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Abstract

Most empirical studies of rank-dependent utility and cumulative prospect theory
have assumed power utility functions, both for gains and for losses. As it turns out,
a remarkably simple preference foundation is possible for such models: Tail indepen-
dence (a weakening of comonotonic independence which underlies all rank-dependent
models) together with constant proportional risk aversion su3ce, in the presence
of common assumptions (weak ordering, continuity, and 4rst stochastic dominance),
to imply these models. Thus, sign dependence, the di5erent treatment of gains and
losses, and the separation of decision weights and utility are obtained free of charge.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Under expected utility, attitudes to risk are modeled solely through the
curvature of utility, i.e. the nonlinear sensitivity towards outcomes. A number
of phenomena are, however, hard to explain in this manner. Examples are
the classical Allais (1953) and Ellsberg (1961) paradoxes, the simultaneous
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existence of gambling and insurance (Friedman and Savage, 1948), and the
equity premium puzzle (Mehra and Prescott, 1985). Alternative, nonexpected
utility, models have been developed to accommodate these phenomena; for a
survey, see Starmer (2000).
A popular nonexpected utility model is rank-dependent utility (RDU) (Quig-

gin, 1981; Schmeidler, 1989). The model received sound preference founda-
tions, is mathematically tractable, and its empirical performance is promising.
RDU adopts a useful concept in addition to the nonlinear evaluation of out-
comes: a nonlinear weighting of probabilities, modeled through a probability
transformation function. The classical paradoxes can be explained by prob-
ability transformation. Gambling and insurance are not only reconciled, but
even have the same cause: the overweighting of small probabilities, for gains
and losses, respectively.
Traditional rank-dependent models do not incorporate the important em-

pirical phenomenon that, in most situations, agents do not perceive monetary
outcomes as absolute wealth but as changes with respect to their status quo. In
the last 4ve decades, many authors have emphasized the importance of the
status quo outcome in empirical decision making (Edwards, 1954; Harless
and Camerer, 1994; Kahneman and Tversky, 1979; Markowitz, 1952; Tver-
sky and Kahneman, 1991; Yaari, 1965). Agents are especially sensitive to
losses, i.e. outcomes below the current status quo. This characteristic, known
as loss aversion, is one of the major factors in human risk attitude and un-
derlies much of the empirically observed risk aversion. Cumulative prospect
theory (CPT) incorporates the di5erent treatment of gains and losses (Luce
and Fishburn, 1991; Tversky and Kahneman, 1992). The theory combines the
theoretical soundness of RDU with the empirical realism of original prospect
theory (Kahneman and Tversky, 1979).
Empirical studies of CPT have commonly assumed power utility. The im-

plied in4nite marginal utility at the origin reKects an extreme sensitivity
of subjects towards changes near the status quo. Promising empirical re-
sults have been obtained. Fetherstonhaugh et al. (1997) and Stevens (1959)
gave psychological explanations for the prevalence of power perception func-
tions. For these reasons, the CPT model with power utility is generally as-
sumed in parametric tests and is currently the most used nonexpected utility
form. For a theoretical de4nition of loss aversion, the extreme derivatives
of power utility at zero may cause some problems (KLobberling and Wakker,
2000).
As a price to pay for the empirical success of CPT, its model and pref-

erence foundation are more complex than they are for RDU. Both CPT and
RDU invoke a comonotonic generalization of expected utility’s independence
condition, namely comonotonic independence (or, equivalently, tail indepen-
dence). This preference condition does not entail the separation of utility and
probability weighting that is characteristic of CPT and RDU. To obtain this
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separation, more complex preference conditions are commonly added. 2 Such
preference conditions are more complex for CPT than for RDU because of
the separate treatment of gains and losses (Luce and Fishburn, 1991; Tversky
and Kahneman, 1992). Only when utility has been derived is constant pro-
portional risk aversion 3 invoked so as to imply power utility (Tversky and
Kahneman, 1992). The line of reasoning just sketched can be found in the
traditional derivations of CPT.
CPT, and its predecessor prospect theory, are the most used models in

empirical studies and applications of decision under risk, but have received
little attention in theoretical economic studies (Wakker, 1998). The aim of
this paper is to simplify the theoretical tractability of CPT by means of an
appealing technique used before by Ebert (1988). Our analysis will show that
CPT necessarily results from some natural preference conditions.
To obtain the desired simpli4cation, we interchange two steps in the tra-

