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Abstract

This paper characterizes prapes of chance attitudes (nonadditive measures). It does so for
decision under uncertaintyijknown probattities), where it assumeshoquet expectedtility, and
for decision under risk (known probdities), where it assumes mi-dependent ility. It analyzes
chance attitude independently frotility. All preference @nditions concern simple violations of the
sure-thing principle. Earlier results along these lines assumed richness of both outcomes and events.
This paper generalizes such results to general state spaces as in Schmeidler's model of Choquet
expected utilityand to general outcome spaces asiib@’'s model of Choqueexpected utility.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

As emphasized by Keynes (1921) and Knigli®21), objective mbabilities of
uncertainties are rarely known in economics. This is contrary to, for instance, the medical
field, where extensive statistical data is often available. De Finetti (1937) and Savage
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(1954) made famous contributions to the measurement of uncertainty. They showed that
Bayesian subjective probabilities can ofteubstitute for unknown obgtive probabilities.
Allais’ (1953) and Ellsberg’s (1961) examples showed, however, that there are empirical,
and according to some also normativeplpems with the Bayesian models of de Finetti
and Savage.

Allais (1953) proposed non-Bayesian models for decision under risk. (In this paper,
risk refers to the case of known objective probabilities.) Unfortunately, his models, while
psychologically well-founded, were intractabbecause they had too many parameters
that were, accordingly, unidentifiableakineman and Tversky (1979) provided a major
breakthrough with their (original) prospect theory. It was the first theory that combined
theoretical tractability with egirical realism, and thatauld make predictions about
something considered unpredictable up to that point: irrational decision making. Original
prospect theory was formulated for decision under risk only. Soon after came the influential
contribution of Machina (1982), who show#tht nonexpected utility can still give positive
predictions about first- and second-ordenditions at economic optima. His model was,
again, restricted to decision under risk.

Ellsberg (1961) showed that deviatiofiem Bayesianism founknown pobabilities
can exhibit phenomena of a nature essentially different than those for decision under risk.
Nevertheless, decision theorists focused on decision under risk up to the early 1990s. This
is remarkable because of the importantamknown proballities, which had been widely
understood. The reason for this seeming neglect of an important topic is that for a long
time no-one was able to formulate a sound non-Bayesian model for uncertainty.

It had long been understood that, besides attitude towards outcomes, also an
attitude towards uncertainty (chance attitudeinnportant for decision under uncertainty.
Schmeidler (1989, first version 1982) was thstfio formalize such an attitude and, thus,
was the first to provide a sound non-Bayesian model for uncertainty. He used nonadditive
measures (capacities) to camtis intuition that utility aloneannot model all of decision
attitudes under uncertainty. Only with Schmeid$ idea available, could a sound version
of prospect theory be developed (Tversky and Kahneman, 1992) that, importantly, could
also be applied to decision under uncertainty.

Schmeidler’s basic intuition was that capacities of events and their complements
should sum to less than one so as to des@yadack of informéion about pobabilities.

This was combined with a conservative, pessimistic, decision attitude towards such a
lack of information, modeled through converpacities. Schmeidler gave a preference
axiomatization of such capacities, and convexity has been the most-studied property of
capacities.

A restriction of Schmeidler's (1989) alysis was that it needed linear utility of
outcomes, as in Anscombe and Aumann (1963), in the following manner. Outcomes
are probability distributions over nonrisky @aimes called prizes, and preferences over
outcomes are governed by expected utility. Thus, a two-stage resolution of uncertainty
results, where the basic uncertainty of interest, regarding the true state of nature, is resolved
in the first stage, yielding a particular outcome, and in the second stage the probability
distribution of the outcome is resolved, finally yielding a prize. Backwards induction
is assumed for the two-stage optimization. A difficulty is that backward induction is
problematic for nonexpectadility models (Machina, 1989).
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Preference axiomatizations of Schmeiienodel that relax the restrictions of the
Anscombe and Aumann two-stage approach were left to two of his PhD students. Gilboa
(1987) obtained such an extension but still rexkd richness assumption on the state space.
Wakker (1989) also obtained such an extension but needed a richness assumption on the
outcome space.

Preference axiomatizatiofisr properties of capacitiesithout the restriction of linear
utility such as in the Anscombe and Aumann two-stage approach were first given by
Tversky and Wakker (1995). They focused on bounded subadditivity, and did not consider
convexity. Wakker (2001) characterized cerity, and a number of related conditions,
independently of utility. These two references relied heavily on richness assumptions.
They needed both the richness of the state space as in Gilboa (1987), and the richness
of the outcome space as in Wakker (1989, 1993), requiring both of these sets to be infinite.
Further, these results were restricted tonedlied outcomes. Relaxing these restrictions
is the purpose of this paper. We allow for general, possibly finite, outcome spaces or for
general, possibly finite, state spaces (but not both). In the latter case, we also allow for
nonmonetary outcomes as long th& utility space contains a nondegenerate interval,
such as under connected-continuity. Thuss thaper provides necessary and sufficient
conditions for convexity, and some other properties, of capacities for:

(a) the generalization of Schmeidlerk89) model to continuousstead of linear utility;
(b) Gilboa’s (1987) generalization of Savage (1954) to nonadditive measures.

