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Abstract

This paper shows that convexity of preference has stronger implications for weighted utility models than 
had been known hitherto, both for utility and for weighting functions. Our main theorem derives concave 
utility from convexity of preference on the two-dimensional comonotonic cone, without presupposing con-
tinuity. We then show that this, seemingly marginal, result provides the strongest tool presently available for 
obtaining concave/convex utility or weighting functions. We revisit many classical results in the literature 
and show that we can generalize and improve them.
© 2019 Published by Elsevier Inc.
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1. Introduction

Convexity of preference is a standard condition in many fields (De Giorgi and Mahmoud, 
2016; Debreu, 1959; Mas-Colell et al., 1995 p. 44). We examine it for weighted utility models, 
where its potential has not yet been fully recognized. Our first theorem shows its equivalence 
to concave utility on the two-dimensional comonotonic cone. This generalizes existing results 
by not presupposing continuity and by providing flexibility of domain. With this seemingly thin 
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and marginal result we can in one blow generalize virtually all existing theorems on convex or 
concave utility or weighting functions, and make them more appealing.

The aforementioned theorems concern: (1a) risk aversion for expected utility not only for 
risk (von Neumann and Morgenstern, 1944) but also for (1b) uncertainty (Savage, 1954); (1c) 
Yaari’s (1969) comparative risk aversion generalized by allowing for different beliefs; (2) con-
cave/convex utility and weighting functions (2a) for Gilboa’s (1987) and Schmeidler’s (1989)
rank-dependent utility for ambiguity, and (2b) for Tversky and Kahneman’s (1992) prospect the-
ory for ambiguity; (3) corresponding results for Ghirardato and Marinacci’s (2001) biseparable 
utility for ambiguity1; (4) smooth ambiguity aversion (Klibanoff et al., 2005). Wakker and Yang
(2019) show how our main theorem can be applied to decision under risk,2 providing results 
on: (1) concave/convex utility and probability weighting for Quiggin’s (1982) rank-dependent 
utility for risk and Tversky and Kahneman’s (1992) prospect theory for risk; (2) correspond-
ing results for Miyamoto’s (1988) biseparable utility for risk3; (3) loss aversion in Köszegi and 
Rabin’s (2006) reference dependent model; (4) inequality aversion for welfare theory (Ebert, 
2004).

The main contribution of this paper is not to generalize some theorems, which would consti-
tute a marginal contribution, but to provide a general technique to obtain convex/concave utility 
or weighting functions in a more general and appealing manner than done before. As corollaries, 
we can generalize and improve virtually all existing results on this topic in the literature. To limit 
the size of this paper, we focus on uncertainty henceforth. Our theorems can readily be applied, 
though, not only to risk (Wakker and Yang, 2019), but also to discounted utility for intertem-
poral choice with aversion to variation in outcomes, utilitarian welfare models with aversion to 
inequality, and other weighted utility models.

The outline of the paper is as follows. Section 2 presents elementary definitions and our main 
result. To show its usefulness, the following sections apply our main result to a number of well-
known classical results in the literature, generalizing and making them more appealing. These 
applications demonstrate that we have provided a general tool for analyzing concave/convex util-
ity and weighting. Section 3 presents implications for uncertainty focusing on classical expected 
utility. Sections 4 and 5 turn to ambiguity models, followed by a concluding section and an ap-
pendix with proofs. In each proof, we first find a substructure isomorphic to our main theorem, 
and then extend the desired result to the whole domain considered.

2. Definitions and our main theorem

S is the state space that can be finite or infinite. A denotes an algebra of subsets called events. 
The outcome set is a nonpoint interval I ⊂ IR, bounded or not. F denotes a set of functions from 
S to I called acts, which are assumed measurable (inverses of intervals are events). Outcomes are 

1 This includes many ambiguity theories, such as maxmin expected utility (Alon and Schmeidler, 2014; Gilboa and 
Schmeidler, 1989), the α-Hurwicz criterion (Arrow and Hurwicz, 1972), multiple priors-multiple weighting (Dean and 
Ortoleva, 2017), contraction expected utility (Gajdos et al., 2008), alpha-maxmin (Ghirardato et al., 2004; Jaffray, 1994;
Luce and Raiffa, 1957 Ch. 13), Hurwicz Expected Utility (Gul and Pesendorfer, 2015), binary RDU (Luce, 2000) includ-
ing his rank-sign dependent utility, and binary expected utility (Pfanzagl, 1959 pp. 287-288).

2 We thank an anonymous referee and editor for recommending this organization of our results in two papers.
3 This is the analog for risk of biseparable utility, and includes many risk theories such as disappointment theory (Bell, 

1985; Loomes and Sugden, 1986) for a disappointment function kinked at 0, RAM and TAX models (Birnbaum, 2008), 
disappointment aversion (Gul, 1992), original prospect theory (Kahneman and Tversky, 1979) for gains and for losses, 
Luce’s (2000) binary RDU, and prospective reference theory (Viscusi, 1989). See Wakker (2010 Observation 7.11.1).
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identified with constant acts. We assume that F contains all simple, i.e., finite-valued measurable 
functions. Other than that, F can be general, with however the restriction added that all RDU 
values (defined later) are well-defined. In particular, F may consist exclusively of simple acts, 
or contain all bounded acts. By x = (E1 : x1, . . . , En : xn) we denote the simple act assigning 
outcome xj to all states in Ej . It is implicitly understood that the Ej s are events partitioning S.

