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SUMMARY

We demonstrate a theoretical application of optimization theory. We use it to prove
theorems on the extendeability of the domain of nen-expansive, and (strictly) monotone,
mappings (under preservation of the characteristic property), by formulating the key problem
in it as an optimization problem.

1. INTRODUCTTON

~In 1934 it was shown for the first time that a non-expansive mapping G from a subset
of R" to R", can be extended to a non-expansive mapping G' from the whole of R to R", by
Kirszbraun [10]. 1In 1943 and 1945 Valentine [21, 22], unaware of this, rediscovered the re-
sult, and extended it to (1nfin1te-dimensiona1) Hilbert spaces. The key problem in this all
is to extend a finite domain of a non-expansive mapping on R™ by just one point. The rest
then follows from the compactness of spheres w.r.t. the weak topology, the finite intersection
property for compact sets, and the Lemma of Zorn. The most efficient proof for the key result
(solving the key problem) has been given by Schoenberg [19] in 1953.

The same matters can be studied for monotone mappings. Of course, also for strictly
monotone mappings, and also for mappings, satisfying a Lipschitz condition; but these all
follow from the non-expansive case. For monotone mappings the key-problem, extending a finite
domain by just one point, has first been solved in 1962 by Minty [13]. Much more cannot be
done here, in general the domain of a monotone mapping does not have to be extendable.

In 1962 Griinbaum gave a tricky and short proof of a result that entails the key results
menticned above both for the non-expansive and the monotone case [7]. Eversince many genera-
Tizations have been obtained. In this paper however we mainly restrict our attention to the
key problem.

Non-expansive and monotone mappings find applications in the solvation of equations,
such as nonlinear integral equations, differential equations, and they play a role in the theory

of variational inequalities (for a survey and references see [2, 16, 171).

The key problems concern the solvation of inequalities. In the next sections we show
how to formulate them as optimization problems, to be able to derive them from the basic
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theorems of optimization theory. To this end all but one of the inequalities are handled by an
induction hypothesis, and then the remaining one is handled by optimization.

7. THE KEY PROBLEM FOR NON-EXPANSTVE MAPPINGS

By x'y we denote the usual inner product on R", and by lIxll = vX™x the usual Euclidean
norm. For ¥ = IR™ we denote by conv(V) the convex hull of V, by int(¥) the interior of V, and
by rint (V) the relative interior of V (i.e. the interior of V w.r.t. the affine hull of V).

For the key problem we consider a mapping G from a finite n-point subset {aU, ...,an_l}
of R", to IR, where we write bj for G(aj) for all j, and we assume G is non-expansive, i.e.
1G(x) - G(y) I < lx-yll for all x,y in the domain of G. For simplicity one may assume al #al
if i # j. The issue of this section is whether the domain qf G can QE extended to some ar-
bitrary point a, i.e. whether there exists b such that Ib=bd | < lla-a’|l for all j. MWe shall
make use of induction to show that such a b always exists. To show this for n = 1 is simple,
take b = b%. Next we make, for some n € N, the induction hypothesis, that for every n-point
set, and every non-expansive G on it, the domain of G can be extended by one arbitrary point.
And we now have to show for some non-expansive G with n+l-point domain {a% vees a, where
bj ] G(aj) for all 0 < j <n; and for some arbitrary a, that there exists b such that
Hb-bjllﬁ Ha-ajn for all 0 <j<n. To this end we define, for every 1 <j <n, f.: R" > R
by £(y) = ly-bJ 1% - la-ad |, and we define F : R" = R by F(y) = 1y-° 1%, for a1y, our
task is to find a b such that fj(b) <0 forall 1< j<n, and F(b) < Ha-aouz. Therefore we

consider the optimization problem :

Find y € R" with : f5(y) <0 for all 1< J <n; F(y) min !

