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Several contributions in this book present axiomatizations of decision models,
and of special forms thereof. This chapter explains the general usefulness of such
axiomatizations, and reviews the basic axiomatizations for static individual deci-
sions under uncertainty. It will demonstrate that David Schmeidler’s contributions
to this field were crucial.

2.1. The general purpose of axiomatizations

In this section we discuss some general purposes of axiomatizations. In particular,
the aim is to convince the reader that axiomatizations are an essential step in the
development of new models. To start, imagine that you are a novice in decision
theory, and have an important decision to take, say which of several risky medical
treatments to undergo. You consult a decision theorist, and she gives you a first
advice, as follows:

1 List all relevant uncertainties. In your case we assume that the uncertainty
concerns which of n potential diseases s1,. .., s, is the one you have.

2  Express your uncertainty about what your disease is numerically through
probabilities py, ..., pn, subjective if necessary.

3 Express numerically how good you think the result is of each treatment
conditional upon each disease. Call these numbers utilities.

4 Of the available treatments, choose the one that maximizes expected utility,
that is, the probability-weighted average utility.

Presented in this way, the first advice is ad hoc, and will not convince you. What are
such subjective probabilities, and how are you to choose them? Similar questions
apply to the utility numbers. And, if such numbers can be chosen, why should you
take products of probabilities and utilities, and then sum these products? Why not
use other mathematical operations? The main problem with the first advice is that
its concepts of probabilities and utilities do not have a clear meaning. They are
theoretical constructs, which means that they have no meaning in isolation, but
can only get meaning within a model, in relation to other concepts.

The decision theorist did not succeed in convincing you, and she now turns to
asecond advice, seemingly very different. She explains the meaning of transitivity
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and completeness of preferences to you, and you declare that you want to satisfy
these conditions. She next explains the sure-thing principle to you, meaning that
a choice between two treatments should depend only on their results under those
diseases where the treatments differ, and not on the results for diseases for which
the two treatments give the same results. Let us assume that you want to satisfy
this condition as well. Next the decision theorist succeeds in convincing you of the
appropriateness of the other preference conditions of Savage (1954). Satisfying
these conditions is the decision analyst’s second advice.

The second advice is of a different nature than the first. All ofits conditions have
been stated directly in terms of choice making. Even if you would not agree with
the appropriateness of all conditions, at least you can relate to them, and know
what they mean. They do not concern strange undefined theoretical concepts.
Still, and this was Savage’s (1954) surprising result, the two advices turn out to
be identical. One holds if and only if the other holds, given a number of technical
assumptions that we ignore here. Whereas the second advice seemed to be entirely
different from the first, it turns out to be the same. The second advice translates
the first advice, which was stated in a theoretical language, into the meaningful
language of empirical primitives, that is, preferences. Such translations are called
axiomatizations. They reformulate, directly in terms of the observable primitives
such as choices, what it means to assume that some theoretical model holds.

A decision mode] is normatively appropriate if and only if its characterizing
axioms are, and is descriptively valid if and only if the characterizing axioms are.
Axiomatizations can be used to justify a model, but also to criticize it. Expected
utility can be criticized by criticizing, for instance, the sure-thing principle. This is
what Allais (1953) did. If a model is to be falsified empirically, then axioms can be
of help because they are stated in terms of directly testable empirical primitives.

In applications, we usually do not believe models to hold true perfectly well,
and use them as approximations or as metaphors, to clarify some aspects of real-
ity that are relevant to us. We mostly do not actually measure the concepts used
in models. For instance, most economic models assume that consumers maxi-
mize utility, but we rarely measure consumers’ utility functions. The assumption
of utility maximization is justified by the belief that for the topics considered,
completeness and transitivity of preference are reasonable assumptions. These
preference axioms, jointly with continuity, axiomatize the maximization of utility
and clarify the validity and limitations thereof.

