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A B S T R A C T   

This paper provides the most general preference axiomatization of average utility (AU) maxi
mization over infinite sequences presently available, reaching almost complete generality. The 
only restriction is that all periodic sequences should be contained in the domain. Infinite se
quences may designate intertemporal outcomes streams where AU models patience, welfare al
locations where AU models fairness, or decisions under ambiguity where AU models complete 
ignorance. As a methodological contribution, this paper shows that infinite-dimensional repre
sentations can be simpler, rather than more complex, than finite-dimensional ones. Infinite di
mensions provide a richness that may be convenient rather than cumbersome. In particular, 
(empirically problematic) continuity assumptions are not needed in our axiomatization. Conti
nuity is optional.   

1. Introduction 

Many authors have argued for “fair” average utility (AU) maximization, as a normative objection to impatience and discounted 
utility (da Volterra 1574; Elster 1986 pp. 10–11; Jevons 1871; Pigou 1920; Sidgwick 1874; Weinstein 1993). AU maximization has also 
gained popularity for fair social welfare evaluations and decisions under complete ignorance (Gravel et al. 2018). It is central in 
Laplace’s (1796) principle of insufficient reason and is used in the folk theorem for repeated games (Peters 2015 §7.2.2). As an 
important and widely applicable decision model, AU has received numerous axiomatizations for the finite-dimensional case.1 

This paper considers AU for infinitely many timepoints (dimensions). Here, mathematical and philosophical problems can arise as 
limits may diverge and choice paradoxes may arise. For example, patience or fairness may be irreconcilable with strong Pareto for 
welfare evaluations (Diamond 1965). Similarly, stochastic dominance may be violated under uncertainty (Wakker 1993). The 
two-envelope paradox and Dubin’s paradox are among the paradoxes for uncertainty.2 These problems have intrigued researcher for a 

* Corresponding author. 
E-mail address: Wakker@ese.eur.nl (P.P. Wakker).   

1 These axiomatizations were central in Blackorby et al. (1977), Gravel et al. (2012), and Kothiyal et al. (2014). Every axiomatization of additive 
∑n

j=1Vj(xj) (Debreu 1960; Gorman 1968; Krantz et al. 1971), including expected utility 
∑n

j=1pjUj(xj) (Gul 1992; Chew and Karni 1994) with fairness 
(symmetry) added gives AU. Further, quasilinear means from mathematics are constant-equivalence functions of AUs, giving many more axi
omatizations (Aczél 1966 pp. 151 & 240; Münnich et al. 2000).  

2 For the former, see Kraitchik (1953), Nalebuff (1989), and Yi (2013). For the latter, see Howson (2014). Both concern the (im)possibility to have 
a uniform probability distribution over the natural numbers, which underlies AU. 
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long time, and many solutions have been discussed, often by restricting the domain of preference or relaxing completeness of 
preference. 

This paper provides a preference axiomatization of AU maximization over infinite sequences of great and almost complete gen
erality. For instance, unlike all preceding axiomatizations, we do not need the assumption of continuity, which is less innocuous than it 
may seem as explained below. Similar to previous studies, we adopt the approach of domain restriction. Our only restrictive 
assumption is that all periodic sequences (defined later) should be contained in the preference domain. This is considerably less 
stringent than what has been assumed in all preceding axiomatizations of AU.3 Other than this restriction, we obtain complete gen
erality regarding preference relations, outcome sets, utility functions, and preference domains. Thus, we provide maximal possibilities 
for reconciling desirable properties and detecting mathematical problems. 

Although we do not need continuity, we can easily incorporate it when desired. Thus, Observation 6 adds continuity and provides 
the most general axiomatization of continuous AU in the literature. To obtain our results, we solve two problems for preference ax
iomatizations of AU, explained next. 

The first problem occurs already in finite-dimensional preference domains. If these domains are even finite (finitely many ele
ments), they are usually too coarse to allow for precise quantitative representations. This complicates the mathematical analysis, to the 
extent that preference axiomatizations for finite domains are usually unknown. Therefore, many researchers commonly resort to the 
simplifying assumption that the preference domain is a continuum, as for instance throughout Adler (2019), Blackorby et al. (2005), 
and numerous papers. That is, they add extra structural richness to simplify the analysis. Quantitative representations can then be 
precisely identified using continuity assumptions,4 and the mathematical analysis becomes tractable. Thus, Chambers et al. (2021) 
wrote: “Continuity is a necessary regularity condition; without it, no meaningful inferences can be made with any finite amount of 
data.” 

Continuing our explanation of the first problem, the assumption of continuity (w.r.t. a continuum domain) comes with empirical 
cost. To explain the problematic empirical status of continuity, we first note that, in isolation, continuity can never be verified or 
falsified by a finite number of observations. In this sense, it has no empirical content. However, this is not a problem. It rather is an 
advantage. We know exactly what we are doing empirically when assuming continuity in isolation: nothing! Thus, several authors 
have argued that continuity is empirically harmless. For instance, Arrow (1971 p. 48) wrote: “The assumption of Monotone Continuity 
seems, I believe correctly, to be the harmless simplification almost inevitable in the formalization of any real-life problem”, a point 
supported by Drèze (1987 p. 12) and Thomson (2001 §4.1.3 p. 338). Unfortunately, those suggestions conceal serious underlying 
problems. If other axioms are assumed, then continuity is not empirically vacuous. It can then add empirical content to those other 
axioms. This would not be a problem if we knew what that empirical content is, but for continuity in our context we do not know that 
exactly. That is, we do not exactly know how to verify or falsify our axiom set including continuity from finitely many observations. We 
thus lose track of what we are doing when continuity and other axioms are assumed together. Many authors have pointed out this 
problem.5 

The second problem occurs with infinite-dimensional domains (Asheim 2010 §4.2; Pivato 2014 p. 35). With one exception cited 
later, authors invariably used the axioms for finite-dimensional axiomatizations including restrictive continuity to handle 
finite-dimensional subdomains. They then added axioms to extend the representation to the infinite dimensions. This way, the extra 
richness of infinite dimensions is an extra problem. Further, continuity conditions are more complex for infinite dimensions. 

