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CONCAVE ADDITIVELY DECOMPOSABLE REPRESENTING
FUNCTIONS AND RISK AVERSION

1. Introduction

We study preference relations on sets that are finite-fold
cartesian products. Elements of these sets will be called
alternatives. The preference relation represents the
opinion of a decision maker.

Examples are  consumer demand  theory, where
alternatives are ''commodity bundles'; and decision making
under uncertainty, where alternatives are "acts'.

Qur purpose is to characterize (i.e. give
properties of the preference relation, mnecessary and
sufficient to guarantee) the existence of special kinds of
representing functions, mainly continuous concave
functions that are additively decomposable.

An often used property of preference relations 1is
known under various names such as (strong/strict)
separability, (preferential) independence, the sure-thing
principle. We shall use the term "coordinate independence"
(CI) for it. The property was introduced in Sono (1945,
1961) and Leontief (1947a, 1947b) in terms of derivatives
of a (presupposed) representing function. See also
Samuelson (1947, pp. 174-180). 1In Debreu (1960) it was
formulated in its present, more appealing, form, in terms
of the preference relation, without differentiability
assumptions. Before, Savage (1954) had introduced the
"sure-thing principle" for DMUU. This in fact is identical
to CI, as is well known nowadays. It can be seen to
underly the "likelihood principle" in statistics, thus
should be fruitful there too. See Birnbaum (1962, 1972),
Savage (1962), Berger (1980, 1.6.2), or Barnard & Godambe
(1982). For an extensive study of generalizations of CI,
see Blackorby, Primont and Russell (1978).

In this paper we shall characterize, under a
continuity and nontriviality assumption, the existence of
concave additively decomposable representing functions.
It is known that the combination of CI and convexity for
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the preference relation does not suffice for this, see
section 4. We shall introduce a property for preference
relations, the "concavity assumption", that achieves the
desired characterization. It is an extension of "axiom Q"
of Yaari (1978), which there is not studied for its own
sake, but only as an intermediate between a stronger and
weaker property, and concerns the case where every
component equals Ry.

For continuity and concavity to have meaning, at
least some topological and convexity structure is
required. A reader, mnot interested in these notions in
full generality, may simply assume that the coordinates
refer to convex subsets of FEuclidean spaces, and skip over
the specific details of mixture spaces in section 2. Our
notation is chosen such that this can be done without any
problem. Note that. we do not assume monotonicity, to
achieve maximal generality.

In section 5 we consider the case where all
components of the cartesian product are identical. The
main application for this is DMUU, with a finite state
space. First the characterization of continuous expected
utility maximization, provided in Wakker (1984a) for a set
of consequences that is a convex open subset of R, is
extended to the case where the set of consequences is any
topologically connected space. Next it is combined with the
concavity assumption, thus characterizing continuous
expected utility maximization with risk aversion.  In this
we do not need differentiability assumptions or methods. A
result, wusing differentiability assumptions, is Stigum
(1972).

The existence of special kinds of representing

="utility") functions can be verified/justified

(falsified/criticized) if and only if the involved
characterizing properties can be verified/justified
(falsified/eriticized). Thus characterization results are
central for the discussion on the foundations of utility.

Proofs are given or referenced in the Appendix.

2. Product Topological Mixture Spaces

First we introduce '"mixture  spaces'", i.e. sets with a
"mixture operation" on them. These were already used by von
Neumann and Morgenstern (1944) and Herstein and Milnor
(1953). There the mixture operation mainly served as a
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generalization of lotteries. Extensive use of mixture
spaces is made in Fishburn (1982). See also Luce & Suppes
(1965). The applicability of mixture operations to fields
such as quantum mechanics, and colour perception in
psychology, is indicated in Gudder (1977) and Gudder and
Schroeck (1980). Our main intended application is that a
mixture operation is a generalization of the convex
combination operation in linear spaces.

DEFINITION 2.1: A function ® : C x [0,1] x C => C, where C
is a nonempty set, and where we write pa + (1-p)B for
®(a,p,B), is a mixture operation (on C) if the following i,
ii, and iii are satisfied for all «,B ¢ C; and p,u, ¢ [0,1]:
i : commutativity pa + (1-p)R = (1-p)B + pa.

ii : associativity u(pat(1-p)B)+(1-u)B = (uplat(1-(up))B.
iii: identity la + 0B = a.