Axiomatizations are crucial at an early stage of the development of new mod-
els or concepts, namely at the stage where setups and intuitions are qualitative
but quantifications seem to be desirable. Not only do axiomatizations show how
to verify or falsify, and how to justify or criticize given models, but they also
demonstrate what are the essential parameters and concepts to be measured or
determined. Without axiomatizations of expected utility, Choquet expected utility
(CEU), and multiple priors, it would not be clear whether at all their concepts such
as utility etc. are sensible concepts, and are at all the parameters to be assessed.

Ahistorical example may illustrate the importance of axiomatizations. Fora long
time, models were popular that deviated from expected utility by transforming
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probabilities of separate outcomes, such as those examined by Edwards (1955)
and Kahneman and Tversky (1979). These models were never axiomatized, which
could have served as a warning signal that something was wrong. Indeed, in
1978, Fishburn discovered that no sensible axiomatization of such models will
ever be found because these models violate basic axioms such as continuity and,
even more seriously, stochastic dominance. When Quiggin (1982) and Schmeidler
(1989, first version 1982) introduced alternative models of nonlinear probabilities,
they took good care of providing axiomatic foundations. This made clear what the
empirical meaning of their models is, that these models do not contain intrinsic
inconsistencies, and that their concepts of utilities and nonlinear probabilities are
sensible. Quiggin (1982) and Schmeidler (1989) independently developed the idea
of rank-dependence and, thus, were the first to present sound models that allow
for a new component in individual decision theory: a subjective decision attitude
toward incomplete information (i.e. risk and uncertainty). This new component
is essential for the study of decision under incomplete information, and sound
models for handling it had been dearly missing in the literature up to that point.
I consider this development the main step forward for decision under incomplete
information of the last decades. Quiggin developed his idea for decision under
risk, Schmeidler for the more important and more subtle domain of decision under
uncertainty, which is the topic of this book.

Axioms can be divided into three different classes. First there are the basic
rationality axioms such as transitivity, completeness, and monotonicity, which
are satisfied by most models studied today. For descriptive purposes, it has become
understood during the last decades that these very basic axioms are the main cause
of most deviations from theoretical models. For normative applications, these
axioms are relatively uncontroversial, although there is no unanimous agreement
on any axiom.

The second class of axioms consists of technical axioms, mostly continuity, that
impose a richness on the structures considered. For decision under uncertainty,
these axioms impose a richness on the state space or on the outcome space. They are
usually necessary for obtaining mathematical proofs, and will be further discussed
later in this chapter.

The third and fina! class of axioms consists of the “intuitive” axioms that are most
characteristic of the models they characterize. They vary from model to model.
For expected utility, the sure-thing principle (which amounts to the independence
axiom for given probabilities) is the most characteristic axiom. Most axiomatiza-
tions of nonexpected utility models have relaxed this axiom. Many examples will
be discussed in the following sections, and in other chapters in this book.

I end this introduction with a citation from Gilboa and Schmeidler (2001), who
concisely listed the purposes of axiomatizations as follows:

Meta-theoretical: Define theoretical terms by observables (and enable their
elicitation).

Descriptive: Define terms of refutability.

Normative: Do the right thing.
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2.2. General conditions for decision under uncertainty

S denotes a state space, with elements called states (of nature). Exactly one state
is true, the others are not true. The decision maker does not know which state is
the true one, and has no influence on the truth of the states (no moral hazard).
For example, assume that a horse race will take place. Exactly one horse will win
the race. Every s € S refers to one of the horses participating, and designates the
“state of nature” that this horse will win the race. Alternative terms for state of
nature are state of the world or proposition. An event is a subset of S, and is frue
or obtains if it contains the true state of nature. For example, the event “A Spanish
horse will win” is the set {s € S: s is Spanish}.

C denotes the outcome space, and F the set of acts. Formally, acts are functions
from S to @, and F contains all such functions. A decision maker should choose
between different acts. An act will yield the outcome f (s) for the decision maker
where s is the true state of nature. Because the decision maker is uncertain about
which state is true, she is uncertain about what outcome will result from an act,
and has to make decisions under uncertainty. An alternative term for an act is state-
contingent payoffs, and acts can refer to financial assets. Acts can be considered
random variables with the randomness not expressed through probabilities but
through states of nature. David Schmeidler is known for his concise ways of
formulating things. In the abstract of Schmeidler (1989), he used only seven words
to describe the above model: “Acts map states of nature to outcomes.”

