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SUMMARY

The power family, also known as the family of constant relative risk aversion (CRRA), is the most widely used
parametric family for fitting utility functions to data. Its characteristics have, however, been little understood, and
have led to numerous misunderstandings. This paper explains these characteristics in a manner accessible to a wide
audience. Copyright # 2008 John Wiley & Sons, Ltd.
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INTRODUCTION

This paper provides a toolkit for empirical researchers who use the power family to fit data. We will
mainly consider data fitting for interval scales, the most common scale type of utility functions.
Although the power family is the most widely used parametric family for this purpose, the intricacies of
the family have been little understood. This paper provides an accessible account of these intricacies.

The power family contains functions of the form UðxÞ ¼ xr; and is also known in the economic
literature as the family of constant relative risk aversion (CRRA). It has been widely used for modeling
risk aversion, not only in the economic domain (Holt and Laury, 2002; Palacios-Huerta and Serrano,
2006) but also in psychology (Luce and Krumhansi, 1988) and in the health domain (Bleichrodt et al.,
1999). It often gives a better fit than alternative families (Abellán et al., 2006; Camerer and Ho, 1994,
footnote 22). The input x can designate any quantity such as money, life duration, or a quality-of-life
index to be converted into decision utility. Unfortunately, there have been many misunderstandings
about the characteristics of this family, where the choice of origin x ¼ 0 is crucial, the functions exhibit
extreme behavior near that origin, and the negative powers have often been overlooked.

For interval scales (or ‘cardinal’ scales), the level (intercept) and unit (slope) have no empirical
meaning, and for all purposes the function UðxÞ ¼ bþ axr is equivalent to UðxÞ ¼ xr for any a > 0 and
b 2 R: U is, for instance, an interval scale if it designates utility to be maximized in expected utility. An
example where U is not an interval scale occurs in production theory, with L designating labor, x
designating capital, and output being the product L� xr: Whereas doubling a utility function has no
empirical relevance in expected utility because it leaves the ordering of all prospects unaffected,
doubling a production function obviously has much empirical relevance. The analysis of this paper,
therefore, does not apply to production functions.
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Unlike the intercept and the slope, the curvature of U (with a formal index of curvature provided
later) does have empirical meaning for interval scales. The status of utility as an interval scale implies,
for instance}as will be demonstrated later}that the limit of UðxÞ ¼ xr for r tending to 0 is not the
constant function UðxÞ ¼ 1; which would be the case if xr were an absolute scale. The limit now rather is
the logarithmic function UðxÞ ¼ lnðxÞ; to which xr converges in terms of curvature. The subtle
implications of U being an interval scale rather than an absolute scale have aggravated the
misunderstandings about the power family.

So as to ensure accessibility to readers without a technical background, this paper will avoid the use
of mathematical arguments, sometimes using graphs to illustrate certain points. The next section gives
the definition of the power family. This definition will at first sight seem to be ad hoc. An example will
illustrate a typical misunderstanding about the power family. The subsequent section shows that the
definition of the power family is natural, so that it is not ad hoc after all. The section further considers
the scaling of outputs (‘values’) UðxÞ: It does so for positive inputs (‘arguments’) x > 0: The two
subsequent sections discuss some numerical problems in the scalings of inputs and outputs of power
utility and suggest remedies to the extent possible. These two sections are the most complex ones in this
paper. The first one describes theoretical and empirical problems caused by the extreme behavior of
outputs UðxÞ near x ¼ 0: The subsequent section considers scalings and rescalings of the inputs x:
Invariance with respect to any change in the unit of input x characterizes the power family, which means
that this invariance is the critical condition for the appropriateness of this family. The level of the
inputs, i.e. the definition of the origin x ¼ 0 of the input, is empirically relevant and should, therefore,
be specified in empirical applications.

For an interval scale, being unique up to the unit and level of its outputs, all relevant aspects are
captured by the Arrow–Pratt index of concavity, and an analysis of this index will confirm the
observations made previously. Appendix A illustrates the theoretical observations of this paper through
empirical implications for preferences, regarding indifference curves and their marginal rates of
substitution. Appendix B contains some calculations for Appendix A.

DEFINITION AND EXAMPLE ILLUSTRATING A COMMON MISUNDERSTANDING

This section and the following section only consider inputs x > 0: The subsequent section will consider
extended domains. The power family of utility U; with parameter r; is defined as follows:

If r > 0 then UðxÞ ¼ xr ð1Þ

if r ¼ 0 then UðxÞ ¼ lnðxÞ ð2Þ

if r50 then UðxÞ ¼ �xr ð3Þ

All functions are strictly increasing, which explains the minus sign for r50: At first sight, the
transition at r ¼ 0 may seem to be ad hoc. In the sections to follow we will see that the functions in
Equations (1)–(3) nevertheless belong together in a natural way. The following example illustrates a
common misunderstanding about the power family.

