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On the Composition of Risk Preference and Belief
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Prospect theory assumes nonadditive decision weights for preferences over risky gambles. Such decision
weights generalize additive probabilities. This article proposes a decomposition of decision weights into
a component reflecting risk attitude and a new component depending on belief. The decomposition is
based on an observable preference condition and does not use other empirical primitives such as
statements of judged probabilities. The preference condition is confirmed by most of the experimental
findings in the literature. The implied properties of the belief component suggest that, besides the
often-studied ambiguity aversion (a motivational factor reflecting a general aversion to unknown
probabilities), perceptual and cognitive limitations play a role: It is harder to distinguish among various
levels of likelihood, and to process them differently, when probabilities are unknown than when they are
known.

Subjective expected utility theory posits a clear separation be-
tween value and belief. For example, consider an investment
whose return is uncertain. The degrees of belief about the possible
returns are quantified through subjective probabilities, and the
subjective values of the possible returns are quantified through
utilities. The investment is evaluated by its expected utility, that is,
the probability-weighted average utility of its possible returns. In
this approach, the assessments of values and of degrees of belief
are taken as independent processes.

The situation changes when subjective expected utility is re-
placed by more general theories that use nonadditive decision
weights instead of additive probabilities to calculate average util-
ity. Such theories include prospect theory (Tversky & Kahneman,
1992) and rank-dependent utility theory (Quiggin, 1981). Under
such theories, it is no longer obvious that decision weights inferred
from preferences can be interpreted as pure measures of belief. It
is reasonable to argue that they reflect additional considerations
over and above pure belief. This is most clearly seen in the case of
decision making under risk, that is, when for each uncertain event
an objective probability is known. Then, it is natural to assume that

beliefs are captured by the probabilities p and that the decision
weights w( p) reflect decision attitude, which gives rise to nonlin-
earity. For example, if the decision weight of a .001 probability is
.01, then this need not mean that the relevant probability is over-
estimated by a factor of 10. It may mean only that the probability
in question is overweighted when making decisions.

The interpretation of decision weights becomes more compli-
cated when moving from risk to uncertainty. Uncertainty refers to
situations in which probabilities of uncertain events need not be
known. Two major complications enter the picture. Whereas the
source that generates the risk (e.g., a roulette wheel, a die, or a
standard urn) is not essential in the case of risk, provided that the
probabilities are transparent, it is essential for uncertainty. People
may have consistent preferences for one source over another
(Ellsberg, 1961; Fellner, 1961, p. 672). The second complication
when moving from risk to uncertainty is that belief, while equated
with objective probability and, therefore, additive in the case of
risk, seems to be subadditive in the case of uncertainty. That is,
low likelihoods are overestimated and high likelihoods are
underestimated.

This article decomposes decision weights for judgments under
uncertainty into a component reflecting belief and a component
reflecting decision attitude. Such a decomposition was suggested
some decades ago by Fellner (1961, p. 672) and has been used in
a two-stage model by Fox, Rogers, and Tversky (1996); Fox and
Tversky (1998); Kilka and Weber (2001); Tversky and Fox
(1995); and Wu and Gonzalez (1999), all of whom used judged
probabilities as an additional empirical primitive to obtain the
decomposition. For an alternative decomposition, see Epstein and
Zhang (1999).

The essential feature of the decomposition in this article is that
it is based solely on observable preference and does not use other
empirical primitives. The decomposition, therefore, fits the behav-
ioristically oriented revealed-preference approach that is common
in the economics literature (Mas-Colell, Whinston, & Green, 1995,
p. 5). The properties of the resulting index of belief agree well with

Peter P. Wakker, Medical Decision Making Department, Leiden Uni-
versity Medical Center, Leiden, the Netherlands.

This article started as a joint project with Amos Tversky. Due to his
untimely death, I had to complete it on my own and am entirely responsible
for any errors. In agreement with the judgment of people close to Amos (D.
Kahneman, personal communication, October 4, 2000; B. Tversky, per-
sonal communication, September 27, 2000), I have become the sole author
of this article.