By 3=, a binary relation on ¥, we denote the preference relation of the decision
maker over acts. In decision under uncertainty, we study properties of the quadruple
S, G, F, =. A function V represents =if V: ¥ — Rand f > g if and only if
V(f) = V(g). Ifarepresenting function exists, then > must be a weak order, that
is, it is complete (f 3= g or g »= f forall acts f, g) and transitive. Completeness
implies reflexivity, thatis, f » f for all acts f. We write f > g if f = g and
notg = f, f ~gif fi=gandg = f, f <gifg > f,and f < gif
g = f.For a weak order =, ~ is an equivalence relation, that is, it is symmetric
(f ~ gif g ~ f), transitive, and reflexive. Outcomes are often identified with
the corresponding constant acts. In this way, > on ¥ generates a binary relation
on G, denoted by the same symbol = and identified with the restriction of = to
the constant acts.

Decision under risk refers to the special case of decision under uncertainty
where an objective probability measure Q on S is given, and f ~ g whenever f
and g generate the same probability distribution over C. Then the only information
relevant for the preference value of an act is the probability distribution that the
act generates over the outcomes. Therefore, acts are usually identified with the
probability distributions generated over the outcomes, and § is suppressed from
the model. It is useful to keep in mind, though, that probabilities must be generated
by some random process, and that some randomizing state space 5 is underlying,
even if not an explicit part of the model. It is commonly assumed in decision
under risk that S is rich enough to generate all probabilities, and all probability
distributions. My experience in decision under risk and uncertainty has been that
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formulations of concepts for the general context of uncertainty are more clarifying
and intuitive than formulations only restricted to the special case of risk.

This chapter will focus on axiomatizations for decision under uncertainty, the
central topic of this book, and will not discuss axiomatizations for decision under
risk. Often, axiomatizations for decision under risk readily follow simply by
restricting the axioms of uncertainty to the special case of risk. For example,
Yaari’s (1987) axiomatization of rank-dependent utility for risk can be obtained
as a mathematical corollary of Schmeidler (1989); I will not elaborate on this
point.

We will also restrict attention to static models, and will not consider dynamic
decision making or multistage models such as examined by Luce (2000) unless
serving to interpret static models. Other restrictions are that we only consider indi-
vidual decisions, and do not examine decompositions of multiattribute outcomes.
We will neither discuss topological or measure-theoretic details, and primarily
refer to works introducing results and not to follow-up works and generalizations.

The most well-known representation for decision under uncertainty is subjective
expected utility (SEU). SEU holds if there exists a probability measure P on S,
and a utility function U : € — R, suchthat f JgU(f(s)dP(s), the SEU of £,
represents preferences. For infinite state spaces S, measure-theoretical conditions
can be imposed to ensure that the expectation is well defined for all acts considered.
For the special case of decision under risk, P has to agree with the objective
probability measure on S under mild richness assumptions regarding S, contrary
1o what has often been thought in the psychological literature. In general, P need
not be based on objective statistical information, and may be based on subjective
judgments of the decision situation in the same way as U is. P is, therefore, often
called a subjective probability measure.

SEU implies monotonicity, thatis, f = & whenever f(s) = g(s) for all s,
where furthermore f > g if f(s) = a > B = g(s) for outcomes «, 8 and all
s in an event E that is “nonnull” in some sense. E being nonnull means that the
outcomes of E can affect the preference value of an act, in a way that depends on
the theory considered and that will not be formalized here.

