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uncertainty
In most economic decisions where agents face uncer-
tainties, no probabilities are available. This point was first
emphasized by Keynes (1921) and Knight (1921). It was
recently reiterated by Greenspan (2004, p. 38):

... how ... the economy might respond to a monetary
policy initiative may need to be drawn from evidence
about past behavior during a period only roughly
comparable to the current situation. ... In pursuing a
risk-management approach to policy, we must confront
the fact that only a limited number of risks can be
quantified with any confidence.

Indeed, we often have no clear statistics available. Knight
went so far as to call probabilities unmeasurable in such
cases. Soon after Knight's suggestion, Ramsey (1931), de
Finetti (1931) and Savage (1954) showed that probabil-
ities dihbe defined in the absence of statistics after all, by
relating them to observable choice. For example, P(E) =
0.5 can be derived from an observed indifference between
receiving a prize under event E and receiving it under
not-E (the complement to E). Although widely under-
stood today, the idea that something as intangible as a
subjective degree of belief can be made observable
through choice behaviour, and can even be quantified
precisely, was a major intellectual advance.

Ramsey, de Finetti and Savage assumed that the agent,
after having determined the probabilities subjectively (as
required by some imposed rationality axioms), proceeds
as under expected utility for given objective probabilities.
The Allais (1953) paradox (explained later) revealed a
descriptive difficulty: for known probabilities, people
often do not satisfy expected utility. Hence, we need to
generalize expected utility. Another, more fundamental,
difficulty was revealed by the Ellsberg (1961) paradox
(also explained later): for unknown probabilities, people
behave in ways that cannot be reconciled with any assign-
ment of subjective probabilities at all, so that further gen-
eralizations are needed. (The term 'subjective probability'
always refers to additive probabilities in this article.)

Despite the importance and prevalence of unknown
probabilities, understood since 1921, and the impossibility
of modelling these through subjective probabilities, under-
stood since Ellsberg (1961), decision theorists continued
to confine their attention to decision under risk with given
probabilities until the late 1980s. Wald's (1950) multiple
priors model did account for unknown probabilities,
but attracted little attention outside statistics.

As a result of an idea of David Schmeidler (1989, first
version 1982), the situation changed in the 1980s.
Schmeidler introduced the first theoretically sound deci-
sion model for unknown probabilities without subjective
probabilities, called rank-dependent utility or Choquet

expected utility. At the same time, Wald's multiple priors
model was revived when Gilboa and Schmeidler (1989)
established its decision-theoretic soundness; a similar
result was obtained independently by Chateauneuf (1991,
Theorem 2). These discoveries provided the basis for
non-expected utility with unknown probabilities that had
been sorely missing since 1921. Since the late 1980s, the
table has turned in decision theory. Nowadays, most
studies concern unknown probabilities. Gilboa (2004)
contains recent papers and applications. This article
concentrates on conceptual issues of individual decisions
in the possible absence of known probabilities.

Theoretical studies of non-expected utility have usually
assumed risk aversion for known probabilities (leading
to concave utility and convex probability weighting),
and ambiguity aversion for unknown probabilities
(Camerer and Weber, 1992, section 23). These phenom-
ena best fit with the existence of equilibria and can be
handled using conventional tools of convex analysis
(Mukerji and Tallon, 2001). Empirically, however, a more
complex fourfold pattern has been found. For gains
with moderate and high likelihoods, and for losses
with low likelihoods, risk aversion is prevalent indeed,
but for gains with low likelihoods and for losses with high
likelihoods the opposite, risk seeking, is prevalent.

The fourfold pattern resolves the classical paradox of
the coexistence of gambling and insurance, and leads, for
instance, to new views on insurance. Whereas all classical
studies of insurance explain insurance purchasing
through concave utility, empirical measurements of util-
ity have suggested that utility is not very concave for
losses, often exhibiting more convexity than concavity
(surveyed by K6bberling, Schwieren and Wakker, 2006).
This finding is diametrically opposite to what has been
assumed throughout the insurance literature. According
to modem decision theories, insurance is primarily driven
by consumers' overweighting of small probabilities
rather than by marginal utility. .

The fourfold pattern found for risk has similarly been
found for unknown probabilities, and usually to a more
pronounced degree. Central questions in uncertainty
today concern how to analyse not only classical marginal
utility but also new concepts such as probabilistic risk
attitudes (how people process known probabilities), loss
aversion and reference dependence (the framing of out-
comes as gains and losses), and, further, states of belief
and decision attitudes regarding unknown probabilities
('ambiguity attitudes').

We end this introduction with some notation and
definitions. Decision under uncertainty concerns choices
between prospects such as (E\:x\, , En:xn), yielding
outcome Xj if event Ej obtains, j = 1, , n. Outcomes are
monetary. The Ejs are events of which an agent does not
know for sure whether they will obtain, such as who of n
candidates will win an election. The Ejs are mutually
exclusive and exhaustive. No probabilities of the events
need to be given. Because the agent is uncertain about



which event obtains, he is uncertain about which outcome
will result from the prospect, and has to make decisions
under uncertainty.

Decision under risk and non-expected utility
through rank dependence
Because risk is a special and simple subcase of uncertainty
(as explained later), this article on uncertainty begins with
a discussion of decision under risk, where the probability
Pj = P(Ej) is given for each event Ej. We can then write a
prospect as (PI :XI,'" ,Pn:xn), yielding Xj with probability
Pj' j = 1, ... , n. Empirical violations of expected-value
maximization because of risk aversion (prospects being
less preferred than their expected value) led Bernoulli
(1738) to propose expected utility, L'l=IPjU(Xj), to eval-
uate prospects, where U is the utility function. Then risk
aversion is equivalent to concavity of U.