We provide a solution for the two aforementioned problems. In this solution, the extra richness of infinite dimensions is not an extra 
problem. Instead, it simplifies the analysis and even removes the first problem, leaving no problem at all. Key is that the richness of 
infinite dimensions can substitute for the richness of continuity. 

Theorem 3 presents our solution, assuming infinitely many dimensions and not requiring any continuity. The theorem is obtained 
by extending an AU axiomatization of Kothiyal et al. (2014) to infinite dimensions (see the Appendix). Kothiyal et al. considered finite 
streams but allowed any finite length. Their domain can be called half-infinite-dimensional. Observation 4 illustrates our approach by 
showing how the infinite dimensions enable us to uniquely capture utility without needing continuity. To our best knowledge, Pivato 
(2014 p. 56) is the only paper that shares our observation that infinitely many dimensions may be a convenience rather than a problem. 

Observation 5 shows that our new methodology can constructively obtain a preference domain where AU is maximized. This result 
allows us to easily identify any domain where AU maximization does not encounter any of the aforementioned mathematical problems 
or paradoxes. In particular, a reconciliation is obtained for discrete outcome sets, a case not considered before in the literature. 

2. Basic definitions 

Γ denotes a set of outcomes, with generic notation α, β,… (or fj, gj; see later). Outcomes can be quantitative or not, and Γ can be finite 
or infinite. Streams are infinite sequences f = (f1, f2,…) of outcomes, with generic notation f ,g,… . They can be welfare allocations over 
individuals where AU captures fairness, time profiles where AU captures patience, gambles on states of nature where AU captures 
extreme ambiguity (complete ignorance), commodity bundles, and so on. Our results can be applied to all these contexts. We interpret 
fj as the outcome for generation j, combining welfare and intertemporal considerations. F, the preference domain, denotes a subset of the 
set of all streams, further specified later. 

3 See Fishburn and Edwards (1997), Harvey (1986), Lauwers (1998), Marinacci (1998), Pivato (2022), and Rébillé (2007).  
4 It is understood here that the right scale type, such as an equivalence class of interval scales (defined later), is then uniquely identified.  
5 See Khan and Uyanik (2021), Kothiyal et al. (2014), Krantz et al. (1971 §9.1), Pfanzagl (1968 §6.6), Pivato (2014 p. 32), and Wakker (1988). 

C. Li and P.P. Wakker                                                                                                                                                                                                



Journal of Economic Theory 216 (2024) 105795

3

By ≽ we denote a binary relation on F, the preference relation. We call ≽ a weak order if it is complete (f ≽ g or g ≽ f for all f ,g ∈ F) and 
transitive. The notation ≻, ≼, ≺, ∼ is as usual. Average utility (AU) holds on a subset F′⊂F if there exists a utility function U : Γ→R such 
that the average utility lim

n→∞
1
n
∑n

j=1U(fj) (= AU(f)) exists6 for every stream f in F′ and represents preference on F′, i.e., f ≽ g ⇔ AU(f) ≥

AU(g) on F′. Note that the ordering of natural numbers and indexes is essential in the definition of AU. Therefore, AU and our analysis 
can only be applied when such an ordering is naturally available. For example, this occurs for discrete timepoints and for consecutive 
generations, but not if the set of indexes is the set of rational numbers. 

We identify outcomes α with constant streams (α, α, …). Hence, ≽ also applies to outcomes. To avoid triviality, we assume 
throughout that Γ contains at least two nonindifferent outcomes. Monotonicity holds if f ≽ g whenever fj ≽ gj for all j. Strong Pareto 
holds if f ≻ g whenever fj ≽ gj for all j and fj ≻ gj for some j. Weak Pareto holds if f ≻ g whenever fj ≻ gj for all j. 

Fairness means that, for a given set of permutations of the indexes, none affects preference. For precise definitions, the set of 
permutations should be specified. Other names for fairness used in the literature include anonymity, patience, impartiality, (inter
generational) equity, intergenerational neutrality, or symmetry. Fairness is typically violated under discounting with impatience, with 
early generations privileged over later ones. By treating infinitely many generations the same, mainly fairness implies that any finite 
number of generations is negligible. Only the long run matters. 

Fairness is often incompatible with strong Pareto (Diamond 1965; Lauwers 1998; Neyman, 2023 Fact 12; Weymark 1995). This has 
been the topic of many studies, where different strategies of reconciliation have been examined. Asheim (2010) and Petri (2019) 
provided surveys. Because our model can do without continuity, a new reconciliation possibility immediately emerges for weak Pareto: 
if we have a discrete utility range and there exists ε > 0 such that any two non-indifferent outcomes have a utility distance of at least ε. 
Then under AU, indeed, f ≻ g whenever fj ≻ gj for all j. Another solution, widely studied, is to limit the set of preferences considered, 
e.g., by relaxing completeness (see §6) or, our approach, by considering particular subdomains (p-streams, defined later). 

3. Average utility for periodic streams 

For a finite sequence (x1,…, xn) of outcomes, called generator, the periodic extension, denoted [x1,…,xn], is the stream x = (x1,…,xn,

x1,…,xn,x1,…). That is, xjn+i = xi for all i ≤ n and j. Periodic extensions are also called periodic streams (p-streams). We call n the length 
(of the periodic extension/stream or the generator), denoted ||x||, bearing in mind that periodic streams are infinite sequences.7 For 
each outcome α, [α] = (α,α,…) has length ||[α]|| = 1. Fp denotes the set of all periodic sequences, with generic notation x,y,…. . 