ditional line of reasoning, as follows. As in the traditional approach, we 4rst
invoke tail independence to obtain the rank-dependent additivily decompos-
able functional of Green and Jullien (1988), in which utility and probability
weighting are not yet separated. With this functional obtained, we immedi-
ately invoke constant proportional risk aversion. This condition turns out to
have a surprising extra merit at this early stage: It implies the separation of
utility and probability weighting. That is, it implies the additional more com-
plex preference conditions described before. These conditions can therefore
simply be dropped. An additional surprise is that this approach, with con-
stant proportional risk aversion imposed both on gains and on losses, leads
to CPT without further modi4cation. That is, the separate treatment of gains
and losses (sign dependence), and their CPT aggregation, are likewise implied
by constant proportional risk aversion when applied to gains and losses. This
natural 4t of CPT and constant proportional risk aversion can be attributed
to the special role of the status quo in both. Finally, with utility established,
constant proportional risk aversion characterizes power utility as it did in the
traditional approach.
In summary, both the separation of utility and probability weighting and

the di5erent treatment of gains and losses are obtained free of charge under
constant proportional risk aversion. We hope that this natural and elementary

2 Axiom 4 of Quiggin (1982); weak event commutativity (Chew, 1989; Chew and Karni,
1994); projection independence (Segal, 1989); compound gambles and joint receipt (Luce and
Fishburn, 1991); tradeo5 consistency (Tversky and Kahneman, 1992; Wakker, 1994); weak
multisymmetry (Gul, 1992, Assumption 2; Nakamura, 1995, Axiom 5); a linear utility and a
quadratic probability transformation in Safra and Segal (1998, Theorem 3); comonotonic mixture
independence (Chateauneuf, 1999); probability tradeo5 consistency (Abdellaoui, 2002).

3 Also known as constant relative risk aversion. We avoid the latter term because it can
have di5erent meanings, e.g. it can refer to interpersonal comparisons or to the risky=riskless
utility distinction.
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foundation of CPT will increase its interest for economic theory. An extension
of our results to decision under uncertainty and to multiattribute outcomes will
be provided by Zank (2000).

2. De�nitions

Outcomes are monetary and R is the set of outcomes. A lottery P =
(p1; x1; : : : ;pn; xn) is a 4nite probability distribution over the set of outcomes,
assigning probability pj to outcome xj, j = 1; : : : ; n. The probabilities pj are
nonnegative and sum to one. Lotteries are written in a rank-ordered form, i.e.
it is implicitly assumed that the outcomes are rank-ordered (x1 ¿ · · · ¿ xn)
in the above notation.
Positive outcomes are gains and negative outcomes are losses. The status

quo is the zero outcome. A lottery P can be decomposed into a gain-part P+

and a loss-part P−, where P+ is the lottery P with all losses replaced by 0
and P− is the lottery P with all gains replaced by 0. Luce and von Winterfeldt
(1994) argued for the psychological plausibility of such a decomposition into
a gain- and a loss-part. Domar and Musgrave (1944), Fishburn (1977), and
Holthausen (1981) interpreted P− as the risk part and P+ as the return part
of the lottery, using what they called a target outcome in the role of status
quo.
A preference relation ¡ is assumed over lotteries; the relations �; ∼; 4

and ≺ are de4ned as usual. V is a representing function or representation
for ¡ if it maps lotteries to the reals such that P ¡ Q ⇔ V (P) ¿ V (Q).
If a representing function exists then ¡ is a weak order, i.e. it is complete
(P ¡ Q or P 4 Q for all lotteries P;Q) and transitive.
Rank-dependent utility (RDU) holds if a representation exists of the form

(p1; x1; : : : ;pn; xn) �→
n∑

j=1

�jU (xj); (1)

explained next. U , the utility function, maps outcomes to the reals. The utility
functions considered in this paper are all continuous and strictly increasing.
The decision weights are de4ned as