Itis, in general, desirable to minimize the structural restrictions used for a number of
reasons. First, contrary to what has sometimes been thought, structural assumptions are
not merely technical, but they add empirical content to the axioms, and the difficulty is
that it is not clear what this content is (4rdato and Marinacci, 2001; Kébberling and
Wakker, 2003; Krantz et al., 1971, Section 9.1; Pfanzagl, 1968, Section 6.6). Second, in
many applications, structural richness of the outcome set is not natural, and it is desirable
to avoid it. In many medical applications, the only conceivable outcomes concern a limited
number of health states. Measurement methauspaeference conditions to explain or test
gualitative properties, that require consideration of artificial continua of outcomes, then are
not realistic. Similarly, we often face only a finite number of uncertainties (democratic or
republican victory). Then techniques that reguiontinuous extensions of the uncertainties
through, say, repeated outcomes of tosses of a coin, as in Savage’s (1954) approach, are
less suited.

This paper will also show how the results obtained for decision under uncertainty imply
corresponding results for decision under riskimgorecent characterizations of related
properties of capacities, provided in the literature, are discussed in Appendix B.

2. Notation and definitions
S denotes astate space, endowed with an algebrd of subsets calledvents. X is

an outcome space, endowed with a binary relation, thaeference relation, denoted:-.
(A1, x1;...; Ay, x,) denotes a function fron§ to X that assignst; to eachs € A,
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j=1,...,n,whereAs,..., A, are events partitioning. Such a function is called aact.

=, thepreferencerelation, is a binary relation on the set of all acts. The notatfog g, and

> (strict preference), ~ (indifference or equivalence), <, and< is as usualV represents

= if V is from the set of acts t® and f = g & V(f) > V(g). Outcomes are identified
with constant acts. Preferences over outcemgree with preferences over constant acts,
and are also denoted ky. We restrict attention to simple (finite-valued) acts for simplicity
of presentation. Infinite-valued acts can eab#yincorporated in #nanalysis because then
all the following axiomatizations follow by considering the simple acts.

We assum€&hoquet expected utility (CEU) throughout this paper. ThatiS,: X — R is
theutility function, W is thecapacity on S (W is defined ond with W (@) =0, W(S) =1,
andC > D = W(C) > W(D)), and = is represented by — [SU(f(s))dW(s), the
CEU of f, which is defined as follows. Let(A, H) = W(AU H) — W(H). Itis implicit
in this notation thaf andH are disjointd (A, H) will be thedecision weight of eventA in
what follows. Consideyf = (E1, x1; ...; E,, x,). The CEU off is ijl 7;U(x;) where
the ;s are defined as follows. Let be a permutation ofl, ..., n} such thatx,x) =
s = Xp(n) - Thedecision weight Tp(j) of outcomex, ) is d(Epy, EpyU---UEy-1).

The permutation reflects theanking positions of the events, i.e. the favorableness of
their outcome relative to the outcomes obtained under other events. Eygnts ranked
highest, and evert ;) is ranked belowE ;1) U--- U E,(j_1).

A set of acts iscomonotonic if every pair f and g of its elements icomonotonic
(f(s) = f(¢r) andg(s) < g(¢) for no s, ). Decision under risk concerns the special case
where a probability measuris given onA, S is rich enough to generate all simple (finite-
valued) probability distributiongp1, x1; ...; pu, x4) over X, and all acts that generate
the same probability distribution ove¥ are equivalent. Choguexpected utility then
reduces to Quiggin’s (198 1ank-dependent utility (Wakker, 1990). Section 5 gives formal
definitions.

W is convex if W(C) + W(D) < W(C U D) + W(C n D) for all eventsC, D. W is
concave if the reversed inequality holds. Convexity holds if and onlydifA, H) is
nondecreasing i/, concavity if and only if it is nonincreasing. We will also be interested
in capacities that have properties on patiéc subdomains. Of special interest asvex
capacities, i.e. capacities that are concave for unlikely events and convex for likely events.
Such a phenomenon can be interpreted as insensitivity towards changes in likelihood, i.e.
a cognitive deviation from Bayesianism reflecting lack of understanding of uncertainty
without necessarily a bias towards favorabk unfavorable outcomes. Tversky and Fox
(1995) and Wakker (2004) argued for the importance of such a property.

As a preparation, we define evefitto berevealed more likely than eventD, denoted
C = D, if there exist outcomek > ¢ such that(C,h; S — C,¢) »= (D, h; S — D, £). This
gives a behavioral way to elicit tha¥ (C) > W(D). By >, ~, %, and < we denote
the asymmetric, symmetric, and reversed parts of this relation, which are related to the
corresponding inequalities d¥. For eventsC < D, [C, D] denotes the set of events
E for whichC < E < D. Wisconvexon [C, D] if d(A, HUI) > d(A, H) whenever
C < H<HUAUI x D. The likelihood bounds ensure that the condition only concerns
the behavior ofW on [C, D] because all the arguments &f relevant tod (A, H U |)
andd(A, H) are in[C, D]. The smallest of thesd{, is revealed to be more likely than
C, and the largestH U A U I, is revealed to be less likely thaP. Then so are the
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relevant arguments oW in between,H UA and H Ul. W is concave on [C, D] if
d(A,HUIl)<d(A,H)whenevelC < H< HUAUI=<D.