Here (C,®), or simply C, is called a mixture space.

It may be argued that ii could be called
"distributivity" instead of "associativity'". We write a/u
for (1/p)a, and pafu for (p/u)a. We say "y is between a
and B" if p e [0,1] exists such that y = pa + (1-p)B. The
definitions of convex sets, and affine/convex/concave/
quasiconcave functions, are as in Euclidean spaces.

LEMMA 2.1: If C is a mixture space, then for all
a,B e C; p,u e [0,1]:
iv: pa + (1-pla = a.
v : p(ua + (1-p)B) + (1-p)(va + (1-v)B) =
= (pu + (I-p)v)a + (p(1l-w) + (1-p)(1-v)B).

DEFINITION 2.2: (C,T,®), also denoted as C, is a
topological mixture space if T is a topology on C, @ a
mixture operation on C, and ®: C x [0,1] x € (with the
product topology) => C is continuous.

LEMMA 2.2: A topological mixture space C is topologically
connected.

LEMMA 2.3: Let V from a topological mixture space

{C,T,®) => R be continuous. The following propositions are

equivalent:

i : There exists m > 0 such that V[(a/2) + (B/2)] = [V(a) +
V(B)1/2 whenever 0 < V(a)-V(B) £ 7.

ii « V(a/2 + Bf2) 2 [V(a) + V(B)1/2 for all «,B.
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iii: V is concave.

DEFINITI%N 2.3: For a sequence of mixture spaces
(Ci,@i)i=%, the product mixture cperation

A
. e : Xi_:f. Cl‘) X!:U,l_l X (Xlﬁl Cl) => Xlil Ci )
assigns to every (x,p,¥) = [(x],...s%3)sPs (V150007015

the image element (px; + (l—p)yl,...,pxn 4+ L1-plyyls

also denoted as p(Xy,-..,x,) + CL=RILF 0o s » sFpds or

px + (1-p)y. We then call (X% C;, ®), or simply Xf;I Cyis
the product mixture space. If the Ci's are topological
mixture spaces, then we endow X;8y C; with the product

it
topology and call it a product topological mixture space.

For the above definitions to be suited the
following:

THEOREM 2.1: A product mixture operation is a mixture
operation. A product topological mixture space is a
topological mixture space.

3. The Concavity Assumption

Throughout this section C = Xiil C; is a product
topological mixture space. For instance any C; may be (a
convex subset of) R™1, Elements of C, called alternatives,
are denoted by x,y,v, etc., with coordinates X1, Vg, ete.
Elements of U151 C; are also denoted by a,B,I', etc. Less
standard is the following notation: X_ja is the
alternative with i-th coordinate a, other coordinates equal
to those of x.

The decision maker is denoted by T, his preference
relation on the set of alternatives by > We write x = y if
T thinks x at least as good as y. We write x< y if y > x,
x4 yif not x Zy,x >y if not y 2 x, and x = y if x =y
and y 2 x. A weak order 2= is complete and transitive,
ie. [x 2y or y>x],and [x >y &y =z => x >z] for
all x,y,z € C; thus it induces an "equivalence relation", =.

A preference relation > is convex if {x|x >y} is
convex for all alternatives Vs and continuous if

{2|x >y} and {x|x € y} are closed for all y. Coordinate i
is essential (w.r.t. > ) if X_ja >x for some x e G,
a & Cy. A function V : C => R represents » if x >y <=>
V(x) 2 V(y) for all x,y & C.
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LEMMA 3.1: If > is a weak order, then x = y whenever X5 = ¥
for all essential j.

The above Lemma shows that, for a weak order >, the
inessential coordinates do not affect 2. Hence they can be
left out, as will be used in Definition 3.2.

LEMMA 3.2: Let > be a weak order on a topological mixture
space C. Then the following propositions are equivalent:
i: x2zy=>px+ (l-p)y 2y for all x,y; p e [0,1].

ii: 2 is convex.

If > is continuous, then a further equivalent proposition
is:

iii: x >y => x/2 + y/2 =y for all x,y.

DEFINITION 3.1: We say ¥ is coordinate independent (CI) if
(x_qa) > (y_ja) => (x_4B) = (y_;B) for all x,y,i,aq,B.