�j = w(p1 + · · ·+ pj)− w(p1 + · · ·+ pj−1)

where �1=w(p1). w is a probability transformation, i.e. it is strictly increas-
ing from [0; 1] to [0; 1] and satis4es w(0)= 0 and w(1)= 1. Continuity of w
is left optional in our theorems and, hence, is not required in the de4nition.
Cumulative prospect theory (CPT) holds if the preference relation ¡ can

be represented by a CPT functional, de4ned next. Consider a lottery P =
(p1; x1; : : : ;pn; xn) and let

x1 ¿ · · ·¿ xk ¿ 0¿xk+1 ¿ · · ·¿ xn; (2)
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for some k ∈ {0; : : : ; n}. The CPT value of the lottery is given by Eq. (1)
with the following modi4cations. U is again the utility function, but now

U (0) = 0

is set. For the decision weights, we assume a probability transformation w+

for gains and a probability transformation w− for losses. For j 6 k (gains),
�j is de4ned as in rank-dependent utility with the transformation function w+,
i.e.

�j = w+(p1 + · · ·+ pj)− w+(p1 + · · ·+ pj−1):

For j¿k (losses), �j is derived from w− in a dual manner, i.e.

�j = w−(pj + · · ·+ pn)− w−(pj+1 + · · ·+ pn):

CPT can be written as the RDU value of the gain-part of the lottery with
respect to a probability transformation w+ plus a dual, obviously negative,
RDU value of its loss-part with respect to a probability transformation w−.
The latter is dual because it would coincide with the regular RDU value if
the dual of w−(p), de4ned by 1 − w−(1 − p), were used instead of w−.
Veri4cation is left to the reader.
To summarize, the CPT-formula is

(p1; x1; : : : ;pn; xn)

�→
k∑

i=1

[w+(p1 + · · ·+ pi)− w+(p1 + · · ·+ pi−1)]U (xi)

+
n∑

j=k+1

[w−(pj + · · ·+ pn)− w−(pj+1 + · · ·+ pn)]U (xj): (3)

It follows that

CPT(P) = CPT(P+) + CPT(P−) (4)

where both terms on the right-hand side are RDU forms.
In general expected utility models with outcome set R++, constant pro-

portional risk aversion can generate any utility function from the log=power
family. In our model, however, utility must also be de4ned at zero, where
the logarithm and negative powers are unde4ned. Hence, only the positive
power functions are possible. A function U :R → R is from the positive
power family for gains if

U (x) = �+ · x�; with �+¿ 0 and �¿ 0; for all x ¿ 0; (5)

and it is from the positive power family for losses if

U (x) =−�− · |x|�; with �− ¿ 0 and �¿ 0; for all x 6 0: (6)

The scale factors �+ and �− are positive so as to guarantee that the functions
are strictly increasing. Because CPT requires U (0)=0, no location parameters
have been added.
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3. A preference characterization

The central condition in this paper is constant proportional risk aversion.
It is usually studied when only gain outcomes are present. It then requires
invariance of preference with respect to outcome multiplication by a com-
mon positive factor. On our domain with both gains and losses present, two
extensions are conceivable. First, strong constant proportional risk aversion
holds if preferences are invariant with respect to outcome multiplication by
a common positive factor. That is, for all positive numbers �,

(p1; x1; : : : ;pn; xn)¡ (p1; y1; : : : ;pn; yn)

⇒ (p1; � · x1; : : : ;pn; � · xn)¡ (p1; � · y1; : : : ;pn; � · yn): (7)

Second, (weak) constant proportional risk aversion holds if Eq. (7) is im-
posed only whenever either all outcomes x1; : : : ; xn; y1; : : : ; yn are not losses
or they all are not gains.
Strong constant proportional risk aversion is necessary for CPT with pos-

itive power utility and with the same powers � = � for gains and losses.
Then the CPT functional is homogeneous of degree � = � and multiplying
the outcomes by a positive constant does not a5ect the generated ordering
of lotteries. (Weak) constant proportional risk aversion is implied by positive
power utility but permits di5erent powers � �= � for gains and losses.
Empirical studies have found that utility functions for gains are mostly