The most important implication of SEU is the sure-thing principle, discussed
informally in the introduction. It means that a preference between two acts is not
affected if, for an event for which the two acts yield the same outcome, that com-
mon outcome is changed into another common outcome. The condition holds true
under SEU, because an event with a common outcome contributes the same term
to the expected-utility integral of both acts, which will cancel from the compari-
son irrespective of what that common outcome is. Savage (1954) introduced this
condition as his P2. He did not use the term sure-thing principle for this condition
alone, but for a broader idea. The term is, however, used exclusively for Savage’s
P2 nowadays. In a mathematical sense, the sure-thing principle can be equated
with separability from consumer demand theory, although Savage developed his
idea independently. The condition can be derived from principles for dynamic
decisions (Burks, 1977: chapter 5; Hammond, 1988), a topic that falls outside the
scope of this chapter.
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The sure-thing principle is too weak to imply SEU. For instance, for a fixed
partition (A7, ..., An) of S, and acts (A;: x1;...; An: X,) yielding x; for each
s € Aj, the sure-thing principle amounts to an additively decomposable rep-
resentation Vi(x;) + --- V,(%,), under some technical assumptions discussed
later. This representation is strictly more general than the SEU representation
PADUx1) +---+ P(A,)U (x,), for instance if Vo = exp(V}). It can be inter-
preted as state-dependent expected utility (Karni, 1985). Therefore, additional
conditions are required to imply the SEU model. The particular reinforcements of
the sure-thing principle depend on the particular model chosen, and are discussed
in the next section.

2.3. Conditions to characterize subjective expected utility

The most desirable characterization of SEU, or any model, would concern an
arbitrary set of preferences over acts, not necessarily a complete set of preferences
overaset ¥, and would give necessary and sufficient conditions for the preferences
considered to be representable by SEU. Most important would be the case of a
finite set of preferences, to truly capture the empirical and normative meaning
of models such as SEU. Unfortunately, such general results are very difficult to
obtain. For SEU, necessary and sufficient conditions for finite models were given
by Shapiro (1979). These conditions are, however, extremely complex, and amount
to general solvability requirements of inequalities for mathematical models called
rings. They do not clarify the intuitive meaning of the model. Therefore, people
have usually resorted to continuity conditions so as to simplify the axiomatizations
of models. These continuity conditions imply richness of either the state space or
the outcome space. Difficulties in using such technical richness conditions are
discussed by Krantz ef al. (1971: section 9.1) and Pfanzagl (1968: section 9.5).
The following discussion is illustrated in Table 2.1.

The most prominent model with richness of the state space is Savage (1954).
Savage added an axiom P4 to the sure-thing principle, requiring that a preference
for betting on one event rather than another is independent of the stakes of the bets.
The richness of the state space was ensured by an axiom P6 requiring arbitrarily
fine partitions of the state space to exist, so that the state space must be atomless.

Decision under risk can be considered a special case of decision under uncer-
tainty where the state space is rich, because it is commonly assumed that all
probabilities can be generated by random events. Other than that, there have not
been many derivations of SEU with a rich state space. Most axiomatizations have
imposed richness structure on the outcome space, to which we turn in the rest of
this section.

We start with approaches that assume convex subsets of linear spaces as out-
come space, with linear utility. In these approaches, outcomes are either monetary,
with € C R an interval, or they are probability distributions over a set of
prizes. The sure-thing principle is reinforced into linearity with respect to addi-
tion (f = g = f +c¢ ¥ g+ c for acts f,g,c, where addition is statewise),
or mixing (f = g = Af + (1 —Ac = rg+ (1 — A)c for acts f,g,c,
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Tuble 2.1 Axiomatizations and their structural assumptions

SEU CEU PT Multiple priors

Continuous Savage (1954)  Gilboa (1987)*
state space

U linear in de Finetti Chateauneuf Chateauneuf
money (1931, 1937) (1991) (1991)

U linear in Anscombe and  Schmeidler Gilboa and
probability Aumann (1989) Schmeidler
mixing, (1963) (1989)
2-stage

Canonical Raiffa (1968), Sarin and Sarin and
probabilities Sarin and Wakker Wakker

Wakker (1997)  (1992) (1994)

Continuous U, Wakker (1984) ~ Wakker (1989)  Tversky and
tradeoff Kahneman
consistency (1992)