The “infinitistic” AU of a p-stream is the “finitistic” average utility of its generator. This suggests that p-streams can combine the 
intuitive convenience of finite-dimensional simplicity and the mathematical convenience of infinite-dimensional richness. This insight 
underlies the analysis of our paper. We impose conditions as much as possible only on Fp, where they are simple. Accordingly, we first 
derive our results on Fp. Observation 1 will achieve complete generality of AU maximization there, extending Kothiyal et al. (2014 
Theorem 7) to infinite dimensions. 

For every preference condition C of ≽, periodic C (p-C) refers to that condition when restricted to Fp, as in p-weak ordering, p- 
monotonicity, and so on. We define periodic fairness (p-fairness) to imply that any permutation of the xis in the generator of any p- 
stream [x1,…, xn] leaves the stream indifferent. This permutation, finitistic in spirit, does involve infinitely many generations. For 
example, interchanging i = 1,2 of the generator means interchanging every j × n + 1 and j × n + 2 of the p-stream. 

P(eriodic)-independence holds if 

[c1, x2,…, xn] ≽ [c1, y2,…, yn] ⇒ [d1, x2,…, xn] ≽ [d1, y2,…, yn] (1)  

Note that this condition involves identical outcomes for generations n+ 1, 2n+ 1, and so on. By fairness, the condition implies that 
preferences between p-streams of the same length are also independent of common 2nd, 3rd, …, and nth dimensions of the generator 
and, by repeated application, of any number of common dimensions. That is, the condition amounts to regular separability for the 
generators. Asheim and Zuber (2014), Rébillé (2007), and Zuber and Asheim (2012) reconciled fairness and Pareto by using 
rank-dependent weakenings of separability. 

AUs, as do all real numbers, have to satisfy an Archimedean axiom. To prepare for a corresponding preference condition, a notation: 
for p-streams x,y, [nx,my] denotes the periodic stream extending n times the (finite) generator of x followed by m times the (finite) 
generator of y.8 For example, if x = [x1, x2] and y = [y1,y2], then [2x,3y] = [x1,x2,x1,x2,y1,y2,y1,y2,y1,y2]. We suppress n = 1 and m = 1, 
as in [x,4y] = [1x,4y]. This paper uses the “for all” symbol ∀ and the “there exists” symbol ∃. The p-Archimedean axiom holds if: 

∀x, y, v,w ∈ Fpwith ||x|| = ||y||, ||v|| = ||w||, x ≻ y, ∃n ∈ N : [nx, v] ≽ [ny,w] (2) 

6 In our terminology, existence implies being real-valued. The average is sometimes called the Cesàro limit.  
7 For a given p-stream, any finite replication of its generator can be taken as another generator, and in this sense, the length depends on the 

generator specified. This will never cause confusion in our analysis. Formally, for unique definitions, we could commit to minimal lengths and 
generators, with, for instance, (x1, x2) the generator of [x1, x2, x1, x2], e.g., to obtain a unique notation [nx,my] defined below. P-streams are 
isomorphic with the set of finite sequences of varying lengths modulo the formal identity just mentioned, corresponding with a condition for finite 
sequences called replication-invariance (Kothiyal et al. 2014; see the proof of our Observation 1).  

8 Formally, this notation requires specification of the generators chosen. This requirement will never cause problems in our analysis, where the 
choice of generator will never matter. For simplicity of presentation, we leave the chosen generator implicit. 

C. Li and P.P. Wakker                                                                                                                                                                                                



Journal of Economic Theory 216 (2024) 105795

4

That is, no matter how disadvantageous v ≺ w is, it can be overcome by sufficiently many (n) advantages x ≻ y. 

Observation 1. Assume that the preference domain F contains all periodic streams Fp. Then  

(i) AU holds on Fp 

⇔  
(ii) ≽ satisfies:  

1. p-weak ordering;  
2. p-Archimedeanity;  
3. p-fairness;  
4. p-independence. 

In the above observation, p-monotonicity is implied by the other conditions. Strong Pareto is also implied on Fp by the other 
conditions. The simplicity of the necessary and sufficient conditions in Observation 1 and in Kothiyal et al. (2014 Theorem 7) is in stark 
contrast to the very complex necessary and sufficient conditions needed for general finite-dimensional structures (Jaffray 1974).9 

We present the proof of the following observation in the main text because it illustrates how the richness of infinitely many 
timepoints brings richness of utility without requiring any continuity. This observation is key to our approach, exploited in the next 
section. 

Observation 2. AU(Fp) is dense within its convex hull. 

Proof. Consider p-streams x, y with lengths ||x|| and ||y||. We have AU([||y||x, ||x||y]) = 1
2 AU(x)+ 1

2 AU(y). Apply this repeatedly. 

4. Average utility for general streams 

We now turn to general, nonperiodic streams. Pivato (2014) considered representations for such streams using nonstandard real 
numbers. He generalized Kothiyal et al. (2014), using intuitive axioms like those in our Observation 1. Several other papers considered 
reconciliations of fairness and Pareto using general orderings with multi-utility representations and incompleteness that cannot be 
represented by real numbers (Basu and Mitra 2007; Bossert et al. 2007; Khan and Stinchcombe 2018). We stick to representations by 
standard real numbers and see how far we can go. Our decision-theoretic task is to obtain axiomatizations that use only conditions 
directly in terms of ≽. 

P-streams will be used to calibrate the other streams. Fp is rich enough to serve this purpose. We therefore assume, implicitly 
throughout the text and explicitly in theorems, that F contains all p-streams. We next define the required preference conditions. To 
explain their intuition, we will claim several implications of AU on Fp. These are all proved in the proof of Theorem 3. 