Example 2.1 (Erroneously overlooking negative powers)

Assume that we use certainty equivalents to assess the utility of life duration for an individual. We call y
the certainty equivalent of ðp : x; zÞ if living y years for sure is equally preferable to the prospect of living
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x years with probability p and living z years with probability 1� p; denoted y� ðp : x; zÞ: We assume
expected utility, implying UðyÞ ¼ pUðxÞ þ ð1� pÞUðzÞ: Assume that our data set contains three
observed certainty equivalents for the individual, exhibiting considerable risk aversion:

29� ð0:75 : 50; 10Þ

19� ð0:50 : 50; 10Þ

13:50� ð0:25 : 50; 10Þ

A researcher searches for a utility function U that best fits the data in the sense of minimizing the
squared distances between the certainty equivalents observed and those theoretically predicted by
expected utility with U:1 He first considers the power family UðxÞ ¼ xr; but erroneously restricts
attention to positive powers r > 0: Table I displays some numerical results. The middle block of columns
under ‘UðxÞ ¼ xr’ displays some of the cases now considered by the researcher.

The results are unsatisfactory, with a degenerate solution resulting: the optimal fit is for the smallest r
considered, say r ¼ 0:001: The theoretically predicted certainty equivalents for positive powers will
never be better than 33.44, 22.36, and 14.95, respectively, which can be seen to be their limits as r tends
to 0.2 They deviate considerably from the certainty equivalents observed in the data and never get close.
The sum of squared distances is always worse than ð33:44� 29Þ2 þ ð22:36� 19Þ2 þ ð14:95� 13:50Þ2 ¼
33:09 (its limit if r tends to 0). The power family seemingly cannot fit the data well, and no good
descriptions or predictions result. The functions considered fail to accommodate strong degrees of
concavity and risk aversion.

The researcher next turns to the exponential family of utility with concave, risk averse, functions
UðxÞ ¼ 1� expð�axÞ for a > 0: This family gives a considerably better fit. With a ¼ 0:064 (also known

through the ‘risk tolerance’ 1
0:064� $15), the predicted certainty equivalents (see the third column in the

table) fit the data considerably better, with sum of squared distances 1.16. The researcher concludes that
the exponential utility fits the data better than the power family, but the fit never is very good.

The researcher’s error in the preceding analysis was to overlook the negative powers and, thus, to
leave out the most concave part of the power family. With negative powers incorporated, the optimal fit
results for r ¼ �0:52 and UðxÞ ¼ �x�0:52; with certainty equivalents fitting the data almost perfectly

Table I. Numerical results from parametric fittings of data

Considered by researcher Overlooked by researcher

U : exp U ¼ xr U ¼ lnðxÞ U ¼ �xr

Data e�0.064x r ¼ 2 r ¼ 1 r ¼ 0:1 r ¼ 0:01 r ¼ 0:001 r ¼ 0 r ¼ �0:1 r ¼ �0:52 r ¼ �1

CE(0.75:50,10) 29 28.40 43.59 40 34.24 33.52 33.45 33.44 32.61 29.01 25.00
CE(0.50:50,10) 19 19.67 36.06 30 23.10 22.43 22.37 22.36 21.65 18.98 16.67
CE(0.25:50,10) 13.5 14.10 26.46 20 15.33 14.99 14.96 14.95 14.60 13.42 12.50
Distance 0 1.16 671 284 48 34 33.22 33.09 21.30 0.01 22.45

The entries in the U columns represent certainty equivalents (abbreviated CE) of prospects in corresponding rows under expected
utility with the corresponding U: For example, under expected utility with UðxÞ ¼ x2; CE(0.50:50,10), the certainty equivalent of
(0.50:50,10), is 36.06, deviating considerably from the observed certainty equivalent 19.

1For prospect ðp : x; zÞ; the theoretically predicted certainty equivalent is the sure amount with utility equal to the expected utility
of the prospect, i.e. it is U�1 ðpUðxÞ þ ð1� pÞUðzÞÞ:

2The limiting data are as would result from UðxÞ ¼ lnðxÞ: The limit of xr for r tending to 0 is lnðxÞ indeed, and not the constant
function UðxÞ ¼ 1; as we will see later.
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well; see the table. The squared distance is ð29:01� 29Þ2 þ ð18:98� 19Þ2 þ ð13:42� 13:50Þ2 ¼ 0:01:With
negative powers properly incorporated, the power family clearly outperforms the exponential family
and gives an almost perfect fit. &

THE NATURAL POWER FAMILY AND SCALING OUTPUTS UðxÞ FOR POSITIVE
INPUTS x > 0

This section demonstrates that the functions in Equations (1)–(3) naturally belong together under the
following assumption made throughout this paper. As in the previous section, we consider only positive
inputs x in this section.

Assumption 3.1

U is unique up to unit and level, i.e. it can be multiplied by any positive factor and any constant can be
added without affecting any relevant empirical aspect (U is an interval scale). &

The assumption is satisfied in many applications, not only in expected utility but also under most
nonexpected utility theories. It is also satisfied if health states are ordered according to an additive
aggregation of health components, in separable orderings of commodity bundles or multi-criteria choice
options, in additive intertemporal aggregations such as the quality-adjusted life years model (for a
recent test see Brazier et al., 2006) and discounted utility, and in utilitarian welfare evaluations of
allocations of goods and services to people. Assumption 3.1 implies that the power family can be
rewritten as