Continuous U, Nakamura Nakamura X
multisymmetry  {1990) (1990)

Continuous U, Gul (1992} Chew and Karni X Ghirardato
act- (1994), et al. (2003);
independence Ghirardato Casadesus-

et al. (2003) Masanell ef al.
(2000)
Notes

% Such an extension is not possible, because the required certainty equivalents are not contained in
most of the sign-comonotonic sets.
* Required more modifications than only comonotonic restrictions.

where mixing is statewise, and under continuity can be restricted to A = %).
Both of these approaches characterize SEU with a linear utility function. The
additive approach was followed by de Finetti (1931, 1937) and Blackwell and
Girshick (1954: theorem 4.3.1 and problem 4.3.1). For the mixture approach,
Anscombe and Aumann (1963) provided the most appealing result. For earlier
results on mixture spaces, see Arrow (1951: 431-432). In addition to the axioms
mentioned, these works used weak ordering, monotonicity (this, together with
additivity, is what de Finetti’s book-making amounts to), and some continu-
ity (existence of “fair prizes” for de Finetti, continuous mixing for the mixture
approaches). In the mixture approaches, the linear utility function is interpreted
as an expected utility functional for the probability distributions over prizes, and
acts are two-stage: In the first stage, the uncertainty about the true state of nature
is resolved yielding a probability distribution over prizes, in the second stage
the probability distribution is resolved, finally leading to a prize. This approach
assumes that the two stages are processed through backwards induction (“fold-
ing back™). The second-stage probabilities could also be modeled through a rich
product state space, but for this survey the categorization as rich outcomes is
more convenient.
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An alternative to Anscombe and Aumann’s (1963) approach was customary in
the early decision-analysis literature of the 1960s (Raiffa, 1968: chapter 5). As
in Anscombe and Aumann (1963), a rich set of events with objectively given
probabilities was assumed present, with preferences over acts on these events
governed by expected utility. However, these events were not part of a second
stage to be resolved after the events of interest, but they were simply a subset of the
collection of events considered in the first, and only, stage. Formally, this approach
belongs to the category that requires a rich state space. To evaluate an arbitrary act
(A1: x1;...; Ant Xn), where no objective probabilities are given for the events
Aj, a canonical representation (E1: x1;...; En Xp) is constructed. Here each
event E; does have an objective probability and is equally likely as event A; in
the sense that one would just as well bet $1 on E; as on A ;. It is assumed that such
canonical representations can be constructed and are preferentially equivalent. In
this manner, SEU is obtained over all acts. Sarin and Wakker (1997) formalized
this approach. Ramsey (1931) can be interpreted as a variation of this canonical
approach, with his “ethically neutral” event an event with probability half, utility
derived from gambles on this event, and the extension of SEU to all acts and events
not formalized.

Returning to the approach with rich outcome sets, more general axiomatizations
have been derived for continuous instead of linear utility. Then C can, more gener-
ally, be a connected topological space. For simplicity, we continue to assume that
€ is a convex subset of a linear space. Pfanzagl (1959) gave an axiomatization of
SEU when restricted to two-outcome acts. He added a bisymmetry axiom to the
sure-thing principle. Denote by CE(f) a certainty equivalent of act f, that is, an
outcome (identified with a constant act) equivalent to f. For events A, M with
complements A°, M¢, bisymmetry requires that

(A: CE(M: x1; M€: y1); AS: CE(M: x2; M y2))
~ (M: CE(A: x1; A%: x2); M©: CE(A: y1; A% y2)).
For arbitrary finite state spaces S, Grodal (1978) axiomatized SEU with continuous
utility using a mean-groupoid operation (a generalized mixture operation derived
from preference) developed by Vind. These works were finally published in Vind
(2003). Wakker (1984, 1993) characterized SEU for continuous utility using a
tradeoff consistency technique based on conjoint measurement theory of Krantz

et al. (1971) and suggested by Pfanzagl (1968: end of remark 9.4.5). The basic
axiorm requires that

(Ar: o Az x2; ... 3 Ant Xn) <X (Ag: B3 A2: y2; -5 Anl Yn)s
)=

(Ar: ;Ao xa5 .3 Ayt Xn) 3= (A 85 A21 o505 Apt V),

and

(A1: V15 Apa1: Un 13801 @) 2= (AL V15 - o5 Ane1f Vn= 15400 B)
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imply
(AL V153 Ane1: Un—13A01 ¥) 3= (A1 0155 Anm1: Un—15A01 8),

where (A1, ..., Ay) can be any partition of S.