We first rule out infinite AU values. To prepare, the outcome set Γ is unbounded above if 

∀β ≺ γ ∈ Γ, ∀n ∈ N, ∃δ ≻ γ ∈ Γ : [δ, nβ] ≻ [γ, nγ] (3)  

We used the notation [γ, nγ] instead of γ (which is the same) for clarification. The condition implies that, no matter how many times (n) 
we receive the drawback of β instead of γ, there is an outcome δ so good and exceeding γ so much that receiving it once instead of γ is 
enough to overcome those n drawbacks. Under AU on Fp it is necessary and sufficient for U to be unbounded above. Similarly, Γ is 
unbounded below if 

∀γ ≻ β ∈ Γ, ∀n ∈ N, ∃α ≺ β ∈ Γ : [α, nγ] ≺ [β, nβ] (4)  

Under AU on Fp, the condition is necessary and sufficient for U to be unbounded below. Stream f is value-unbounded above (v-unbounded 
above), if Γ is unbounded above and 

∀γ ∈ Γ ∃n ∈ N : [f1,…, fn] ≽ γ (5)  

Under AU on Fp, the condition holds if and only if limsupn→∞
1
n
∑n

j=1U(fj) = ∞. Stream f is v-unbounded below if Γ is unbounded below 
and 

∀α ∈ Γ ∃n ∈ N : [f1,…, fn]≼α (6)  

Under AU on Fp, the condition holds if and only if liminfn→∞
1
n
∑n

j=1U(fj) = − ∞. Stream f is v-bounded if it is neither v-unbounded 
above nor below. Under AU on Fp, f is v-bounded if and only if liminfn→∞

1
n
∑n

j=1U(fj) and limsupn→∞
1
n
∑n

j=1U(fj) are finite. Thus, v- 
boundedness of f need not imply boundedness of f itself. 

We next rule out v-bounded streams f whose AU is not well-defined. Stream f is stable if for all p-streams x ≻ y there exists N ∈ N 

such that [f1,…, fn]≼x for all n ≥ N or [f1,…, fn] ≽ y for all n ≥ N. That is, we must be able to decide whether f is below x or above y, or 

9 Kothiyal et al. (2014) considered finite sequences, but their domain was “half-infinite-dimensional” in the sense that there was no upperbound to 
the lengths of sequences. 
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possibly both. Under AU on Fp, stability holds if and only if liminfn→∞
1
n
∑n

j=1U(fj) = limsupn→∞
1
n
∑n

j=1U(fj). That is, if the liminf is 
strictly smaller than the limsup, so that 1

n
∑n

j=1U(fj) keeps on fluctuating through the interval between them, then, because of the 
denseness of AU(Fp), we can find p-streams x, y within this interval that reveal this fluctuating character. For this revelation, we only 
use observable preferences between auxiliary p-streams. 

If we have AU on Fp then AU is well-defined and finite for v-bounded stable f . Finally, we ensure that AU represents the preference 
relation. P-denseness holds if, for all streams f , g, 

(f ≻ g)⇔ (∃x, y ∈ Fp,N ∈ N : ∀n ≥ N : [f1,…, fn] ≻ x ≻ y ≻ [g1,…, gn]) (7)  

Under AU on Fp, the condition ensures that for every strict preference f ≻ g we can get a strict p-stream preference in between f and g 
because of the denseness of AU(Fp). More precisely, we can get them in between the beginning n outcomes of f and g for all n far enough 
into the future. For this revelation, we again only use observable preferences between auxiliary p-streams. In the condition, getting 
x ≻ y in between precludes infinitesimal strict preferences f ≻ g. In the following theorem, an interval scale is unique up to level and 
unit (positive affine transformations). 

Theorem 3. Assume that the preference domain F contains all periodic streams Fp. Then  

(i) AU holds on F. 
⇔  

(ii) ≽ satisfies:  
1. weak ordering;  
2. p-Archimedeanity;  
3. p-fairness;  
4. p-independence;  
5. all f ∈ F are v-bounded;  
6. all f ∈ F are stable;  
7. p-denseness. 

Further, if (i) holds, then U is an interval scale. 
In the theorem, monotonicity is again implied by the other conditions. Strong Pareto need not always hold, and this depends on the 

domain F. Because our domain F is the most general for AU available in the literature as yet, it provides maximal possibilities of 
reconciliations through domain restriction. 

5. Further results 

The following observation shows in a direct manner that the infinitely many timepoints provide enough richness to uniquely 
calibrate U. This result further illustrates why we do not need continuity. The result is reminiscent of probability equivalent utility 
measurements in expected utility (Baucells and Villasís 2015; Mosteller and Nogee 1951). A proof of Observation 1 alternative to the 
one in this paper could have been obtained by defining a mixture operation with rational mixing weights on p-streams and then using 
mixture space techniques. Observation 4 immediately follows from substitution. 

Observation 4. Assume AU and Fp⊂F. Assume γ ≻ β ≻ α ∈ Γ . Then the preference between [mγ, nα] and β corresponds exactly with 
the ordering of m

m+n U(γ) + n
m+n U(α) and U(β). If we scale U(γ) = 1 and U(α) = 0, then this result uniquely determines U(β). In general, it 

uniquely identifies the interval scale U. 

Our preference conditions allow for a constructive definition of preference domains where AU can hold. To explain this point, we 
assume weak ordering. We start with the set Fp. We then seek to extend the AU representation step by step, each time verifying if 
streams to be added satisfy all required conditions. That is, they must be v-bounded and stable, and the right-hand side of Eq. (7) should 
hold for every newly added preference f ≻ g. We developed our preference conditions so that only p-streams are invoked as auxiliary 
tools. This shows that p-streams provide a convenient calibration tool for constructing domains where mathematical problems and 
inconsistencies can be avoided. This somewhat informal result is displayed next. 