The induction hypothesis guarantees that the set of feasible peints V, i.e.
V= {y € mm| fj(y) <0 for all 1 <j <n}, is non-empty. Also it is closed and bounded, so
the continuous F has a minimum on it. For b we thus take a feasible point where F is minimal.
(Since the Fj's are (strictly) convex, and F is strictly convex, this b is unique. It is the
projection of b9 on V. We shall not make use of this.) Remains to be shown that
F(b) < lla-a® P

letd:={j | 1<ji=<n, fj(b) = 0}, the indices of the "active restricting" fj's at b.
Let, for f : R" 4 R differentiable at y,Vf(y) denote the gradient of f at y. Now we can
apply a basic result of cptimization theory, the so-called "Fritz John necessary conditions"
must be satisfied in b, i.e. there must exist non-negative real numbers (pj)jEJU{O}’ summing
to 1, such that DUVF(bl + szJpjvfj(b) = 0, see Thecrem 5.1.3 of [1]. This means
po(b—bo) + Ty pj(b-b‘]) = 0. Once this is established, the supposition IIb°-bll > lla%-all will
give a contradiction. To see this we assume a = b = 0, which can be obtained by translating
{ao, — a",a} and {bo, eingasd bn, b}, or by substituting ajI = aj - a for aj= and 0 = a-a for
a; and bjl = bj-b for bj, and 0 = b-b for b; for all j; and by then Teaving out dashes. Let

us resume what we have now.

W know 169 = lal i for a1 3 € 3, and (suppose)Iib° (1) 11a%)l (so b° £ 0). Also
ibi-bdy < nat-ady for al1 i,5. Application of the formula x'y = 120118 + Ny 18 - x-yIF)
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(2) g

A - .
mwﬂsﬂbj>ﬁaJﬁrM1Ljed;wmbww>a ]

32 i3 (3) 5.2 a® for all j € J. From this we also
see lIZ; .2 = X, . .PsDs
JEJDJ If 21’JEJP1DJa a~ g szedpjb .  Furthermore we know Py * zjedpj =1,

0 _ _ j - . 0,2 0 j
pOb = Zjerjb . Now combining this all we get pd\b = = (pob )'bo = (-z pij)'bD-Q (by(2))

Jed

T . .
(-):J.E‘Jpja‘j) a <uzj€JpjaJ Ian <{by (3)) szﬂpiju 1% < (by (1))

J 0 0,2 : 0
T, P: = i
I JEJpr b= pOHb II". Since 6" Il > 0, we know that, if Py > 0, then Hpobou = szedpij|I> 0

so the last inequality is strict, otherwise Py = 0 so at least one P4 is positive, and the
first inequality is strict. Thus we always have pOHbDII2 >’pGHbO\@, i.e. a contradiction. We
have demonstrated :

Theotem 2,1, (Key result for non-expansive mappings.)

If G is a non-expansive mapping from a finite subset of R" to R", then its domain can
be extended by any arbitrary point under preservation of non-expansiveness.

3. THE KEY RESULT FOR MONOTONE MAPPINGS

In this section we consider a mapping M from a subset of " to R", that is monotone,
i.e. [M(x) - M(y)]' (x-y) =0 for all x and y in the domain of M. Note that for Rl this
means M is non-decreasing, thus monotone. And we assume here that the domain of M is a finite
set, such as an n-point set {ao, O an'l}. We write bj for M(aj), for all j. Then the key
problem is, whether the domain of M can be extended to some arbitrary a, under preservation of
monotonicity of course. I.e., can a b be found such that (a—aj)'(b—bj) =0 for all 0<j<n-127?
The key result says it can.

For n = 1 this is obvious, take b = bD.

Next make the induction hypothesis that the
key result is proved for some n € IN, every n-point domain can be extended. Then we prove

the same for n+%. Thus let M be a monotone mapping with n+l-point domain {aO, L
where b9 := M(ad) for all j, and Tet a € R". Does there exist b such that (a-aj)'(b-bj) =0
for all j ? Ifa-= a’ for some j one takes b = bj. So we assume a # aj for all j. Also we
assume a = 0. This may be done since translation of {a, aO, ..., a"} does not affect the pro-
blem. We may replace a, and every ad, by 0 = a-a, and aj-a.

Let A be th? mxn matrix with columns al, ..., a", and Tet v be the element of R" with
j-tg cocg?igate b? ad for 211 1< J<n. Since a =0, we must find b such that b'A < v' and
b'a” <b” a”. (We consider vectors as columns, and denote the transpose by a dash. We write

X<y if X5 <;yj for all j.) To this end we consider the optimization problem :

Find y € " such that : y'A< V', —aoly max !