Rich Gonzalez, Fabio Maccheroni, Mark Machina, Sujoy Mukerji,
Daniel Read, and Horst Zank made helpful comments. Special thanks are
due to Craig Fox for extensive discussions of the concepts analyzed in this
article and for many helpful comments on the writing of the article.

Correspondence concerning this article should be addressed to Peter P.
Wakker, who is now at the Department of Economics, University of
Amsterdam, Roetersstraat 11, Amsterdam 1018 WB, the Netherlands.
E-mail: p.p.wakker@uva.nl

Psychological Review Copyright 2004 by the American Psychological Association, Inc.
2004, Vol. 111, No. 1, 236–241 0033-295X/04/$12.00 DOI: 10.1037/0033-295X.111.1.236

236



concepts that are not based on revealed preferences and that are
studied in psychology, such as in support theory (Tversky &
Koehler, 1994). Therefore, the result of this article may help to
connect psychological concepts with economic concepts. Such
connections give consistency bases to the psychological concepts
considered and show the relevance of psychological concepts, such
as judged probabilities, for economic decisions.

Experimental Findings on Nonlinear Decision Weights

This article considers only gain outcomes, that is, outcomes
preferred to a given reference point. The reference point is called
(receiving) nothing henceforth. For loss outcomes, similar theo-
retical results can be derived, but there is less evidence on what the
prevailing empirical phenomena are. For risk, we consider only
prospects ( p,x) yielding a gain x with probability p and nothing
otherwise and assume that their value is w( p)v(x), with v(x) the
value or utility of outcome x and w( p) the decision weight of p.
The functions v and w can be nonlinear.

Figure 1 illustrates how two kinds of deviations from additive
probabilities combine to create the probability weighting functions
commonly found. Panel 1a depicts traditional expected utility with
probabilities weighted linearly [i.e., w( p) � p]. Panel 1b depicts an
aversion to risk because the good-outcome probability is under-
weighted at all levels. Panel 2a depicts another factor, sometimes
called diminishing sensitivity. The weighting function is too shal-
low in the middle region, reflecting insufficient sensitivity to
changes in likelihood. Correspondingly, there are jumps at the two
bounds of the scale, reflecting too much sensitivity toward changes
from impossible to possible and from possible to certain. The
regressive shape in Panel 2a, with weights correlating imperfectly
with probabilities and with as much overweighting of good as of
bad outcomes, suggests that perceptual and cognitive limitations,
prior to any consideration of value, underlie this effect. Panels 3a
and 3b depict extreme cases of insufficient sensitivity. There are
only three degrees of belief: certainly true, certainly not true, or
possible.

The two factors in Panels 1b and 2a of Figure 1 have similar
effects (underweighting) for high-probability-gain prospects but
opposite effects for low-probability-gain prospects. The common

experimental finding is a combination of the two factors, depicted
in Panel 2b, with small probabilities overweighted. Psychological
interpretations of the two factors have been given by Gonzalez and
Wu (1999), Lopes (1987), Tversky and Fox (1995), and Weber
(1994).

Since Keynes (1921) and Knight (1921), there has been interest
in uncertain events with unknown probabilities. For such events,
nonlinear decision weights are also needed. Suppose that a pros-
pect, denoted (A,x), yields outcome x if an uncertain event A (e.g.,
rain tomorrow) occurs and nothing otherwise. The probability of
event A is often unknown. We assume that the value of (A,x) is
W(A)v(x), with v the value function and W the decision weight.
Like v and w, W may be nonadditive, that is, W(A � B) � W(A) �
W(B) is permitted for mutually exclusive events A and B. Here, A
� B denotes the disjunction, “A or B,” of A and B.

For uncertainty, effects similar to those in Figure 1 have been
found. These effects can, however, not easily be illustrated in
graphs. Fellner (1961, p. 684), Kahneman and Tversky (1979, p.
281, Paragraph �2), and Weber (1994, pp. 237–238) suggested
that the effects are more pronounced for uncertainty than for risk.
Experimental evidence supporting this suggestion, and a formal-
ization, is given in the next section. The extreme case of insensi-
tivity in Panel 3a is not uncommon for uncertain events. Then, all
uncertainties have been lumped together in one category (“fifty-
fifty”: Fischhoff & Bruine de Bruin, 1999; see also Arrow &
Hurwicz, 1972).