By renumbering, similar conditions follow for outcomes e, B, ¥, 8 conditional
on all pairs of events A;, A;.

Nakamura (1990) used multi-symmetry, a generalization of Pfanzagl’s (1959,
1968) bisymmetry to general acts, to characterize SEU with continuous utility for
finite state spaces. Similar conditions had appeared before in decision under risk
(Quiggin, 1982; Chew, 1989). Chew called the condition event commutativity.
Consider a partition (A1, ..., A,) and a “mixing” event M with complementary
event M¢. Multisymmetry requires that

(A1: CE(M:x1; M®: y1);...5 Ap: CE(M: X M2 ya))
~ (M: CE(A1: X15.. .5 An: Xn); MS: CE(A1: 15+ - -5 Ant Yn))-

Multisymmetry implies that (xi,...,X») is separable in (A1: CE(M: x1; M€: ¢1);
v A CE(M: xn; MS: ¢y)). This implication is called act-independence, and
was introduced by Gul (1992). Formally, the condition requires that

(A xis... 5 Ant Xn) 7 (AL Y155 Anl i)
implies
(A1: CE(M: x1; M°:c1);...; Ap: CE(M: Xp M cy))
= (A1: CE(M: yi; M c1); .. .; An: CE(M: yo; M©: Cn)).

Gul showed that this condition suffices to characterize SEU with continuous utility
for finite state spaces, under the usual other assumptions. Gul used an additional
symmetry requirement that was shown to be redundant by Chew and Karni (1994).

Using bisymmetry axioms for two-outcome acts, Ghirardato et al. (2003a)
defined a mixture operation that can be interpreted as an endogeneous analog
of the mixture operation used in Anscombe and Aumann (1963). They used it also
to derive nonexpected utility models discussed in the next section.

Characterizations of properties of utility such as concavity have mostly been
studied for decision under risk, and less so for decision under uncertainty. Also
for uncertainty, utility is concave if and only if the subjective expected value
of an act is always preferred to the act (Wakker, 1989; proposition VIL6.3.1i).
This result is more difficult to prove than for decision under risk because not
all probabilities need to be available, and is less useful because the subjective
expected value is not directly observable, in the same way as subjective prob-
abilities are not. More interesting for uncertainty is that utility is concave if and
only if preferences are convex with respect to the mixing of outcomes, that is,
if f % g then % F+ %g » g where outcomes are mixed statewise (Wakker,
1989: proposition VIL.6.3.iv). This condition has the advantage that it is directly
observable.
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2.4. Nonexpected utility models

This section considers models deviating from SEU.

Abandoning basic axioms. Models abandoning completeness (Bewley, 1986;
Dubra et al., 2004), transitivity (Fishburn, 1982; Loomes and Sugden, 1982;
Vind, 2003), or continuity (Fishburn and LaValle, 1993) will not be discussed. We
will only discuss models that weaken the sure-thing principle. In this class, we
will not discuss betweenness models (Chew, 1983; Dekel, 1986; Epstein, 1992).
These models have been examined almost exclusively for risk, with statements
for uncertainty only in Hazen (1987) and Sarin and Wakker (1998), and have
nowadays lost popularity. We will neither discuss quadratic utility (Chew et al.,
1991), which has been stated only for decision under risk.