For the case of exactly two essential coordinates we
shall need one more property:

DEFINITION 3.2: Let exactly two coordinates be essential.
We say a weak order > satisfies the Thomsen condition if,
after removal of the inessential coordinates, (a,p) = (T',v)
& (T',o) = (B,n) imply (a,c) = (B,v) for all a,...,v.

The following property is a generalization of "Axiom Q"
in Yaari (1978), which is formulated for the case where Cy
= Ry for all i, and for this case by some elementary calcu-
lus can be seen to be equivalent to our present definition.

DEFINITION 3.3: We say 2 satisfies the concavity assumption

if x_ 4T > y_46 whenever x_ja >y_;B and B = pa + (1-p)s,

I'=p8 4 (1-p)a for some p €[0,1].

A way to see the meaning of this is by substitution
in Theorem 3.1.i. The following Lemmas adapt to the
present context the Remark at section 4, and the Lemma 2
of section 5 and by that the implication of axiom D
through axiom Q, of Yaari (1978).

LEMMA 3.3: The concavity assumption implies CI.

LEMMA 3.4: If > is a continuous weak order that satisfies
the concavity assumption, then > is convex.
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If three or more coordinates are essential, the
above lemma can also be obtained as a corollary of Theorem
3.1 below. .

DEFINITION 3.4: (VJ)J2 is an array of additive value
functions for Z— if [x 2y <= I8 Vy (x ) > E Vj(yj)]
for all x,v & X C.. With then Vix = VJ xj),

V is called ad&ltlvely decomposable.

Now we are ready for our main result:

THEOREM 3.1: Let > be a binary relation on a product
topological mixture space Xi;& Cy (e.g. Xi:l R™ ). Let at
least two coordinates be essential. Then the following
propositions are equivalent:

i : There exists an array of continuous concave additive
value functions (V Y52y for =,

ii: The binary relatlon ;'13 a continuous weak order that
satisfies the concavity assumption; if exactly two
coordinates are essential, then furthermore > satisfies
the Thomsen condition.

Furthermore, if i applies, then (W-)-El is an array

of additive value functions for > ~iY and only if (u; i

exist, and positive k, such that Wj = ij + Hy for a l

The following Corollary applies the above result to
a common context, where C R++ (Ryy = {a € Rla > 0}), > is
monotone (x: > y: for all j => x >y). The property
after "furthermorg" in ii below, simply is a reformulation
of the concavity assumption, so of Yaari's axiom Q. It
reflects the idea of nonincreasing marginal utility.

COROLLARY 3.1: Let > be a binary relation on (Ryy)®, n23.

Then the following propositions are equivalent:

i : There exist concave (thus continuous) nondecreasing
nonconstant functlons Vi s R++ =>R, j=1,...,n, such
that [x >y <=> EJ_l VJaxJ) z Ej_l VJ(y ) for all x,y].

ii: > is a continuols weak order, it is monotone, every
coordinate is essential, and furthermore x_ja 2 y_4 Bo=>
x_j(a-e) = y_;(B-e) whenever (a-B)e 2 0.

4. Completion of Logical Relations

Throughout this section = is a continuous weak order on a

5
f2(x)
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product topological mixture space Xizl C;, and nsm is the
number of essential coordinates. In figure 1 we have
indicated the logical relations between the propositions,
numbered 4.1 - 4.4 there.

| o ——
FIGURE I: (for continuous weak order ¥»)
There exists an array of continuous concave (4.1)
additive value functions for >
n=1: counterexample V = £ by
¢4 n=2: counterexample V = £2 Th.L:
nz3: correct by Theorem 3.1 3.1
> satisfies the concavity assumption (4.2)
n=1: counterexample v=fl by
o n=2: counterexample v=£3 Lemma (g
n23: counterexample y=£3 3.3 & 3.4 [
> is convex and CI (4.3)
Jn=1: correct
s n=2: counterexample y=f4 direct 33
nz3: counterexample v=f2

> is convex (4.4)
n number of essential coordinates;

Vi function, representing =

AN ] = R for all 1 <j<5,withfl(x) =1 if

x; S ,f(x)=xl 1fx21;f2(x)=8 :
+A‘min{?3 123 <m ; £3 (xg = (m-1)e® + g 1og ®as
£4G0) = (350 (5o £(x) = xp-1 ’

for 0 <

X <71, £3 ( ) = (x1- 1)2 for' 1 s %1 € 2,
3-x; for x; 2 2. ; ‘
—
For n=1, proposition 4.2 in figure 1 does not imply
4.1, even if a representing function V _exists. This
follows from Kannal (1977, p. 17), or from £ in figure 1.