concave, utility functions for losses are probably mostly convex, and utility
functions for losses are closer to linear than those for gains (Abdellaoui, 2000;
Fennema and van Assen, 1998). These 4ndings suggest that 0¡�¡�¡ 1,
in particular, therefore, � �= � and strong proportional risk aversion does
not hold. Indeed, if (0:5; $90; 0:5;−$6) ∼ $1 then it seems plausible that
(0:5; $90; 000; 0:5;−$60; 000) ≺ $10; 000. For these reasons, our main interest
concerns constant proportional risk aversion with di5erent powers for gains
than for losses. Some empirical studies suggest that there are only weak
relations between risk attitudes for gains and for losses at the individual level
(Cohen et al. 1987), which adds to the desirability of independent variations
of � and �.
The next preference condition weakens von Neumann–Morgenstern

independence by imposing it only under a comonotonicity restriction. Such
comonotonicity restrictions, introduced by Schmeidler (1989) (4rst version
1982), are essential in rank-dependent theories and are discussed by Diecidue
and Wakker (2001) and Yaari (1987). In fact, the following preference con-
dition weakens independence somewhat further by considering only maximal
or minimal common outcomes. This version is particularly easy to formulate
for decision under risk. We 4rst de4ne the probabilistic mixing of lotteries.
Given two lotteries P = (p1; x1; : : : ;pn; xn) and Q = (q1; y1; : : : ; qm; ym), and
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� ∈ [0; 1], the mixture �P + (1− �)Q is the lottery 4

(�p1; x1; : : : ; �pn; xn; (1− �)q1; y1; : : : ; (1− �)qm; ym):

De!nition 1. The preference relation satis4es tail independence if for all
lotteries P;Q;C; C ′ and all � ∈ (0; 1) the following holds:

�P + (1− �)C ¡ �Q + (1− �)C

⇔ �P + (1− �)C ′ ¡ �Q + (1− �)C ′

whenever either all outcomes in the lotteries C;C ′ are at least as large as
those in P;Q; or they are all at least as small.

The condition, extended to nonsimple lotteries, was introduced by Green
and Jullien (1988), who called it ordinal independence. Von Neumann–
Morgenstern independence is more restrictive because it does not impose
restrictions on the outcomes of P;Q;C; C ′ and it also requires that the
preferences should agree with those between the unmixed P and Q. Tail inde-
pendence is implied by CPT, and is not a5ected by rank- and sign-dependence.
The proof of this elementary result is presented in the main text because it
clari4es the nature of the CPT form, in particular the way in which CPT
combines the positive and negative part.

Lemma 2. CPT implies tail independence.

Proof. Take symbols as in De4nition 1. The following equation is discussed
for s = +, for s = −, and with s dropped. Note that the s superscript and
mixing are compatible, e.g., (�P + (1− �)C)s = �Ps + (1− �)Cs.

CPT(�Ps + (1− �)Cs)− CPT(�Qs + (1− �)Cs)

=CPT(�Ps + (1− �)C ′s)− CPT(�Qs + (1− �)C ′s):

Both for s = + and for s = −, the outcomes of Cs and C ′s are either
all rank-ordered above those of Ps and Qs or all rank-ordered below, as
they are without the superscript s. The preceding equality holds true for
s=+ and s = −, CPT being an RDU form in both cases. (The (1−�)Cs and
(1−�)C ′s parts of the RDU values cancel in both di5erences.) By summation
(Eq. (4)), the equation also holds true if the superscript s is dropped. The
equation implies, in particular, that the sign of the left-hand side is the same
as the sign of the right-hand side, from which tail independence follows.

4 For simplicity, we have not permuted the outcomes as would be required to maintain the
rank-ordered notation of lotteries.
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An alternative proof can be obtained by 4rst showing that CPT is a special
case of the functional of Green and Jullien (1988) and then invoking their
derivation of the condition.

¡ satis4es stochastic dominance if (p1; x1; : : : ;pn; xn) � (p1; y1; : : : ;pn; yn)
whenever xj ¿ yj for all j and xj ¿yj for at least one j with pj ¿ 0. The
formulation used here is reminiscent of outcome monotonicity. On the domain
of simple lotteries considered in this paper, the condition is equivalent to the
more common formulations in terms of distribution functions.
The next condition imposes the common Euclidean continuity of Rn on

n-outcome lotteries, for all n. That is, ¡ satis4es simple continuity if, for any
lottery (p1; x1; : : : ;pn; xn), the sets {(y1; : : : ; yn) : y1 ¿ · · · ¿ yn; (p1; y1; : : : ;
pn; yn) ¡ (p1; x1; : : : ;pn; xn)} and {(y1; : : : ; yn) : y1 ¿ · · · ¿ yn; (p1; y1; : : : ;
pn; yn) 4 (p1; x1; : : : ;pn; xn)} are closed subsets of Rn. Note that this conti-
nuity condition concerns only variation in outcomes. Continuity with respect
to variation in probabilities is not required by our continuity condition.