The use of the same symbslfor preferences over acts, outcomes, and events, is based
on the interpretation of outcomes as constant acts and of events as indicator-function acts,
yielding a predesigned good outcome for an event and a predesigned bad outcome for
the complementary event. Tleet-interpretation of events is less common than that of
outcomes, but is also natural and was propagated by de Finetti (1974, Section 3.1.4).

Figure 4 of Wakker (2001) indicates, for monetary outcomes, a general method of
obtaining preference axiomatizations of propertiedtaf Instead of a figure, we give a
verbal explanation hereafter, extended to general outcomes.

For the intuition of the method, consider a convex capacity. Such a capacity can be
characterized through particular violations of the sure-thing principle, as follows. Imagine
that in an indifference between two comonotonic acts, a common outéaroeditional
upon an eventl is improved into a common outcome ¢. The sure-thing principle would
require that such an improvement of a common outcome does not affect the indifference.
We, however, consider violations of the sure-thing principle generated by a pessimistic
non-Bayesian attitude. Imagine that the timgproved acts are again comonotonic, that
eventA was ranked above event | before the improvement but is ranked below after,
and that no ranking positions of other events were affected. In other waArgilded
outcomes betweefiandm, and the other events did not. Becadses ranked lower after
the improvement, it becomes more impaittéor a pessimist. Hence, if an act yielded a
better outcome undeX in the indifference before the improvement, then this act will be
preferred after the improvement. In summary, improving a common outcome such that
eventA becomes ranked lower makes evAnmore important, and the preference for the
better act undef will increase more than the preference for the other act.

The preference conditions in this paper are based on the above intuition, and are all
necessary for the corresponding conditionsagfacities. Recognizing this intuition in the
preference conditions below provides insgito the general technique. The particular
forms of the preference conditions that anffisient to imply the corresponding conditions
for capacities depend on the particular richness assumptions made in particular models.

3. A continuum of outcomes and general events

The richness assumption in this secti@s@mes a nondegenerate interval in the utility
space, and is satisfiedX = R or if X is a general connected topological space and utility
is continuous and nonconstant. In Schmeidler (1989¢an be taken as a convex subset
of a linear space, designating probability distributions over prizes. This section, therefore,
concerns the extension of Schmeidler's (1989) analysis to continuous instead of linear
utility. It, likewise, extends Chateauneuf$991) analysis, whoansidered linear utility
for real-valued outcomes (money).

Example 3.5 shows that complications cstill arise for a continuum of outcomes if
there are only two nonnull events. Hence, we rule that case out too. As a preparation, we
define null events in the Savage sense. Eveignull if any two acts that agree outside of
E are equivalent. Otherwisg is nonnull. Monotonicity means thatf > ¢ whenever, for
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Fig. 1. Pessimism for a continuum of outcom@sM = m 3= £).

some outcomes > ¢, f =m andg = ¢ on a nonnull event and, furthef,= g outside
that event. Under CEU, this version of monotonicity holds if and onlyisatisfiesnull
invariance, meaning that/ (E, H) = 0 for someH if and only if it is for all H.

Assumption 3.1 (Continuum-of-outcomes). CEU holds, the range df contains a nonde-
generate interval, there exist three disjoint nonnull eventsaadtisfies monotonicity.

A continuum of outcomes withouéstriction to linear utility appears in the CEU charac-
terizations by Bleichrodt and Miyamoto (2003), Kébberling and Wakker (2003), and sev-
eral earlier papers. In Fig. 1(a), the left circle designates theFact; A; M, I; m; L, £);
other acts are illustrated similarly. Formallyjtcome-pessimism holds if the implication
of Fig. 1 holds whenevek = M = m = £ and{H, A, |, L} partitions the state space. We
first explain the notation used,gh the idea underlying the condition.

Throughout this pape#; denotes ahigh outcome,¢ a low outcome, and andm
medium outcomes, withh = M = m = £. H denotes an event yielding a high outcome,
an event yielding a low outcome, and | an event yielding the same outcome for two acts
being considered so that | is, in a warelevant for the choice between the acts. Finally,

A denotes the event whose change in decision weight, generated by a change in the ranking
position, is used tassess what the property of the capacity is.

In Fig. 1(a),A yields a higher outcome for the left act, which provides an argument
for the left choice H and L provide counterarguments that, apparently, exactly offiset
argument. The intuition of the preference in Fig. 1(b) was explained at the end of the
preceding section. Because of the richness af@uks, we can construct the configuration
of Fig. 1(a) for sufficiently many eventd, A, 1, L to imply convexity of the capacity.
Outcome-optimismis defined similarly but with the reversed prefereace Fig. 1. These
conditions hold oriC, D] if the restrictionC < H < H UA U < D is added.

Lemma 3.2. Under Assumption 3.1, the capacity is convex (concave) on [C, D] if and only
if >= exhibits outcome-pessimism (outcome-optimism) on [C, D].
Theorem 3.3. Under the continuum-of-outcomes Assumption 3.1:

(i) thecapacityisconvex ifandonlyif = exhibitsoutcome-pessimism;
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(ii) thecapacityisconcave ifandonlyif = exhibitsoutcome-optimism;
(iii) [ cavexity] the capacity is concave on [¢, C] and convex on [C, S]

if and only if
%= exhibits outcome-optimismon [, C] and outcome-pessimismon [C, S].