If r > 0 then UðxÞ ¼ axr þ b for some b 2 R and a > 0 ð4Þ

if r ¼ 0 then UðxÞ ¼ a lnðxÞ þ b for some b 2 R and a > 0 ð5Þ

if r50 then UðxÞ ¼ b� axr for some b 2 R and a > 0 ð6Þ

The choice of a and b is immaterial here. Sometimes Equations (4) and (6) are compactly combined into
ðc=rÞxr þ b for c > 0 and b; where a ¼ c=r for Equation (4) and a ¼ �c=r for Equation (6). In economics,
1� r; which is �xU 00ðxÞ=U 0ðxÞ; is often taken as an index of risk aversion, called the index of relative
risk aversion, which is constant for the power family (constant relative risk aversion, CRRA).3 In
decision analysis, the reciprocal of the CRRA index, 1=ð1� rÞ; called risk tolerance, is often used. In
other fields, these indexes are not commonly used, however. To make this paper accessible to readers
with different backgrounds I will state all conditions in terms of r: In economic terms, r is the elasticity
of xr:4 In consumer demand theory it reflects the elasticity of substitution (Nicholson, 2005).

Another popular parametric family of utility is the exponentional family, also called the
family of constant absolute risk aversion (CARA). It results if we apply the power family to ex

instead of x: Hence, the results of this paper can be applied to this family through the transformation
described.

3A general drawback of the term relative risk aversion is that it cannot be used well for applications outside decision under risk. A
serious drawback of this term within decision under risk is that risk attitude cannot be equated with utility curvature for
nonexpected utility models, because risk attitude also depends on other factors such as probability weighting in prospect theory.
Hence, it would be better to replace ‘risk aversion’ by ‘concavity’ in such terminologies.

4A change in x of d% generates a change in xr of rd% for d close to 0.
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It is often useful, when comparing interval scales, to choose a common normalization. In the figures
hereafter, we normalize the functions considered to be 0 at 1 and 1 at 2. (Any other normalization would
give the same conclusions.) That is, we replace UðxÞ by5

UðxÞ �Uð1Þ
Uð2Þ �Uð1Þ

ð7Þ

and denote this function by UðxÞ hereafter. Figure 1 depicts the function for various values of r: The
figure shows that r is an anti-index of concavity, with lower values of r corresponding with more
concave functions. The linear case arises for r ¼ 1 and reflects risk neutrality under expected utility. For
r51 the functions are concave and for r > 1 they are convex.

Figure 1 demonstrates that the choice of a logarithmic function for r ¼ 0 is not ad hoc, but is the only
natural choice, with this function uniquely embedded between positive and negative r: The curves for
r ¼ 0:1 and �0:1 are almost indistinguishable from the (fat) logarithmic curve for r ¼ 0; indeed.
Example 2.1 already illustrated this property. The property can be proved formally by showing that the
normalized logarithmic function is the limit of the normalized power functions for r tending to 0, both
from above ðr > 0Þ and from below ðr50Þ:

lim
r!0

xr � cr

dr � cr
¼

lnðxÞ � lnðcÞ
lnðdÞ � lnðcÞ

for all positive x and d > c > 0 ð8Þ

A derivation is omitted. A common normalization as in Equation (7), reflecting the interval scale type of
these functions, is essential in this limiting result.

Figure 1 also demonstrates that the negative part (r50; i.e. the CRRA index exceeds 1) naturally
belongs to the family. Without this part, only the least-concave half of the family remains. Whereas
powers below 0 (CRRA indexes exceeding 1) are well known and are widely used in economics, many
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Figure 1. Log-power utility curves (normalized at x ¼ 1 and 2)

5For Equation (4), this means that a ¼ 1=ð2r � 1Þ and b ¼ �1=ð2r � 1Þ for the normalized U:
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empirical researchers from other domains overlook the negative part and only use the positive part
(r > 0) of the family, leading to problems as in Example 2.1. I have seen several attempts to fit power
functions to data that failed for this reason, and that, not surprisingly, did not make it into published
papers. Figure 1 clarifies how this could happen. All data for which the optimal curve is more concave
than logarithmic (r50) result in such degenerate solutions, erroneously interpreted as r tending to 0.
The negative part has also been overlooked in some theoretical analyses, such as in Krantz et al. (1971,
Section 4.5.3). The latter omission was pointed out and corrected by Miyamoto (1983).

SCALING OUTPUTS UðxÞ FOR INPUTS x� 0; x ¼ 0; AND x50

The extreme behavior of the power functions near x ¼ 0 can cause problems. This section describes this
extreme behavior and the problems caused. Some pragmatic remedies are suggested to avoid, or at least
reduce, the problems, to the extent possible.

Scaling outputs UðxÞ for x > 0

At first we continue to assume that the domain of interest concerns only positive x; x > 0: For r > 0; the
power functions are bounded below, where axr þ b tends to b as x tends to 0, but they are unbounded
above. For r ¼ 0 the power function – which then is the logarithmic function – is unbounded above and
below, tending to �1 if x tends to 0. For r50; the power functions are bounded above with �axr þ b
tending to b as x tends to 1; and unbounded below, with limit �1 as x tends to 0.