Theorem 3. For the preference relation ¡ on the set of lotteries over R;
the following two statements are equivalent:
(i) CPT holds with a positive power utility for gains and a; possibly di<erent;

positive power utility for losses.
(ii) The preference relation ¡ satis!es the following conditions:

(1) weak ordering;
(2) stochastic dominance;
(3) simple continuity;
(4) tail independence;
(5) constant proportional risk aversion. 5

If (i) holds then the probability transformations are uniquely determined
and utility is a ratio scale; i.e. it is unique up to a positive scale factor.
The powers of utility for gains and losses in (i) are identical if and only if
strong constant proportional risk aversion holds.

The theorem shows that not only constant proportional risk aversion, but
also strong constant proportional risk aversion, leads to CPT forms and not
necessarily to RDU forms. We next discuss the uniqueness of utility in more
detail and de4ne loss aversion. Suppose that the utility function for gains is
�+x� and that the utility function for losses is −�−|x|�, for positive �+; �−.
Utility can be freely multiplied by a positive factor, which however must be
the same for gains and losses. Hence, we can choose any utility ��+x� for

5 In the weak version, for gains and losses separately.
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gains and −��−|x|� for losses. Taking �=1=�+ and de4ning �= �−=�+, we
get the following result.

U (x) = x� for gains;

U (0) = 0;

U (x) =−�|x|� for losses.
The scaling of utility just described has been generally adopted in para-

metric studies of CPT. It means setting U (1) = 1 and scaling loss aver-
sion with �=−U (−1)=U (1). This scaling was used by Fishburn (1977) and
Holthausen (1981) within the expected utility framework and by Luce and
Fishburn (1991, Eq. (4)) and Tversky and Kahneman (1992) in their stud-
ies of CPT. Empirical estimations have usually found high values of � (loss
aversion), typically exceeding 2 (Holthausen, 1981; Tversky and Kahneman,
1992). These degrees of loss aversion have been used in new explanations
of the equity premium puzzle.
Most papers on decision under risk invoke weak continuity, requiring not

only continuity in outcomes (implied by our simple continuity) but also con-
tinuity in probabilities. There is, however, empirical and theoretical interest
in discontinuities of the probability transformation at 0 and 1 (Bell, 1985;
Cohen and Ja5ray, 1988; Hadar and Seo, 1995; Prelec, 1998). Hence, we
have presented the above more general result. Continuity in probability is
characterized in Observation A.7 in the appendix.
The next corollary characterizes rank-dependent utility by restricting the

preceding analysis to nonnegative outcomes. It generalizes existing results
(Theorems 3 and 8 of Ebert (1988), Corollary 1 of Miyamoto and Wakker
(1996)) because it does not impose continuity restrictions on the probability
transformation function.

Corollary 4. For the preference relation ¡ on the set of lotteries over R+;
the following two statements are equivalent:
(i) RDU holds with a positive power utility.
(ii) ¡ satis!es the following conditions:

(1) weak ordering;
(2) stochastic dominance;
(3) simple continuity;
(4) tail independence;
(5) constant proportional risk aversion.

The probability transformation in (i) in the corollary is uniquely deter-
mined. The utility function is a ratio scale if the convention U (0) = 0 is
maintained. If we permit adding an arbitrary constant, as is possible and com-
mon under RDU, then U is cardinal, i.e. it is unique up to scale and location.
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A characterization of constant proportional risk aversion under expected
utility is obtained if tail independence in (4) of Theorem 3 is replaced by
full-force von Neumann–Morgenstern independence. The theorem then shows
two ways of extending constant proportional risk aversion to losses, either
with weak constant proportional risk aversion and di5erent powers for gains
and losses or with strong constant proportional risk aversion and identical
powers. Corollary 1:1 in Blackorby and Donaldson (1982) describes a similar
result with identical powers for gains and losses, for a subjective expected
utility functional in the context of social choice.
The extension of the above results to nonsimple lotteries follows from

Wakker (1993a, Corollary 4:5). The extension to lotteries with bounded sup-
port only requires one additional condition, i.e. that there exists a certainty
equivalent for each nonsimple lottery. The extension to all nonsimple lotteries
with well de4ned RDU=CPT values and unbounded support follows by adding
Wakker’s truncation-continuity condition, a condition also used by Nakamura
(1995).