A preference relation, i.e., a binary relation � on F , is given; �, �, ≺, ∼ are as usual. V
represents � on F ′ ⊂ F if V is real valued with F ′ contained in its domain and x � y ⇔
V (x) ≥ V (y) for all acts x, y ∈F ′. This implies weak ordering on F ′, i.e., � is transitive and 
complete there. If we omit “on F ′”, then F ′ =F . Central in this paper are convex combinations 
λx + (1 − λ)y. Here x and y are acts, 0 ≤ λ ≤ 1, and the combination concerns the statewise 
mixing of outcomes. We do not assume that F is closed under convex combinations. The set of 
simple acts is, and this provides enough richness for all our theorems.

Definition 1. We call � convex if x � y ⇒ λx+(1 −λ)y � y for all 0 ≤ λ ≤ 1 and acts x, y, λx+
(1 − λ)y. �
The condition is only imposed if the mix indeed is an act; i.e., is contained in the domain. Con-
vexity of preference is equivalent to quasi-concavity of representing functions.4

An (event) weighting function W maps events to [0, 1] such that: W(∅) = 0, W(S) = 1, and 
A ⊃ B ⇒ W(A) ≥ W(B). Finitely additive probability measures P are additive weighting func-
tions. They need not be countably additive. Preference conditions necessary and sufficient for 
countable additivity are well known (Arrow, 1971; Wakker, 1993 Proposition 4.4), and can op-
tionally be added in all our theorems.

For a weighting function W and a function U : I → IR, the rank-dependent utility (RDU) of 
an act x is∫

IR+
W {s∈S : U(x(s)) > α}dα −

∫

IR−
(1 − W {s∈S : U(x(s)) > α})dα. (1)

An alternative term used in the literature is Choquet expected utility. We impose one more restric-
tion on F : RDU is well defined and finite for all its elements. A necessary and sufficient condition 
directly in terms of preferences—requiring preference continuity with respect to truncations of 
acts—is in Wakker (1993). A sufficient condition is that all acts are bounded (with an upper and 
lower bound contained in I ). For a simple act (E1 : x1, . . . , En : xn) with x1 ≥ · · · ≥ xn, the RDU 
is

n∑
j=1

(W(E1 ∪ · · · ∪ Ej) − W(E1 ∪ · · · ∪ Ej−1))U(xj ). (2)

Rank-dependent utility (RDU) holds on F ′ ⊂ F if there exist W and strictly increasing U
such that RDU represents � on F ′. Then U is called the utility function. Again, if we omit “on 
F ′,” then F ′ =F . If F ′ contains all constant acts, then strict increasingness of U is equivalent to 
monotonicity: γ > β ⇒ γ � β for all outcomes. We do not require continuity of U . The special 
case of RDU with W a finitely additive probability measure P is called expected utility (EU). 
We sometimes write subjective EU if P is subjective. We assume existence of a nondegenerate 

4 Unfortunately, terminology in the literature is not uniform, and sometimes terms concave, quasi-convex, or quasi-
concave have been used. We use the most common term, convex.
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event E, meaning (E : γ, Ec : γ ) � (E : γ, Ec : β) � (E : β, Ec : β) for some outcomes γ >

β with the acts contained in the relevant domain F ′. Under sufficient richness, satisfied in all 
cases considered in this paper, nondegenerateness means 0 < W(E) < 1.5 We summarize the 
assumptions made.

Assumption 2. [Structural assumption for uncertainty] S is a state space, A an algebra of subsets 
(events), and I a nonpoint interval. F , the set of acts, is a set of measurable functions from S to I
containing all simple functions, endowed with a binary (preference) relation �. RDU represents 
� on a subset F ′ of F (default: F ′ =F ). There exists a nondegenerate event E. �

To obtain complete preference axiomatizations in the theorems in this paper, we should 
state preference conditions for the decision models assumed. Such conditions were surveyed 
by Köbberling and Wakker (2003) and will not be repeated here.

W is convex if W(A ∪ B) + W(A ∩ B) ≥ W(A) + W(B). Elementary manipulations show 
that this holds if and only if

W(A ∪ B) − W(B) ≤ W(A ∪ B ′) − W(B ′) whenever A ∩ B ′ = ∅ and B ⊂ B ′. (3)

The latter formulation shows the analogy with increasing derivatives of real-valued convex func-
tions. An interesting implication of convexity of W is that RDU then belongs to the popular 
maxmin EU model (Wald, 1950; Gilboa and Schmeidler, 1989) with the set of priors equal to 
the Core, i.e., the set of probability measures that dominate W (Schmeidler, 1986 Proposition 3; 
Shapley, 1971).

The following theorem is our main result. Virtually all preceding results in the literature—
Debreu and Koopmans (1982) excepted—assumed continuity and often even differentiability, 
but we do not.

