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CONTINUOUS EXPECTED UTILITY
FOR ARBITRARY STATE SPACES

Peter P. WAKKER, Nijmegen, The Netherlands

ABSTRACT

We characterize subjective expected utility maximization with continuous
utility, extending Wakker (1984 a,b) to arbitrary, e.g. infinite, state
spaces. In Savage (1954) the main restriction, P6, requires structure for
the state space. Our main restriction, requiring continuity of the utility
function, may be more natural in economic contexts, since it is based on
topological structure of the consequence space, structure that usually is
present in economic contexts anyhow. Replacing the state interpretation by
a time interpretation yields a characteriiation for dynamic contexts.

1. INTRODUCTION

A really satisfactory characterization, with appealing conditions that are
both necessary and sufficient for Subjective Expected Utility (SEU)
maximization in the context of Decision Making Under Uncertainty (DMUU;
with "unknown" probabilities) is not yet available in literature. SEU
provides however the most used approach in DMUU. Hence derivations (giving
only sufficient conditions) are useful. Derivations and characterizations
are necessary in justifying (verifying) or criticizing (falsifying) the
use of SEU-models, and in showing their Timitations.

The most known derivation of SEU maximization is provided by Savage
(1954). His main restrictive assumption is P6, which requires structure
for the state space, e.g. this must be infinite. For the consequence space
there are hardly restrictions, mainly will the utility function have to be
bounded, see §14.1 in Fishburn (1970).

In economic contexts the consequence space is usually endowed with
structure, e.g. it is ]2T , S0 topical structure then is present. Thus here
derivations of SEU maximization, employing this structure, may have value.
Such derivations are Wakker (1984a), requiring consequences to be real
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numbers, and Wakker (1984b), giving the extension to the case where the
consequence space is any connected topological space, e.g. (a convex subset
of) R". Their main restrictive assumption requires the utility function on
the consequence space to be continuous.
the state space must be finite. This last restriction is removed in this
paper. We do share with Savage (1954) some boundedness condition, in that
Qur utility function

They have a further restriction:

we do not handle all unbounded alternatives (="acts").
may be unbounded though.

Let us emphasize that in our set-up probability measures are finitely
additive, by which we mean that they are not necessarily countably additive.
The latter is considered a special continuity assumption, see section 6.
For surveys of SEU-maximization, see Fishburn (1981) or Schoenmaker (1982).

We shall not use lotteries in our set-up. With lotteries, a wide range

of results is available in Fishburn (1982).

2. ELEMENTARY NOTATIONS AND DEFINITIONS

Let I be a set, called state space, with generic element i, a (possible)
the others
A decision maker T is uncertain about which of the states is

state (of nature). Exactly one element of I is the true state,
are untrue.
true.
Let C be a connected topological space, with generic elements a,B,....
For topological definitions, see Kelley (1955). A reader, not interested in
topological details, may simply take in mind that C is (a convex subset of)
R™. This satisfies all topological requirements, made in this paper.
Elements of CI,

We prefer this term to the, for DMUU more usual,

the set of all functions from I to C, are called
alternatives. term "acts".

An alternative x has i-th coordinate Xi» i.e. assigns X5 to state i; x can

be imagined to yield consequence X if i is the, to T unknown, true state.
For « € C, @ is the constant alternative, assigning « to every i.

To stay close to probability theory we generalize our set-up by
introducing measure-theoretic structure. We assume that a field A on I,
with generic elements A,B, called events, and a field D on C , with
generic elements C, D, are given. Here D is assumed to contain all open
and closed, and all one-point subsets of C. A reader, not interested in

measure-theoretic details, may simply take in mind that A contains all
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subsets of I. Then all measure-theoretic requirements, made in the sequel,
are satisfied, and can be ignored. E.g. the set F, introduced in the
sequel, then simply is CI. This also shows that the introduction of general
measure-theoretic structure really is a generalization of the set-up. We
shall in the sequel restrict our attention to (subsets of) F c CI, where F
is the set of all alternatives x that are (D-A-)measurable, i.e.
{i|x(i) € D} € A for all1 D € D. '

We consider a binary relation = on F, the preference relation of T.
We write x » y for (x,y) € >, meaning that T thinks x "at least as good"
as y. We write x <y fory > x, x <y ory>x if y > x and not x > y,
X~y if both x » y and y > x. We say » is a weak order on a subset F' of
F if it is complete and transitive on F' (meaning x >y or y » x; and x > z
if both x =y and y = z; for all x,y,z € F ').

relation on F'.