Observation 5. The set of periodic streams offers sufficient calibration possibilities to constructively define any preference domain 
for AU. 

As explained, continuity of utility is optional in our approach. The following observation covers connected topological spaces Γ, 
which includes all intervals, all convex subsets of commodity spaces, and many mixture-closed sets of probability distributions over 
prizes. Fishburn and Edwards (1997) also assumed connected topological outcome spaces. All other references made more restrictive 
topological assumptions. 

Observation 6. Assume AU on F which contains all periodic streams Fp with the outcome space Γ a connected topological space. 
Then U is continuous if and only if ≽, restricted to p-streams [f1,f2], is continuous when taken as a binary relation on Γ ×Γ endowed with 
the product topology.Of course, continuity of preference above can be strengthened to hold for any p-streams of any length and by 
specifying proper infinite-dimensional continuities. 

Appendix B shows that all axioms in Theorem 3 are independent. For each axiom, an example is given where that axiom is violated 
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but all other axioms are satisfied. Thus, none of the axioms is redundant in the sense of being implied by the others. 

6. Related literature 

Fishburn and Edwards (1997) axiomatized AU but only for pairs of streams that differ on no more than finitely many timepoints. 
Then the long run does not matter. The model is essentially finite-dimensional and too restrictive for most purposes. It contains no 
preferences between periodic streams. 

Pivato (2022) is closest to our paper. He was the first to axiomatize AU for (truly) infinite sequences. His outcome set is a connected 
metric space and U is continuous. His preference domain contains (roughly) the closure of all “regular totally bounded” sequences. 
Regular means that limiting frequencies exist. This requirement incorporates all our periodic sequences. All permutations on periodic 
streams that our fairness condition involves belong to his Lévy group, and, hence, his Γ-invariance implies our fairness. His AU does not 
satisfy strong Pareto. He did not have to impose an Archimedean axiom because it is implied by continuity. Similarly, many other 
papers in the literature used continuity to imply the Archimedean axiom. Relatedly, Chew and Karni (1994) showed that Gul’s (1992) 
continuity can be dispensed with by using an Archimedean and a solvability axiom, both implied by Gul’s continuity.10 

We next discuss some papers that did not exactly axiomatize AU for infinite sequences, but instead considered close generalizations 
and/or modifications for infinite sequences. Harvey (1986, Theorem 2a and 2́a) considered the maximization of sums of utilities rather 
than averages. To have those sums finite, he specified a status quo outcome α* with utility 0, and only considered streams that, roughly, 
converge to α* so strongly that the sum of utilities is defined (his Definition 9). They all have AU = 0, and his model can be considered 
to maximize infinitesimal AU. But it shares most characteristics with AU. In particular, it satisfies the preference conditions in our 
Theorem 3 except p-denseness. On his domain, strong Pareto (“strict increasingness”) and fairness (“time neutrality”) are reconciled. 
The main difference with our model is that his domain, besides not including periodic streams, is very restricted, with the long run 
never mattering, and always ending up at α*. 

Lauwers’ (1998) theorems took a representing functional instead of a preference relation as primitive. His domain was the set of all 
bounded real-valued sequences. He assumed linear utility ((U(α) = α), implied by linearity of the functional, and supnorm continuity. 
He also incorporated nonstable streams with representations between the limsup and the liminf of AU (his Theorem 2). His anonymity 
immediately implies p-fairness. It cannot be reconciled with strong Pareto. 

In Marinacci (1998), the outcome set consists of all simple probability distributions over a set of prizes. Expected utility is 
maximized over outcomes. That is, the outcome set is convex and utility is linear. The preference domain consists of all bounded 
streams. Marinacci assumed continuity with respect to probabilistic mixing of the outcomes and axiomatized liminf AU representations 
or, more generally, their Polya extensions, using axioms similar to those from multiple priors models in decision under ambiguity. He 
next added a time invariance axiom that implies AU maximization. His patience implies our p-fairness. He did not consider recon
ciliation with strong Pareto. 

Rébillé (2007) assumed real-valued outcomes and linear utility and considered the domain of all bounded sequences. He considered 
several generalizations of AU such as discounted rank-dependent forms, but did not derive AU itself. 

Neymann (2023) also assumed real-valued outcomes and linear utility and considered only bounded sequences. His Theorem 2 
characterized AU mainly by linearity and what he called, in deviation from common terminology, patience (roughly, linear patience 
restricted to constant streams). 

Strong Pareto and fairness can be trivially reconciled by excluding all problematic preference situations, leading to a relaxation of 
completeness. Several papers studied such relaxations, but with the purpose of obtaining nontrivial results with a rich and interesting 
domain of preference situations. They often incorporated preferences where f and g have undefined AU values, with representations 
between limsup AU and liminf AU. These papers all assumed linear utility or, equivalently, that outcomes are utils, and they focused on 
bounded sequences or overtaking criteria (Gale 1967; Jonsson and Voorneveld 2018; Svensson 1980). Other papers considered fairness 
conditions so much weaker that they do not conflict with strong Pareto, including Lauwer’s (2012) fixed-step anonymity. Mitra and 
Basu (2007) showed that such fairness restrictions must satisfy cyclicity and conditions regarding mathematical group-operations. Our 
p-fairness satisfies these conditions and is weaker than the aforementioned fairness conditions. In return, the cited papers could handle 
more general representations than AU. 