Theorem 3. [Main theorem] Assume: (a) Structural Assumption 2; (b) S = {s1, s2}; (c) s1 is 
nondegenerate; (d) EU (= RDU) holds on F ′ = {x = (s1 : x1, s2 : x2) : x1 ≥ x2}. Then utility is 
concave if and only if � is convex on F ′. �

In the theorem, nondegeneracy of s1 is equivalent to nondegeneracy of s2. The proof of the 
theorem is more complex than of its analogs on full product spaces that can use hedging, as 
in the half-half mixture of (1, 0) and (0, 1) resulting in the sure (0.5, 0.5). Hedging provides a 
powerful tool for analyzing convex preferences, extensively used in the literature, that we cannot 
use though because all acts in our domain are maximally correlated. This complicates our proof 
relative to, for instance, Debreu and Koopmans (1982), its simplification Crouzeix and Lindberg
(1986), its generalization Monteiro (1999), and most other predecessors. Therefore, unlike De-
breu and Koopmans, we need strictly increasing utility. Example A.3 shows that our theorem 
does not hold for nondecreasing utility. Because strictly increasing utility is natural in most ap-
plications, it does not entail a serious restriction. In return, the flexibility of domain provided by 

5 If no nondegenerate event exists, then an RDU representation exists with a linear, so surely concave, utility, and in this 
sense all results below hold true—also regarding convexity of weighting functions as can be demonstrated—without the 
extra requirement of nondegeneracy. However, then utility is ordinal (Wakker, 1989 Observation VI.5.1’) so that utility 
can also be chosen nonconcave, and we should formulate all our results as existence results. We avoid complicating our 
formulations this way.
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our theorem allows us to apply it to utility functions when expected utility is violated, and to ap-
ply it dually so that it speaks to weighting functions. Chateauneuf and Tallon (2002), Ghirardato 
and Marinacci (2001), and Wakker (1994) did consider comonotonic sets of acts (defined in 
§4) as above. Theorem 3 generalizes their results by showing that continuity/differentiability is 
redundant. §5 gives further details.

3. Implications for decision under uncertainty: expected utility

This section considers applications of the main Theorem 3 to classical EU for decision under 
uncertainty.

Corollary 4. If Structural Assumption 2 and EU hold, then U is concave if and only if � is 
convex. �

Corollary 4 is useful for capturing risk aversion because convexity is directly observable, not 
involving subjective probabilities. Remarkably, the early Yaari (1965) already pointed out that 
the traditional definitions of risk aversion, relating to expected value or mean-preserving spreads, 
cannot be used for subjective EU. He hence tested convexity instead. However, he did not observe 
that convexity is actually equivalent to the traditional definitions.

Although an early version of Corollary 4 appeared in Debreu and Koopmans (1982 p. 4) and 
has been used in some works (Section 5), the result did not yet receive the attention it deserves 
and has not been generally known. Alternative, more complex, preference conditions for concave 
utility under subjective EU are in Baillon et al. (2012), Harvey (1986 Theorem 3), Wakker (1989), 
Wakker (2010 Eq. 4.8.2), and Wakker and Tversky (1993 §9).

We next turn to comparative results. In what follows, superscripts refer to decision makers. 
Yaari (1969) provided a well-known characterization of comparative risk aversion under sub-
jective EU, where decision maker �2 with utility U2 is more risk averse than decision maker 
�1 with utility U1 if her certainty equivalents are always lower. Then U2 is a concave transfor-
mation of U1. Unfortunately, Yaari’s condition is not necessary and sufficient, but only holds if 
the two decision makers have the same subjective probabilities. Decision makers with different 
beliefs cannot be compared because Yaari’s condition then is never satisfied. The basic problem 
is that certainty equivalents depend on probabilities and, thus, involve not only risk attitudes but 
also beliefs. Yaari’s method of comparing certainty equivalents has become a common tool in 
ambiguity theories, for instance to compare ambiguity aversion across decision makers.6 Then 
invariably all other attitude components of the decision makers except the one compared have 
to be identical. This is implied by the fundamental problem of certainty equivalents of involv-
ing all components of decision attitudes. It limits the scope of application. We now show how 
outcome mixing avoids the aforementioned limitations and works for general beliefs, for Yaari’s 
original EU framework. Generalizations to nonexpected utility theories are left to future work. 
A preparatory notation: αEβ denotes the binary act (E : α, Ec : β). Mathematically, we will de-
scribe the case where �2 is risk averse if outcomes are expressed in U1 units, i.e., units that 
make �1 risk neutral. In these outcome units, �2 should be convex. To capture this idea in a 
preference condition, we have to avoid the explicit use of theoretical constructs such as U1. We 

6 See, for instance, Epstein (1999 Definition 2.3), Ghirardato and Marinacci (2001 §4.1), Ghirardato and Marinacci
(2002 Definition 4), Izhakian (2017 Definition 4), and Klibanoff et al. (2005 Definition 5).
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have to reveal mixtures of acts in U1 units directly from preferences. Gul (1992) showed a way 
to do this. Assume, for any event A, with xj ≥ yj ≥ zj for j = 1, 2:

(x1A
z1) ∼1 y1 and (x2A

z2) ∼1 y2. (4)

This shows that, in U1 units, y1 is a mixture of x1 and z1, and y2 is so of x2 and z2, with the 
subjective probabilities P 1(A) and 1 − P 1(A) as mixing weights. These weights are not directly 
observable but this is no problem. All we need for what follows is that these weights are the 
same in both mixtures. This is enough to infer that, for any event B , the act (y1B

y2) is a convex 
mixture of (x1B

x2) and (z1B
z2) in U1 units. Our convexity condition requires that the mixture 

(y1B
y2) is preferred to the other two acts if they are indifferent. That is, �2 is more outcome-risk 

averse7 than �1 if, for all events B:

(x1B
x2) ∼2 (z1B

z2) ⇒ (y1B
y2) �2 (z1B

z2) (5)

is implied by Eq. (4). Eq. (5) is the convexity condition in terms of U 1 units, weakened to the case 
where the antecedent preference is actually an indifference, and where the mixture weights are 
P 1(A) and 1 − P 1(A) for some event A. Under continuity, this weakened version of convexity 
is strong enough to imply full-force convexity, as Corollary 5 will show. To see intuitively that 
our condition captures comparative risk aversion, first note that Eq. (4) implies, for all events B ′

(x1B′ x2) ∼1 (z1B′ z2) ⇒ (y1B′ y2) ∼1 (z1B′ z2) (6)

because of linearity in probability mixing of the EU1 functional.8 The event B ′ to bring indif-
ference for decision maker 2 may be different than B due to different beliefs and/or state spaces. 
Comparing Eqs. (5) and (6) shows that, if decision maker 1 is indifferent to the mix, then decision 
maker 2 prefers it. This reveals stronger risk aversion, as formalized next.