A Composition Theorem

In the formal analysis, we assume natural conditions such as, for
risk, w(0) � 0, w(1) � 1, w( p) � w(q) if p � q (w is strictly
increasing), and continuity (no jumps in the graph of w). Further,
v is 0 at the reference point and v(x) � 0 for at least one outcome
x. The conditions assumed for W, the weighting function for
uncertainty, are similar to those assumed for w. Impossible events
have decision weight 0, certain (universal) events have decision
weight 1, and if an event contains (i.e., is implied by) another, then
it has at least as high a decision weight.

The testable preference conditions for less sensitivity to uncer-
tainty than to risk were introduced by Tversky and Fox (1995) and
Tversky and Wakker (1995). They are explained next. We first
consider disjoint events A and B with W(A � B) bounded away
from 1.1 For uncertain events, the decision maker is less sensitive
to changes in the middle of the region than she is for known
probabilities. Therefore, in Equation 1, generating the same in-
crease in weight [from W(A) to W(A � B), which is the same as
from w( p) to w( p � q)] requires adding a “heavier” event (B) than
probability (q).

If W�A� � w� p� and W�A � B� � w� p � q�,

then W�B� � w�q�. (1)

Throughout this article, � denotes strict preference, � indiffer-
ence, � weak preference (strict preference or indifference), and �
and � reversed preferences. Equation 1 can be reformulated di-

1 Rigorous formulations of the boundary conditions required here and
later are available in Tversky and Wakker (1995).Figure 1. Two factors in probability weighting.
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rectly in terms of preferences by relating its W values to the
decision weights of the gain x in the following prospects:

If �A,x� � � p,x� and �A � B,x) � ( p � q,x�,

then �B,x� � �q,x�. (2)

Equations 1 and 2 concerned decision weights of receiving the
gain x instead of nothing. Equations 3 and 4 are, in a way, dual to
Equations 1 and 2. They describe exactly the same principle, but
now for decision weights of receiving nothing instead of x (as can
be seen). As before, A and B are disjoint events, and now W((A �
B)c) is bounded away from 0, where a superscript c denotes the
complementary event (negation). Generating the same decrease in
weight [from W(Ac) to W((A � B)c), which is the same as from
w(1 � p) to w(1 � p � q)] requires subtracting a heavier event (B)
than probability (q):

If W�Ac� � w�1 � p� and W��A � B�c� � w�1 � p � q�,

then W�Bc� � w�1 � q�. (3)

W(Bc) � w(1 � q) means that B is heavier than q in the sense that
subtracting B in isolation (reducing certainty by B) leads to a
greater loss in decision weight than subtracting q in isolation.
Equation 3 can be reformulated in terms of preferences by relating
its W values to the decision weights of the gain x in the following
prospects:

If �Ac,x� � �1 � p,x� and ��A � B�c,x� � �1 � p � q,x�,

then �Bc,x� � �1 � q,x�. (4)

Equations 2 and 4 together define less sensitivity to uncertainty
than to risk. The dual imposing of conditions for likelihood reflects
the dual boundedness of the likelihood scale, with the impossible
event at one end and the universal event at the other. Abdellaoui,
Vossmann, and Weber (2003) and Tversky and Fox (1995) con-
firmed less sensitivity to uncertainty than to risk. Other articles did
not specifically test the conditions, but their data were consistent
(Fox et al., 1996; Fox & Tversky, 1998; Hogarth & Kunreuther,
1989; Kahn & Sarin, 1988, p. 271; MacCrimmon & Larsson, 1979,
p. 390; Wu & Gonzalez, 1999). However, the three-color Ellsberg
example, discussed in the following sections, provides
counterevidence.