All aforementioned studies assumed continuous and mostly even linear utility. Whenever the long run was relevant, all p-streams 
were included in the domain. Focusing on AU representations as defined in §2, our result is uniformly the most general in the sense that 
our assumptions are satisfied for every such representation in the literature but not the other way around. Besides (1) continuity 
(always more restrictive than in our Observation 6) all published results (2) focused on bounded streams whereas we can handle all 
unbounded streams as long as their AU is finite; (3) assumed rich domains of all streams that are bounded and satisfy some regularity 
assumptions, whereas we allow for almost any kind of subdomain; (4) used more permutations in their fairness than in our p-fairness. 
Our result does not generalize the existing results in a logical sense. That is, the assumptions in existing results do not imply our 
assumptions in an elementary manner—to our best knowledge—and in this sense are not corollaries of our results. Further, most other 
studies extended the AU representation to streams for which AU is not defined or infinite, and studied other properties than considered 
in this paper. Thus, the existing results remain of independent interest. 

10 We thank an anonymous referee and associate editor for bringing in these two references. Solvability, like continuity, brings in unknown 
empirical implications, but less so than continuity because it is less restrictive. 
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7. Discussion 

Many papers in welfare theory take individual utilities ("utils" or “welfare”) as given or, equivalently, assume real-valued outcomes 
and linear utility for all individuals. However, utility is often nonlinear with individual utilities subjective and not directly observable. 
We took the more general approach of allowing for general utility, to be revealed from preferences. AU does assume the same utility 
function for different js. That is, the same outcome gives the same utility for different generations. This is a common assumption for 
individual intertemporal (non)discounted utility, but for welfare evaluations there is interest in generation-dependent utility. Harvey 
(1986 Theorem 9) and Wakker and Zank (1999) provided models with generation-dependent utility, but they heavily used continuity. 
We leave such generalizations of our results to future work. 

The Archimedean axiom is a technical axiom, like continuity. Accordingly, one could be concerned about a similarly problematic 
empirical status. However, it has been shown that Archimedean axioms do not have such problems in several situations: finitely many 
observations verify or falsify a set of other axioms if and only if they do so with the Archimedean axiom added (Luce et al., 1990 
Theorem 21.21). The axiom then has no empirical content and is innocuous. We do not know to what extent such a result holds for the 
theorems in this paper. However, these problems of empirical status are smaller than for the more restrictive continuity axioms and 
cannot be avoided anyhow because the Archimedean axiom is necessary for any AU representation. 

The three axioms used to extend AU to non-periodic streams involve “there exist” quantifiers and their negations,11 and share the 
drawbacks of all axioms of this kind. Whereas it is common in the literature to use continuity axioms to ensure that integrals are well- 
defined and finite (and those axioms bring extra restrictions), our three axioms are not only sufficient but also necessary for AU. That is, 
they cannot be avoided for real-valued representations. Pivato (2014) provided AU-type representations using nonstandard real 
numbers, avoiding both continuity and Archimedean axioms. For empirical and conceptual purposes, this approach is preferable to the 
use of standard real numbers. However, most researchers are not familiar with nonstandard real numbers. 
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Appendix A. Proofs 

Our proofs are based on Theorem 7 of Kothiyal et al. (2014). Their domain of preference consisted of all finite sequences x* =

(x1,…, xn) of any length n, and a preference relation ≽* on it. Because there was no upper bound to the length n, their domain can be 
called half-infinite-dimensional. It can be taken as isomorphic to our space of periodic sequences (details are provided in the proof of 
Observation 1). Their preference conditions are the natural analogs of our p-preference conditions. Their Theorem 7 showed that AU 
holds if and only if preferences satisfy (1) weak ordering; (2) Archimedeanity; (3) fairness (called symmetry); (4) independence; and 
one further condition called replication equivalence, i.e.: x*∼*mx* for all finite sequences x*. Here mx* again denotes the m-fold, finite, 
periodic replication of x*. 

Proof of Observation 1. It readily follows that Statement (i) implies Statement (ii). P-independence follows because common 
terms in the AU summations cancel. We next assume Statement (ii) and derive Statement (i). We consider the domain of Kothiyal et al. 
(2014) defined above. We define a preference relation ≽* on this domain by (x1,…, xn)≽*(y1,…, ym) if [x1,..,xn] ≽ [y1,..,ym]. Given weak 
ordering, this definition implies replication equivalence of ≽*. Kothiyal et al.’s domain is isomorphic to our domain of periodic se
quences if we identify all periodic extensions mx* with x* in their domain. All conditions of their Theorem 7 follow, implying an AU 
representation of ≽* and, accordingly, one of ≽ on Fp. 

Proof of Theorem 3. We first assume Statement (i) and derive Statement (ii). The first four conditions, weak ordering, p- 

11 So do the Archimedean axiom and most continuity axioms (∀ε ∃δ). 

C. Li and P.P. Wakker                                                                                                                                                                                                



Journal of Economic Theory 216 (2024) 105795

8

Archimedeanity, p-fairness, and p-independence, follow directly, and also by Observation 1. 
To derive v-boundedness of every act, we assume, for contradiction, that f is v-unbounded above. Then so is U(Γ): because Γ is 

unbounded, Eq. (3) holds, implying U(δ) − U(γ) > n(U(γ) − U(β)). So, U(Γ) is indeed unbounded above. Eq. (5) implies that 
limsupn→∞AU[f1,…, fn] exceeds any U(γ) and, hence, any real number. This contradicts that AU(f) is well-defined and finite. V-un
boundedness below similarly leads to a contradiction and f must be v-bounded. 

We next assume, for contradiction, that f is not stable. Then there exist p-streams x ≻ y with [f1,…, fn] ≻ x for infinitely many n and 
[f1,…, fn] ≺ y for infinitely many n. This would imply limsupn→∞

1
n
∑n

j=1U(fj) ≥ AU(x) > AU(y) ≥ liminfn→∞
1
n
∑n

j=1U(fj), contradicting 
well-definedness of AU(f). 