Corollary 5. Assume that �1 and �2 both satisfy Structural Assumption 2 with the same out-
come interval I , and both maximize subjective EU with continuous utility functions U1 and U2, 
respectively. Then �2 is more outcome-risk averse than �1 if and only if U2(.) = ϕ(U1(.)) for 
a concave transformation ϕ. The two decision makers may have different probabilities and may 
even face different state spaces. �

Both the ambiguity aversion of Klibanoff et al.’s (2005) smooth model, and the preference 
for early resolution of uncertainty of Kreps and Porteus (1978) amount to having one EU utility 
function more concave than another. Corollary 5 shows a way to obtain these results without 
involving probabilities as inputs in the preference condition. Note that we have to be able to deal 
with different state spaces in these applications.

Our outcome-risk aversion condition is more complex, and less appealing, than Yaari’s cer-
tainty equivalent condition. Its pro is that it delivers a clean comparison of utility and risk attitude, 
not confounded by beliefs. Both conditions deserve study. Baillon et al. (2012) provided other 
characterizations of comparative risk aversion that, like our result, do not require same beliefs 
or given probabilities. They used an endogenous midpoint operation for utilities. Heufer (2014)
showed how Yaari’s certainty equivalent condition can be elicited from revealed preferences. Our 
paper propagates the use of preference convexity. Heufer (2012) showed how this convexity can 
be elicited from revealed preferences.

7 To avoid confusion with Yaari’s widely accepted terminology, we add “outcome” to our term.
8 Gul (1992) used a strengthened version of the implication Eq. (4) ⇒ Eq. (6) to axiomatize subjective expected utility.
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4. Implications for decision under uncertainty: ambiguity

We first discuss applications to RDU, and start with basic definitions. Acts x, y are comono-
tonic if there are no states s, t with x(s) > x(t) and y(s) < y(t). A set of acts is comonotonic if 
each pair of its elements is comonotonic. A comoncone is a maximal comonotonic set. It corre-
sponds with an ordering ρ, called ranking, of S and contains all acts x with sρt ⇒ x(s) ≥ x(t). 
Every event E of the form {s∈E : sρt, s �= t} is called a goodnews event or, more formally, a 
rank. Intuitively, it reflects the good news of receiving all outcomes ranked better than some out-
come. A set of acts is comonotonic if and only if it is a subset of a comoncone. A comoncone 
is nondegenerate if it has a nondegenerate goodnews event. On every comoncone with related 
ordering ρ, RDU agrees with an EU functional with the finitely additive probability measure Pρ

agreeing with W on the goodnews events. The following corollary is a straightforward general-
ization of the main Theorem 3.

Corollary 6. If Structural Assumption 2 holds and RDU holds on a nondegenerate comoncone 
F ′, then U is concave if and only if � is convex on F ′. �

A first version of the following result was in Chateauneuf and Tallon (2002), and did not 
receive the attention it deserves.

Corollary 7. [Main corollary] If Structural Assumption 2 and RDU hold, then {U is concave 
and W is convex} if and only if � is convex. �

The result is especially appealing because the two most important properties of RDU jointly 
follow from one very standard preference condition. The only proof available as yet, by 
Chateauneuf and Tallon, assumes differentiability of utility, which is problematic for preference 
foundations. Differentiability is not problematic, and useful, in most economic applications. For 
preference foundations the situation is different, though. Preference foundations seek for con-
ditions directly observable from preferences. In this way, preference foundations make theories 
operational. For general differentiability, there is no clear and elementary preference condition.9

Hence, differentiability assumptions are better avoided in preference foundations. Strictly speak-
ing, Corollary 7 is then the first joint preference foundation of the two most popular specifications 
of RDU. Chateauneuf and Tallon (2002) did not present their result very saliently.10 This, and the 
use of differentiability, may explain why this appealing result has not yet been as widely known 
as it deserves to be.

We, finally, give results for a large class of nonexpected utility models. By FE we denote the 
set of binary acts γEβ = (E : γ, Ec : β), and by F↑

E we denote the subset with γ ≥ β . Bisepara-
ble utility holds if there exist a utility function U , and a weighting function W , such that RDU(x)

represents � on the set of all binary acts x. That is, for all binary acts γEβ (γ ≥ β) we have an 
RDU representation W(E)U(γ ) + (1 − W(E))U(β), but for acts with more than two outcomes 
the representation has not been restricted. Biseparable utility includes many theories (see the 

9 Once concavity has been derived, we are close to differentiability (lemma A.1). Then necessary and sufficient condi-
tions for complete differentiability can be stated in terms of vanishing limits of risk premia (Nielsen, 1999), a condition 
which has the same, commonly accepted, observability status as continuity. The task of our paper is, however, to derive 
concavity.
10 One has to combine their Proposition 1 with the equivalence of (i) and (iv) in their Theorem 1.
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Introduction) and the following theorem therefore pertains to all these theories. Statement (ii) 
characterizes concave utility for all these models. Statement (i) additionally characterizes sub-
additivity of W : W(A) + W(Ac) ≤ 1. It is equivalent to convexity on binary partitions {E, Ec}. 
It is the prevailing empirical finding and has sometimes been taken as definition of ambiguity 
aversion.