As we will see next, less sensitivity to uncertainty than to risk
implies a decomposition of the weighting function W into two
factors w and F, where w is the weighting function for risk
and F depends on beliefs in uncertain events. The crucial
property of F is subadditivity. For disjoint events A and B with
F(A � B) bounded away from 1, we have the following con-
dition: (i) F(A � B) � F(A) � F(B), meaning that B adds less
to A than B’s value in isolation. The same condition holds
dually: (ii) F(Ac) � F(A � B)c � 1 � F(Bc), if W((A � B)c) is
bounded away from 0. Subtracting B after having subtracted A
leads to a smaller loss of weight than subtracting B alone. This
condition is the analog for uncertainty of the condition illus-
trated in Panel 2a of Figure 1. Less sensitivity to uncertainty
than to risk can be interpreted as greater subadditivity for
uncertainty than for risk.

We next turn to the decomposition. Its proof is given in the
Appendix. The theorem can be applied to virtually all nonlinear

weighting theories (Birnbaum & Beeghley, 1997; Edwards, 1962;
Einhorn & Hogarth, 1985; Ghirardato & Marinacci, 2002; Gilboa,
1987; Gilboa & Schmeidler, 1989; Gul, 1991; Kahneman & Tver-
sky, 1979; Luce & Fishburn, 1991; Quiggin, 1981; Schmeidler,
1989; Tversky & Kahneman, 1992).

Theorem 1: Assume that preferences over single-gain pros-
pects are described by multiplicative representations (A,x) �
W(A)v(x) and ( p,x) � w( p)v(x), respectively. Then, the de-
cision maker is less sensitive to uncertainty than to risk if and
only if there exists a subadditive function F such that for all
events A, W(A) � w(F(A)). F is uniquely determined by the
equality F(A) � p, with p such that ( p,x) � (A,x).

A decomposition W(A) � w(F(A)) can always be obtained
simply by defining F � winvW. The remarkable aspect of the
theorem is that preference conditions, confirmed in experimen-
tal studies, exactly match the properties of F that are desirable
for a belief interpretation and that have been assumed in two-
stage models (e.g., Fox et al., 1996). Abdellaoui et al. (2003)
studied the above decomposition experimentally. They elicited
the belief component F through equivalences ( p,x) � (A,x), as
above, for gains x. F exhibited subadditivity indeed. Assuming
the same belief F for losses, they found that W and, therefore,
w exhibited similar sensitivity but higher elevation for losses
than for gains.

Source Preference and Subadditivity in the Ellsberg
Examples

This section examines two examples that have greatly influ-
enced the thinking of decision theorists about ambiguity: the two
Ellsberg examples (Ellsberg, 1961). Prospect theory suggests dif-
ferent interpretations than are commonly adopted, as discussed
further in the Discussion section, below.

Source preference means that people prefer to take their chances
from one source rather than from another, even when the beliefs
associated with each source are the same. Formally, if K and A are
events related to two different sources of uncertainty, and
(K,100) � (A,100) and (Kc,100) � (Ac,100), then Tversky and Fox
(1995) and Tversky and Wakker (1995) say that source preference
holds for K against A. The most famous case is the two-color
Ellsberg example, in which K designates the event that a ball
randomly drawn from a “known” urn with 50 red and 50 black
balls will be red, and A the event that a ball randomly drawn from
an “unknown,” or “ambiguous,” urn with 100 red and black balls
in unknown proportion will be red. K has probability 1/2, and the
probability of A is unknown. This example is commonly inter-
preted as evidence for ambiguity aversion, that is, a general aver-
sion to unknown probabilities.