4. Conclusion

Our result constitutes the simplest preference foundation of CPT that is
presently available for the special case of power utility, the most popular
utility speci4cation in empirical studies. Only elementary conditions are used.
CPT necessarily follows as soon as tail independence, a natural weakening
of von Neumann–Morgenstern independence that lies at the heart of rank
dependence, and constant proportional risk aversion are assumed. We hope
that this result will increase the tractability and economic interest of CPT.
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Appendix A. Proofs and continuity in probability

The main line of the proof of Theorem 3 is simple. First tail independence
and some other conditions are used to obtain an overal rank-dependent ad-
ditively decomposable representation as in Green and Jullien (1988). Next
Ebert’s (1988) technique is applied to the positive and negative parts sepa-
rately to establish that these are rank-dependent forms. Eq. (4) then yields
an overall CPT form.
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There remain, however, many technical complications due to di5erences in
structural assumptions between our model and others existing in the litera-
ture, such as the absence of continuity in the probability dimension in our
model. The complications are exacerbated because of rank dependence and
sign dependence. Rank-dependent proofs are notorious for their complica-
tions which have led to several misunderstandings in the literature (Wakker,
1993b). Therefore, a lengthy proof cannot be avoided. We will use Miyamoto
and Wakker’s (1996) variation of Ebert’s result. The latter authors were un-
aware of Ebert’s precedence.
An auxiliary notation is as follows. For n∈N and a probability tuple

(p1; : : : ; pn), L(p1; : : : ; pn) denotes all lotteries of the form (p1; x1; : : : ;pn; xn).
Let us repeat that it is implicitly understood in this notation that x1 ¿ · · ·¿ xn

and that the probabilities pj are nonnegative and sum to one. The following
lemma, trivial in the absence of rank dependence, is adapted here to rank
dependence.

Lemma A.1. For each !nite number of sets L(q11; : : : ; q
1
n1); : : : ; L(q

m
1 ; : : : ; q

m
nm
);

there exists a set L(p1; : : : ; pn) that contains them all. In particular; for each
!nite set of lotteries; there is a set L(p1; : : : ; pn) that contains them all.

Proof. As an illustration, L(1=2; 1=2) and L(1=3; 2=3) are contained in L(1=3;
1=6; 1=2). For the general case, de4ne the set of cumulative probabilities,
qj
i
′= qj

1 + · · ·+ qj
i for all i; j, take the set of all such qj

i
′, including 0 and 1,

and rank-order them from lowest to highest. The di5erentials between these
successive levels of cumulative probabilities are the pj’s. Veri4cation is left
to the reader.

Proof of Theorem 3. We 4rst assume Statement (i) and derive Statement (ii).
Weak ordering is immediate and stochastic dominance follows because utility
and the probability transformations are strictly increasing. Simple continuity
follows from continuity of utility. Tail independence follows from Lemma
2. Constant proportional risk aversion holds because of homogeneity of the
CPT functional for gains and for losses. (ii) has been established.
In the following part of the proof, Statement (ii) is assumed and State-

ment (i), as well as the uniqueness results, are derived. In the 4rst lem-
mas, up to Corollary A.5, a CPT representation is derived on a 4xed set
L(p1; : : : ; pn). This set being a subset of the lottery domain, the represen-
tation is, formally speaking, a restriction of a CPT representation. Simi-
larly, the probability transformation functions, being de4ned only on a 4nite
number of probabilities within the unit interval, are restrictions of proba-
bility transformations. At the end of the proof, the utility function, prob-
ability transformations, and CPT representation are extended to the entire
domain.
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Lemma A.2. Whenever n ¿ 3 and p1; : : : ; pn are positive; there exist con-
tinuous strictly increasing functions V1; : : : ; Vn such that Vj(0) = 0 for all j;∑n

j=1 Vj(1) = 1; and

(p1; x1; : : : ;pn; xn) �→
n∑

j=1

Vj(xj) (A.1)

represents ¡ on L(p1; : : : ; pn). The Vj’s are uniquely determined.