By our induction hypothesis the set of feasible outcomes {y € Hf“\ y'A<v'} is non-empty. If
the above optimization problem is unbounded, i.e. the maximum is e, then certainly a feasible
y can be found such that y'a” < bolao, and we can let b be such an y. So assume the problem
is bounded. Then the sofution set W := {y € ]Rm\ y is a feasible outcome where —ao‘y is
maximal} is non-empty. Let b be an element of this set, Our hope is that —ao{b = -aGIbD.

The dual of the above, "nrime", problem is :
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Find x € R such that : Ax = —ao, x 20, v'x min !

For th1s duaT prob]em we app]y the fact that (a -a )' (b1—b3) >0, i.e.
a' b + aJ bJ >-aT bJ +al b1 for all 0 < 1i,J <n, we define Xg = 1, and get for any feasible

XL
n 2 it AR T L NN S B L
(£ gx;) (Fagrgad B3 = £l (@10 m pepxgal b+l b)) 2] aital b 4
T D R Py
Tii%i%; (a’ b +a' b') = ZT -0 j:Oxin(a b’) =

‘ Jy - (a0 Vs pdy =
(21 —0%i? ) (=" 4 Dbe )= (a7 + Ax) (ijoij ] = B

O | = 1
We conclude ZLUxJ(aJ bJ) =0, i.e. v'x = —aO bD. Thus the value of the dual problem is

=> —aDIbO. By the known duality theorems (see for instance Chapter 17 of [5]; many other texts
require that rank A =m, and n >m; this however is not essential for the duality Theorems),
the value of the dual problem equals that of the prime. Thus —aolb = —aO'bO, and we have
reached our purpose : aDJb = aDIbO. Thus the key result is proved. It is also a known thing
that a non-empty solution set W for the prime problem is bounded if and only if (a=) 0 € U : =
int conv {an, ceos @'t [If for e >0 B (0), the closed sphere with centre 0 and radius 2e,
is contained in U, then, for y € W, llyll is bounded since (ey/llyll)' y < max {aD bD, al‘b1
anlbn}; in the other case 0 is on the boyndary of, or outside of, U, and y + aw € W for every

y € W, A >0 and existing w # 0 with w'a) <0 for all j.1 Thus we get

3 sees

Theorem 3.1.

If M is a monotone mapping frem a finite subset of R" to R", then its domain can be
extended to one arbitrary point under preservation of monotonicity. The set of possible image
points for the new point in the domain is bounded if and only if the new point is in the in-
terior of the convex hull of the original domain.

Proof
The boundedness of the set W' of possible image points is characterized in a way iden-

tical to the boundedness of the solution set W above,just replace W by W' in the reasoning
between brackets [...] above. Boundedness, for points in the interior of the convex hull, can
also be obtained by Theorem 1 in [18]. The rest has been done above.

4. RESULTS DERIVED FROM THE KEY RESULT FOR NON-EXPANSIVE MAPPINGS

The following theorem is a strengtening of Theorem 2.1.

Theonrem 4.1.

If G is a non-expansive mapping from a subset S of a Hilbert space E, to a Hilbert
space F (e.g. E=F = IRm), then there exists a non-expansive extension G' of G, G' : E = F.

G' is continuous.

Proof
First we show that the domain S can be extended to include cne arbitrary point a € S.

For this a we must find b such that IIb - G(s)lI=1lla - s|l for all s € S, i.e.
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bey := nsESBHa_SH(G(s)), where BE(X) denotes the closed sphere with centre x and radius e,
for € > 0. If such a b would not exist the intersection V would have to be empty. But since
all involved spheres are compact w.r.t. the weak topology, by the finite 1ntersect1on property
there then mus} be a ginite number of elements s, ..., s" of S, such that n" 1 j (5 })=0
The points a,s , ..., s" are contained in an n+l-dimensional subspace, TSOMinh][até %

(if necessary by adding "artificial" dimensions). Also G(s 1), - G(Sn), in F, are contained
in a finite-dimensional subspace F' of F; by adding artificial dimensions this F' can be thought
to be contained in an n+l-dimensional Hilbert space, wsomorph1c to m”*l. By Theorem 2.1 in
this space a point b can be found such that Ilb- G( Ny <lla-s? Il for all j. But then the pro-
Jection b' of b on F' must be in nJ 1 Ha s ”( (s )), contradicting the emptyness of this set.