This, and f can be seen +to represent a 2, that
satisfies the concavity assumption. £2 is a minor
variation on the example of Artstein in Kannai (1981, p.
562), where it is shown not to be '"concavifiable". For

n=2, 4.2 does imply 4.1 iff =2 satisfies the Thomsen
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condition. That 2, represented by f2, does not satisfy
this for n=2, and has no additive value functions, can be
seen from (1,4,9,...,9) = (2,2,9,...,9), (2,8,9,...,9)
~ (4,4,9,...,9), (1,8,9,...,9) »(4,2,9,...,9).

That >, represented by f+, does not satisfy the conc-
cavity assumption, follows from (1/2,1,...,1) = (1,...,1)
£ (3/2,1,...,1). That f? is quasiconcave, thus represents a
convex 2>, can be derived from 6.28 of Arrow and Enthoven
(1961). For ¥, represented by £3, by the "furthermore'-
statement of Theorem 3.1, no concave additive value
functions exist, if nz2: *» must violate the concavity
assumption. The observation that 4.3 does not imply 4.2,
for n22, 1is closely related to the observation that
quasiconcavity and additive decomposability of V do not
imply 4.1, i.e. concavity of V. This latter observation has
been made some times in the literature. The earliest
reference to this, given in Debreu and Koopmans (1982}, is
Slutsky (1915).

That 2, represented by fa, is mnot CI for n22,
follows from (2,...,2) > (2,3,2,...,2) and (1,2,...,2) £
(1,3,2,...,2). Finally, that for n23 2>, represented by
£2, is not CI, follows from (1,6,1,...,1) > (3,3,1,...,1),
(14653 000 33) 4 (3,35 000938) -

5. Expected Utility with Risk Aversion

Let S = {sys..-s8,} be a finite state space. Its

elements are (possible) states (of nature). Exactly one
is the true state, the other states are not true. The
decision maker T is uncertain about which of the states

is true. C is the set of consequences, and
x = (X1,...,%) € C" is the act (= alternative) yielding
consequence Xj if 85 is true.

DEFINITION 5.1: We Jsay > maximizes subjective expected
utility (SEU) w.r.t. (By) j21, U ifU: G => R, P; 20,
z s = l, and [X a-y <= E‘=l P:lU(Xj) Z % 1=1 le:.ll(y.j)]

j=1 F ] 4 i
for ali Xx,y. (Here U is the "utility function")?

The results of Wakker (1984a), formulated for the
special case that C 1is a convex open subset of R, are
generalized in the sequel to the case where C is any
connected topological space, e.g. a topological mixture
space, such as a (convex subset of) RO,
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DEFINITION 5.2: We say 2 is cardinally coordinate
independent (CCI) if wv_;T' > w_:8 whenever x_ja < y_;B8,
xqI' > y_ 48, v_ja = w_jB, and i éssential.

THEOREM 5.1: Let * be a binary relation on C® where neN,

and C a connected topological space (e.g. R or R). Let

C be topologically separable if exactly one coordinate is

essential. Then the following propositions are equivalent:

i : > maximizes SEU w.r.t. some (Pj)jgl, U, where U is
continuous.

ii: *> is a continuous weak order that is CCI.

The concavity assumption and CCI can be combined
as follows, to give in Theorem 5.2. iii a very concise
characterization of SEU maximization with risk aversion,
i.e. concavity of U.

DEFINITION 5.3: Let > be a binary relation on a product
topological mixture space CF. We say 2 1is concavely
cardinally coordinate independent (CCCI) if v_:0 > w_:tT
whenever Xoqa € y_ 4B, Tujl 2 .58 visa 2 w_-a, i ié
essential, and p € [0,1] exists such that o = pT + (1l-p)T,
8§ =pl+ (1l-p)=.