For 05r51; the functions themselves are bounded near x ¼ 0 but their derivatives are extreme near
x ¼ 0; tending to1 as x tends to 0. The following example illustrates the extreme behavior of negative
powers near x ¼ 0:

Example 4.1 (Extreme Behavior near x ¼ 0 for r ¼ �1)
Assume expected utility for x > 0; with UðxÞ ¼ 1� 1=x ðr ¼ �1Þ: Then receiving $2 for sure is preferred
to a 50–50 prospect yielding either $1 or $M; no matter how large M is. The utility of M never attains
the level 1, which is the level required to yield indifference. Likewise, for any large M; say a million
dollars, receiving a small amount s for sure, such as two cents, is preferred to a 50–50 prospect yielding
M or s=2 (one cent). &

In medical applications, behavior as illustrated in the example may be found for subjects with
an extreme dislike of risking death in the very short term. In such a case, negative powers are
appropriate. For many applications, however, such extreme behavior near x ¼ 0 for r� 0 may
be undesirable. We first present some pragmatic considerations. Problems as described do not arise
on intervals ½c; d� with c remote from 0, where a pragmatic threshold can be c=d � 0:1:6 If more
concavity is desired than positive r can generate on such intervals, then negative r can be considered; see
Example 2.1. Such cases often arise in macroeconomics and finance, where the power (CRRA) family is
most commonly used. Because large inputs x; remote from 0, are common in these fields, elevated parts
of the curve become relevant, where the curvature is less pronounced. A theoretical explanation of the
latter claim will be given later. To obtain a proper level of curvature, a negative r then has to be used,
and this is indeed common practice in these fields (Bliss and Panigirtzoglou, 2004). The anomalies near
x ¼ 0 described in Example 4.1 are not important in such applications. The following example
illustrates the case.

6Given that scale changes of x are immaterial as we will see later, the normalized c=d is a more plausible measure of distance from
0 than c itself.
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Example 4.2

Consider the prospect ð0:5 : x; zÞ yielding x with probability 0.5 and z otherwise, and its certainty
equivalent y� ð0:5 : x; zÞ: Assume expected utility with 0:5UðxÞ þ 0:5UðzÞ ¼ UðyÞ; and r ¼ 0:94;
generating weak risk aversion. For x ¼ 400 and z ¼ 200 we obtain y ¼ 299; with a risk premium
300� 299 ¼ 1:

Next assume an increase in wealth by 100 000, so that x ¼ 100 400 and z ¼ 100 200: To have the same
risk premium of 1, with certainty equivalent y ¼ 100 299; we now have to take r ¼ �19: Thus, r ¼ �19
generates similar risk premiums on the outcome interval ½100 200; 100 400� as r ¼ 0:94 does on the
outcome interval ½200; 400�: &

We next consider the case where the direct vicinity of x ¼ 0 is important and should be included in the
analysis, but not x ¼ 0 itself. For the purpose of data fitting, attention may first be restricted to a
subdomain ½c; d� for some c > 0: If the data suggest less concavity than logarithmic, attention can be
restricted to positive powers r: If the subdomain ½c; d� suggests strong concavity and relevance of the
case r� 0; as in Example 2.1, then for x near 0 a truncation of the functions at some low negative level
may be considered. Alternatively, Uðxþ eÞ �UðeÞ instead of UðxÞ may be used if an e > 0 can be found
that is small enough to generate empirical distortions of an acceptably small size, but with e large
enough to avoid the extreme behavior near x ¼ 0: Such rescalings of inputs are further discussed later.

Scaling outputs UðxÞ for x > 0 and x ¼ 0

The problems just discussed are aggravated if not only values x near 0 but also x ¼ 0 itself is to be
included in the analysis. Then for r� 0 the power function is not defined, i.e. it is �1; at x ¼ 0: In
situations where the extreme evaluation Uð0Þ ¼ �1 is implausible and Uð0Þ should have a finite value,
the negative powers are automatically ruled out. This happens, for instance, if the scaling Uð0Þ ¼ 0 is
appropriate. This scaling is commonly assumed in the health domain (Bleichrodt et al., 1999; Miyamoto
and Eraker, 1988; Stiggelbout et al., 1994), and also in prospect theory (Tversky and Kahneman, 1992).
Then attention can be restricted to positive powers without further ado. If other parts of the domain
strongly suggest that r� 0 is relevant, then a pragmatic solution as suggested in the preceding
subsection cannot be avoided. Indeed, in macroeconomics and finance, functions Uðxþ eÞ have often
been considered with e large and interpreted as initial wealth (Friend and Blume, 1975; Meyer and
Meyer, 2005).

In health applications, negative powers (reflecting extreme aversion to dying with Uð0Þ ¼ �1)
generate some undesirable implications for the standard gamble method for measuring utility and
quality of life. The following example clarifies this point.

Example 4.3 (Standard gamble utility measurement)

In the standard gamble method for measuring utility, a favorable outcome x; say living your life
expectancy in perfect health, is chosen as well as an unfavorable outcome z: For z often immediate death
is chosen ðz ¼ 0Þ: Next intermediate outcomes y; say living y years in perfect health and then dying, are
considered, where x > y > z: Intermediate outcomes can also concern impaired health states such as in
quality-of-life measurements. Next a probability p is measured such that the probability distribution
ðp : x; 1� p : zÞ; yielding the good outcome x with probability p and the bad outcome z with probability
1� p; is equally preferred as receiving the intermediate outcome y for sure. Expected utility is
commonly assumed, implying UðyÞ ¼ pUðxÞ þ ð1� pÞUðzÞ: Normalization UðxÞ ¼ 1 and UðzÞ ¼ 0 then
yields the convenient UðyÞ ¼ p:

With z ¼ 0 in the standard gamble, it has often been found that subjects are not willing to accept any
p51; indicating that they are not willing to take any risk of dying. This behavior can be modeled
through Uð0Þ ¼ �1; as with negative powers. No useful information can then be obtained about the
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utility of y:7 In such cases, it is better to adopt standard gamble measurements with outcomes z > 0
being more favorable than immediate death (Bleichrodt et al., 2002).