Corollary 8. If Structural Assumption 2 and biseparable utility hold, then:

(i) U is concave and W is subadditive if and only if � is convex on every FE .
(ii) U is concave if and only if � is convex on every F↑

E . This holds if and only if � is convex on 
one set F↑

E with E nondegenerate. �
5. Further implications for existing results on uncertainty in the literature

Schmeidler (1989), the most famous work in ambiguity theory, assumed an Anscombe-
Aumann framework: a set of prizes is given, and the outcome set is the set of simple probability 
distributions over the prize space. That is, the outcome set is a convex subset of a linear space. 
Acts map states to outcomes. Utility over outcomes is assumed to be expected utility, i.e., it 
is linear with respect to probabilistic mixtures of outcomes. This is Structural Assumption 2 but 
with a multi-dimensional outcome space instead of our one-dimensional I . Schmeidler (1989 the 
Proposition) showed that W is convex if and only if � is convex—called uncertainty aversion. 
This follows from the special case of the main Corollary 7 with utility linear. That the outcome 
space is multi-dimensional changes nothing in our proofs.11

Most studies of multiple priors models, including α−maxmin models, used the Anscombe-
Aumann framework with linear utility. Exceptions without this restriction include Alon and 
Schmeidler (2014), Casadesus-Masanell et al. (2000), and Ghirardato et al. (2003). Our results 
characterize concave utility for the latter studies.

Several studies assumed linear utility as did Schmeidler (1989), and then gave various nec-
essary and sufficient conditions for convex weighting functions alternative to our convexity: 
Chateauneuf (1991) and Kast and Lapied (2003) for monetary outcomes, and Wakker (1990)
for the Anscombe-Aumann framework.

Three results in the literature come close to our main Theorem 3, in deriving concavity not 
on a full product set but on a comoncone. The first is Wakker (1994 Theorem 24).12 He applied 
our main theorem dually to probability weighting instead of utility (similarly as our derivation 
of convexity of W in Corollary 7). His proof was complex and heavily used continuity in proba-
bility weighting and utility. His result will be generalized by Wakker and Yang (2019), who also 
formalize the aforementioned duality. The second result close to our main Theorem 3 or, more 
precisely, to our Corollary 6, is Theorem 3 in Chateauneuf and Tallon (2002). They assumed 
differentiable utility, whence they could skip Steps 2 and 3 of our proof in Appendix A. The 
third result close to Theorem 3 is Ghirardato and Marinacci (2001 Theorem 17). They assumed 

11 For necessity of the preference condition, the proof of Lemma B.1 works with the first inequality an equality. For 
sufficiency, all o terms in the proof of Lemma B.2 are exactly 0. Sufficiency can also be obtained by taking two outcomes 
γ � β and equating lotteries over them with I = [0, 1].
12 Wakker (1994) used the term quasi-concave preference instead of our term convex preference.
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continuity, and showed how Debreu and Koopmans (1982) can be used as in Step 1 of our proof 
in Appendix A. Our proof shows how to add Steps 2 and 3 to their proof.13

For the special case of linear utility (in an Anscombe-Aumann framework), Cerreia-Vioglio 
et al. (2011) characterized general preference functionals with convex preferences. Rigotti et al.
(2008) examined general convex preferences and specified results for several ambiguity mod-
els. Their Remark 1 discussed RDU with convex weighting functions, but did not specify how 
these are related to convex preferences. Our main Corollary 7 shows that concavity of utility is 
necessary and sufficient for that relation to be an equivalence.

6. Conclusion

We have provided a general technique to obtain convex/concave utility and weighting func-
tions. Fields of application include intertemporal choice, utilitarian welfare aggregations, risk, 
and, the context chosen in this paper, decision under uncertainty. There this paper generalized 
and improved virtually all existing theorems, and Wakker and Yang (2019) will do so for risk. 
Knowledge of Corollaries 4 and 7 will be useful for everyone working in decision theory. Con-
vexity with respect to outcome-mixing is more powerful than had been known before.
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Appendix A. Proof of Theorem 3

We first list some well-known properties of concave functions (Van Rooij and Schikhof 1982
§1.2).

Lemma A.1. If U is concave and strictly increasing on I , then: (a) U is continuous on I except 
possibly at min(I) (if it exists). On int(I): (b) U has right derivative U ′

r and left derivative 
U ′

� everywhere; (c) U ′
�(α) ≥ U ′

r (α) ≥ U ′
�(α

′) > 0 for all α′ > α; (d) U is differentiable almost 
everywhere.

Proof. As regards positivity in (c), if a left or right derivative were 0 somewhere in int (U)

then it would be 0 always after, contradicting strict increasingness of U . The other results are 
well-known (Van Rooij and Schikhof, 1982 §1.2). �
Proof of main Theorem 3. If U is concave then so is the EU functional, so that it is quasi-
concave, implying convexity of �. (This also follows from Lemma B.1.)