We conclude that the domain of G can always be extended by one peint. That it can also be
extended to the whole of E, is now a straightforward consequence of the Lemma of Zorn. If E

is separable this extension can also be done constructively, by extending the domain first,
point after point, to a denumerable dense subset of E, and then by continuity to the whole of

E. Continuity of G of course is straightforward. 0

The above result has first been obtained in [22]. In more general contexts it does not
have to be valid. As an example think of a not-complete inner product space E, and Tet F be
its completion. Let (bJ)j:1 be a sequence of elements of E, converging to b € F, such that
b ¢ E. And let G : {bj EF | 1<]<e}»E be identity. Then G cannot be extended to the
whole of F, because it cannot be extended to b,

Also in Banach spaces that are not (isomorphic to) Hilbert spaces things can go wrong.
For instance Tet E = F = RY, with norm H(xqs «oos xg) 0= sup (%], %51 Wy %2, so E
and F are the product space of’IR2 with supnorm and IR™ with Euclidean norm. Eet g(—l,0,0,D)
= (0,0,-1,0), &(0, v2,0,0) = (0,0,0,1), G(1,0,0,0) = (0,0,1,0). Then no image point can be
found for (0,1,0,0). (Without (0,/2,0,0) in the domain, for 6(0,1,0,0) only (0,0,0,0) could
have been chosen.)

But Theorem 4.1 can, for instance, be proved for IR™ with the supnorm. For more
results see [12,6,20,15,4].
Deginition
A mapping F satisfies a Lipschitz condition if there is v > 0 such that
IF(x) = F(¥) Il <+ylx-y Il for all %,y in the domain of F.
Deginition
A mapping F from a subset A of a Hilbert space E, to E, is strictly monctone if

(x=y)' (F(x) - F(y)) >0 whenever x # y.

The following theorems are straightforward applications of Theorem 4.1.

Theorem 4.2.

If a mapping F from a subset of a Hilbert space, to another Hilbert space, satisfies
a Lipschitz condition, its domain can be extended to the whole Hilbert space, preserving the
same Lipschitz condition.
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Proof

Let v > 0 be such that IF(x) - F{y) Il <vlx-yll for all x,y in the domain of F. Define
G := F/y, then G is non-expansive. Thus G can be extended tc a non-expansive G' with the
whole Hilbert space as its domain. Then F' := yG' yields the desired extension of F. O

Theonen 4.3.

Let F be a monotone mapping from a subset A of a Hilbert space E to E, and let y >0
exist such that (F{x) - F(y))' (x-¥) =+vlIF(x) - F(y)H2 for all x,y € A. Then there exists a
monotane continuous extension F' of F, with domain E, such that (F'(x) - F'(y))' (x-y) =
AIF (%) - F'(y)IP for all x,y € E.

Proof

Define G := 2yF-Id (Id is identity mapping). Then G is non-expansive. Extend G to a
non-expansive G' : E - E, and then define F' := (' + Id)/2y. Since G' is continuous, F' is
too. C
Theorem 4.4.

Let F be a strictly monotone mapping from a finite subset A of a Hilbert space E 6! E-
Then there exists a monotone continuous extension F' of F, with domain E.

Proof
Define y := min [(x-y)' (F(x) - F(¥)I/IIF(x) - F(y)!@, which is positive since A is
XEYER
finite. Then apply Theorem 4.3. u|

The above theorem, for -F, has found application in [8]. OF course, in the above,
substitution of -F for F gives analogous results. Also the results can be extended to complex
Hilbert spaces.

A further subject of investigation may be mappings satisfying the inequality
(x-y)" (F(x) - F{y)) = +lIF(x) - F(_y)ll2 for v <0. (For y = 0 we are in the monotone case,
see sections 3 and 5.) For y <0 new situations occur, corresponding, by means of the transfor-
mations in the proof of Theorem 4.3 , to mappings G satisfying lix-yl < IG(x) - G(y)l; corres-
ponding, by taking inverse function, tc the problem to extend injective non-expansive mappings
to bijective ones. Of course here the key problem is simple and non-informative; extending a
finite domain by one point is achieved by simply taking the new image point sufficiently far

away from the origin.
5. RESULTS DERIVEP FROM THE KEY PROBLEM FOR MONOTONE MAPPINGS