Several authors have argued that it is intuitively unsat-
isfactory that risk attitude be modelled through the util-
ity of money (Lopes, 1987, p. 283). It would be more
satisfactory if risk attitude were also related to the way
people feel about probabilities. Economists often react
very negatively to such arguments, based as they are on
introspection and having no clear link to revealed pref-
erence. Arguments against expected utility that are based
on revealed preference were put forward by Allais (1953).

Figure 1 displays preferences commonly found, with
K denoting $1,000:

(0.06:251<, 0.07:251<, 0.87:0) -< (0.06:751<, 0.07:0, 0.87:0) and
(0.06:25K, 0.87:25K, 0.07:251<) >- (0.06:751<, 0.87:25K, 0.07:~,

Preference symbols >;=, >-, --< and =<- are as us';Ii( We
denote the outcomes in a rank-ordered manner, from best
to worst. In Figure la, people usually prefer the 'risky' (r)
prospect because the high payment of 75K is attractive. In
Figure 1b, people usually prefer the 'safe' (s) certainty of
25K for sure. These preferences violate expected utility
because, after dropping the common (italicized) term
0.87U(0) from the expected-utility inequality for Figure
1a and dropping the common term 0.87U(25K) from the
expected-utility inequality for Figure 1b, the two inequal-
ities become the same. Hence, under expected utility
either both preferences should be for the safe prospect or
both preferences should be for the risky one, and they
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cannot switch as in Figure 1. The special preference for
safety in the second choice (the certainty effect) cannot be
captured in terms of utility. Hence, alternative,
non-expected utility models have been developed.

Based on the valuable intuition that risk attitude
should have something to do with how people feel about
probabilities, Quiggin (1982) introduced rank-dependent
utility theory for risk. The same theory was discovered
independently for the broader and more subtle context of
uncertainty by Schmeidler (1989, first version 1982), a
contribution that will be discussed later. A probability
weighting function w: [0,1] --+ [0,1] satisfies w(O) = 0,
w(1) = 1, and is strictly increasirig and continuous. It
reflects the (in)sensitivity of people towards probability.
Assume that the outcomes of a prospect (PI :XI, ... , Pn:

xn) are rank-ordered, Xl 2 ... 2 Xn• Then its rank-
dependent utility (RDU) is L~=I1tjU(Xj), where utility U
is as before, and 1tj' the decisibn weight of outcome Xj, is
W(PI + ... +p) - W(PI + ... + Pj_l) (which is W(PI)
for j = 1).

Tversky and Kahneman (1992) adapted their widely
used original prospect theory (Kahneman and Tversky,
1979) by incorporating the rank dependence of Quiggin
and Schmeidler. Prospect theory generalizes rank depend-
ence by allowing a different treatment of gains from that
of losses, which is desirable for empirical purposes. In this
article on uncertainty, I focus on gains, in which case
prospect theory in its modem version, sometimes called
cumulative prospect theory, coincides with RDU.

With rank dependence, we can capture psychological
(mis)perceptions of unfavourable outcomes being more
likely to arise, in agreement with Lopds (1987) intui-
tion. We can also- capture decision attitudes of deliber-
ately paying more attention to bad outcomes. An extreme
example of the latter pessimism concerns worst-case
analysis, where all weight is given to the most unfavour-
able outcome. Rank dependence can explain the Allais
paradox because the weight of the 0.07 branch in Figure
1b may exceed that in Figure 1a:

w(l) - w(0.93) 2 w(0.13) - w(0.06).
(1)

This inequality holds for w-functions that are steeper
near 1 than in the middle region, a shape that is
empirically prevailing indeed.

/0.06 - 25K /0.06 - 75K

& ~0.87 - 25K >- ':-(0.87 - 25K
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Figure 2 (a) Expected utility: linearity; (b) Aversion to risk: convexity; (c) Insensitivity: inverse-S (d) Prevailing empirical finding; (e)
Extreme insensitivity; (f) Extreme aversion and insensitivity
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ing functions. Figure 2a concerns expected utility, and
Figure 2b a convex w, which means that

is increasing in r for all p ~ o. This is equivalent to w'
being increasing, or 111" being positive. Equation (1)
illustrates this property. Equation (2) gives the decision
weight of an outcome occurring with probability p if
there is an r probability of better outcomes. Under con-
vexity, outcomes receive more weight as they are ranked
worse (that is, r is larger), reflecting pessimism. It implies
low evaluations of prospects relative to sure outcomes,
enhancing risk aversion.

Empirical studies have found that usually w(p) >p for
small p,. contrary to what convexity would imply, and
that w(p) <p only for moderate and high probabilities p
(inverse-S; Abdellaoui, 2000; Bleichrodt and Pinto, 2000;
Gonzalez and Wu, 1999; Tversky and Kahneman, 1992),
as in Figures 2c and 2d. It leads to extremity-oriented
behaviour with both best and worst outcomes over-
weighted. The curves in Figures 2c and 2d also satisfy eq.
(1) and also accommodate the Allais paradox. They pre-
dict risk seeking for prospects that with a small proba-
bility generate a high gain, such as in public lotteries. The
inverse-S shape suggests a cognitive insensitivity to prob-
ability, generating insufficient response to intermediate
variations of probability and then, as a consequence,
overreactions to changes from impossible to possible and
from possible to certain. These phenomena arise prior to
any 'motivational' (value-based) preference or disprefer-
ence for risk. Extreme cases of such behaviour are in

Figures 2e and 2f (where we relaxed the continuity
requirement for w).