Then =~ is an equivalence

A partition P of I is a finite array (A.)j21 of events, mutually
disjoint, with union I. We then write EJ =1 &: 1A for the alternative,
assigning o5 to every i € A
not designate an addition operat1on or skalar multiplication, since C does

This is just a sugge5t1ve notation, and does

not have to be endowed with such operations. Any alternative is simple if
it has a finite range. A simple x € F can always be written as above. F°
By Fb we denote {x € F | u,v € C exist s.t.

x >uand v > x for all i}. Its elements are called strongly bounded.

If > is a weak order then F° c Fb Note , if I is N, C = 10,11, X; = /4,
then x is bounded in the usual sense, but not strongly bounded.

is {x € F | x is simple}.

NOTATION. For any o € C, x € C1, and A< I,
assigns X; to every i ¢ A, and o to every i € A.

X_pe 1s the alternative that

Note that x_jo € F(FS;Fb), whenever A € A, x € F(FS;F and > a weak order).
Usually we write i for {i}, thus x_;a = X_;;ya.

DEFINITION 2.1 An event A is fnessential ifx ~ y whenever X5

= ¥4 forall
i € A%, and x,y € F°. Otherwise A is eseential.
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3. FURTHER DEFINITIONS

The following property is an extension of the CCI property, introduced in
Wakker (1984a), and is the main new tool in our analysis.

DEFINITION 3.1. Event A is Cardinally Coordinate Independently (CCI)
related to event B(w.r.t. =) ifv_jy >w_,5 whenever x_gu <y gk,
X_p¥ > ¥_gb» and v_pa > W_p8, for all simple X,¥,V,W.

The idea, in short, is that from X_ga < y_BB, X_gY > y_BS, we should
conclude that the "strength of preference" (not defined formally, further
elaborated in section 3 of Wakker (1984a)) of v over & is at least as large
as that of « over g, for as far as B is concerned. For A to be CCI related
to B, A must follow B in this. Thus, if v_ja > w_pf, then certainly not
should v_y < w_,68, for weak orders >.

The CCI relatedness relationon A certainly does not have to be
symmetric, not even if > satisfies nice properties, as being a weak order.
For weak orders >, every inessential A is CCI related to every B € A. Under
"usual" circumstances (such as continuity) CCI relatedness is transitive,
and A is CCI related to an inessential B iff A is inessential.

DEFINITION 3.2. We say » is simply-ccntﬁnuous if, for any partition

(A, )J 1 and any alternative x = ‘IA ,we have closedness of

2551 3
| n
agsenmsag) €0 | £5ly gl > 43 and {(31,...,%) ec" | il ajlpy <

w.r.t. the product topology on gt

One may also formulate the above as: the binary relation > on Cn,
defined by (m1,...,un) p (81,...,8n) if zj21 uj1A_ > Zj21 BJ1A , must be
closed w.r.t. the product topology. This 'finite-dimensional® coﬂt1nu1ty
assumption is not unusually strong since a finite-dimensional product
topology is not coarser than other usual topologies. If C is an Euclidean
space then the product topology is equivalent to the usual Euclidean
topology, or the sup-norm topology. If C is a metric space, then the
product topology is equivalent to the sup-metric topology, which is used
for instance in Koopmans (1972).

The main topological complications occur for infinite dimensions.
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Then the product topology is coarser than other usual topologies. Continuity
w.r.t. this then is too strong an assumption for our purposes. It would
imply countable additivity of the probability measure P to be derived yet,
and boundedness of the utility function U to be derived. In section 5 we
shall have to deal with infinite-dimensional aspects, for that we use:

I

DEFINITION 3.2. We say » is eonstant-continuous on F' < €7 if
|

{a €C | a>x}and {a €C | a<x}are closed for all x € F'.

Again this assumption is fairly weak, and implied by the sup-metric
continuity assumption of Koopmans (1972), also by continuity w.r.t. the
producttopology on CIQ In fact the only consequence of it, that we shall
use, is that there exists y s.t. y =~ x, whenever a > X > g for some

a.p € C.