Proof. De4ne Rn
↓ = {x ∈ Rn: x1 ¿ · · · ¿ xn}. This set is identi4ed with

L(p1; : : : ; pn) in the obvious manner. Therefore, the preference relation ¡ on
L(p1; : : : ; pn) induces a preference relation, denoted by ¡′, on Rn

↓. ¡
′ is a

continuous weak order that is monotonic, i.e. x �′ y whenever xj ¿ yj for
all j and xj ¿yj for at least one j. Monotonicity follows from positiveness
of the probabilities and stochastic dominance.
Tail independence of ¡ implies tail independence of ¡′, that is, if two

elements of Rn
↓ have the 4rst i or the last j coordinates in common, then

the preference between them is independent of these common coordinates.
To establish this claim, we compare the preference between

(p1; x1; : : : ;pm; xm;pm+1; cm+1; : : : ;pn; cn)

and

(p1; y1; : : : ;pm; ym;pm+1; cm+1; : : : ;pn; cn)

with the preference between

(p1; x1; : : : ;pm; xm;pm+1; c′m+1; : : : ;pn; c′n)

and

(p1; y1; : : : ;pm; ym;pm+1; c′m+1; : : : ;pn; c′n):

De4ne
∑m

j=1 pj = �, P = (p1=�; x1; : : : ;pm=�; xm), Q = (p1=�; y1; : : : ;pm=�; ym)
(note that

∑n
j=m+1 pj=1−�), C=(pm+1=(1−�); cm+1; : : : ;pn=(1−�); cn), and

C ′ = (pm+1=(1− �); c′m+1; : : : ;pn=(1− �); c′n). Tail independence of ¡ implies
that the two preferences considered here are the same. We conclude that tail
independence holds for ¡′.
The existence of the Vj functions now follows from a generalization of The-

orem 3:2 of Wakker (1993b) described by Chateauneuf and Wakker (1993).
Unfortunately, the details of the proof have to combine several results from
di5erent papers. They are described brieKy. For n ¿ 3, the condition CI of
Wakker (1993b) (complete independence of preferences from common co-
ordinates, also called (con)joint independence or strong separability or the
sure-thing principle in the literature) has been weakened to tail independence
here. Additive representability, i.e. existence of functions Vj as in the lemma,
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then still holds on the (rank-ordered) set Rn
↓. This claim follows from Corol-

lary C:5 of Chateauneuf and Wakker (1993) and Gorman (1968): In Gorman’s
terminology, separability of {1; : : : ; i} and {i; : : : ; n} implies, within each box
within Rn

↓, separability of {1; : : : ; i − 1; i + 1; : : : ; n}. This separability implies
that every preference is independent of any single common coordinate, i.e.
Wakker’s (1993b) CI holds within each box. By Gorman (1968) or Debreu
(1960), additive representability follows on each box within Rn

↓, i.e. local addi-
tive representability follows on the interior of our rank-ordered domain. Global
additive representability follows from this result, Chateauneuf and Wakker
(1993, Lemma C:5), and the absence of maximal and minimal elements.
The Vj’s derived in the literature are usually unique up to a location and a

common scale. Our choices of locations and scale uniquely determine these
functions. QED

Lemma A.3. For the lotteries in L(p1; : : : ; pn) with nonnegative outcomes;
the representation in Lemma A:2 is the restriction of a CPT form; with U
from the positive power family and U (0) = 0; U (1) = 1. U is unique and
so is the (restriction of a) probability transformation function w+ on its
domain which consists of all values

∑i
j=1 pj; i = 1; : : : ; n. On this domain;

w+ is strictly increasing.