Starmer (2000) surveyed non-expected utility for risk.
The main alternatives to the rank-dependent models are
the betweenness models (Chew, 1983; Dekel, 1986), with
Gul's (1991) disappointment aversion theory as an
appealing special case. Betweenness models are less pop-
ular today than the rank-dependent models. An impor-
tant reason, besides their worse empirical performance
(Starmer, 2000), is that models alternative to the rank-
dependent ones did not provide concepts as intuitive as
the sensitivity to probability/information modelled
through the probability weighting w of the rank-depend-
ent models. For example, consider a popular special case
of betweenness, called weighted utility. The value of a
prospect is

2:7=1 Pi f(Xj) U(Xi)
2:J=IPjf(xj)

for a function fIR ----> IR+. This new parameter f can,
similar to rank dependence, capture pessimistic attitudes
of overweighting bad outcomes by assigning high values
to bad outcomes. It, however, applies to outcomes and
not to probabilities. Therefore, it captures less extra var-
iance of the data in the presence of utility than w, because
utility also applies to outcomes. For example, for fixed
outcomes, eq. (3) cannot capture the varying sensitivity
to small, intermediate and high probabilities found
empirically. Both pessimism and marginal utility are
entirely specified by the range of outcomes considered
without regard to the probabilities involved. It seems
more interesting if new concepts, besides marginal utility,
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concern the probabilities and the state of information of
the decision maker rather than outcomes and their val-
uation. This may explain the success of rank-dependent
theories and prospect theory.

Phenomena under uncertainty that naturally extend
phenomena under risk

The first approach to deal with uncertainty was the
Bayesian approach, based on de Finetti (1931), Ramsey
(1931) and Savage (1954). It assumes that people assign,
as well as possible, subjective probabilities P(Ej) to
uncertain events Ej• They then evaluate prospects (EI:

Xi> ... , En:xn) through their (subjective) expected utility
l:j'=IP(Ej)U(xj)' This model was the basis of Bayesian
statistics and of much of the economics of uncertainty
(Greenspan, 2004). The empirical measurement of sub-
jective probabilities has been studied extensively (Fish-
burn, 1986; Manski, 2004; McClelland and Bolger, 1994).
We confine our attention in what follows to models that
have been introduced since the mid-1980s, models that
deviate from Bayesianism. To Bayesians (including this
author) such models are of interest for descriptive
purposes.

Machina and Schmeidler (1992) characterized pro-
babilistic sophistication, where a decision maker assigns
subjective probabilities to events with unknown probabil-
ities and then proceeds as for known probabilities. The
decision maker may, however, deviate from expected utility
for known probabilities, contrary to the Bayesian approach,
and Allais-type behaviour can be accommodated.

The difference between objective, exogenous proba-
bilities and subjective, endogenous probabilities is
important. The former are stable, and readily available
for analyses, empirical tests and communication in group
decisions. The latter can be volatile and can change at any
time by mere further thinking by the agent. For descrip-
tive studies, subjective probabilities may become observ-
able only after complex measurement procedures. Hence,
I prefer not to lump objective and subjective probabilities
together into one category, as has been done in several
economic works (Ellsberg, 1961, p. 645; Epstein, 1999).
In this article, the term risk refers exclusively to
exogenous objective probabilities. Such probabilities can
be considered a limiting case of subjective probabilities,
in the same way as decision under risk can be
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considered a limiting case of decision under uncertainty
(Greenspan, 2004, pp. 36-7). Under a differentiability
assumption for state spaces, Machina (2004) formalized
this interpretation. Risk, while not occurring very fre-
quently, is especially suited for applications of decision
theory.

The Allais paradox is as relevant to uncertainty as it is
to risk (MacCrimmon and Larsson, 1979, pp. 364-5; Wu
and Gonzalez, 1999). Figure 3 presents a demonstration
by Tversky and Kahneman (1992, section 1.3). The anal-
ogy with Figure 1 should be apparent. The authors con-
ducted the following within-subjects experiment. Let d
denote the difference between the closing value of the
Dow Jones on the day of the experiment and on the day
after, where we consider the events H(igh): d> 35,
M(iddle): 352: d 2: 30, L(ow): 30>d. The total Dow
Jones value at the time of the experiment was about 3000.
The right prospect in Figure 3b is (H:75K, L:25K, M:O),
and the other prospects are denoted similarly. Of 156
money managers during a workshop, 77 per cent pre-
ferred the risky prospect r in Figure 3a, but 68 per cent
preferred the safe prospect s in Figure 3b. The majority
preferences violate expected utility, just as they do under
risk: after dropping the common terms pel) U(O} and
P(L)U(25K) (P denotes subjective probabilities), the
same expected-utility inequality results for Figure 3a as
for Figure 3b. Hence, either both preferences should be
for the safe prospect, or both preferences should be for
the risky one, and they cannot switch as in Figure 3. This
reasoning holds irrespective of what the subjective prob-
abilities P(H), P(M) and pel) are. (The condition of
expected utility that is falsified here, Savage's (1954)
'sure-thing principle', can be related to the separability
preference condition of consumer theory.)

Schmeidler's (1989) rank-dependent utility (RDU) can
accommodate the Allais paradox for uncertainty. We
consider a weighting function (or non-additive probabil-
ity or capacity) W that assigns value 0 to the vacuous
(empty) event 0, value 1 to the universal event, and
satisfies monotonicity with respect to set-inclusion (if
A :J B then W(A) 2: W(B). Probabilities are special
cases of weighting functions that satisfy additivity:
W(A U B) = W(A) + W(B) for disjoint events A and B.
General weighting functions need not satisfy additivity.
Assume that the outcomes of a prospect (EI :XI, ... , En:
xn) are rank-ordered, XI 2: ... 2: Xn. Then the prospect's
rank-dependent utility (RDU) is l:j'=lnP(Xj) where



utility U is as before, and nj, the decision weight of
outcome Xj' is WeE! U ... U Ej) - WeE! U ... U Ej-d
(n! = W (Ed). The decision weight of Xj is the mar-
ginal W contribution of Ej to the event of receiving a
better outcome.

Quiggin's RDU for risk is the special case with prob-
abilities Pj = P(Ej) given for all events, and W(Ej) =
w(P(Ej)) with w the probability weighting function.
Tversky and Kahneman (1992) improved their 1979
prospect theory not only by avoiding violations of stoc-
hastic dominance, but also, and more importantly, by
extending their theory from risk to uncertainty, by
incorporating Schmeidler's RDD.