Choquet expected utility.  The first nonexpected utility model that we discuss
is rank-dependent utility, or Choquet expected utility (CEU) as it is often called
when considered for uncertainty. We assume a utility function as under SEU, but
instead of a subjective probability P on § we assume, more generally, a capacity
W on S. W is defined on the collection of subsets of S with W(@) =0, W(S) = 1,
and C D D = W(C) > W(D). = is represented by f +— fs U(f(s))dW(s),
the CEU of f, defined next. Assume that f = (E;: x1;...; E,: x,). The integral
is 3 7_y m;U(x;) where the 7;s are defined as follows. Take a permutation p
on {l,...,n}suchthat x,(1) = -+ = Xpm)- Tp() 18 W(Epy U -+ - U Epejy) —
W(E,yJ---U Ep(j_l)); in particular, 7,1y = W(Es))-

An important concept in CEU, introduced by Schmeidler (1989), is comono-
tonicity. Two acts f and g are comonotonic if f(s) > f(t)and g(s) < g(z) forno
states s, t. A set of acts is comonotonic if every pair of its elements is comonotonic.
Comonotonicity is an important concept because, as can be proved, within any
comonotonic subset of F the CEU functional is an SEU functional (with num-
bers such as the above m,(;y playing the role of probabilities). It is, therefore,
obvious that a necessary requirement for CEU is that all conditions of SEU hold
within comonotonic subsets. Such restrictions are indicated by the prefix comono-
tonic, leading to the comonotonic sure-thing principle, etc. It is more complex to
demonstrate that these comonotonic restrictions are also sufficient to imply CEU,
but this can be proved in many circumstances. The third column of Table 2.1 gives
the axiomatizations of CEU.

Prospect theory.  Original prospect theory, introduced by Kahneman and
Tversky (1979), assumed nonlinear probability weighting but had theoretical prob-
lems, and was defined only for risk, not for uncertainty. Only when Schmeidler
(1989) introduced a sound model for nonlinear probabilities, could a model of
prospect theory be developed that is theoretically sound and that also deals with
uncertainty (Tversky and Kahneman, 1992). We define it next.

Under prospect theory, one outcome, called the reference outcome, plays a
special role. Outcomes preferred to the reference outcome are gains, outcomes
preferred less than the reference outcome are losses. The main deviation from
other theories is that in different decision situations the decision maker may choose



30 Peter P. Wakker

different reference points, and remodel her decisions accordingly. Although there
is much empirical evidence for such procedures, formal theories to describe them
have not yet been developed. We will therefore restrict attention, in this theoretical
chapter, to one fixed reference point. For results on varying reference points, see
Schmidt (2003). With a fixed reference point, prospect theory generalizes CEU
and SEU in that it allows for a different capacity, W™, for losses than for gains,
where the gain capacity is denoted as W™. Under prospect theory we define,
for an act f, f* by replacing all losses of f by the reference outcome, and i
by replacing all gains of f by the reference outcome. Our notation f~ deviates
from mathematical conventions that, for real-valued functions f, take f~ as a
positive function, being our function f~ multiplied by —1. For general outcomes,
however, such a multiplication cannot be defined, which explains our definition.
The prospect theory (PT) of an act f is

PT(f) = CEU(f*) + CEU(f ™)

where CEU( f*) is with respect to W+ and CEU(f ™) is with respect to the dual
of W—, assigning 1 — W™ (A°) to each event A (A° denotes complement). Two
acts f,g are sign-comonotonic if they are comonotonic and, further, there is
no state s such that of f(s), g(s) one is a gain and the other a loss. A set of
acts is sign-comonotonic if any pair of its elements is sign-comonotonic. Sign-
comonotonicity plays the same role for PT as comonotonicity for CEU. Within
any sign-comonotonic set, PT agrees with SEU and, therefore, all conditions of
SEU are satisfied within sign-comonotonic sets. A more difficult result, that can
be proved in several situations, is that PT holds as soon as the sign-comonotonic
conditions of SEU hold, that is, the restrictions of these conditions to sign-
comonotonic subsets of acts. Axiomatizations of PT are given in the fourth column
of Table 2.1.