In the rest of this appendix we assume convexity of �, and derive concavity of U . We write 
π1 = W(s1), π2 = 1 −π1. By nondegeneracy, 0 < π1 < 1. We suppress states from acts and write 
(x1, x2) for (s1 : x1, s2 : x2). As explained in the main text, we cannot use hedging techniques 
in our proofs. Instead, we will often derive contradictions of convexity of p by constructing a 
“risky” act r = (r1, r2) and a “close-to-certain” act c = (c1, c2) with r1 > c1 ≥ c2 > r2, such that

13 We thus show that the claim X0 ⊂ X∗ ∪ X∗ on p. 887 line −13 in their proof holds true by ruling out the existence 
of β as in Figs. 2 and 3.
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Fig. 1. Proof of continuity of U .

m := λr + (1 − λ)c; r � m; c � m (A.1)

for some 0 < λ < 1 (mostly λ = 0.5), with m called the “middle” act.

Lemma A.2. U is continuous except possibly at inf I .

Proof. See Fig. 1. Assume, for contradiction, that U is not continuous at an outcome δ > inf I . 
We construct r, m, c as in Eq. (A.1) with further r1 ≥ δ > m1.

Define u− = sup{U(β) : β < δ}. Define u+ = U(δ) if δ = max(I) and u+ = inf {U(α) : α >

δ} otherwise. By discontinuity, u+ > u−. By taking r2 < δ sufficiently close to δ we can get 
U(r2) as close to u− as we want. We take it so close that π1(u

+) + π2U(r2) > u−. This will 
ensure that r , the only act with its first outcome exceeding δ, is strictly preferred to all other acts, 
in particular, to m. We next choose c2 strictly between r2 and δ and define m2 = (r2 + c2)/2. 
We then take c1 strictly between c2 and δ so close to δ that π1(u

−) + π2U(m2) < π1U(c1)) +
π2(U(c2)). This will ensure that c � m if we ensure that m1 < δ. For the latter purpose we define 
r1 = δ if δ = max(I), and otherwise r1 > δ so close to δ that m1 := (r1 + c1)/2 < δ. In both 
cases, U(r1) ≥ u+. The acts r, m, c are as in Eq. (A.1) with λ = 1/2. QED

Because U is strictly increasing, it suffices to prove concavity outside inf I . That is, we 
assume that I has no minimum. Assume for contradiction that U is not concave. Then there exist 
0 < λ′ < 1 and outcomes α′ < γ ′ such that U(λ′γ ′ + (1 − λ′)α′) < λ′U(γ ′) + (1 − λ′)U(α′). 
Define � as the line through (α′, U(α′)) and (γ ′, U(γ ′)). By continuity of U , we can define α as 
the maximum outcome between α′ and λ′γ ′ + (1 − λ′)α′ with (α, U(α)) on (or above) �, and γ
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Fig. 2. Contradiction from nonconcavity of U : Steps 1 & 2.

as the minimum outcome between γ ′ and λ′γ ′ + (1 − λ′)α′ with (γ, U(γ )) on (or above) �. We 
have γ > α and

U(λγ + (1 − λ)α) < λU(γ ) + (1 − λ)U(α) (A.2)

for all 0 < λ < 1 (Fig. 2).

STEP 1 [At most one nonconcavity kink]. Assume that U is not concave on some “mid-
dle” interval M ⊂ I , with L and R the intervals in I to the left and right of M , possi-
bly empty. Applying Debreu and Koopmans (1982 Theorem 2) to the additive representation 
(1 −π1)U(x1) +π1U(x2) on L ×M and to the additive representation (1 −π1)U(x1) +π1U(x2)

on M × R then implies that U is strictly concave on L and R. Applying this result to smaller 
and smaller subintervals M of [α, γ ] there is one β in [α, γ ] such that U is concave above and 
below β .

For the remainder of the proof, we could use Debreu and Koopmans (1982 Theorem 6). They 
provide a concavity index according to which U would be infinitely convex at the nonconcavity 
kink, then would have to be more, so infinitely, concave at every other point, but being concave 
there it can be infinitely concave at no more than countably many points, and a contradiction 
has resulted. This reasoning is advanced and cannot be written formally very easily, because of 
which we provide an independent proof.

STEP 2 [Nonconcavity kink must be exactly at π1γ + π2α]. We next show that β can only be 
β ′ := π1γ + π2α. Assume, for contradiction, that π1γ + π2α were located at a point β ′ different 
than β (Fig. 2). Then there would be a small interval around β ′, not containing α, β , or γ , where 
U would be strictly concave. We could then find γ ′ > β ′ > α′ in the small interval with exactly 
π1γ

′ + π2α
′ = β ′ and satisfying the strict concavity inequality

π1U(γ ′) + π2U(α′) < U(β ′). (A.3)
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Fig. 3. Contradiction from nonconcavity of U : Step 3.

We define some acts, where, on our domain F ′ considered, always the best outcome is the 
first: c = (β ′, β ′), r = (γ, α), m = (γ ′, α′), and we show that Eq. (A.1) holds. Because β ′ is the 
same π1, π2 mix of γ and α as of γ ′ and α′, there exists 0 < μ < 1 such that m = μr + (1 −μ)c. 
We have r � c � m, the first preference by the convexity “risk-seeking” inequality Eq. (A.2)
(with λ = π1) and the second by the concavity “risk-averse” inequality Eq. (A.3). Eq. (A.1) is 
satisfied.

STEP 3 [Nonconcavity kink cannot be at π1γ + π2α either]. We construct, for contradiction, 
two outcomes γ ′, α′ or γ ′, α′′ that are as γ, α in Eq. (A.2) but for whom an analogous β as just 
constructed does not exist though. See Fig. 3.