Figure 3 can, just as in the case of risk, be explained by
a larger decision weight for the M branches in Figure 3b
than in Figure 3a:

W(M U H U L)-W(H U 1) 2: W(M U H)

-W(H).

This inequality occurs for W-functions that are more
sensitive to changes of events ·near the certain universal
event M U H U L than for events of moderate likelihood
such as M U H. Although for uncertainty we cannot
easily draw graphs of W functions, their properties are
natural analogs of those depicted in Figures 2a-f. W is
convex if the marginal W contribution of an event E to a
disjoint event R is increasing in R, that is,

is increasing in R (with respect to set inclusion) for
all E. This agrees with eq. (4), where increasing R from
H to H U L leads to a larger decision weight
for E = M. Our definition of convexity is equivalent to
other definitions in the literature such as W(A U B)+
W(A n B) 2: W(A) + WeB). (Take E = A - B, and
compare R = A nB with the larger R = It.)'") ~

For probabilistic sophistication (We) = w(F'()), con-
vexity of W is equivalent to convexity of w under usual
richness conditions, illustrating once more the close
similarity between risk and uncertainty. Equation (5)
gives the decision weight of an outcome occurring under
event E if better outcomes occur under event R. Under
convexity, outcomes receive more weight as they are
ranked worse (that is, R is larger), reflecting pessimism.
Theoretical economic studies usually assume convex Ws,
implying low evaluations of prospects relative to sure
outcomes.

Empirical studies have suggested that weighting func-
tions W for uncertainty exhibit patterns similar to Figure
2d, with unlikely events overweighted rather than, as
convexity would have it, underweighted (Einhorn and
Hogarth, 1986; Tversky and Fox, 1995; Wu and Gonzalez,
1999). As under risk, we get extremity orientedness, with
best and worst outcomes overweighted and lack of

sensitivity towards intermediate outcomes (Chateauneuf,
Eichberger and Grant, 2005; Tversky and Wakker, 1995).

Phenomena for uncertainty that do not show up for
risk: the Ellsberg paradox
Empirical studies have suggested that phenomena found
for risk occur for uncertainty as well, and do so to a more
pronounced degree (Fellner, 1961, p. 684; Hansen,
Sargent and Tallarini, 1999; Kahn and Sarin, 1988,
p. 270; Kahneman and Tversky, 1979, p. 281), in partic-
ular regarding the empirically prevailing inverse-S shape
and its extension to uncertainty (Abdellaoui, Vossmann
and Weber, 2005; Hogarth and Kunreuther, 1989; Kilka
and Weber, 2001; Weber, 1994, pp. 237-8). It is plausible,
for example, that the absence of known probabilities adds
to the inability of people to sufficiently distinguish
between various degrees of likelihood not very close to
impossibility and certainty. In such cases, inverse-S
shapes will be more pronounced for uncertainty than
for risk. This observation entails a within-person com-
parison of attitudes for different sources of uncertainty,
and such comparisons are the main topic of this section.

For Ellsberg's paradox, imagine an urn Kwith a known
composition of 50 red balls and 50 black balls, and an
ambiguous urn A with 100 red and black balls in
unknown proportion. A ball is drawn at random from
each urn, with Rk denoting the event of a red ball from
the known urn, and the events Bk> Ra and Ba defined
similarly. People prefer to bet on the known urn rather
than on the ambiguous urn, and common preferences
are:

(Bk:lOO, Rk:O) )- (Ba:lOO, Ra:O) and

(Bk:O, Rk:100) )- (Ba:O, Ra:100).

Such preferences are also found if people can themselves
choose the colour to bet on so that there is no reason for
suspecting an unfavourable composition of the unknown
urn. Under probabilistic sophistication with probability
measure P, the two preferences would imply
P(Bk) > P(Ba) and peRk) > P(Ra). However, P(Bk) +
peRk) = 1 = P(Ba) + P(Ra) yields a contradiction,
because two big numbers cannot give the same sum as
two small numbers. Ellsberg's paradox consequently vio-
lates probabilistic sophistication and, a fortiori, expected
utility. Keynes (1921, p. 75) discussed the difference
between the above two urns before Ellsberg did, but did
not put forward the choice paradox and deviation
from probabilistic sophistication as Ellsberg did. We
now analyse the example assuming RDD.

In many studies of uncertainty, such as Schmeidler
(1989), expected utility is assumed for risk, primarily for
the sake of simplicity. Then, W(Bk) = W(Rk) = 0.5 in
the above example, with these W values reflecting objec-
tive probabilities. Under RDU, the above preferences
imply W(Ba) = W(Ra) <0.5, in agreement with convex



(or eventwise dominance, or inverse-S; for simplicity of
presentation, I focus on convexity hereafter) weighting
functions W. This finding led to the widespread misun-
derstanding that it is primarily the Ellsberg paradox that
implies convex weighting functions for unknown prob-
abilities, a condition that was sometimes called 'ambi-
guity aversion'. I have argued above that it is the Allais
paradox, and not the Ellsberg paradox, that implies these
conclusions, and I propose another interpretation of the
Ellsberg paradox hereafter, following works by Amos
Tversky in the early 1990s.

First, it is more realistic not to commit to ex-
pected utility under risk when studying uncertainty.
Assume, therefore, that W(Bk) = W(Rk) = w(P(Bk)) =
w(P(Rk)) = w(O.5) for a nonlinear probability weighting
function. It follows from the Ellsberg paradox that
W(Ba) = W(Ra) <w(0.5). This suggests:

Hypothesis. In the Ellsberg paradox, the weighting func-
tion is more convex for the unknown urn than for the
known urn. 0

Thus, the Ellsberg paradox itself does not speak to
convexity in an absolute sense, and does not claim con-
vexity for known or for unknown probabilities. It speaks
to convexity in a relative (within-person) sense, suggest-
ing more convexity for unknown probabilities than for
known probabilities. It is, for instance, possible that the
weighting function is concave, and not convex, for both
known and unknown probabilities, but is less concave
(and thus more convex) for the unknown probabilities
(Wakker, 2001, section 6; cf. Epstein, 1999, pp. 589-90,
or Ghirardato and Marinacci, 2002, example 25).