In many applications in health, very bad health states play no role. Then only ‘large’ inputs, remote
from x ¼ 0; are relevant, and the anomalies near x ¼ 0 of Example 4.1 are not important, similarly as
this occurs in finance and macroeconomics. &

Scaling outputs UðxÞ for x > 0;x ¼ 0; and x50

The problems discussed above are further aggravated if both positive and negative x are to be included
in the domain. In the health domain this happens, for instance, if death is modeled as x ¼ 0; but quality
of life worse than death is considered, and is to be turned, for instance, into utility through power
transformations (Dolan, 1997; Revicki and Kaplan, 1993; Robinson and Spencer, 2006; Stiggelbout and
de Haes, 2001). Note here that quality of life, and not life duration, is the input of the power function.
Before discussing the problems mentioned, we will give some definitions.

The power family can be defined for x50 through UðxÞ ¼ �Uð�xÞ with U as above. For a
simultaneous definition on the positive and negative domains, with 0 included in the domain and only
positive powers considered, we can set UðxÞ ¼ xr for x > 0 and UðxÞ ¼ �ð�xÞs for x50 and r > 0; s > 0:
This definition was used in prospect theory (Tversky and Kahneman, 1992).

If positive and negative x have to be considered jointly, then it is probably better to exclude r� 0 and
s� 0: The extreme behavior near x ¼ 0 then takes place in the center of the domain. All
aforementioned pragmatic solutions, such as truncations, then concern not only utility near x ¼ 0;
but they crucially affect every trade-off between positive and negative x: Such major implications
generated by heuristic pragmatic modifications should be treated with caution. With both positive and
negative x present, a negative power r or s generates an infinite distance between gains and losses. Such
a phenomenon is not empirically plausible, so that negative r and s should then not be expected to
occur. Vendrik and Woltjes (2007) used a function Uþðxþ eÞ �UþðeÞ for gains and
a function U�ðx� eÞ �U�ð�eÞ for losses, for some e > 0 (they took e ¼ 1), to avoid the infinite
derivatives at x ¼ 0; and to avoid the problems of defining loss aversion generated by infinite
derivatives.

SCALING THE INPUTS

Where Assumption 3.1 dealt with the scaling of the outputs UðxÞ; this section deals with the scaling of
the inputs x:

Changing the units of inputs

In this subsection we consider changes of the unit of x (multiplications by positive factors). For the
power functions, no empirical implication is affected if all inputs are multiplied by a common positive
factor. For example, if the inputs are no longer expressed as number of years but as number of months,
then we can continue to use the same function U and no empirical description or prescription will be
affected. To see this point, first consider choices between prospects for money under expected utility.
Then no choice will change if all stakes are multiplied by 12 because this simply implies that all utilities
and expected utilities are multiplied by the same factor 12r and this does not affect any ordering of
prospects. Similarly, there is no change if we change numbers of dollars into numbers of cents,
multiplying all inputs by 100.

7A resort to ‘non-standard’ real numbers, allowing for the value �1; could be considered here (Stroyan and Luxemburg, 1976).
We will not pursue this point.
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In general, if we multiply all inputs by a factor s > 0; then, for r=0; all utilities xr or �xr are
multiplied by sr (homogeneity of degree r). Because U is an interval scale (Assumption 3.1), no
empirical implication is affected. For r ¼ 0; and logarithmic utility, multiplying all inputs by a factor
s > 0 implies that lnðsÞ is added to all utilities. Again, no empirical implication is affected because U is
an interval scale. The invariance just demonstrated is known as CRRA for decision under risk and as
homotheticity in consumer theory. It is well known that no utility functions other than the power
functions satisfy the aforementioned invariance. That is, the power family is appropriate
(inappropriate) if and only if the invariance condition is appropriate (inappropriate).

In health economics, power functions are commonly used for the utility of life duration (Abellán
et al., 2006). The invariance with respect to input units then implies a ‘constant proportional trade-off’
condition, with preferences over pairs ðy;QÞ (living y years in health state Q) not affected by changes in
the time unit. This condition is crucial for the validity of the commonly used time-trade-off method for
measuring quality of life (Gold et al., 1996; Miyamoto and Eraker, 1988; Pliskin et al., 1980). We do not
elaborate on this point.

Changing the levels of inputs

Unlike changes of the unit of the inputs, changes of the level of the inputs, through substitutions
x! xþ t; are empirically relevant. As we have seen in the preceding section, the power functions
display extreme behavior near x ¼ 0: Further, the functions are not readily extended to values x50:
Such phenomena are typical of x ¼ 0 and show that changes in the level of inputs have empirical
implications. The decision as to which physical input is to be modeled as x ¼ 0 should be made
deliberately, where any extreme behavior of the functions at x ¼ 0 is to be matched as much as possible
by empirical phenomena at the corresponding physical input. For life duration, x ¼ 0 usually refers to
immediate death, which, indeed, often exhibits extreme behavior.