The last line of Theorem 1 shows that in the above example
F(A) � F(Ac) 	 1/2 (the choice of w is immaterial). F violates
binary complementarity, that is, the requirement F(A) � F(Ac) �
1. This implies that expected utility is also violated because ex-
pected utility requires, more restrictively, that F in Theorem 1 is a
probability measure, in addition to the equality w( p) � p. If binary
complementarity is taken as a reasonable requirement for belief,
then the factor F of Theorem 1 cannot consist only of belief in the
two-color Ellsberg example. In the terminology of Figure 1, F then
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captures motivational as well as cognitive factors. F may be a
transform of belief, that is, F � �(�(A)), with � reflecting belief
and � a catch-all factor comprising source preference. A three-
stage decomposition, W(A) � w(�(�(A))), then results (Fox &
Tversky, 1998, p. 893).2

The comparative ignorance hypothesis suggests an alternative
interpretation of the two-color Ellsberg example: The source pref-
erence may have been generated by the fact that probabilistic
information about the unknown urn is deliberately kept secret,
rather than by the absence of this information itself (Chow &
Sarin, 2001; Fox & Tversky, 1995; Frisch & Baron, 1988; Heath
& Tversky, 1991; Keren & Gerritsen, 1999, Condition 1 in Table
2; Taylor, 1995; Viscusi & Magat, 1992, p. 380). The opposite of
ambiguity aversion can result, that is, a preference for unknown
probabilities, if people feel competent about them (Fox, 1999; Fox
& Weber, 2002; Heath & Tversky, 1991; Tversky & Fox, 1995;
Wakker, Timmermans, & Machielse, 2002). We next turn to an
example in which a complementarity effect in the available infor-
mation leads to a violation of subadditivity and, consequently, a
violation of less sensitivity to uncertainty than to risk.

Example (Ellsberg’s three-color example): One ball is drawn
at random from an urn with 30 red (R) balls and 60 black (B)
and amber (A) balls in unknown proportion. Most people
prefer to receive $100 for R rather than $100 for A or $100 for
B. This implies that W does not exhibit more sensitivity to risk
than to uncertainty because it violates Equation 1: From the
preferences, we derive W(A) � W(B) 	 W(R) � w(1/3).
Then, W(A) � w( p) implies p 	 1/3. W(A � B) � w(2/3) �
w( p � q) implies q � 1/3. We get w(q) � w(1/3) � W(B),
contradicting the conclusion of Equation 1. Similarly, under
some plausible assumptions (e.g., that v is not very curved),
we can derive W(A) � W(B) 	 W(A � B), which violates
subadditivity.

The lack of probabilistic information is again salient in the
three-color example, as it was in the two-color example. In addi-
tion, there is an exceptional complementarity effect between the
information about B and A, making each in isolation especially
aversive. This complementarity effect induces the violation of
subadditivity and, consequently, of less sensitivity to uncertainty
than to risk.

That the three-color Ellsberg example violates subadditivity was
pointed out to me by Martin Weber at Stanford University in
March 1993. Amos Tversky’s explanation was that the information
structure in this example is exceptional and that uncertainty is a
richer domain than risk, with exceptions existing for most laws. In
a similar vein, utility for general outcomes is a richer domain than
utility for money, and exceptions will exist for most laws regarding
utility if general outcomes are considered.

Discussion

If source preference, as in the two-color Ellsberg example, is a
genuine and important factor in individual preference, then a
three-stage composition W(A) � w(�(�(A))), extending the model
of Theorem 1, should be considered. Alternatively, source prefer-
ence may mostly reflect social effects (suspicion about an oppo-
nent) and context effects (competence). Such effects, even if

strong, are not intrinsic parts of transitive individual preference
under uncertainty.

For likely events, less sensitivity to uncertainty reinforces the
effect of ambiguity aversion: a relative dislike of uncertain events
compared with risk. Many experimental studies have confirmed
this effect. For unlikely events, less sensitivity generates an effect
opposite to ambiguity aversion: People overweight uncertain
events, which enhances ambiguity seeking. The latter is contrary to
the universal ambiguity aversion that has been assumed in many
theoretical studies. If both effects operate simultaneously, the
ambiguity attitude for unlikely events may be close to neutral.
Ellsberg (1962) himself predicted ambiguity seeking for gains
contingent on unlikely events (pp. 268–270), and several experi-
mental studies found it (Curley & Yates, 1989; Fox et al., 1996;
Fox & Tversky, 1998; Kilka & Weber, 2001; Tversky & Fox,
1995; Wu & Gonzalez, 1999). However, there are mixed results in
Einhorn and Hogarth (1985), Fox and Tversky (1995), Hogarth
and Einhorn (1990), Kahn and Sarin (1988), and Sarin and Weber
(1993). Gambling and insurance, whose coexistence is a classical
paradox in economics, can both be explained by the overweighting
of unlikely events (regarding loss outcomes in the case of
insurance).