For p-denseness, assume f ≻ g. Then AU(f) > AU(g), i.e., AU(f) − ε > AU(g) + ε for some ε > 0. Then ∃N ∈ N : ∀n ≥ N : AU[f1,…,

fn]〉AU(f) − ε > AU(g)+ ε > AU[g1, …, gn]. Because of denseness of AU(Fp) (Observation 2), there are p-streams x, y such that 
AU[f1,…, fn]〉AU(f) − ε > AU(x) > AU(y) > AU(g) + ε > AU[g1,…, gn] for all n ≥ N. P-denseness holds and Statement (ii) has been 
proved. 

We next assume Statement (ii) and derive Statement (i). We have AU on Fp by Observation 1, providing U. 
Assume, for contradiction, limsupn→∞

1
n
∑n

j=1U(fj) = ∞. Then U(Γ) is unbounded above, readily implying that Γ is unbounded above 
and so is f : a contradiction has resulted. Similarly, liminfn→∞

1
n
∑n

j=1U(fj) = − ∞ cannot be. 
Next assume, for contradiction, liminfn→∞

1
n
∑n

j=1U(fj) < limsupn→∞
1
n
∑n

j=1U(fj). Then we can find real numbers μ < ν in between 
such that 1n

∑n
j=1U(fj) < μ for infinitely many n and ν < 1

n
∑n

j=1U(fj) for infinitely many n. By denseness of AU(Fp) (Observation 2), we 
can find periodic x, y with AU(y) < AU(x) between μ and ν, implying 1

n
∑n

j=1U(fj) < AU(y) for infinitely many n and 1
n
∑n

j=1U(fj) >
AU(x) for infinitely many n. This contradicts stability of f . 

We can conclude at this stage that AU(f) is well-defined and finite for all f . We finally show that it is representing. Assume f ≻ g. By 
p-denseness, we have the right-hand side of Eq. (7), which implies AU(f) ≥ AU(x) > AU(y) ≥ AU(g), so that AU(f) > AU(g). 
Conversely, assume AU(f) > AU(g). By denseness of AU(Fp) (Observation 2), we can find ε > 0 and p-streams x, y and m, n such that 
AU([f1,…,fn]) > AU(f) − ε > AU(x) > AU(y) > AU(g)+ ε > AU([g1,…,gm]). There exists N such that for all n > N: 1n

∑n
j=1U(fj) > AU(f)

− ε > AU(x) > AU(y) > AU(g)+ ε > 1
n
∑n

j=1U(gj). By p-denseness, f ≻ g. We have shown: f ≻ g ⇔ AU(f) > AU(g), i.e., AU represents 
the preference relation. 

We, finally, establish that U is an interval scale. It is obvious that we can add any constant and multiply by any positive constant. It 
readily follows from Observation 4 that we do not have more liberty. 

We make two further comments: for U(Γ) to be unbounded above, it does not suffice to require that there is no maximal outcome, as 
for instance with U(Γ) = (0,1). In that case, there can still exist a maximal stream f , for instance for U(fj) = 1 − 1 /j, but no maximal 
outcome. Further, for p-denseness, it is not enough to require that for every f ≻ g there exists a p-stream x with f ≻ x ≻ g. Then 
“infinitesimal” strict preferences could exist between different streams with the same AU value. 

Proof of Observation 6. Continuity of U immediately implies continuity of ≽. Continuity of ≽ implies continuity of U by Wakker 
(1988 Theorem 3.1). 

Appendix B. independence of the Axioms 

We show that the axioms in (ii) in Theorem 3 are logically independent, showing also that none could have been omitted. In all 
cases below exactly one axiom is violated so that there is no AU representation. In all cases, if a functional V is defined, it represents 
preferences. If defined through generators, it is always well-defined, i.e., independent of which generator is chosen for p-streams. That 
is, it then satisfies Kothiyal et al.’s (2014) replication-invariance.  

1. [weak ordering] We take preferences incomplete. Assume that f ∼ f for all f , and that any permutation of the xis in any p-stream 
[x1,…, xn] leaves the stream indifferent. There are no other preferences. Then p-fairness holds. All axioms hold except Axiom 1.  

2. [p-Archimedeanity]. We define a lexicographic representation using two different “disjoint” AU representations. Assume Γ = R . 
U1 = 0 on (− ∞,0] and U1(α) = α on [0,∞). U2(α) = α on (− ∞, 0] and U2 = 0 on [0,∞). AUi denotes average with respect to Ui, i = 1,
2. 

F contains all bounded streams with both averages AU1 and AU2 well-defined. The preference relation is represented lexico
graphically by (AU1,AU2). That is, f ≻ g if AU1(f) > AU1(g) or AU1(f) = AU1(g) and AU2(f) > AU2(g). Further, f ∼ g if AU1(f) =
AU1(g) and AU2(f) = AU2(g). Axioms 1,3,4,5,6 hold trivially. For p-denseness, assume f ≻ g. If AU1(f) > AU1(g), then p-denseness 
follows from p-denseness of AU1. Next assume AU1(f) = AU1(g) and AU2(f) > AU2(g). For odd j, we define xj = yj = 2AU1(f) =

2AU1(g) ≥ 0. Next take AU2(f) > α > β > AU2(g). For even j, xj = 2α and yj = 2β. Now x and y are periodic and AU1(x) = AU1(y)
= AU1(f) = AU1(g), AU2(f) > AU2(x) > AU2(y) > AU2(g). This shows that Axiom 7, p-denseness, also holds. All axioms hold 
except Axiom 2.  

3. [p-fairness]. We take “nonsymmetric” discounted utility. Assume Γ = R, F = Fp, U is the identity, and V(x) =
∑∞

j=1δjxj with 0 < δ 
< 1 (discounted value). All axioms hold except Axiom 3.  