THEOREM 5.2: Let 2 be a binary relation on a product

topological mixture space C" (e.g. (R})" or R®). Let

at least two coordinates be essential. Then the fol-

lowing propositions are equivalent:

it > maximizes SEU w.r.t. some (Pj)jEl, U, where U is
concave and continuous.

ii: = is a continuous weak order that is CCI, and satisfies
the concavity assumption or is convex.

iii: > is a continuous weak order that is CCCI.

APPENDIX: PROOFS

The preoof of Lemma 2.1 is in Fishburn (1970, section 8.4).
Lemmas 2.3 and 3.2 are as in Euclidean spaces, Theorem 2.1

is elementary topology. Proofs for these are given in
Wakker (1984b).

PROOF OF LEMMA 2.2: Suppose A € C is open and nonempty,
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say x £ A, and A® is open and nonempty, say y € AC.

Then by elementary topology (by Lemma Al in Wakker,
1984b) the set {p € [0,1] : px + (l-p)y ¢ A} and its

complement {p e [0,1] : px + (1-p)y e A€} are open. But

one contains p = 1, the other p = 0, so both are nonempty,
contradicting connectedness of [0,1].

PROOF OF LEMMA 3.1: As an example, let 1,2,3 be not
essential, x; = y: for all j 2z 4. Then x = X_1¥] #
(x_1¥1)ogv2 = ((x21y1)-9¥2)-373 = v-

PROOF OF LEMMA 3.3: Let a = B,I' = 8,p = 1 in Definition 3.3.

PROOF OF LEMMA 3.4: By Lemma 3.2 we only have to prove that
v2>w=> v/2 4+ w2 >w. It is sufficient to suppose v/2 +
w/2 £ w< v, and then to derive v £ v/2 + w/2. We define,
inductively, for all 0 < j £n, vl and wl by v- =

v/2 + w2, wo =w, vi= VJ_l_jVj, wi = wi™1 _-(vj/Z + wi/{2),
thus getting v% = v, wi= v/274+ w/2. For j =0 we have, by
assumption, v~ € w. Suppose now for some 1 £ j £ n, that

vi7l £ wi 1, Then we apply the concavity assumption with
i=j3, p=1/2, x=wil, y=vi"l a=wu, g=T=v:2
+ wi/2, & = vy to obtain vJ € wlJ, Now by induction
o 2 wh, i.e.Tv <€ v/2 + w2,

PROOF OF THEOREM 3.1: i => ii is straightforward. So we
assume ii, and derive i. By Lemma 3.1 the inessential
coordinates do not affect ®>. Hence they can be left out.
The additive value functions, to be constructed in the
sequel, simply are to be taken constant for these
coordinates. So we assume in the sequel that all
coordinates are essential.

By Lemma 2.2 every C; is topologically connected.

By Lemma 3.3 we get CI for . Hence, if n 2z 3, then
everything of i, except concavity of the V.'s, follows
from Theorem 14 of section 6.11.1 of Krantz ~et al (1971).
This theorem is a strenghtening of Theorem 3 of Debreu
(1960) because no topological separability of the C;'s
is required. If n = 2 the same as above (so without the
demand of topological separability for the components) can
be derived from Theorem 2 of section 6.2.4 of Krantz et
al. (1971), the same way as their Theorem 14 of section
6.11.1 is derived from their Theorem 13 there. Their
reasoning of section 6.12.3 applies Iliterally for n = 2.
{See also their exercise 34 of Chapter 6.) These theorems
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of Krantz et al. also guarantee the assertion
"Furthermore...". So all that remains is concavity of the
V:'s. We show concavity of Vj.

Since coordinate 2 1is essential, x5 and y; in Coy

exist with Vp(xy) - Vp(yp) = 7w > 0. V, is continuous,
and Cy connected, so VQ(CZ) is connected too. Thus for
any 0 £ @ £ w there exists 2z, in Gy such that

Vo(z9) - Va(yy) = @. By Lemma 2.3, concavity of

V{ is guaranteed if we show that V{(B) 2 [Vi(a) + Vl(F)IIZ
for any «, 8, T e C; such that § = a/2 + /2, and 0 £ V{(a)
- Vy(T') £ m, To this end let z; € Cy be such that
Volzg) - Valyp) = (Vi(a) - vi(r)1/2. We apply, for
arbitrary v, the concavity  assumption, to obtain
(v_lt‘.()_zyz > (v‘lB)‘ZZ => (V‘IB)‘ZVZ > (v_ll‘)_ Z9, i.e.:
Vila) - Vi(B) 2 V2(22% - Volys) => Vi(B) - Vl%F% >
VZ(ZZ) = Vz(yz).