4, RESULTS FOR SIMPLE ALTERNATIVES

LEMMA 4.1. Let there not exist two disjoint essential events. Let C be
topologically separable and connected. Then are equivalent:
(i) There exists a finitely add1t1ve probabi]ity measure P on A, and a
c02t1nuous U:cC-~ R .. Sate Zs _1 o ‘IAJ > Ek 1 Bk1Bk
P(A )U(a ) > Ek 1 P(Bk) (Bk) for all a1, ..,B

J =1
(ii) > is a swmp1y -continuous weak order on F°.

£

Furthermore, if x =y for all X,y € F5, then U must be constant, and
P is arbitrary; and if x >y for some X,y € F5, then P(A) = 1 for all
essential A, P(A) = 0 for all inessential A, and U may be replaced by
another continuous U iff U= ¢ol for a strictly increasing ¢; whenever
(i) applies. Finally, every event is CCI related to every essential event
if (i) applies.

PROOF. (i) = (ii) is straightforward. So we assume (ii), and derive ().

_ There exists no essential A iff x = y for all x,y € F>. In this case we

must let U be constant, and P any arbitrary finitely additive probability
measure. So suppose now (ii) is valid, and there exists an essential event.
Then I itself is essential. For any A,Ac at least one must be essential,
otherwise x =~ y would follow by comparance to z, equal to x on A, to y on
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Ac, for all x,y € F°. We have assumed not both A and A are essential. Thus
exactly oneof them is essential. If A and B are inessential, then so is
AU B, because for all x,y € FS with X: =¥ vi € A n BC, X~y follows
from comparance to z, equal to x on A and AE n B®, and equal to y on A°.
Thus the collection of all essential events is an "ultrafilter", (i.e. A,B
essential = A N B essential, A essential AC inessential, I is essential).
Thus we define P(A) = 1 for all essential A, P(A) = 0 for all inessential
A. This yields a finitely additive probability measure P.

Now we define U. We define »' on C by ¢ >' g if a 3= B. Then >' is
continuous, and by section 4.6 of Debreu (1959) we get a continuous
U:C+ R such that a »' g« U(a)2 U(g). This U can be replaced by any
continuous U of the form gol, ¢ strictly increasing.

Now (1) 1s proved if we demonstrate that
i1 PAUG,) > 5.k P(BOUCE,).
of A1 : AS exact]y one is essential, say A1. Thus x = ET. Say ana]ogohs1y
Y ~ By. We have: x >y = oy > By = U(a1) 3_U(B1) - zjf1 P(AJ)U(uj) =
b2

X =252y oy i'ag >l Blg, =¥ = I;

oy P (BIUGs,).
The remark "Furthermore...." follows from the above exposition, the
remark "Finally...." follows by substituting (i) in Def.3.1.
|

LEMMA 4.2. Let > be a simply-continuous weak order. Let every event A be
CCI related to every essential event B. Let P1 = {Al""’As} be a

partition with at Teast two essential events. Then there exist nonnegative
(p?).s1, summing to 1, and a continuous function TP - .

5% Sl = o Bilgaer 23y pj U (ag) 2 2521 B yla ). The pls
are uniquely determined and U1 is "cardinal", i.e. caane reglaced by

U iff real « and positive oexist s.t. U=1 +cU.

s.t. I,

PROOF. Define »' on c" by (a. )J 1 =! (s ) -1 if E 1 aJ1A > I _1 B 1

Then »' satisfies all requ1rements of Theorem 5.1, (11) ofJNakker (1984 b),
the extension of Theorem 3.1 of Wakker (1984a). This then yields the first
result of the above Lemma. The uniqueness results are standard, and can be
obtained by adaption of those in and after Theorem 2.1 of Wakker (1984a).
Let us emphasize that no topological separability is needed here. This
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is becauge the proof of Wakker (1984b) uses the strengthenings in Chapter
6 of Krantz et al. (1971) of Theorems of Debreu (1960) and Blaschke and
Bol1 (1938), leaving out topological separability.

i i 4.2, P =
LEMMA 4.3. Let, under the assumptions and notation of Lemma 4.2,

; 2
{((A );i1)3 1} be a part1t1on s.te A = U, J A4 I for all j, so P
f1ner than P1. Then P also has at 1east two essent1a1 events. The
nonnegative ((P );31) e summing to one, and Uz, yielded by app11cat1on
1 _ u
of Lemma 4.2 to P2 are such that py = Ek P, for all j, and T

for real t and positive c.