The following remark provides a simplification for finite state spaces. The resulting
generalization of Theorem 3.3 was stated in the unpublished Section VI.11 of Wakker
(1986).

Remark 3.4. If the state spacé is finite, then the preference conditions for convex and
concave capacities in Lemma 3.2 and Theorem 3.3 can be restricted to singletorfevents
and I.

Example 3.5 (Continuum of outcomes, two states, but W not convex). This example

is Example VI.11.5 from Wakker (1986). Let={1,2}, X =R, let 1/2 < W({1}) =
W({2}) < 1, and letU be the identity. ThenV is not convex. However, the indifference in
Fig. 1(a) automatically impliea weak preference, and even an indifference, in Fig. 1(b): of
A and | at least one must be empty becauseratise the indifference in Fig. 1(a) cannot
hold. It can, similarly, be seen that any indifference in Fig. 4(a) of Wakker (2001) implies
indifference in Fig. 4(b) there, so that noriaion of this general method can be used in
this example.

4. A continuum of eventsand general outcomes

Solvability of the capacity means that for each pair of evertsc D and W(B) <
y < W(D), there exists an eventsuch thatB ¢ C ¢ D andW(C) = y. Itis the richness
condition for the state spaceeded in the analyses of Savage (1954) and Gilboa (1987).
An expression of this assumption for CEU directly in terms of preference conditions,
necessary for preference axiomatizationpeesented in the present paper, is given by
Gilboa (1987). In Gilboa’s model, as in Theorem 4.3 below, more than two equivalence
classes of outcomes are needed. For less than three such equivalence ¥lassegU
is unique only up to strictly increasing transformations, and convexity is not a meaningful
condition (Example 4.4). Three nonequivalentcomes give uniqueness of the capacity,
and suffice for the result below. This result applies, for instance, to the often-studied
probability triangle that consists of all probability distributions over three fixed outcomes.

Assumption 4.1 (Continuum-of-events). CEU holds with a solvable capacity and at least
three nonequivalent outcomes.
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Fig. 2. Pessimism for a continuum of events:£ m = ¢).

Event-pessimism means that the implication of Fig. 2 holds wheneket m = ¢ and
{H1, H», A, |, L} partitions the state spaéélhe condition reflects the intuition described
at the end of Section 2. Because of the richness of events, we can construct many partitions
{H1, H»}, and obtain the configuration of Fig. 2(a) for sufficiently many evénts L, to
ensure convexity of the capacifgvent-optimism holds if the implication in Fig. 2 holds
with reversed preferencg instead of;= in Fig. 2(b), and has similar interpretations. The
conditions just defined holan [C, D] if their respective implications are restricted to the
caseC < HHUH> < HHUH>UAUI L D.

The following lemma prepares for Theorem 4.3.

Lemma 4.2. Assume the continuum-of-events Assumption 4.1 Then the capacity is convex
(concave) on [C, D] if and only if 3= exhibits event-pessimism (event-optimism) on [C, D].

Theorem 4.3. Under the continuum-of-events Assumption 4.1:

(i) thecapacityisconvex ifandonlyif = exhibitsevent-pessimism;
(ii) thecapacityisconcave ifandonlyif 3= exhibitsevent-optimism;
(iii) [ cavexity] the capacity is concave on [¢, C] and convexon [C, S]

if and only if
= exhibits event-optimismon [¢, C] and event-pessimismon [C, S].
Wu and Gonzalez (1999, Questions 6.1 and 6.2) tested event-pessimism empirically.
On May 19, 1995 they asked participants about the Dow Jones Industrial Average close on

June 30, 199510; close of 4341). The design was between-subjects, with 70 participants
answering each question. Table 1 describes the events.

1 It suffices to impose the requirement only for some, instead of for all, outcbrses > ¢. Nothing more is
used in the proofs. For real outcomés=) M > m > (¢ =) 0 could have been taken, as in Wakker (2001).
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Table 1

Events in Wu and Gonzalez (1999)

D <4200 4200< D < 4250 4250< D < 4300 4300< D < 4600 4600< D
Hq A H> | L

Payments weré = $300,m = $150, andl = $0. Safe choice decreased from 48% in
Fig. 2(a) to 35% in Fig. 2(b). The difference was nonsignificant, but suggested a violation
of event-pessimism.

Example 4.4 (Continuum-of-events, two outcomes, but W not convex). S = [0, 1[, there

are only two outcomes, 0 and 1, is the Lebesgue measur&, is the identity, and
W(A) = w(r(A)) wherew:[0,1] — [0, 1] is strictly increasing. Then the following
statements are equivalent:

() f=&
(i) WiseS: f(s)=1}>W{seS: g(s)=1};
(i) MseS: f(s)=1H > r({s e S: g(s) =1}

Thus, the preference relation could also be represented by expected utility. vaish
probability measure, and the indifferenceriy. 4(a) of Wakker (2001), or any Figure (a)
in this paper, automatically implies indifference in Fig. 4(b) of Wakker (2001), or any
corresponding Figure (b) in this paper. Consetlyeall convexity conditions of this paper
are satisfied. It is elementarily verified thi&tis convex if and only ifw is. Hence W can

be nonconvex by taking any nonconwexfor examplew(p) = NIz

5. Decision under risk: given probabilities

This section considers decision under risk. An outcomexsistgiven and the set of all
lotteries, i.e., simple probability distributions ovef. Lottery (p1, x1; . ..; pn, X,) @ssigns
probability p; to outcomex;, j = 1,...,n. Probabilities g2 nonnegative numbers that
sumto 1. The lotteryl, x) is identified with the outcome. = now denotes the preference
relation over lotteries.