A resylt such as Theorem 4.1 cannot be derived for monotone mappings. For instance
let, in IRl, A={1-1/j | 1 <j <w}, and M(1-1/3) = J for all j. Then the domain of M cannot
be extended to 1, M(1) would have to be larger than any natural number. The key result is va-
1id in any Hilbert space, because any finite domain of a monotone mapping, and its image, is
contained in a finite-dimensional subspace, within which the key problem can be solve. Further-
more we have the following result.
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Theohem 5.1,

Let M be a monotone mapping from a subset A of R", to R". Then M can be extended to
a monotone M' with domain A U [rint conv(A)].

Proof

First we consider int conv(A). Let x € int conv(A). We want to extend the domain of

Mto x, i.e. findy in n V¥(a), where for a € A we define V{a) := {z € R" | (a-x)' (M(a)-z) = 0}.
aeA

By Theorem 3.1 every finite number of V(a)'s has non-empty intersection. The non-emptyness

of n V(a), and thus the existence of an y as desired, is guaranteed if we can find a finite
aeh

subset {al, ..., a"t of A such that ng:l V(aj) is bounded. (Then we can intersect every V(a)
with this closed and bounded, thus compact, set, and apply the finite intersection property
for compact sets.) To this end we take al, S a" € A such that a € int conv {al, Sy ay,
For instance these al, S a" can be obtained in two steps. In the first step one takes a
small polytope in int conv(A), with a in its interior. Then, according to the Theorem of
Carathéodory, each vertex of this polytope is convex sum of m+l elements of A. One then takes,
in the second step, as {al, S an} the union of all these m+l elements of A. Then Theorem

3.1 guarantees boundedness of “2:1 v(al).

Thus we can extend the domain of M to any arbitrary x € int conv(A). It is a straight-
forward consequence of the Lemma of Zorn to extend M thus to int conv(A). Ff int conv(A) is
empty, but rint conv(A) is not, then conv(A) is contained in a "minimal" affine subspace. We
then project every M{a) on this affine subspace, and use the above reasoning to extend M
within this subspace. O

The above Theorem can also be obtained as a corollary of Theorem 2 at page 253 of [14].

Theorem 5.2,

If M is a monotone mapping from a finite subset of an, to R"

a monotone M' : R - r".

, 1t can be extended to

Proof

First we extend the domain of M, point by point, by means of Theorem 3.1 , (and the
denumerable version of the Lemma of Zorn) to a denumerable dense subset Q of IR™, then by
Theorem 5.1 to the whole of R™. Note that by the separating hyperplane Theorem (int) conv(Q)
must equal R". ’

The above result can be formulated for any Hilbert space E, instead of R". One then
first extends the domain of M to the finite-dimensional 1inear subspace containing the finite
domain and image of M, by the above Theorem. MNext M is extended to the whole E, an arbitrary
element of E gets assigned the same image as its projection on the finite-dimensionnal linear
subspace.

An extension as in the above Theorem certainly does not have to be continuous, contrary
to that in Theorem 4.4.
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fs an example we consider 2. F has a four point domain, M(0,0) = (0,0); M(0,1) =
(-1,0); M(1,0) = (0,1); M(1/2,0) = (0,2). If we concentrate on the first three domain points,
we see M rotates these three points around the origin by 90 degrees to the "Teft". Indeed it
can be demonstrated that any monotone extension of M must rotate the whole interior of the
triangle of these three points by 90 degrees to the left, around the origin. Thus to
(1/2, 1/3) must be assigned (-1/j, 1/2) for every 3 <j € N. If we now consider the fourth
origin point {1/2, 0), we see the extension never can be continuous.

In the Titerature also more general settings are considered. For instance usually more

general bilinear forms are considered than the inner products, such as the natural pseudo-inner

product when the image space and original space for M are a conjugate pair of reflexive Banach
spaces. See [14, 3, 16, 17]. Since the "key problem" of this paper only has to deal with
finite~dimensional problems, our results can be translated to the latter context. Also more
general subsets of the Cartesian product ExF of two spaces, than just (graphs of) functions,
are considered. Our results on the extension of domains are special versions of the problem
of adding pairs of points to such subsets, thus showing they are not “maximal". See [13, 3,
18, 117. . L4
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