1

t1 t,
PROOF. If e.g. A and A, are essential, then both (A1k)k | and (AZk)k 13
must contain at 1east one essential event. So we can indeed app1y Lemma 4.2

t =

to P2, yielding {(ka)k 1)3 jand U, Butnnow, defining pj : %k=1 :ﬂk o
all j, and U = Uy, we get an array (pj)j:1 and an U, that satisfy the
requirement for (pt)jf1 and U1 in Lemma 4.2. Hence by the uniqueness
result of Lemma 4.2 we get pg = pj for all j, and (U=) U2 =1+ aly for

real Tt and positive o.

: 3
LEMMA 4.4. Let, under the assumptions of Lemma 4.2, P~ = {B1,...,Bt} be a
partition with at Teast two essential events. Let application of Lemma 4.2
give (p?f}.t1 and U3, Then T — oU1 for real t and positive g, and if
J'J=

1_ 3
By = A1 then P = Py
PROOF. Define P% = ((A; n B 1)531s and apply Lemna 4.3.

THEOREM 4.1. Let C be topologically separable if I is essential and no

two disjoint essential events exist. Then are equivalent: -

(i) There exist a finitely additiue probabilii? measure P, and a continuous
functton U: ¢~ R, s. t EJ 125 1 > Ek 1 Bk1B
= 2 P(A U(u ) > Ek 1 P(B U(Bki for all aps- "’Bt'

(it) > is a szmply—eonttnuous weak order on £ , and every event is CCI

related to every essential event.
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Furthermore, if (i) applies, then we have the following uniqueness results:

(1) If I is inessential, then P is arbitrary and U can be any constant
funetion.,

(2) If I is essential, but no tuo disjoint assential events exist, then P
asstgns 1 to every essential event, 0 to every inessential event, and
then U can be replaced by continuous U iff 7= Yol for some strietly
increasing ¢.

(3) If two disjoint essential events exist, then P is uniquely determined,
and U can be replaced by U <iff U = t + ol for real 1 and positive o.

PROOF. As always, (i) = (ii) is direct, so we assume (i1), and derive (i),
and the uniqueness results. For the case (1), I inessential, everything is
straightforward. The case (2) can be handled by Lemma 4.1. So throughout
this proof we assume we are in case (3). There exist two disjoint essential
events A and A', thus A and A are essential. Any partition, finer than
{A,AC}, now has at least two essential events, one contained in A, one in
A%, For any event B we get a unigue probability P(B) = P(BnA)+P(BnA®) from
application of Lemia 4.2 to Pl = {AnB,AnBC,ACnB,ACnBC}. Applying Lemma @
4.2 to {A,A%} gives @ utility function U. Now all desired results follow
from Lemmas 4.3 and 4.4, but for brevity we do not spell out the details.

DEFINITION 4.1. We say » is Coordinate Independent (¢I) on F' < cl if
X >y =V >wwhenever x,y,v.w € F', and an event A exists such that

= . = = = €
X0= Yo Vv, =W, oon A, X; = Vs ¥5 =Wy on A-.

This property is known under various names as "independence”, "sure-thing
principle”, "separability".

LEMMA 4.5. Let » satisfy the assumptions of Theorem 4.1, and (i) and (i1)
there. Then > is CI on F°, and x > y for all X,y € F° with X; » y; for
all i € I, ! :

PROOF. Straightforward.
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5. RESULTS FOR GENERAL ALTERNATIVES

In this section we want to extend the representation of Theorem 4.1.(i) to
more general alternatives, mainly those of Fb, the set of all strongly
bounded alternatives x (there are o, 8 such that a < ii < B for all i). We
have in mind an expected utility representation by means of some sort of
integral of U w.r.t. P. The approach to integration w.r.t. only finitely
additive measures of section I.III.2 of Dunfbrd and Schwarz (1958) or
section 4.4 of Bhaskara Rao and Bhaskara Rao (1983) is not well suited for
our purposes because we see no easy way to reformulate their properties

of P and Uox in terms of our primitive, i.e. >. The less general Stieltjes
type approach, as exposed in section 4.5 of Bhaskara Rao and BaskaraRao (1983)
dves serve our purposes. In this, an integral, notation EU, of a bounded
measurable function Uox on I is obtained as a "lower intergral”, equal to
sup {EU(F®) | £5 .1+ R simple, f° <P Uox}, with <P pointwise dominance,
i.e. 5 <® Uox whenever (i) < U(xi) for all i € I; or as an upper
integral, which is analogous and yields the same result for bounded
functions. If Uox is bounded below (above) but unbounded above (below),

one may still define the lower (upper) integral, and see if this is useful.
0f course, we have in mind to Tet the 5 above be of the form Uox® for

x> € F°. We handle pointwise dominance as follows:

DEFINITION 5.1. We say » is pointwise monotone on F' < ol if x > y for all
X,y € F' for which ?; > V; for all i € L.

This property is analogous to A9 of Suppes (1956), C1 of Ferreira (1972),
and section IV.2 of Toulet (1984). An example to illustrate that pointwise
monotonicity cannot be left out in Theorem 5.1 below, is the case where

I =10,11,C =R, ABorel og-algebra, U is identity, P is Lebesgue measure,
and > is represented by a linear functional V from F to R, with

V(1A) = P(A) for all events A. Then > is a constant- and simply-continuous
weak order that even is CI. Every event is CCI related to every essential
event . Yet, without pointwise monotonicity we are still completely free
to let V assign to x, with Xj = i for all i, any real number, such as -1.

LEMMA 5.1. If » is a constant-continuous pointwise monotone weak order on
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b
F-, then for every x € Fb there exists « € C such that x =~ a.

PROOF. {8 € C | B> x} and {8 € C | B < x} are closed by constant-
continuity, and nonempty if x € Fb, because then [y > X5 > v for all 1]
and pointwise monotonicity imply u to be inthe first, v inthe second, set
above. These sets have nonempty intersection by connectedness of C. Let o
be in this intersection.

We can now simply, for x € Fb, take o as above, and define EU(x) := U(e),

with U as in Theorem 4.1. Then x > y < EU(x) > EU(y). For x = £.", .1

FUx) = 2, P(A)UCay). B he fon E0 can'bed.
=1 as)e eyond we shall see that the function EU can be

cons1dered an 1ntegra1 on all F

THEOREM 5.1. Let C be topologically separable if I is essential, but no
two disjoint esseniial events ewist. Let > be a simply— and constant—
continuous, and pointwise monotone, weak order on Fb, such that every
event is CCI related to every essential event. Then there exist a finitely
additive pr?bability measure P, and a continuous U : C + IR, such that for
all 2,y € F, xmy = [ Ulz,)dp(i) > [ Uly )dP(i), with these integrals
well defined.

PROOF. Let P,U be as yielded by Theorem 4.1. Let x € 2, 5> X > v for all
iel. let o~ x (Lemma 5.1) and EU(x) = U(a). We must shbw th;t EU can be
considered an integral. If u =~ v, then by pointwise monotonicity x =~ u, so
a =~ u, and everything follows. So suppose § > v. For notational convenience
we shall suppose that U(u) = 1, U(v) = 0. We now construct a sequence of
pairs of simple functions (xm,ymxnza, 5.ts

U(xi) - 1/m 5_U(xT) E_U(X1) 5_U(y$5 g_U(xi) + 1/m for all i,m. For any m,
and 0 < k < m-1, A£]:= (i€l | k/m E.U(Xi) < (k+1)/m} is an event. Since

U is continuous, and C connected, also U{C) =« IR is connected, so for any
0 < k < m there exists uk s.t. U(ak) = k/m. We define

m

X = +

“m-1 {1IU(x =1}? and

m

m
B
pr e B

1
DCL
1 my g1

0 mo {7 [U(x;) =1}

m T [r—
We then have U(xi) < U(x;) < U(yi), so X0 < x; < yT, for all i. By point-

i
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wise monotonicity X" < x < y™. Thus EU(x™) < Ula) < EU(y™). But also
EU(y™ - EU(x™ = 1/m for all m. We conclude that EU(x) = Ule) =

Tim EU(x™) = Tim EU(y™). And thus indeed EU(x) can be considered to be an
Mea Mereo

integral of U w.r.t. P.