Properties of utility and capacities under CEU and PT. Specific properties
of utilities and capacities have been characterized for CEU, and for PT alike.
Schmeidler (1989) demonstrated, in his CEU model with linear utility, that the
capacity is convex (W(A U B) + W(A N B) = W(A) + W(B)) if and only if
preferences are convex. Chateauneuf and Tallon (2002) generalized this result
by showing that, under differentiability assumptions, preferences are convex if
and only if both utility is concave and the capacity W is convex. Wakker (2001)
gave necessary and sufficient conditions for convexity of the capacity, without
restricting the form of utility other than being continuous. Tversky and Wakker
(1995) characterized a number of other conditions of capacities, such as bounded
subadditivity, that are often found in experimental tests of prospect theory.

Multiple priors.  Another popular deviation from expected utility is the mul-
tiple priors model. As in SEU, it assumes a utility function U over outcomes.
It deviates by not considering one fixed probability measure, but a set of prob-
ability measures. Say C is such a set of probability measures over S. Then an
act f is evaluated by minpec SEUp (f), where SEUp is taken with respect to P.
This defines the multiple priors model. It was first characterized by Gilboa and
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Schmeidler (1989) in an Anscombe—Aumann setup where outcomes designate
probability distributions over prizes, evaluated through a linear utility function
(an expected utility functional). In a comprehensive paper, Chateauneuf (1991)
obtained the same characterization independently, also for linear utility, but with
linearity relating to monetary outcomes. For two-outcome acts, the multiple priors
model coincides with CEU utility, so that the common generalization of these two
models that imposes the representation only on two-outcome acts can serve as a
good starting point (Ghirardato and Marinacci, 2001).

The axiomatization of the multiple priors model requires convexity of prefer-
ence, implying that a representing functional is quasi-concave. Mainly indepen-
dence with respect to constant functions: f =g = Af+{(1—-ec =g+ (1 —Xt)c
for acts f,g,c, both in the Gilboa—Schmeidler approach and in Chateauneuf’s
approach, where ¢ is required to be constant, ensures that the representing func-
tional is even concave. A functional is concave if and only if it is the minimum
of dominating linear functions, which, under appropriate monotonicity, must be
expected utility functionals. Thus, the multiple priors model results.

The axiomatization of multiple priors for continuous instead of linear utility has
been obtained by Casadesus-Masanell ez al. (2000) who used both bisymmetry-
like and tradeoff-consistency-like axioms, and Ghirardato et al. (2003a) who used
bisymmetry-like axioms to define an endogeneous mixture operation. A less con-
servative extension of the multiple priors model is the o-Hurwicz criterion, where
acts are evaluated by « times the minimal SEU plus 1 — o times the maximal SEU
over C. It was axiomatized by Ghirardato ez al. (2003b).

Probabilistic sophistication. ~We finally discuss probabilistic sophistication.
The derivation of SEU can be divided into two steps. In the first step, uncer-
tainty is quantified through probabilities and the only relevant aspect for the
preference value of an act is the probability distribution that it generates over
the outcomes. In the second step, the probability distribution over outcomes is
evaluated through expected utility. Probabilistic sophistication refers to the first
of these steps without imposing expected utility in the second step. A first char-
acterization was given by Machina and Schmeidler (1992), with an appealing
generalization in Epstein and LeBreton (1993). The main axiom is de Finetti’s
(1949) additivity: If you rather bet on A than on B, then you also rather bet
on AU D than on B U D for any event D disjoint from A and B. Under
appropriate richness of the event space, this axiom implies that there exists a
probability measure P on the events such that you rather bet on A than on B
if and only if P(A) > P(B) (for a review, see Fishburn, 1986). Additional
assumptions then guarantee that two different acts that generate the same prob-
ability distribution over outcomes are equivalent, which implies probabilistic
sophistication.

2.5. Conclusion

For all models discussed, axiomatizations provided a crucial step in the beginning
of their developments, when it was not entirely clear what the right subjective
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parameters and their quantitative rules of combination were. It is remarkable that
prospect theory could be modeled in a sound way only after Schmeidler (1989)
had developed the first axiomatization of decision under uncertainty with nonlinear
decision weights.
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