4. [p-independence] We construct a symmetric representation with sufficiently nonlinear interactions to violate separability. Assume 

Γ = [0,∞), F = Fp. V([x1,…xn]) =
∑n

i,j=1
x2

i xj
n2 . We show that p-independence is violated: V([0,1,1]) = 4/9 = V([0,0,

̅̅̅
43

√
]) but V([1,1,

1]) = 1 < 1.012 = V([1,0,
̅̅̅
43

√
]). All axioms hold except Axiom 4. 
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5. [v-bounded]. We add one unbounded stream. Assume Γ = R, U(α) = α, and F contains all streams with well-defined finite AU value 
and one extra element: fj = j for all j. f is strictly preferred to all other streams, and AU represents preferences between all other 
streams. All axioms hold except Axiom 5.  

6. [stability]. We add one nonstable stream. Assume Γ = R, U(α) = α, and F contains all streams with well-defined finite AU value and 
one extra bounded element g with liminfn→∞

1
n
∑n

j=1gj = 0 and limsupn→∞
1
n
∑n

j=1U(gj) = 1. We define V(g) = 0.5 and V(f) = AU(f)
for all other f . All axioms hold except Axiom 6.  

7. [p-denseness] We add one infinitesimal preference difference. Assume Γ = R, U(α) = α, and F contains all streams with well- 
defined finite AU value. We take one bounded g that is nonperiodic. AU represents preference with one exception: if AU(g) =
AU(f) and g ∕= f then g ≻ f . All axioms hold except Axiom 7. 
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Drèze, Jacques H., 1987. Essays on Economic Decision Under Uncertainty.”. Cambridge University Press, Cambridge.  
Elster, John, 1986. Introduction. In: Elster, John (Ed.), Rational Choice. New York University Press, New York, pp. 1–33. 
Fishburn, Peter C, Ward, Edwards, 1997. Discount-neutral utility models for denumerable time streams. Theory Decis. 43, 139–166. 
Gale, David, 1967. An optimal development in a multi-sector economy. Rev. Econ. Stud. 34, 1–18. 
Gorman, William M., 1968. The structure of utility functions. Rev. Econ. Stud. 35, 367–390. 
Gravel, Nicolas, Marchant, Thierry, Sen, Arunava, 2012. Uniform expected utility criteria for decision making under ignorance or objective ambiguity. J. Math. 

Psychol. 56, 297–315. 
Gravel, Nicolas, Marchant, Thierry, Sen, Arunava, 2018. Conditional expected utility criteria for decision making under ignorance or objective ambiguity. J. Math. 

Econ. 78, 79–95. 
Gul, Faruk, 1992. Savage’s theorem with a finite number of states. J. Econ. Theory 57, 99–110 (“Erratum,” 1993, Journal of Economic Theory 61, 184.).  
Harvey, Charles M., 1986. Value functions for infinite-period planning. Manage. Sci. 32, 1123–1139. 
Howson, Colin, 2014. Finite additivity, another lottery paradox and Conditionalisation. Synthese 191, 989–1012. 
Jaffray, Jean-Yves, 1974. On the extension of additive utilities to infinite sets. J. Math. Psychol. 11, 431–452. 
Jevons, W.Stanley, 1871. The Theory of Political Economy, 5th edn. Kelley and MacMillan, New York. 1957; other edn. Penguin, 1970.  
Jonsson, Adam, Voorneveld, Mark, 2018. The limit of discounted utilitarianism. Theor. Econ. 13, 19–37. 
Khan, Urmee, Stinchcombe, Maxwell B., 2018. Planning for the long run: programming with patient, Pareto responsive preferences. J. Econ. Theory 176, 444–478. 
Khan, M.Ali, Uyanik, Metin, 2021. Topological connectedness and behavioral assumptions on preferences: a two-way relationship. Econ. Theory 71, 411–460. 
Kothiyal, Amit, Spinu, Vitalie, Wakker, Peter P., 2014. Average utility maximization: a preference foundation. Oper. Res. 62, 207–218. 
Kraitchik Maurice, B, 1953. Mathematical Recreations. Dover, New York, NY.  
Krantz, David H., Luce, Duncan R., Suppes, Patrick, Tversky, Amos, 1971. Foundations of Measurement, Vol. I (Additive and Polynomial Representations), 2nd edn. 

Dover Publications, New York. Academic Press, New York, 2007.  
Laplace, Pierre Simon de, 1796. Essai Philosophique sur les Probabilités, Paris, 1825. Translated Into English as A Philosophical Essay on Probabilities, 5th edn. Dover 

Publications, New York, p. 1951. 
Lauwers, Luc, 1998. Intertemporal objective functions: strong Pareto versus anonymity. Math. Soc. Sci. 35, 37–55. 
Lauwers, Luc, 2012. Intergenerational equity, efficiency, and constructability. Econ. Theory 49, 227–242. 
Luce, R.Duncan, Krantz, David H., Suppes, Patrick, Tversky, Amos, 1990. Foundations of Measurement, Vol. III. (Representation, Axiomatization, and Invariance). 

Academic Press, New York.  
Marinacci, Massimo, 1998. An axiomatic approach to complete patience and time invariance. J. Econ. Theory 83, 105–144. 
Mitra, Tapan, Basu, Kaushik, 2007. On the existence of Paretian social welfare quasi-orderings for infinite utility streams with extended anonymity. In: Roemer, John, 

Suzumura, Kotaro (Eds.), Intergenerational Equity and Sustainability. Palgrave, London, 2007.  
Mosteller, Frederick, Nogee, Philip, 1951. An experimental measurement of utility. J. Politic. Econ. 59, 371–404. 
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