For a not strongly bounded alternative x the case is not so easy. Of course,
if yet x m o for some o € C, which always occurs if w > x = v for some

u,v € C, we would Tike still to define EU(x) = U(e). But now there is no
justification to consider this as an integral of Uex. If x is strongly
bounded below (there is v such that R;'> v for all i) an integral value

for Uox, its "lawer integral", exists. This 1imit is not greater than EU(x),
may equal EU(x), but may also very well be smaller than EU(x). If x ~ a,

but now x strongly bounded above, and not below, we can obtain an upper
integral value that may be "too" large.

Conditions for >, strong enough to guarantee that > can be represented
by an integral for all acts, usually are undesirably strong, e.g. they may
simply imply boundedness of U, as turned out to be the case in Savage
(1954). Or they may even lead to impossibility results, e.g. if

= 10,11 = I, » maximizes Lebesgue integral, and one would let A =
and require continuity of > w.r.t. the product topology on CI. Then this
would require a o-additive extension of Lebesgue measure to Z]U’ which
is known not to exist. Or, finally, such conditions may restrict the set

o1

of considered alternatives strongly.

The integral representation can be extended to those alternatives X,
equivalent to some o, that have a "good enough" consequence y for every
B « X, to ensure that the "above trunpation" x' of x at y (i.e. x% = %y if
i: < v, x% =y if X5 > 7) has & < x',and that have a "bad enough”
consequence v for every 1> %, to ensure that the "below truncation" x" of
x at v (f.e. x§ = x; if X > v, x§ = v if X5 < 3) has u> X" This is the
way to extend > to the class of all a]ternat1ves with finite expected
utility, a desirable result for instance for statistical applications (see
De Groot, 1970, end of §7.9). For brevity we do not elaborate that here.

Other alternatives are difficult to handle. One quickly gets prob1ems
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with variations of the St. Petersburg paradox. If one adds preferences
between these alternatives by means of CI and pointwise dominance, then a
problem may be how to preserve other desirable matters, such as transitivity.
These matters are addressed in Toulet (1984).

6. COUNTABLE ADDITIVITY

We shall give a continuity assumption, necessary and sufficient for o-
additivity of the probability measure P of Theorems 4.1 and 5.1. This
adapts the known results, as presented in section 6.9 of the Finetti (1972)
to the more general case where C # R, in terms of a preference relation

>. Property F, in section 10.3 of Fishburn (1982), and the "monotone

continuity" assumption of Villegas (1964), Arrow (1970, Lecture 1) are
analogous.

DEFINITION 6.1. A probability measure P on a field A is countably (or o-)

additive jf ;12 P(Am) = 0 whenever Am+1 & Am for all m, and Pliut Am = 4,
for any sequence of events (A ) ~,.

o

It is known that this applies iff P(B) = z -, P(B) whenever the B,'s are

mutually disjoint, and their union B = Umf1 Bm happens to be in the field
A.

DEFINITION 6.2. We say > is boundedly strictly continuous if for any
sequence of alternatives (xj]j:1,[x >y (respectively x < y)lfollows
from xJ > y (respectively x) < y) for all j, and lim x{ = x; for all i1,
whenever (33)j21 is uniformly strongly bounded, i.8. 7w and v exist such
that 4> Xy >3 for all j € N, i € 1.

Observe that the above definition is a weakened version of continuity
w.r.t. the product topology, i.e. w.r.t. pointwise convergence. For one
thing, we only consider (denumerable) sequences. Furthermore there is the

restriction of uniform strong boundedness.

THEOREM 6.1. Let the conditions of Theorem 5.1 be satisfied. Then P can be
chosen o-additive iff > T8 boundedly strictly contimuous.
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PROOF. First we assume bounded strict continuity, and derive o-a?ditivity.
If 1 is inessential we have U constant, and can take any o-additive F, e.g.
P(A) = 1 iff Acontains some fixed i € I. i - o
So suppose I essential. Then a,8 exist s.t. 5 > B,0therwhise pointwise
monotonicity, or CCI, would jmply inessentiality of 1. Now let Am > Am+1

i . = 8. By pointwise
for all m, nAm = ¢. Define x° = u1Am + B1A%f X =R. By p
m
B i . We have
monotonicity x> x™1 > § for all m, so Tim EU(x") > U(g) : il
i my =y i bounded. Henc
Tim KT = Xj for all i, and (x )m=1 is uniformly strongly bo

Qﬁi> T for all m implies x = B » vy, for any y. Since u(c) is connected, for
any 0 < ¢ < Ule) - U(B) there is v with U{y) = U(B)m+ g Now
Tim EUG™) > U(8) would imply existence of y with x>y for allm, and