With information only about observed behaviour, and
without additional information about the compositions
of the urns or the agent's knowledge thereof, we cannot
conclude which of the urns is ambiguous and which
is not. It would then be conceivable that urn K were
ambiguous and urn A were unambiguous, and that the
agent satisfied expected utility for A and was optimistic
or ambiguity seeking (concave weighting function, eq.
(5) decreasing in R) for K, in full agreement with the
Ellsberg preferences. Which of the urns is ambiguous and
which is not is based on extraneous information, being
our knowledge about the composition of the urns and
about the agent's knowledge thereof. This point suggests
that no endogenous definition of (un)ambiguity is
possible.

The Ellsberg paradox entails a comparison of attitudes
of one agent with respect to different sources of uncer-
tainty. It constitutes a within-agent comparison. Whereas
the Allais paradox concerns violations of expected utility
in an absolute sense, the Ellsberg paradox concerns a
relative aspect of such violations, finding more convexity
(or eventwise dominance, or inverse-S) for the unknown
urn than for the known urn. Such a phenomenon cannot

show up if we study only risk, because risk is essentially
only one source of uncertainty. Apart from some volatile
psychological effects (Kirkpatrick and Epstein, 1992;
Piaget and Inhelder, 1975), it seems plausible that people
do not distinguish between different ways of generating
objective known probabilities.

Uncertain events of particular kinds can be grouped
together into sources of uncertainty. Formally, let sources
be particular algebras of events, which means that sources
are closed under complementation and union, and con-
tain the vacuous and universal events. For example,
source d may concern the performance of the Dow
Jones stock index tomorrow, and source ~ the perform-
ance of the Nikkei stock index tomorrow. Chew and Sagi
(2006) used the term small-world domain, and Ergin and
Gul (2004) the term issue, for similar concepts. Assume
that A from source d designates the event that the Dow
Jones index goes up tomorrow, and B from source ~ the
event that the Nikkei index goes up tomorrow. If we
prefer (A:IOO, not-A,O) to (B:100, not-B:O), then this may
be caused by a special source preference for dover fJB,
say, if d comprises less ambiguity for us than fJB does.
However, it may also occur simply because we think that
event A is more likely to occur than event B. To examine
ambiguity attitudes we have to find a way to 'correct' for
differences in perceived levels of likelihood.

One way to detect (strong) source preference for d
over ~ is to find an d-partition (At, ... ,An) and a
fJB-partition (BI, ... ,Bn) of the universal event such that
for eachj, (A/IOO, not-Aj,O)>-(BpOO, not-B/O) (Nehring,
2001, definition 4; Tversky and Fox, 1995; Tvcrsky and
Wakker, 1995) .. B.ecause both partitions span the whole
universal event, we ca!1not have stronger belief in every Aj

than Bj (under some plausible assumptions about
beliefs), and henc~ there must be a preference for deal-
ing with d events beyond belief. Formally, the condition
requires that a similar preference of fJB over d is never
detected. The Ellsberg paradox is a special case of this
procedure.

Under the above approach to source preference, there
is a special role for probabilistic sophistication. For a
source d for which not some of its events are more
ambiguous than others, it is plausible that d exhibits
source indifference with respect to itself. This condition
can be seen to amount to the additivity axiom of qual-
itative probability (if Al is as likely as A3, and Az is as
likely as A4, then Al U Az is as likely as A3 U A4 whenever
Ai n Az = A3 n A4 = 0), which, under sufficient rich-
ness, implies probabilistic sophistication for. d under
RDU, and does so in general (without RDU assumed)
under an extra dominance condition (Fishburn, 1986;
Sarin and Wakker, 2000). The condition also comprises
source sensitivity (Tversky and Wakker, 1995). Probabi-
listic sophistication, then, entails a uniform degree of
ambiguity of a source.

In theoretical economic studies it has usually
been assumed that people are averse to ambiguity,



corresponding with convex weighting functions. Empir-
ical studies, mostly by psychologists, have suggested a
more varied pattern, where different sources of ambiguity
can arouse all kinds of emotions. For example, Tversky
and Fox (1995) found that basketball fans exhibit source
preference for ambiguous uncertain events related to
basketball over events with known probabilities, which
entails ambiguity seeking. This finding is not surprising
in an empirical sense, but its conceptual implication is
important: attitudes towards ambiguity depend on many
ad hoc emotional aspects, such as a general aversion to
deliberate secrecy about compositions of urns, or a gen-
eral liking of basketball. Uncertainty is a large domain,
and fever regularities can be expected to hold universally
for uncertainty than for risk, in the same way as fewer
regularities will hold universally for the utility of non-
monetary outcomes (hours of listening to music,
amounts of milk to be drunk, life duration, and so on)
than for the utility of monetary outcomes. It means that
there iS,much yet to be discovered about uncertainty.

Models for uncertainty other than rank-dependence

Multiple priors
An interesting model of ambiguity by Jaffray (1989), with
a separation of ambiguity beliefs and ambiguity attitudes,
unfortunately has received little attention as yet. A sur-
prising case of unknown probabilities can arise when the
expected utility model perfectly well describes behaviour,
but utility is state-dependent. The (im)possibility of
defining probability in such cases has been widely dis-
cussed (Dreze, 1987; Grant and Karni, 2005; Nau, 2006).