Let us next see how risk can be consideredd@ special case of aertainty, following
Wakker (1990). For decision under risk, we take the $et [0, 1] as the state space,
with A the usual Borel sigma-algebra generated by intervals. It also suffices Aodet
the algebra generated by intervals, which consists of all finite unions of intesvags.
endowed with the Lebesgue probability measur& his probability measure assigns to
each interval its length and is naturally extended to the other sets iBach simple
probability distribution(pz, x1; ...; ps, x,) can be identified with the act assigning
to the intervallpy + --- + pj_1, pr+--- + p;[, for j =1,...,n. All acts that generate
the same probability distribution over outcomes are equivalent. Hence, preferences over
acts correspond with preferences over probabdisgributions and results for uncertainty
immediately apply to risk.
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For risk, CEU reduces taank-dependent utility (RDU). We define RDU for-
mally and use the following notation? (U > t) = Zj:U(Xj», pj, for a lottery P =
(p1,x1;...; pn, X)), U X — R, andr € R.

(1) AfunctionU : X — R is given, theutility function.
(2) A probability transformation w is given on[0, 1], i.e.,w: [0, 1] — [0, 1] with
(i) w(0)=0,
(i) w(l)=1,and
(iii) w is strictly increasing.
(3) = isrepresented by — [ [w(P(U >1)) —1]dr + fﬂh w(P(U >1))dt, therank-
dependent utility (RDU) of P.

We do not requirew to be continuous, so as to have this condition optional. We
neither impose restrictions obl. It is well known that, for a probability distribution
(p1,x1; ---; pn»xn), the RDU value is equal to

n
anU(x-/)
Jj=1

where thedecision weights r; are defined byr, ;) = w(pp) + -+ Ppj)) — w(pp) +
-+ 4+ ppj—1)) for a permutatione with x,1) = --- = x,@m), in agreement with the
definitions in Section 2.

That RDU is a special case of CEU can be seen by defining the capéeity o A on
the state spacg = [0, 1[. Verification is left to the reader. Figure 3 illustrates convexity of
the probability transformation function. #tdapts Fig. 3 of Wakker (2001) to the context
of risk. This r; will later serve as decision weights for the lotteries in Fig. 4. Table 2
lists equivalent properties of the transformatiorand the capacityv. The equivalences
regarding convexity and concavity are most easily proved by examining whether decision

W) = W) =Tjreerreeenens
: w : w
wptqtr). ..o wprr+q)| -
7 7,
L wptg)|- ...
w(p) T w(p)
p q ro s p T q s
(@ (b)

Fig. 3.74 > m, for convex probability transformations.



P.P. Wekker / Games and Economic Behavior 50 (2005) 107-125 117

Table 2
Equivalent properties of the probability transformation w and the cap#i¢ity w o » on [0, 1[
w Solvable Convex Concave Convex @i, D] Concave onC, D]
w Continuous Convex Concave Convex[endC), A(D)] Concave ofA(C), A(D)]

P m P_p P P_p

q m q Z r m r m

~ — >
! ! q M q !
4 s s/ s ¢

(@ (b)

Fig. 4. Pessimism for risk{( > m > 0).

weights are increasing or decreasing in teead argument. These and the other proofs
are, again, left to the reader.

Theorems for decision under uncertainty can immediately be translated to risk. The
method is simple: One attaches probabilities to all events and then writes out the probability
distributions. The following assumption adapts Assumption 5.1 of Wakker (2001) to risk.

Assumption 5.1 [Continuum-of-outcomes-and-risk]. RDU holds with outcome sef = R,
utility continuous and sictly increasing, andv continuous.

Assumption 5.1 is usually satisfied in the literature on decision under risk. By the
following probability substitutions, Fig. 4dapts Fig. 2 of Wakker (2001) to risk: =
AMH), g=x(A), r=2A(),s =A(L). Pessimismholds on[a, b] if the implication of Fig. 4
holds wheneveh >m > ¢ andp >a, p+q+r<b (i.e.,s > 1—b). Then indeed all
relevant arguments of are from[a, b]. Optimism on [a, b] is defined similarly, with
< instead of= in Fig. 4(b). “On[0, 1]” is often omitted. The following lemma follows
immediately from the desibed substitutions, Table 2, Lemma 5.3 of Wakker (2001), and
the substitutiona = W(C), b = W(D). Hence, no proof is given. Wakker (2001, end of
Section 5) described the following two results informally.

Lemma 5.2. Under the continuum-of-risk Assumption 5.1, the probability transformation
is convex (concave) on [a, b] if and only if 3= exhibits pessimism (optimism) on [a, b].