Do) > U(E). Now x™ = 7 for all m implies & = x > ¥, contradicting

U(y) > U(s). It follows that 1im EU(x™) = U(g). From
Lo im P(A ) = 0, as required for
B = P(Am)U(a) + (1-P(Am))U(B) follows ;12 il = s

g-additivity of P. o
Reversedly, let P be g-additive. Then bounded strict continuity follows

from continuity of U and the dominated convergence Theorem of Lebesgue -

(e.g. see Corollary 16 in §1.111.6.16 of Dunford and Schwafz (1958)). This

theorem is usually formulated for o-fields. It can be applied to our

context by taking the smallest s-field containing A, and taking the

unique c-additive extension of P to this, guaranteed by Royden (1963,

§12.2). The values of the involved integrals of onm and Uox are unaffected

by this extension of A. "

7. CONCLUSION
First we formulate our main result. For clarity we repeat the assumptions

made.

THEOREM 7.1. Let I be a nonempty set, A a field on I. Let C be a connected
topological space, with a field U on it that contains all open and one-
point sets. Let F = C T pe the set of all alternatives that are A i D
measurable. Let Fb be the subset of all strongly bounded (end section &)
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alternatives in F. Let > be a binary relation on cL. Let C be topological-

ly separable if 1 is essential and no two disjoint essential svents in A

extst. Then are equivalent:

(2) There exists a finitely additive probability measure P on A, and a
continuous U : C » R, such that x » y = fU(xi)dP(i) = fU(yi)dP(i),
tntegrals well defined, for all X,y € F for which there are
a,B,1,v € C such that U(a) < U(Xi) = U(B) and U(u) = U(yi) < Ulv)
for all <.

(T} » is a simply- and constant-contimious pointwise menotone weak
order on Fb, for which all events ave (0T related to all essential
events,

Furthermore, in (1) we may replace "finitely" by "eountably™ if in (i)

ve require that > is boundedly strictly comtinuous.

Uniqueness results are as in Theorem 4.1.

PROOF. See Theorems 4.1, 5.1, 6.1. #

To our knowledge this is the first characterization of expected utility
maximization with continuous utility of this generality.

The special case where C = R, and U identity, is treated in de
Finetti (1972), a major source of inspiration for this paper.

The application of our result is not restricted to DMUU. The i's
may refer to other things than states of nature. The CCI assumption does
require the consequences at different i's to be appreciated, via the
utility function U, in analogous ways. Hence the i's should make this
possible. For instance one may think of the case where I is a set,
possibly a continuum, of agents, who appreciate the consequences the same
way; alternatives are allocations of the consequences over the agents,
and P symbolizes power of the agents.

Another major source of applications lies in dynamic contexts, where
the i's refer to time points, I being [0,11, R+ » N, or whatever; our
analysis is general enough to apply to discrete and continuous time.
Examples are dynamic programming, economic growth theory, the study of
optimal consumption-saving behaviour of consumers. Here the alternatives
are production or consumption paths in time. The function U is a time-
independent instantaneous utility function. P denotes a (subjective, time-
dependent) discount factor. Often the discount factor is assumed to be
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constaﬁt, corresponding to weights of a form k.e_pt. This-can be charac-
terized by an extra stationarity assumption. For app1icat10n5, and further
references, to dynamic contexts, see Shapley (1953), Yaari (1964), K?op-
mans (1972), Mirrlees (1974), Bailey, Olson and Wonnacott Elgsg): Drfze
(1982), who emphasizes the analogy between the "I = states" and 1=
time" interpretations, Denardo (1982), and Vrieze (1983).

If one takes such models as a starting point, and searches for .
further derivations of theoretical results, representation Fheo?ems Tike
ours are not needed. But if one searches for practical applications, then
one faces for instance the problem that the discount factor, or.the—
probability distribution, are not given beforehand, but are subqectave
and unknown, and payment is not in utility, but in a rea1'quaht1ty as
money, which is a transform of utility by an unknown (subJect1v?) trans;
formation. And then for justifying, or criticizing, the assumption of the
existence of models as above, representation theorems like o?rs, and .
Koopmans (1972), (and many others) are needed. See also section III.1 ©

Koopmans (1972).
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