Consider the line through (α, U(α)) and (γ, U(γ )). Because of concavity of U on [α, β) and 
[β, γ ), the right derivative of U is decreasing on each of these two intervals. Because the line 
mentioned lies above the graph of U , its slope exceeds the right derivative of U everywhere on 
[α, β) and is below it everywhere on [β, γ ). Now take any α′ strictly between α and β , and take 
the line parallel to the line through (α, U(α)) and (γ, U(γ )). Its first intersection with the graph 
of U exceeding α′ is γ ′. Inspection of right derivates shows that γ ′ > β . If π1γ

′ + π2α
′ �= β

then we have a contradiction with Step 2 and we are done. If we have equality after all, then we 
take a line through (γ ′, U(γ ′)) that is strictly between the two parallel lines. Its first intersection 
with the graph of U is (α′′, U(α′′)), and α′′ and γ ′ are as in Eq. (A.2) but the outcome β has 
π1γ

′ + π2α
′′ �= β . Contradiction has resulted and we are done. The proof of Theorem 3 now is 

complete. �
The following example shows that the main Theorem 3 does not hold if U is only assumed 

nondecreasing instead of strictly increasing.

Example A.3. In this example, all assumptions of Theorem 3 are satisfied except that U is non-
decreasing instead of strictly increasing. � is convex but U is not concave.
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I = IR, W(s1) = π1 = π2 = 0.5, and U is the sign function. More precisely, U(α) = 1 if 
α > 0, U(0) = 0, and U(α) = −1 if α < 0. We show that � is convex. We consider an exhaustive 
list of cases of three acts m, r, c, with the cases ordered by the preference value of m. In each 
case we state some implications from m ≺ r and m ≺ c that readily preclude m from being a 
mixture of r and c. We suppress states and denote acts by the utilities of their outcomes. Thus, 
(1, −1) denotes an act with a positive first outcome and a negative second outcome. We write 
d ′
j = U(dj ) for d = c, m, r and j = 1, 2.

(1) If m′
1 = −1 then r ′

1 ≥ 0 and c′
1 ≥ 0. (2) If (m′

1, m
′
2) = (0, −1) then r ′

1 ≥ 0 and c′
1 ≥ 0

and either one of the latter is positive or (r ′
1, r

′
2) = (c′

1, c
′
2) = (0, 0). (3) If (m′

1, m
′
2) = (0, 0) or 

(m′
1, m

′
2) = (1, −1) then both (r ′

1, r
′
2) and (c′

1, c
′
2) are (1, 0) or (1, 1). (4) If (m′

1, m
′
2) = (1, 0)

then (r ′
1, r

′
2) = (c′

1, c
′
2) = (1, 1). (5) (m′

1, m
′
2) = (1, 1) cannot be. �

Appendix B. Proofs for §3 and §4

For a weighting function W , we use the following notation: π(ER) = W(E ∪ R) − W(R) is 
the decision weight of an outcome in RDU under event E if R is the rank, i.e., the event giving 
outcomes ranked better than the one under E. πb(E) = W(E) and πw(E) = 1 − W(Ec). W is 
additive (EU) if and only if we have rank independence, i.e., decision weights π(ER) do not 
dependend on the rank R. W is convex if and only if decision weights π(ER) are nondecreasing 
in the rank R (Eq. (3)), which reflects a pessimistic attitude. If W is convex, then its Core consists 
of all probability measures Pρ (defined in §4) and

RDU is the infimum EU with respect to all Pρ. (B.1)

The following observation provides sufficiency of the preference conditions in all our results.

Lemma B.1. If U is concave and W is convex, then RDU is concave and, hence, � is convex 
on F (thus on every F ′ ⊂F ).

Proof. Consider three acts x, y, λx + (1 − λ)y, contained in comoncones with orderings 
ρx, ρy, ρλ, respectively. Then, with the first inequality due to concave utility and the second 
due to convexity of W (Eq. (B.1)): RDU(λx + (1 − λ)y) = ∫

S
(U

(
λx + (1 − λ)y

)
)dPρλ ≥∫

S
(λU(x) + (1 − λ)U(y))dPρλ = λ 

∫
S
U(x)dPρλ + (1 − λ) 

∫
S
U(y)dPρλ = λEUPρλ

(x) + (1 −
λ)EUPρλ

(y) ≥ λEUPρx
(x) + (1 − λ)EUPρy

(y) = λRDU(x) + (1 − λ)RDU(y). �
Proof of Corollary 4. Necessity of the preference condition follows from Lemma B.1. Suffi-
ciency follows from applying the main Theorem 3 to any two-dimensional subspace {αEβ ∈F :
α ≥ β} with E nondegenerate. �
Proof of Corollary 5. Both utilities being strictly increasing and continuous, we define the con-
tinuous strictly increasing ϕ by U2(.) = ϕ(U1(.)). Deviating from the notation elsewhere in this 
paper, all outcomes are expressed in U1 units in this proof. It means that we replace I by U1(I )

which again is a nonpoint interval, that U1 is linear, and U2 = ϕ. Eq. (4) can be rewritten as 
yj = P 1(A)xj + (1 − P 1(A))zj . Regarding necessity of the preference condition, if ϕ is con-
cave then, by Corollary 4, �2 is convex w.r.t. outcome mixing, which, given the equality just 
rewritten, implies Eq. (5) and, hence, that �2 is more outcome-risk averse than �1. The rest of 
this proof concerns sufficiency. We assume that �2 is more outcome-risk averse than �1 and 
derive concavity of ϕ.
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There exists a nondegenerate event A for �1, and a nondegenerate event B for �2. From 
now on we only consider binary acts x1A

x2 for �1 and x1B
x2 for �2, denoting them (x1, x2) (no 

confusion will arise). Define 0 < q = P 1(A) < 1. Consider any x = (x1, x2) �2 (z1, z2) = z. To 
derive convexity of �2 on the set of binary acts considered here, we have to show:

∀ 0 < λ < 1 : λx + (1 − λ)z �2 z. (B.2)

We first show it for λ = q . By continuity we can decrease x1, x2 into x1
′, x2

′ such that 
(x1

′, x2
′) ∼2 (z1, z2). Define yj = qxj

′ + (1 − q)zj , j = 1, 2. With these definitions, Eq. (4)
is satisfied with x′ instead of x. By Eq. (5), y �2 z. By monotonicity, qx + (1 − q)z �2 y �2 z. 
Eq. (B.2) holds for λ = q . By repeated application and transitivity, the equation follows for a 
subset of λs dense in [0, 1] and then, by continuity, for all λ. Convexity of �2 on the two-
dimensional set of acts considered here has been proved. Concavity of ϕ follows from the main 
Theorem 3. �
Proof of Corollary 6. RDU on a comoncone coincides with EU on that comoncone w.r.t. a 
finitely additive probability measure P , which is convex. Hence, concavity of U implies con-
vexity of � by Lemma B.1. Conversely, assume that � is convex. Apply the main Theorem 3 to 
any two-dimensional subspace {αEβ ∈F : α ≥ β} of the comoncone SF ′ with E nondegenerate, 
and concavity of U follows. �

The following lemma is the main step in deriving implications of the main Theorem 3 for 
weighting functions. The inequality in the lemma states that the decision weight of s1 is non-
decreasing in rank. It implies the same inequality for s2 and is equivalent to convexity of W . 
Showing this for higher dimensions (n > 2) goes the same way as for two dimensions, which is 
why this lemma captures the essence.

Lemma B.2. Assume n = 2, RDU, and convexity of �. Then W(s1) ≤ 1 − W(s2).

Proof. Take an outcome in int (I ), 0 wlog, at which U is differentiable. Wlog, U(0) = 0. We 
consider a small positive α tending to 0, with o(α), or oα for short, the usual notation for a 
function with limα→0

oα

α
= 0. In other words, in first-order approximations oα can be ignored. 

We write π1 = W(s1), π2
′ = W(s2).

Assume π1 > 0 and π2
′ > 0; otherwise we are immediately done. Because of continuity of U

on int (I ) and differentiability at 0, we can obtain, for all α close to 0, the left indifference in

(π2
′α,0) ∼ (0,π1α + oα) � (μπ2

′α, (1 − μ)(π1α + oα)). (B.3)

The preference is discussed later. We compare two values: the μ, 1 − μ mixture of the RDU 
values (which are the same) of the left two acts and the RDU value of their μ, 1 − μ mixture, 
which is the right act. We take μ > 0 so small that the left outcome μπ2

′α in the mixture is below 
the right outcome. Informally, by local linearity, in a first-order approximation the only difference 
between the two values compared is that for the left value the left outcome π2

′α receives the 
highest-outcome decision weight π1 whereas for the right value it receives the lowest-outcome 
decision weight 1 − π2

′. Convexity of � implies the preference in Eq. (B.3), which implies 
1 − π2

′ ≥ π1.
Formally, note that different appearances of oα can designate different functions. Thus we 

can, for instance, write, for constants k1 and k2 independent of α: k1oα + k2oα = oα . The fol-
lowing is most easily first read for linear utility, when all terms oα are zero. Write u′ = U ′(0); 
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μ can be chosen independently of α. Here is the comparison of the aforementioned two values: 
μπ1u

′π2
′α + oα + (1 − μ)π2

′u′π1α + oα ≤ (1 − π2
′)u′μπ2

′α + oα + π2
′u′(1 − μ)π1α + oα . 

Dividing by μu′π2
′α, we obtain π1 ≤ 1 − π2

′ + oα

α
. Now π1 ≤ 1 − π2

′ follows. �
Proof of the main Corollary 7. Necessity of the preference condition follows from Lemma B.1. 
We, therefore, assume convexity of �. Concavity of U follows from considering any nondegen-
erate event E and applying the main Theorem 3 to the set of acts (E : x1, Ecx2) with x1 ≥ x2. 
We finally derive convexity of W .

Assume A, B, B ′ as in Eq. (3). Write C = B ′ − B, R = S − (A ∪ B ′). Take γ > β∈ int (I ), 
and consider F∗ = {(B : γ, C : x1, A : x2, R : β) ∈F : γ ≥ x1 ≥ β, γ ≥ x2 ≥ β}. This space is 
isomorphic to the space F of Lemma B.2 and the convexity inequality needed here follows from 
the one of that lemma. Details are as follows. Take outcome space I∗ = [β, γ ], s∗

1 = C, s∗
2 = A, 

and weighting function W ∗(E) = W(E∪B)−W(B)
W(A∪B∪C)−W(B)

. (If the denominator is 0, then the convexity 
inequality is trivially satisfied.) The inequality W ∗({s1, s2}) − W ∗(s1) ≥ W ∗(s2) in Lemma B.2
is the same as the required W(A ∪ B ′) − W(B ′) ≥ W(A ∪ B) − W(B). �
Proof of Corollary 8. Statement (i) follows from the main Corollary 7 because convexity of W
on every FE is equivalent to subadditivity. Statement (ii) follows immediately from the main 
Theorem 3. �
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