Pessimism has been tested in many emoal studies; see Examples A.3—-A.4 of
Wakker (2001). The condition has mostly been considered £00, where it tests upper
subadditivity, i.e., the certainty effect. This is one of the best-confirmed phenomena in the
field (MacCrimmon and Larsson, 1979; Conlisk, 1989). Still, exceptions exist (Starmer,
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1992; described in Wakker, 2001, Example A.4). The most important implications of
Lemma 5.2 are gathered in the following theorem, where (iii) describes the prevailing
empirical pattern fob equal to, approximately,/B.

Theorem 5.3. Under the Continuum-for-risk Assumption 5.1,

(i) the probability transformationisconvex  ifandonlyif = exhibits pessimism;
(ii) the probability transformation isconcave if andonlyif = exhibits optimism;
(iii) [ cavexity] the probability transformation is concave on [0, b] and convex on [b, 1]

if and only if
= exhibits optimismon [0, b] and pessimismon [b, 1].

Because convexity and concavity have been tested extensively in the probability
triangle, where Assumption 5.1 is not satisfied, the preference conditions for risk
without a continuum of outcomes are presented next. We generalize Assumption 5.1 by
allowing for general outcomes and by relaxing the assumptions on utility and probability
transformation. The preference conditions presented next have been obtained from those
for decision under uncertainty by thellfiwing probability substitutions in Fig. 2:
AMH1) = p1, A(H2) = p2, M(A) =q, A(l) =1, A(L) = 5. FurtherA(C) =a andA(D) =b
is chosen. The next lemma follows from these substitutions, Table 2, and Lemma 4.2.

Observation 5.4. Assume RDU, with continuousy and at least three nonequivalent
outcomes. Then

(i) w is convex on[a, b] if and only if (p1 + p2 + q,m;r+s,£) ~ (p1,h; p2;m,q +
r+s,¢) implies (p1+ p2 + r+q,m; s, £) = (p1, h; p2 + r,m; q + s, £) whenever
h=mx=4, p1+ p2>a,andpyr+ p2+q+r<b.

(i) Concavity ofw is characterized by replacing the first prefereaca (i) by a reversed
preferencex.

All other results for uncertainty immediately imply the corresponding results for risk
by similar translations. For brevity, these related results are not made explicit. Wu and
Gonzalez (1996, 1998; see Appendix B) chasdzed convex and concave probability
transformations by means of preference conditions of the same nature. They used more
restrictive technical assumptions.

The simplest characterization of comvprobability transformations under RDU can
be obtained by using betweenness as a benchmark. It is well known that RDU reduces
to expected utility, with linear probability transformation, if betweenness holds. It turns
out that probability transformation is convender RDU if and only if quasiconvexity
holds with respect to probabilistic mixing, and concave if and only if quasiconcavity holds
(Wakker, 1994, Theorem 25(e); Prelec, 1998). For this simple result there is, unfortunately,
no easy analog in uncertainty.
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Table 3
Summary of results

W is convex W is concave W is cavex
Continuum Continuum Wakker (2001), Wakker (2001), Wakker (2001),
of events of outcomes Theorem 5.2(i) Theorem 5.2(ii) Theorem 5.4
(e.g.risk) (e.g.R, U cont) fisk: Th. 5.3i) (risk: Th. 5.3ii) (risk: Th. 5.3iii)
General Continuum Theorem 3.3(i) Theorem 3.3(ii) Theorem 3.3(iii)
events of outcomes rigk: 8) (risk: &) (risk: &)
(e.g.S finite) (e.g.R, U cont)
Continuum General Theorem 4.3(i) Theorem 4.3(ii) Theorem 4.3(jii)
of events outcomes rigk: b) (risk: b) (risk: b)
(e.g.risk) (e.g.X finite)
General events General outcomes
(e.g.S finite) (e.g.X finite) ¢ ¢ ¢

Theorems characterize the property of the capacity iml@nen given the structural assumptions of the row.
@ means: dropped for brevity.
b means: through Observation 5.4.
¢ means: open research question.

6. Summary and conclusion

Table 3 summarizes the results of this paper. These results concern chance attitude
(capacities and probability transformations) and have been derived independently of utility.
A central feature of rank-dependent models, i.e. the separation of chance attitude and
utility, has thus been maintained in the analysis.
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Appendix A. Proofs
We will use ordered partitions, denoté#s, ..., E,), assuming the rank-ordering with

best outcomes foE1, ..., and worst outcomes fak,,. When no misunderstandings can
arise, the term “ordered” is suppressed. Consider a partitign. . ., E,) and the decision



120 P.P. Wekker / Games and Economic Behavior 50 (2005) 107-125

weightsd(E;, E1 U --- U E;_1) of events in that partition. For the decision weight of
E; U E 1 inthat partition we have

d(E;UE;iy1, E1U---UE;_1)=d(E;, E1U---UE;_1)+d(Ej+1, E1U---UEj),
(A1)

which entails a kind of additivity. Figure 3 in Wakker (2001) gives examples of Eg. (A.1).
The equation will often be used without explicit mention.