The most popular alternative to Schmeidler's RDU is
the multiple priors model introduced by Wald (1950). It
assumes a set flJ of probability measures plus a utility
function U, and evaluates each prospect through its
minimal expected utility with respect to the probability
distributions contained in flJ. The model has an overlap
with RDU: if W is convex, then RDU is the minimal
expected utility over flJ where flJ is the CORE of vv, that
is, the set of probability measures that dominate W
eventwise. Dreze (1961; 1987) independently developed a
remarkable analog of the multiple priors model, where the
maximal expected utility is taken over flJ, and flJ reflects
moral hazard instead of ambiguity. Dreze also provided a
preference foundation. Similar functionals appear in
studies of robustness against model misspecification in
macroeconomics (Hansen and Sargent, 2001).

Variations of multiple priors, combining pessimism
and optimism, employ convex combinations of the
expected utility minimized over flJ and the expected
utility maximized over flJ (Ghirardato, Maccheroni and
Marinacci, 2004, proposition 19). Such models can
account for extremity orientedness, as with inverse-S
weighting functions and RDU. Arrow and Hurwicz
(1972) proposed a similar model where a prospect is

evaluated through a convex combination of the minimal
and maximal utility of its outcomes (corresponding with
flJ being the set of all probability measures). This includes
maximin and maximax as special cases. Their approach
entails a level of ambiguity so extreme that no levels of
belief other than 'sure-to-happen', 'sure-not-to-happen'
and 'don't know' playa role, similar to Figures 2e and 2f,
and suggesting a three-valued logic. Other non-belief-
based approaches, including minimax regret, are in
Manski (2000) and Savage (1954), with a survey in
Barbera, Bossert and Pattanaik (2004).

Other authors proposed models where for each single
event a separate interval of probability values is specified
(Budescu and Wallsten, 1987; Kyburg, 1983; Manski,
2004). Such interval-probability models are mathemat-
ically different from multiple priors because there is no
unique relation between sets of probability measures over
the whole event space and intervals of probabilities sep-
arately for each event (Skulj, 2006, pp. 192-193). The
latter models are more tractable than mUltiple priors
because probability intervals for some relevant event are
easier to specify than probability measures over the
whole space, but these models did not receive a prefer-
ence foundation and never became popular in econom-
ics. Similar models of imprecise probabilities received
attention in the statistics field (Walley, 1991).

Wald's multiple priors model did receive a preference
axiomatization (Gilboa and Schmeidler, 1989), and con-
sequently became the most popular alternative to RDU
for unknown probabilities. The evaluating formula is
easier to understand at first than RDU. The flexibility of
not having to specify precisely what 'the' probability
measure is, while usually perceived as an advantage at
first acquaintance, can turn into a disadvantage when
applying the model. We then have to specify exactly what
'the' set of probability distributions is, which is more
complex than exactly specifying only one probability
measure (d. Lindley, 1996; Tversky and Koehler, 1994,
p. 563).

The simple distinction between probability measures
that are either possible (contained in flJ) or impossible
(not contained in flJ), on the one hand adds to the trac-
tability of the model, but on the other hand cannot cap-
ture cognitive states where different probability measures
are plausible to different degrees. To the best of my
knowledge, the multiple priors model cannot yet be used
in quantitative empirical measurements today, and there
are no empirical assessments of sets of priors available in
the literature to date. Multiple priors are, however, well
suited for general theoretical analyses where only general
properties of the model are needed. Such analyses are
considered in many theoretical economic studies, where
the multiple priors model is very useful.

The multiple priors model does not allow deviations
from expected utility under risk, and a desirable exten-
sion would obviously be to combine the model with
non-expected utility for risk. Promising directions for



resolving the difficulties of the multiple priors model
are being explored today (Maccheroni, Marinacci and
Rustichini, 2006).

Model-free approaches to ambiguity
Dekel, Lipman and Rustichini (2001) considered models
where outcomes of prospects are observed but the state
space has not been completely specified, as relevant to
incomplete contracts. Similar approaches with ambiguity
about the underlying states and events appeared in psy-
chology in repeated-choice experiments by Hertwig et al.
(2003), and in support theory (Tversky and Koehler,
1994). This section discusses two advanced attempts to
define ambiguity in a model-free way that have received
much attention in the economic literature.

In a deep paper, Epstein (1999) initiated one such
approach, continued in Epstein and Zhang (2001).
Epstein sought to avoid any use of known probabilities
and tried to endogenize (un)ambiguity and the use of
probabilities. (He often used the term uncertainty as
equivalent to ambiguity.) For example, he did not define
risk neutrality with respect to known probabilities, as we
did above, but with respect to subjective probabilities
derived from preferences as in probabilistic sophistica-
tion (Epstein, 1999, eq. (2». He qualified probabilistic
sophistication as ambiguity neutrality (not uniformity as
done above). Ghirardato and Marinacci (2002) used
another approach that is similar to Epstein's. They iden-
tified absence of ambiguity not with probabilistic sophis-
tication, as did Epstein, but, more restrictively, with
expected utility.

The above authors defined an agent as ambiguity
averse if there exists another, hypothetical, agent who
behaves the, same way for unambiguous events, but who
is ambiguity neutral for ambiguous events, and such that
the real agent has a stronger preference than the hypo-
thetical agent for sure outcomes (or unambiguous pros-
pects, but these can be replaced by their certainty
equivalents) over ambiguous prospects. This definition
concerns traditional between-agent within-source com-
parisons as in Yaari (1969). The stronger preferences for
certainty are, under rank-dependent models, equivalent
to eventwise dominance of weighting functions, leading
to non-emptiness of the CORE (Epstein, 1999, lemma
3.4; Ghirardato and Marinacci, 2002, corollary 13). These
definitions of ambiguity aversion are not very tractable
because of the 'there exists' clause. It is difficult to estab-
lish which ambiguity neutral agent to take for the
comparisons. To mitigate this problem, Epstein (1999,
section 4) proposed eventwise derivatives as models of
local probabilistic sophistication. Such derivatives exist
only for continua of events with a linear structure, and
are difficult to elicit. They serve their purpose only under
restrictive circumstances (ambiguity aversion throughout
plus constancy of the local derivative, called coherence;
see Epstein's Theorem 4.3).