Meyer and Meyer (2005) pointed out that information about the scaling of x ¼ 0 is often hard to find
in empirical papers.8 The choice of x ¼ 0 has been discussed in some economic papers. Often x ¼ 0 is
then taken to model ruin or level of starvation. Here, indeed, extreme phenomena can be expected
similar to the mathematical properties of power utility and similar to such phenomena for the death
outcome in health. Then inputs x ¼ yþ t are considered where t designates initial wealth and y
designates the change with respect to initial wealth. Cohen and Einav (2007) took annual income as
proxy for initial wealth, and then found a median power between r ¼ 0 and 1; but mean estimates well
below r ¼ �45: In general, there have been debates about whether, for example, human capital and
housing should be included in t: Rosenzweig and Wolpin (1993) examined insurance for bullock farmers
in India using the power utility family, and for each household modeled the minimum consumption
needed to survive as x ¼ 0:

Most commonly, it is not ruin or level of starvation, but the status quo that is taken as x ¼ 0 for
power utility (Barsky et al., 1997; Harrison et al., 2006; Holt and Laury, 2002). For decision under risk,
extreme behavior is indeed often observed at the status quo, and power utility may fit such behavior
well. Cubitt et al. (2001, pp. 401–402) pointed out the remarkably good fit of power utility with a power
of approximately 0.3 in individual experiments for monetary outcomes, which is hard to reconcile with
expected utility in terms of final wealth. It suggests that in experiments subjects use their status quo as
reference point x ¼ 0 and model inputs as changes with respect to this reference point, irrespective of
final wealth. Such a modeling of inputs is central in prospect theory (Kahneman and Tversky, 1979;

8Similarly, for exponential (CARA) utility, the location of x ¼ 0 need not be specified, but it should always be stated explicitly
what the unit of the inputs is. In papers that report estimates of CARA (with an index defined in Equation (9)) it is, again, often
hard to find out what unit of the inputs was assumed, unfortunately.
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Tversky and Kahneman, 1992), and was supported by Rabin (2000, pp. 1288–1289); we will not discuss
prospect theory here.

In general, there is interest in the two-parameter family ðxþ tÞr with t� 0 simply an additional
free parameter that does not have a particular empirical interpretation, and that also serves as an
anti-index of concavity (see later; Harrison et al., 2007, p. 452). This two-parameter family
may be more natural than the power family. For nonzero t these functions, obviously, do not exhibit
CRRA, but decreasing relative risk. This is empirically desirable for decision under risk. The
one-parametric subfamily for r ¼ 0; lnðxþ tÞ; did receive some attention, and is known as the
logarithmic family. It is popular for introspective measurements of happiness (van Praag and Ferrer-i-
Carbonell, 2004; Vendrik and Woltjes, 2007). Some studies considered negative t; which is possible if
only values of x remote from 0 have to be considered. For instance, Stone–Geary utility functions
consider ðx� sÞr where s > 0 ðs ¼ �tÞ is the minimum consumption level needed to survive or it is
habitual consumption. We will not study the families ðxþ tÞr further in this paper for nonzero t; but
will restrict ourselves to the commonly made assumption that x ¼ 0 is fixed with no t involved, this
being the most widely used family.

The extra importance of the scaling of inputs if power functions do not fit data perfectly well

If the power family fits data perfectly well, or is assumed in a theoretical model, then, as
explained before, the unit of the inputs need not be specified. In practice, however, when using
the power family to fit data empirically, the fit will never be perfect, and often considerable and
systematic deviations can be expected. Then power utility can still be used for pragmatic reasons,
in the absence of a better and more tractable alternative. Different power parameters may then be
optimal for different subparts of the domain of the data. Example 4.2 illustrates this point. When
reporting a measurement of r there, it is very desirable to also report the outcome domain from which
this value of r was derived, be it ½200; 400� or ½100 200; 100 400� or otherwise. In general, it is desirable to
report not only where x ¼ 0 is located, but to report also the units of the inputs considered and the exact
domain of measurement.

In macroeconomics and finance, large amounts of money are considered and optimal powers r are
usually negative, i.e. 1� r; the index of relative risk aversion, usually exceeds 1 (Bliss and Panigirtzoglou,
2004). Values of 1� r around 2 are commonly used in these fields (referenced by Carlsson et al., 2005,
and Chen and Huang, 2007, fourth section). Dominguez and Frankel’s (1993) study of effects of central
bank intervention on the risk premium estimated a value of 1� r well over 100.

Kaplow (2005) examined the income elasticity of a statistical life, concerning the small amounts we
pay to obtain small reductions in risk of loss of life, such as when buying safety belts. He assumed
expected utility, and provided evidence that the income elasticity of a statistical life is typically around
0.5. He then showed that this value can be equated with the CRRA index of the utility of income, and
presented this finding as a paradox in view of the CRRA index of utility of income (or consumption) of
approximately 2 typically assumed in macroeconomics. However, in individual choice experiments
where inputs typically range between $0 and $200, powers r between 0 and 1 usually fit data best (Cubitt
et al., 2001; Tversky and Kahneman, 1992). This agrees well with the aforementioned income elasticity
of a statistical life, which implied a power 0.5. Thus, Kaplow’s (2005) paradox can be resolved if the
domain of inputs is specified.