A.1. Proof of necessity of the preference conditionsin all results

This always follows from substitution of CEU. It also follows from Theorem 4.1
of Wakker (2001) and the reasoning precedit, with the obvious adaptations for
nonmonetary outcomes ¢ y instead oft = y, x > y instead ofx > y, etc.). O

Henceforth, only sufficiency of the preference conditions needs to be established. In the
following proofs, the following notation, introduced by Wakker (2001, B.2), will be used.
For a partition(E1, ..., E),

(E1,...,{Ei; Ei+1},..., E,) means that
d(Ei, EyU---UE;_1) <d(E;, EyU---UE;_1UEj1). (A.2)

To understand the idea, note that the first decision weight concerns the rank-ordering
(E1,...,Ei, Eiy1,..., E,), and the second the rank-ordering wi; and E;;1 inter-
changed, i.e., wherE; ;1 has “passed byE; in ranking. The sum of the decision weights

of E; andE; ;1 is the same in both rankings, being the left-hand side of Eq. (A.1) each time.
Equation (A.2) entails thak; 1 loses decision weight to its neighbgy if E; 1 passes

by E; in the rank-ordering. Convexity d¥ is equivalentta Es, ..., {E;; Ei+1}, ..., En)

for all E; in all partitions, and it is also equivalent to the conditidi, {A; |}, L) for all
four-fold partitions. These are different ways of saying that a decision welight H)
increases in its second argument and, therefore, is béidwH U | ). The following ob-
servation follows from substitution of CEWr from Theorem 4.1 of Wakker (2001).

Observation A.1. If the equivalence and preference of Figs. 1-2 hold, tt#én{A; 1}, L)
(with H = H1 U Hz in Fig. 2).

A.2. Proof of sufficiency in Lemma 3.2 for convexity

We assume outcome-pessimism [@h D] and derive convexity of the capacity on
[C, D]. We derive(H, {A; 1}, L), for C < H < HUAUI < D. The restrictions of out-
come-pessimism ofC, D] apply to these events and, hence, the implications of Fig. 1 can
be used hereafter.

Casel. W(H) > 0. Then we can take outcomks= M > m ~ £ such that the indifference

in Fig. 1(a) holds. We can use Observation A.1 because pessimi$m, @ does imply

the preference in Fig. 1(b) (which is a special case of Fig. 4(b) in Wakker, 2001). Hence,
(H,{A; 1}, L).
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Case2.d(L,HUAUI) > 0. Then we can take outcomas- M > m = £ such that the
indifference in Fig. 1(a) holds. By Observation A(H, {A; 1}, L).

Case3. W(H)=0=d(L,HUAUI). Then an indifference such as in Fig. 1(a) cannot be
obtained and more complicated constructions must be used. The following lemma states
the implications of monotonicity that are needed in the proof. (It, therefore, also shows
ways to relax the monotonicity requirement.)

Lemma A.2. Either A can be partitioned into A; and A, such that d(A1, H) > 0 and
d(A2, HU A1) > 0, or | can be partitionedinto 11 and I suchthat d(l;, HUA UI1) >0
andd(l1, H) > 0.

Proof. There are three disjoint nonnull events, #yC, D. Under CEU, we have
o If E is null, then so is any subset &f.
Further, because of monotonicity:

e If E andG are null, then so i€ UG.
e If E is nonnull and is partitioned, &m at least one of the elements of the partition is
nonnull.

Hence, of the partitiofB N H, BN A, BN I, BN L} of B, atleast one must be nonnull
and it must beB N A or BN 1. Similarly, C N A or C NI must be nonnull and N A or
D N1 must be nonnull. Thus, oA and I, at least one must contain two nonnull subsets.
From that and monotonicity, all claims in the lemma followQED

Case 3a. A can be partitioned intd1 and Az with d(A1, H) > 0 andd (A2, H U A1) > 0.

Now (H U A1, {A2;1}, L) by case 1, i.e., | loses weight when passingAyin rank-
ordering.d(Az, HU A1) > 0 implies thatd (A2, HUA1Ul) > 0, because of monotonicity
(without monotonicity, it could be derived from the fact that | has lost decision weight
while passing byA»). Therefore,(H, {A1;1}, A2 U L) by case 2. | loses weight when
passing byA, and also when passing by and, therefore(H, {A; |}, L) follows.

Case 3b. | can be partitioned intojland b with d(l,, HUA U l1) > 0 andd(l1, H) > 0.
(H,{A;11},12 U L) follows from d(l,, H U A U l;) > 0 and case 2. FurthetH U l4,

{A; 12}, L) follows from d(I1, H) > 0 and case 1. In other words, the decision weight
of A increases both ifilpasses it by and ibldoes so(H, {A; |}, L) follows. O

A.3. Proof of sufficiency in Lemma 3.2 for concavity

Although this case is not perfectly dual to the convex case (because of the ranking of
A above | in Fig. 1(a)), the proof is nevertheless similar. Cag@ 1H) > 0) and case 2
(d(L,HUAUI) > 0) are completely the same. In the remaining case 3, we can either
partition A into nonnull A1, A2, in which case | can pass by, while gaining decision
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weight by case 1 and can then passAywhile gaining decision weight by case 2, or we
can partition linto nonnull |, I2, in which caseA loses decision weight when passes it
by because of case 2 aAdoses decision weight by case 1 whermphsses it by. O