In both above approaches, ambiguity and ambiguity
aversion are inextricably linked, making it hard to model
attitudes towards ambiguity other than aversion or
seeking (such other attitudes include insensitivity), or
to distinguish between ambiguity-neutrality or -absence
(Epstein, 1999, p. 584, 1st para; Epstein and Zhang, 2001,
p. 283; Ghirardato and Marinacci, 2002, p. 256, 2nd
para). Both approaches have difficulties distinguishing
between the two Ellsberg urns. Each urn in isolation can
be taken as probabilistically sophisticated with, in our
interpretation, a uniform degree of ambiguity, and
Epstein's definition cannot distinguish which of these is
ambiguity neutral (cf. Ghirardat6 and Marinacci, 2002,
middle of p. 281). Ghirardato and Marinacci's definition
does so, but only because it selects expected utility (and
the urn generating such preferences) as the only ambi-
guity-neutral version of probabilistic sophistication. Any
other form of probabilistic sophistication, that is, any
non-expected utility behaviour under risk, is then either
mismodelled as ambiguity attitude (Ghirardato and
Marinacci, 2002, pp. 256-7), or must be assumed not
to exist.

We next discuss in more detail a definition of (un)am-
biguity by Epstein and Zhang (2001), whose aim was to
make (un)ambiguity endogenously observable by
expressing it directly in terms of a preference condition.
They called an event E unambiguous if

(E:c, E2:y, Edl, E4:X4, ... , En:xn) ~

(E:c, ~ Ez:fl, E3:y, E4:X4,"" En:xn) implies

(E:c' , E2:y, E3:f3, E4:X4, .•. , En:xn) ~

(E:c', E2:/],E3:y: E4:X4, .•. , En:xn)

for all partitions E2, ..• , En of not-E, and all outcomes
c, c', X4, ... ,xn, Y ~ f3, with a similar condition imposed
on not-E. In words, changing a common outcome c into
another common outcome c' under E does not affect
preference, but this is imposed only if the preference
concerns nothing other than to which event (E2 or E3) a
good outcome y is to be allocated instead of a worse
outcome f3. Together with some other axioms, eq. (6)
implies that probabilistic sophistication holds on the
set of events satisfying this condition, which in the
interpretation of the authors designates absence of
ambiguity (rather than uniformity). As we will see next,
it is not clear why eq. 6 would capture the absence of
ambiguity.

Example. Assume that events are subsets of [0,1),
E = [0,0.5), not-E = [0.5,1), and E has unknown prob-
ability n. Every subset A of E has probability 2nA.(A) (A. is
the usual Lebesgue measure, that is, the uniform distri-
bution over [0,1)) and every subset B of not-E has



probability 2( 1 - n)A(B). Then it seems plausible that
event E and its complement not-E are ambiguous, but
conditional on these events ('within them') we have pro-
babilistic sophistication with respect to the conditional
Lebesgue measure and without any ambiguity. In Schme-
idler (1989), the ambiguous events E and not-E are called
horse events, and the unambiguous events conditional on
them are called roulette events. Yet, according to eq. (6),
events E and not-E themselves are unambiguous, both
preferences in eq. (6) being determined by whether A(Ez)
exceeds .1.(E3). 0

In the example, the definition in eq. (6) erroneously
ascribes the unambiguity that holds for events condi-
tional on E, so 'within E', to E as a whole. Similar exam-
ples can be devised where E and not-E themselves are
unambiguous, there is 'non-uniform' ambiguity condi-
tional on E, this ambiguity is influenced by outcomes
conditional on not-E through non-separable interactions
typical of non-expected utility, and eq. (6) erro~eously
-ascribes the ambiguity that holds within E to E as a whole
(see the author's homepage).

A further difficulty with eq. (6) is that it is not vio-
lated in the Ellsberg example with urns A and K as above
(nor if the uncertainty regarding each urn is extended to
a 'uniform' continuum as in Example 5.8ii of Abdellaoui
and Wakker, 2005), and cannot detect which of the urns
is ambiguous. The probabilistic sophistication that is
obtained in Epstein and Zhang (2001, Theorem 5.2) for
events satisfying eq. (6), and that rules out the two-
urn Ellsberg paradox and its continuous extension of
Abdellaoui and Wakker (2005), is mostly driven by their
Axioms 4 and 6 (the latter is not satisfied by all
rank-dependent utility maximizers contrary to the
authors' claim at the end of their Section 4; their foot-
note 18 is incorrect) and the necessity to consider also
intersections of different-urn events (see their Appendix
E). This imposes, in my terminology, a uniformity
of ambiguity over the events satisfying eq. (6)
that, rather than eq. (6) itself, rules out the above
counterexamples.

Multi-stage approaches to ambiguity
Several authors have considered two-stage approaches
with intersections of first -stage events Ai, i= 1, . _. , £. and
second-stage events Kj,j = 1, ... ,k, so that n = £k events

(
R kA;Kj result, and prospects A;KrXij);=1 '=1 are con-

sidered. It can be imagined that in a filst stage it is
determined which event Ai obtains, and then in a second
stage, conditional on Ai' which event Kj obtains. Many
authors considered such two-stage models with proba-
bilities given for the events in both stages, the probabil-
ities of the first stage interpreted as ambiguity about the
probabilities of the second stage, and non-Bayesian
evaluations used (Levi, 1980; Segal, 1990; Yates and
Zukowski, 1976).

for probability measures P and Q, a utility function U,
and an increasing transformation q>. For q> the identity
or, equivalently, q> linear, traditional expected utility with
backwards induction results. Nonlinear q>'s give new
models. Kreps and Porteus (1979) considered eq. (7) for
intertemporal choice, interpreting nonlinear q>'s as non-
neutrality towards the timing of the resolution of uncer-
tainty. Ergin and Gul (2004), Nau (2006) and Neilson
(1993) reinterpreted the formula, where now the second-
stage events are from a source of different ambiguity than
the first -stage events. A concave q>, for instance, suggests
stronger preference for certainty, and more ambiguity
aversion, for the first-stage uncertainty than for the
second.