ANALYSIS THROUGH THE ARROW–PRATT INDEX

At first sight, the natural limit of xr for r # 0 may seem to be x0; i.e. the constant function UðxÞ ¼ 1: This
conclusion is not correct because it takes utility at an absolute level. For interval scales, neither the level
(intercept) nor the unit (slope) is relevant, but the degree of curvedness is relevant (referring to orderings
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of ratios of differences). Several papers independently observed the importance of the concavity index

�
U 00ðxÞ
U 0ðxÞ

ð9Þ

to capture curvedness (de Finetti, 1952; Arrow, 1971). In particular, Pratt’s (1964) independent
introduction is deep and revealing. He showed that the concavity index captures all information
relevant to interval scales. The concavity index is often called the Arrow–Pratt index or the index of
absolute risk aversion. The index is constant for the exponential (CARA) family of utility. Calculating
the index for our family yields

�
rðr� 1Þxr�2

rxr�1
¼

1� r

x
for r > 0 ðEquation ð1ÞÞ

x�2

x�1
¼

1

x
¼

1� r

x
for r ¼ 0 ðEquation ð2ÞÞ

and

�
rðr� 1Þxr�2

rxr�1
¼

1� r

x
for r50 ðEquation ð3ÞÞ

We conclude that

the Pratt2Arrow concavity index for the power family is ð1� rÞ=x ð10Þ

for all r: The same results follow, obviously, for Equations (4)–(6). The concavity index shows once
more that the functions in Equations (1)–(3) belong together and constitute one natural family. The
degree of concavity decreases in r; with a natural smooth transition at r ¼ 0: It confirms that the
curvature of xr converges to that of lnðxÞ for r tending to 0 both from above and from below.

The concavity index also shows that the concavity of power functions becomes less extreme for large
inputs x: This explains why in macroeconomics, where large x are considered, small and negative values
of r are commonly used to generate reasonable degrees of concavity, whereas in individual choice
theory, where moderate inputs x are considered, values of r between 0 and 1 are more common.
Example 4.2 illustrated this phenomenon. The (absolute) risk aversion generated for outcomes from
½200; 400� by r ¼ 0:94 was similar there to the risk aversion generated for outcomes from ½100 200;
100 400� by r ¼ �19: The concavity index ð1� rÞ=x; with midpoints of intervals taken for x; indeed
confirms that ð1� 0:94Þ=300 ¼ 0:0002� ð1� ð�19ÞÞ=100 300 ¼ 0:000199; which explains the numerical
results of Example 4.2.

The concavity index illustrates once more that interpreting r as an anti-index of concavity (or ‘risk
aversion’) without specifying the domain of inputs can be misleading, and we should be careful when
comparing values of r derived from different domains of inputs. This was pointed out by Rabin (2000,
footnote 10) and Kandel and Stambaugh (1991). There has been much confusion about this point. For
empirical evidence regarding r; see Palacios–Huerta and Serrano (2006).

CONCLUSION

The power family provides a rich set of functional forms that can fit data well in many domains, while at
the same time preserving tractability. Yet there are some intricacies that have raised misunderstandings,
such as the importance of choosing a proper level of inputs x ¼ 0; and the natural transition from the
positive powers to the logarithm and then to the negative powers. The extreme behavior at x ¼ 0 can
cause empirical and analytical problems. Remedies for avoiding these problems have been suggested.
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APPENDIX A: EMPIRICAL IMPLICATIONS

The meaning of utility resides in its empirical implications. Strictly speaking, all arguments advanced in
the main text were stated in terms of theoretical constructs such as utility graphs and they were not
stated directly in terms of empirical primitives. Therefore, this appendix gives an illustration of the
claims of the preceding sections, such as about the limiting role of logarithmic utility for r ¼ 0; in terms
of directly observable preferences. More precisely, we will consider indifference curves in an example.

We consider preferences over pairs ðx; yÞ; evaluated through

aUðxÞ þ ð1� aÞUðyÞ for some 05a51 ðA1Þ

with U a power function. The power r > 0 specifies the degree of homogeneity, where multiplying all
inputs (x and y) by a factor l multiplies the functional by a factor lr: Evaluations as in (A1) occur in
decision under risk or uncertainty, where ðx; yÞ is a prospect for which it is uncertain whether it yields $x
or $y; and a is an objective or subjective probability, or a transformed or nonadditive probability as in
many nonexpected utility theories (Doctor et al., 2004; Keeney and Raiffa, 1976; Starmer, 2000).
Equation (A1) is also used in microeconomics, where ðx; yÞ designates a commodity bundle with a
quantity x of one good and a quantity y of another. The representation aUðxÞ þ ð1� aÞUðyÞð05a51Þ
with U from the power family is then (assuming the additive separability of (A1)) known as the family
of constant elasticity of substitution (Nicholson, 2005). In macroeconomics, x and y can be welfare
allocations for two individuals, and the power r is an index measuring the concern for equity (Salanié,
2003, Chapter 4).

