuous.
LEMMA VIII.9. If C Zs arcconnnected, then ¢ is continuous.

-1 in g(C),

such that

(o]
PROOF. It is sufficient to show that any sequence (uj)j
oo

converging to u in g(C), has a subsequence (uj )i_1
et
lim ¢(¢. ) = ¢(n). So let (uj) converge to U. We may assume “j # U

} <»co 1 © )
%or all j. There must exist a subsequence (vi)i= of (uj)j: that

1 1
either strictly increases or strictly decreases;'say the first. Now

take arbitrary al, a in C such that g(al) = vi, g(a) = u. Of course

ul # 0. We use arcconnectedness by taking an arc X from a, to o, i.e.

1
X : [0,1] - C is continuous, with A(0) = % A(1) = a. Now goA is
continuous, {(geoA) (0) = vl, (goA) (1) = p. By the intermediate value

property, (Oj)ojo=1 in [0,1] exists such that (gox)(oj) = vj for all j.

So (T.)f_ on A ([0,1]) exist with 1. := A(0.) for all il T =
37 3=1 ! 3 ; 5) I 9 3 ¥

for all j. Since A ([0,1]) is compact, (Tj) has a convergent sub-~

j=1

(o2} b . A o oo
sequence (Tji)i=1  with limit say 1. Also (g(Tj.))i=1 and (f(%l)),

i
must converge to g(T), respectively f(t1). This can only hold if

g(t) =y, and 1lim ¢(vj') = lim ¢(g(T, )) = lim £(1, ) = £(1) = ¢ (g(1))=
$(n). ivee * EE Ji ive i

3 i=1

COROLLARY VIII.10. ¢ g continuous if it is nonincreasing, nondecreasing,
bijective, or if C is arcconnected.
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REPRESENTATIES VAN KEUZESITUATIES

SAMENVATTING

In deze monografie worden representatiestellingen voor beslissings-
theorie afgeleid. Nadruk zal daarbij liggen op stellingen die toepas-
baar zijn op beslissen bij onzekerheid.

Allereerst worden in hoofdstuk O enige elementaire definities ge-
geven.

Vervolgens geven we in hoofdstuk I aan wanneer er verband bestaat
tussen preferentierelaties en keuzegedrag, en bespreken we enige intul
tieve veronderstellingen. In hoofdstuk I veronderstellen we nog niet
dat structuur op de verzameling alternatieven gegeven is (behalve
verzamelingstheoretische structuur). In volgende hoofdstukken zal
steeds meer structuur op de verzameling alternatieven worden ingevoerd.

Tn hoofdstuk II voeren we de belangrijkste structuur van deze
monografie in: we veronderstellen dat de verzameling van alternatieven
een cartesisch product is. Iedere coordinaat van een alternatief be-
schrijft een relevant aspect van het alternatief, en bij een keuze
tussen alternatieven moeten de voor— en nadelen betreffende de diverse
aspecten tegen elkaar worden afgewogen. Deze benadering is dusdanig
algemeen dat toepassing op velerlei gebied mogelijk is. De zes belang-
rijkste economische toepassingsgebieden in deze monografie worden ge-
geven in paragraaf II.l. In de daaropvolgende paragrafen worden diverse
monotoniciteitseigenschappen behandeld. Met behulp van de in deze para-
grafen verkregen resultaten tonen we in paragraaf IIL.6 aan dat "coor-
dinaat onafhankelijkheid" de enige waarneembare implicatie is van de
monotoniciteitseigenschappen, onder de in het vervolg van deze mono-
grafie steeds gemaakte veronderstelling dat slechts de preferentie-
relatie op de verzameling alternatieven waarﬁeembaar is.

In hoofdstuk III, en alle volgende hoofdstukken, veronderstellen
we dat de verzameling alternatieven voorzien is van een samenhangende
producttopologie. Met behulp van deze kunnen we in het vervolg con-

tinuiteitsveronderstellingen formuleren. In de paragrafen III.3 en

IIT.4 geven we veralgemeniseringen van bekende stellingen over het be-
staan van representerende functies die als som van coordingatfunc=
ties te verkrijgen zijn,

We nemen vanaf hoofdstuk IV (, met uitzondering van de paragrafen
VII.1 tot en met VII.4,) steeds aan dat alle coordinaatverzamelingen
identiek zijn. Stelling IV.3.3 geeft een hoofdresultaat van deze mono-
grafie: een karakterisering van subjectief verwacht nut maximalisatie
met behulp van een nieuwe eigenschap voor preferentierelaties, namelijk
cardinale coordinaat onafhankelijkheid. Dit gebeurt onder restricties
die in economische contexten gewoonlijk vervuld zijn. Verder worden
in de hoofdstukken IV, V en VI vele veralgemeniseringen van stelling
IV.3.3 gegeven. Ook geven we toepassingen aan voor andere contexten
dan beslissen bij onzekerheid; dynamische contexten vooral.

In hoofdstuk V breiden we het resultaat van stelling IV.3.3 uit
naar willekeurige, mogelijkerwijs oneindige, toestandsruimten. We be-
kijken dan zowel c-additieve, als eindig additieve, kansmaten.

Hoofdstuk VI breidt stelling IV.3.3 uit tot "capaciteiten", dat
wil zeggen “"niet-additieve kansmaten". Deze zijn in beslissingstheorie
ingevoerd door Schmeidler (1984 a,b). Sub- en superadditiviteit zijn
veel bestudeerde eigenschappen van capaciteiten; ze worden gekarakte-
riseerd in paragraaf VI.1ll.

In hoofdstuk VII wordt weer een nieuwe structuur op de verzame-
ling alternatieven ingevoerd. We veronderstellen dat de coordinaat-
verzamelingen zogenaamde "mengruimten" (mixture spaces) zijn. Stan-
daardvoorbeelden van mengruimten zijn convexe deelverzamelingen van
lineaire ruimten. We karakteriseren dan concave representerende
functies die te schrijven zijn als som van coordinaatfuncties. In pa-
ragraaf VII.6 veronderstellen we dat de coordinaatverzamelingen con-
vexe deelverzamelingen zijn van de verzameling van reéle getallen.
Hier hebben we te maken met de meest gestructureerde verzameling van
alternatieven in deze monografie. In paragraaf VII.6 laten we dan zien

dat veronderstellingen over (nietstijgende) risicoafkerigheid op een

verrassende wijze de karakterisering van verwacht nut maximalisatie

vereenvoudigen.

Hoofdstuk VIII tenslotte geeft enige wiskundige resultaten be-

treffende functies op intervallen. In vorige hoofdstukken is al vaak

naar deze resultaten verwezen.
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