A.4. Proof of Remark 3.4

Because finiteness ¢f excludes continuum-of-states, this remark is relevant only for
continuum-of-outcomes. An informal, verbal proof is given. Assume two disjoint e¥ents
and I, withA rank-ordered directly above |, and consider the change in decision weight of
A as | passes b in rank-ordering. This change in rank-ordering can be obtained through
many “elementary changes” in rank-orderimghere in each elementary change one state
of | passes by one state Afin rank-ordering. More precisely, there will B&| x |I] such
elementary changes. Each such elementaapgh in rank-ordering increases the decision
weight of the element dA. At the end, all elements of | have passed by all elemen#gs of
and all elements oA have gained decision weight during the process. The decision weight
of A is, by additivity (Eq. (A.1)), the sum of the decision weights of its elements and, hence
the total decision weight ok has increased. O

A.5. Proof of sufficiency in Lemma 4.2 for convexity

We assume event-pessimism and derive convexity of the capacity. Under CEU, all that
is relevant about outcomes for determiningfprence is their utilitis. Therefore, we may
as well replace outcomes by their utility values, i.e., we may assume that outcomes are
utilities. There arghree nonequivalent outcomes. Wecaale them, and may assume that
they are 1 u, 1, and O for some positive. We use event-pessimism and Fig. 2 with the
choicesh = 1+ u,m = 1, and¢ = 0. Note that, for CEU differences in Figs. 2(a) and 2(b),
eventH; always delivers a utility difference multiplied by its decision weight and event
A a utility difference 1 multiplied by its decision weight. We write= H1 U Ho.

Case 1. W(H) > 0. The result is first proved for evenfs whose decision weight is so
small, relative to that oH, that we can find an eveill; C H as in Fig. 2(a).

Case 1(a). d(A, H) < W(H) - . Because of solvability, we can talé¢ ¢ H such that
the indifference in Fig. 2(a) holds (taking/ (H1) = d(A, H)/u, the CEU difference
between the acts in Fig. 2(a) W(H1)u — d(A, H) = 0). Because of event-pessimism
and Observation A.1(H, {A; 1}, L).

Case 1(b). d(A,H) > W(H) - u. Because of solvability, we can partitioA into

(A1, ..., Ay) such that alld ; have decision weight smaller thaWi(H)w in (H, Ag, ...,

A, 1, L). From this and case 1(a) it follows that | loses decision weight when it passes
by A,, also when it passes by,_1,..., and, finally, also when it passes by;.
Hence, | has less decision weight (#, |, A1, ..., A,, L) (hence, in(H, 1, A, L)) than

in (H, A1,..., Ay, 1, L) (hence, in(H, A, I, L)). From this,(H, {A; | }, L) follows.
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Case 2. W(H) =0.If d(A, H) = 0 then the result is trivial, and #(A, H) > 0 then the

case is proved exactly as case 2(b) in the proof of Theorem 5.2(i) in Wakker (2001) (when
in that proof case 2(a) there is used, now use case 1 of this proof). Note that the continuum
structure of the outcome set was not used there.

Convexity of W has been established for all cases
A.6. Proof of sufficiency in Lemma 4.2 for concavity

This case is not dual to the case of convexity, because eyAnasid H» do not play a
symmetric role. We assume event-optimism and derive concavity of the capacity.

Case 1. W(H) > 0. This case is analyzed exactly as for convexity and pessimism, with
inequalities regarding the decision weights of | reversed.

Case2. W(H) = 0. This case is analyzed exactly aseasn the proof of Theorem 5.2(ii)
in Wakker (2001) (with¢ instead of 0). Note again that the continuum structure of the
outcome set was never used therel

Appendix B. Recent alternative characterizations

Wu and Gonzalez used conditions as instipaper. Sometimes they used strict
preferences and strict inequalities insteadvefak. This distinction is ignored here. Wu
and Gonzalez’ (1996) convexity and concavignditions are as in Observation 5.4.
Wu and Gonzalez’ (1998) concavity and conigxonditions | can be restricted to the
casep’ = 0 and then are again the conditions in Observation 5.4. Their concavity and
convexity Condition Il can be restricted to the caset ¢’ + ¢ = 1 and then are similar
to the conditions in Observation 5.4. Wu and Gonzalez' (1999) concavity and convexity
conditions are event optimism and pessimism. Wu and Gonzalez (1998) showed how their
preference conditions are related to fanning in and fanning out in the probability triangle.

Abdellaoui (2002) found a way to use the tradeoff technique of Wakker (1989) in a dual
way, turning it into a general tool to characterize properties of probability transformations.
The axioms in Fig. 4 and Observation 5.4 of this paper are special cases of the axioms in
Abdellaoui’s Corollary 14 and Theorem 16. His results, therefore, follow as corollaries of
Observation 5.4. Abdellaoui further providednoparative results. Schmidt (2003) applied
Abdellaoui’s technique to prospect theory.

The above references all characterized properties of capacities independently of utility.
Several alternative preference conditionséhdeen proposed in the literature that did
not separate restrictions for capacities and for utility. Recent references include Schmidt
and Zank (2003), Kast and Lapied (2003), Chateauneuf et al. (2003), and Chateauneuf
et al. (2002). Conditions for nonempty core® & Chateauneuf and Tallon (2002) and
Ghirardato and Marinacci (2002\n appealing result appears in Chateauneuf and Tallon
(2002), who characterizedncave utility plus convex capities for monetary outcomes
through quasi-concavity with respect to the mixing of outcomes. Chateauneuf et al. (2003),
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finally, characterized capacities that arenlinear only at the impossible and universal
event, assuming linear utility.
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