Figure A1 depicts indifference classes through (1,1), (2,2), and (3,3) for the case of a ¼ 0:5: The
indifference curves confirm once again that the logarithmic family is the natural limit of r ¼ 0: The
indifference curves of the logarithmic family are almost indistinguishable from those for r ¼ 0:1 or �0:1
and, therefore, the preferences resulting from these utilities are very similar. Figure A2 displays the
indifference curves passing through (2,2) for various values of r:

I next present a mathematical description of the indifference curves that further illustrates some
points of this paper. At each point in the plane ðx; yÞ; we can calculate the marginal rate of substitution
(MRS), i.e. the negative slope of the indifference curve passing through ðx; yÞ: It reflects the number of
infinitesimal units of y given up to acquire one extra infinitesimal unit of x: A formula for the MRS,
known from microeconomics (Nicholson, 2005) and given without derivation, is

�
aU 0ðxÞ

ð1� aÞU 0ðyÞ

The result for the power family is

arxr�1

ð1� aÞryr�1
¼

a
1� a

x

y

� �r�1

which also holds for r ¼ 0: Again, the MRS for r ¼ 0 is the limit of r tending to 0, with a smooth
transition at r ¼ 0: The indifference curve for r ¼ 0 is the limit for r approaching 0, showing once more
that the logarithmic function is a natural member of the family.
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APPENDIX B: CALCULATIONS OF INDIFFERENCE CURVES IN APPENDIX A

This appendix presents calculations used for the indifference curves of Figures A1 and A2.
For consistency reasons, I will use utility functions normalized at 1 and 2. It is easy to see,
and in agreement with the interval scale type of utility, that the same indifference curves would
follow for nonnormalized utility functions. The algebra would be simpler then. An indifference
curve

a�
Xr � 1r

2r � 1r
þ ð1� aÞ �

Yr � 1r

2r � 1r
¼ c

yields

ð1� aÞ �
Yr � 1r

2r � 1r
¼ c� a�

Xr � 1r

2r � 1r

Y

X
(1,1)

(3,3)

(2,2)

r =2

r=1

(1,1)

(3,3)

(2,2)

Y

X

Y

X
(1,1)

(3,3)
(2,2)

r =0.1

(1,1)
(2,2)

(3,3)

Y

X

r= 0.5

r=0Y

X

(3,3)
(2,2)

(1,1)

Y

X

r=–0.1

(1,1)

(3,3)
(2,2)

Y

(2,2)
(1,1)

(3,3)

X

r= –0.5

(2,2)
(1,1)

(3,3)

Y

X

r= –5

(1,1)

(3,3)
(2,2)

Y

X

r=5

X

(1,1)

(3,3)

(2,2)

Y r=∞
(max{X,Y})

(2,2)
(1,1)

Y

X

r= –1

(3,3)

(1,1)

(2,2)
(3,3)

Y

X

(min{X,Y})
r= –∞

Figure A1. Indifference curves for various powers
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or

Yr � 1r ¼
2r � 1r

1� a
� c� a�

Xr � 1r

2r � 1r

� �

or

Yr ¼
2r � 1r

1� a
� c� a�

Xr � 1r

2r � 1r

� �
þ 1r

For the next step we apply the transformation z/z1=r to the left- and right-hand side of the
equality. Whenever 1=r is not an integer, the transformation is defined only if the left- and right-hand
side are nonnegative. This is no problem for us because we consider Y � 0 only. Whenever 1=r
is an odd integer, the step can be made without any problem because the transformation is defined
and strictly increasing everywhere. Whenever 1=r is an even integer (e.g. for r ¼ 0:5; so that
1=r ¼ 2), problems can arise. The transformation is then defined everywhere, but can equate things
with the same absolute value but with a different sign. Hence, it can give positive Y values that
should be negative. In this case, graphs based on the following equation should be checked for this
problem:

Y ¼
2r � 1r

1� a
� c� a�

Xr � 1r

2r � 1r

� �
þ 1r

� �1=r

For r ¼ 0 we have

a�
lnðXÞ � lnð1Þ
lnð2Þ � lnð1Þ

þ ð1� aÞ �
lnðYÞ � lnð1Þ
lnð2Þ � lnð1Þ

¼ c

ð1� aÞ �
lnðYÞ � lnð1Þ
lnð2Þ � lnð1Þ

¼ c� a�
lnðXÞ � lnð1Þ
lnð2Þ � lnð1Þ

r = 0
(ln)

r = –1 r = –0.3
r = –0.1

r=0.1

r =1

2 31.1 4

3

2

1

4

r=0.3

(2,2)

Figure A2. Indifference curves through ð2; 2Þ for power utility with various powers of r
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lnðYÞ � lnð1Þ ¼
lnð2Þ � lnð1Þ
ð1� aÞ

� c� a�
lnðXÞ � lnð1Þ
lnð2Þ � lnð1Þ

� �

lnðYÞ ¼
lnð2Þ � lnð1Þ
ð1� aÞ

� c� a�
lnðXÞ � lnð1Þ
lnð2Þ � lnð1Þ

� �
þ lnð1Þ

Y ¼ exp
lnð2Þ � lnð1Þ
ð1� aÞ

� c� a�
lnðXÞ � lnð1Þ
lnð2Þ � lnð1Þ

� �
þ lnð1Þ

� �
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