Klibanoff, Marinacci and Mukerji (2005) considered
cases where the decomposition into A- and K-events is
endogenous rather than exogenous. This approach
greatly enlarges the scope of application, but their sec-
ond-order acts, that is, prospects with outcomes contin-
gent on aspects of preferences, are hard to implement or
observe if those aspects cannot be related to exogenous
observables.

Equation (7) has a drawback similar to eq. (3). All
extra mileage is to come from the outcomes, to which also
utility applies, so that there will not be a great improve-
ment in descriptive performance or in new concepts to be
developed.

Conclusion
The Allais paradox reveals violations of expected utility in
an absolute sense, leading to convex or inverse-S weighting
functions for risk and, more generally, for uncertainty.
The Ellsberg paradox reveals deviations from expected
utility in a relative sense, showing that an agent can devi-
ate more from expected utility for one source of uncer-
tainty (say one with unknown probabilities) than for
another (say, one with known probabilities). It demon-
strates the importance of within-subject between-source
comparisons.

The most popular models for analysing uncertainty
today are based on rank dependence, with multiple pri-
ors a popular alternative in theoretical studies. The most
frequently studied phenomenon is ambiguity aversion.
Uncertainty is, however, a rich empirical domain with a
wide variety of phenomena, where ambiguity aversion
and ambiguity insensitivity (inverse-S) are prevailing but
are not universal patterns. The possibility of relating the
properties of weighting functions for uncertainty to
cognitive interpretations such as insensitivity to likeli-
hood-information makes RDU and prospect theory well
suite(l for links with other fields such as psychology,



artificial intelligence (Shafer, 1976) and neuroeconomics
(Camerer, Loewenstein and Prelec, 2004).

PETER P. WAKKER

See also; Allais, Maurice; Allais paradox; ambiguity
and ambiguity aversion; Bernoulli, Daniel; certainty equiva-
lence; de Finetti, Bruno; decision theory in econometrics; ex-
pected utility hypothesis; Kahneman, Daniel; non-expected
utility theory; rational behaviour; rational expectations;
revealed preference theory; risk; risk aversion; Savage,
Leonard J.; Savage's subjective expected utility model; sep-
arability; statistical decision theory; stochastic dominance;
Tversky, Amos; utility.

Han Bleichrodt, Chew Soo Hong, Edi Karni, Jacob Sagi and Stefan
Trautmann made useful comments.
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uncertainty and general equilibrium
One of the notable intellectual achievements of economic
theory during the second half of the 20th century has
been the rigorous elaboration of the Walras-Pareto
theory of value; that is, the theory of the existence and
optimality of competitive equilibrium. Although many
economists and mathematicians contributed to this
development, the resulting edifice owes so much to the
pioneering and influential work of Arrow and Debreu
that in this paper we shall refer to it as the 'Arrow-
Debreu theory'. (For comprehensive treatments, together
with references to previous work, see Debreu, 1959;
Arrow and Hahn, 1971.)

The Arrow-Debreu theory was not originally put for-
ward for the case of uncertainty, but an ingenious device
introduced by Arrow (1953), and further elaborated by

Debreu (1953), enabled the theory to be reinterpreted to
cover the case of uncertainty about the availability of
resources and about consumption and production pos-
sibilities. (See Debreu, 1959, ch. 7, for a unified treatment
of time and uncertainty.)

Subsequent research has extended the Arrow-Debreu
theory to take account of (a) differences in information
available to different economic agents, and the 'produc-
tion' of information, (b) the incompleteness of markets,
and (c) the sequential nature of markets. The consideration
of these complications has stimulated the developments
of new concepts of equilibrium, two of which will be
elaborated in this article under the headings: (a) equilib-
rium of plans, prices, and price expectations (EPPPE) and
(b) rational expectations equilibrium (REE). The explora-
tion of these features of real-world markets has also made
possible a general-equilibrium analysis of money and
securities markets, institutions about which the original
Arrow-Debreu theory could provide only limited insights.
It has also led to a better understanding of the limits to the
ability of the 'invisible hand' in attaining a Pareto optimal
allocation of resources. .

Review of the Arrow-Debreu model of a complete
market for present and future contingent delivery
In this section, we review the approach of Arrow (1953)
and Debreu (1959) to incorporating uncertainty about
the environment into a WaIrasian model of competitive
equilibrium. The basic idea is that commodities are to be
distinguished, not only by their physical characteristics
and by the location and dates of their availability and/or
use, but also by the environmental event in which they are
made available and/or used. For example, ice cream made
avaijable (at a particular location on a particular date) if
the weather is hot may: be considered to be a different
commodity from the same kind of ice cream made avail-
able (at the same location and date) if the weather is cold.
We are thus led to consider a list of 'commodities' that is
greatly expanded by comparison with the corresponding
case of certainty about the environment. The standard
arguments of the theory of competitive equilibrium,
applied to an economy with this expanded list of com-
modities, then require that we envisage a 'price' for
each commodity, the resulting set of price ratios spec-
ifying the market rate of exchange between each pair of
commodities.

Just what institutions could, or do, effect such
exchanges is a matter of interpretation that is, strictly
speaking, outside the model. We shall present one
straightforward interpretation, and then comment briefly
on an alternative interpretation.

First, however, it will be useful to give a more precise
account of concepts of environment and event that we
shall be employing. The description of the 'physical
world' is decomposed into three sets of variables: (a)
decision variables, which are controlled (chosen) by