A number of theoretical studies in economics have avoided the
use of objective probabilities. Probabilistic beliefs are then defined
in the case in which W (and consequently F) is any ordinal
transformation of an additive measure, which is endogenously
derived from preference (Machina & Schmeidler, 1992, “probabi-
listic sophistication”). Ambiguity aversion is likewise taken as a
purely ordinal property of likelihood weighting, and some subjec-
tive neutrality benchmarks have been proposed (Epstein & Zhang,
2001; Ghirardato & Marinacci, 2002). I have adopted an absolute
scale F, and thus, more restrictive concepts have resulted. The
aforementioned studies are normatively oriented, whereas this
article is descriptively oriented. Assuming objective probabilities,
one can take these probabilities as a convenient neutrality bench-
mark for aversion or attraction to ambiguity.

Primarily because of the Ellsberg examples, most of the current
literature has focused on ambiguity aversion and the move from
Panel 1a to Panel 1b in Figure 1. This article has suggested that the
implications of the Ellsberg examples may be less clear than is
usually thought and that cognitive and perceptual processes and
the move from Panel 1a to Panel 2a also deserve attention.

2 Representation theorems in work in progress (Wakker, 2003) imply
this decomposition rather than �(w(�(A))).
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Appendix

Proof of Theorem 1

Theorem 1 is of a different nature than previous transformation results in
the literature, including those by Pratt (1964) and Yaari (1969) for utility
and Tversky and Wakker (1995), Wakker (1994), and Wu (1999) for
weighting functions. The existing results invariably applied the transfor-
mation to the images (output) of the function, that is, outside the brackets.
In Theorem 1, the transformation F applies to the arguments (input) of the
function, that is, inside the brackets. The theorem of this article is based on
Krantz and Tversky’s (1975) more-curved-than technique. We now turn to
the proof.

Because w is continuous and strictly increasing, we can apply its inverse,
denoted by winv, to Equation 1, to obtain the following:

If winv�W�A�� � p and winv�W�A � B�� � p � q, then winv�W�B�� � q.

For A and B as described, this implication is equivalent to

winv�W�B�� � winv�W�A � B�� � winv�W�A��

because p and q can simply be defined as above. The latter inequality is
exactly condition (i) of the subadditivity definition for winv(W(.)).

We next apply winv to Equation 3 to obtain the following:

If winv�W�Ac�� � 1 � p and winv�W�A � B�c� � 1 � p � q,

then winv�W�Bc�� � 1 � q.

With the last inequality rewritten as 1 � winv(W(B)c) � q for the events A
and B as described, we get, equivalently,

1 � winv�W�B�c� � winv�W�Ac�� � winv�W�A � B�c�.

This inequality is precisely condition (ii) of subadditivity for winv(W(.)).
We conclude that F(.) � winv(W(.)) satisfies subadditivity if and only if
Equations 1 and 3 hold. These equations imply Equations 2 and 4. The
reversed implication holds because there exists, besides the reference point,
an outcome x with v(x) � 0. Therefore, F(.) � winv(W(.)) satisfies subad-
ditivity if and only if Equations 2 and 4 hold. The uniqueness of F follows
from w being strictly increasing, so that the p at the end of Theorem 1 is
unique for v(x) � 0.

On the domain considered in this article, that is, the single-gain pros-
pects, the multiplicative representation W 
 v determines W (and w and v)
only up to a power. All formal results in this article are invariant with
respect to power transformations, including the uniqueness of F and the
boundary conditions alluded to in Footnote 1. For determining absolute
levels of w and W and, for example, for verifying their additivity, powers
should be determined. Under prospect theory, powers can be uniquely
identified through prospects with two (or more) nonzero outcomes.
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