This shows:

V]_(Cl) = Vl(ﬁ) s [V]_(C!) - V]_(T')]/Z => Vl(ﬂ) - Vl(r) 2
This can only be if Vy(B) 2 [Vi(a) + vi(T)]/2.

PROOF OF THEOREM 5.1: i => ii is straightforward. So we
assume ii, and derive i. The cases of one or no essential
coordinates are treated as in Wakker (1984a, proof of
Theorem 2.1). Taking a = B, ' = &, x = y in Definition 5.2
shows that CCI implies CI. Thus, if three or more
coordinates are essential, then existence of an array of
continuous additive wvalue functions (V-)-21 follows as
in the proof of Theorem 3.1. If exactly ~two coordinates
are essential, then we first observe that CCI implies
"triple cancellation', i.e. v_: > w_.:d whenever
¥_:0 < y_iB, x_;T 2y_:8, v_:a 2w_:f. If j is essential
this follows %rom C&I by %aking i=j, if j is
inessential it is direct. An array of continuous additive
value functions(V-}-El for > is constructed, but now
with triple cancellation instead of the  Thomsen
condition, the same way as was indicated in the proof of
Theorem 3.1. See the end of section 6.2.4 of Krantz et al.
(1971).

The demonstration that V; = p:;U, for some nonnegative
(P')i:l’ and continuous 6: C’=> R, is performed the
same way as in Wakker (1984 a, proof of Theorem 2.1). If
no coordinate is essential, we now take P; = 1/n for all
j, and U constant; if one coordinate i"is essential we

take P; =1, Pj =0 for all j # i. If two or more
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coordinates are essential, then with p; as above, at
least two p:'s are nonzero, = so we can take Py E
pi/Ej;H p: for all i. Thus %;-; P;j= 1 is always

satisfied.

PROOF OF THEOREM 5.2: i => ii and 1 => 1iii are
straightforward, so we only prove ii => i and iii => ii.
First we assume ii, and derive i. By Theorem 5.1 we see 2
maximizes SEU w.r.t. some (P-)igl, and continuous U.
Thus (P-U)-El is an array of "additive wvalue functions
for >. "This implies that > satisfies the TB-condition if
exactly two coordinates are essential. If now 2 satisfies
the concavity assumption, then concavity of U, thus i,
follows from Theorem 3.1 and the substitution W; =
P.U. That concavity of U is also implied by convexity of
>, is well-known.

Now finally we assume 1iii, and derive ii. CCI for 2> is
straightforward, set p = 0 in Definition 5.3. So only the
concavity assumption remains to be derived. Let x_iI' 2
y-38, and ¢ = pt + (1-p)T, 6 = pl'+ (1-p)t, for some D €
[0,1], w1 & GC. To prove is that x_:;0 = y.sitT.

If j is not essential this is direct.” So let™ ]

be essential. If no m,® € C exist such that x_jn.< y_jG,
then xX_:.0 2 y_:t, as desired. So suppose X-;T £
v_:@ for some 7, ®. We now first construct a, such
that X_qa = v_:B. To this end, first suppose y_jé >
x_sm. Then we have x_:[ 2 y_jé Z'X_jﬂ. Thus {w £ C

| X_jW >y_.; 8} and {w € C | R_;w< y_.8} are both
nonempty. Also they are closed, by con%inuity of 2, and
Wakker (1984b, Lemma Al applied to complements). By
connectedness of C, the intersection of the above two
subsets of ¢ is nonempty: it contains some a with x_ja
= y_;68. Finally, take B = &.

Remains the construction of «, B as above for the case
where Y-j 84 %_.m. Then we have y_:6 <& x_.1< y_:0.
The same way as above now B is found such that X_jm =
y-:B. Now finally take a = m.

We thus always have a,B such that x_:a = y_:B. We can

now apply CCCI as in Definition 5.3, with i =7j, v = x,

w =y, to obtain x_:;0 & y-3T-

Peter Wakker
University of Nijmegen
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