Proof. Let V1; : : : ; Vn be as in Lemma A.2. De4ne ¡′ on Rn
↓ as in the proof

of Lemma A.2 and restrict attention to lotteries with nonnegative outcomes.
If the representation in Lemma A.2 is a CPT form, then necessarily U (x) =∑n

j=1 Vj(x) for all nonnegative x. We therefore have to de4ne U in that
manner and show that CPT holds for this uniquely determined utility function.
Note that U (0) = 0 and U (1) = 1.
Fix some 16 m¡n. We restrict attention to n-tuples of nonnegative out-

comes for which the 4rst m coordinates are identical and so are the last
n−m ones. These n-tuples are written as (x1;m; xm+1; n) for x1;m ¿ xm+1; n ¿ 0.
¡′ is represented on this two-dimensional subset of n-tuples by V1;m(x1;m)+
Vm+1; n(xm+1; n) where V1;m(x1;m) =

∑m
j=1 Vj(x1;m) and Vm+1; n(xm+1; n) =∑n

j=m+1 Vj(xm+1; n). Due to constant proportional risk aversion, ¡′ is invariant
under positive scalar-multiplication of outcomes on this subset of lotteries.
Miyamoto and Wakker (1996, Theorem 2) consider only gains (¿ 0) and
show that V1;m and Vm+1; n are proportional when restricted to gains. Obvi-
ously, they are also proportional if the zero outcome is included in the domain
because all functions are zero at zero. V1;m and Vm+1; n must be proportional
to their sum V1;m + Vm+1; n =U and, hence, they are of the form

V1;m = �1;mU and Vm+1; n = �m+1; nU (A.2)

for positive uniquely determined �1;m and �m+1; n that sum to one. Theorem 2
of Miyamoto and Wakker (1996) implies also that, for gains, U is either from



1266 P.P. Wakker, H. Zank / European Economic Review 46 (2002) 1253–1271

the positive power family, or logarithmic, or from the negative power family;
the latter is de4ned as in Eq. (5) but with � and �+ negative. The logarithmic
family and the negative power family are excluded in our case because strict
increasingness (or continuity) at zero would imply that V1;m(0) =−∞ which
is excluded, V1;m(0) being zero. We conclude that

U is a positive power function for nonnegative outcomes: (A.3)

De4ne �1=�1;1, �j=�1; j−�1; j−1 for j=2; : : : ; n−1, and �n=�n;n (=�1; n−
�1; n−1 if we set �1; n = 1). By de4nition, V1;1 = V1 = �1U . Eq. (A.2) implies
that Vj=V1; j−V1; j−1=�1; jU−�1; j−1U=�jU for j=2; : : : ; n−1, and then also
Vj = �jU for j = n. These equalities and monotonicity imply that all �js are
positive. From their de4nition it follows that the �j’s sum to one (this also
follows from the equality Vj = �jU and the de4nition of U ). A (restriction
of a) probability transformation function w+ is next de4ned so as to properly
transform cumulative probabilities into cumulative decision weights. That is,
w+(

∑ j
i=1 pi)=

∑ j
i=1 �i. Because all �i are positive, w+ is strictly increasing

on its domain.
It follows that the representation of Lemma A.2 is the restriction of a CPT

form with respect to w+ and U on the set of lotteries in L(p1; : : : ; pn) with
nonnegative outcomes. Uniqueness of U was established when it was de4ned,
�j = Vj(1)=U (1) uniquely de4nes each �j. QED

Lemma A.4. For the lotteries in L(p1; : : : ; pn) with nonpositive outcomes;
the representation in Lemma A:2 is the restriction of a CPT form; with
U from the positive power family and U (0) = 0. U is unique and so is
the (restriction of a) probability transformation function w− on its domain
which consists of the values

∑n
j=i pj; i = 1; : : : ; n. On this domain; w− is

strictly increasing.

Proof. Only lotteries with nonpositive outcomes are considered. It can be
demonstrated by a reasoning similar to the proof of Lemma A.3 that the
representation of Lemma A.2 is again a restriction of a CPT form. Because
of the scaling convention

∑n
j=1 Vj(1)=1=U (1), there is no more liberty for

choosing the scale of utility for losses. It is uniquely determined by U (−1)=∑n
j=1 Vj(−1) (which was de4ned as the loss aversion parameter � in the main

text). Other than this, the reasoning for nonnegative outcomes can entirely be
repeated. U is also a positive power function for losses, but may obviously
have a di5erent exponent than for gains. w− is related to the decision weights
for losses through the formulas w−(pn), w−(pn+pn−1)−w−(pn), etc. QED

Corollary A.5. The representation in Lemma A:2 is (the restriction of ) a
CPT representation with U from the positive power family for gains and
also for losses; and U (0) = 0 and U (1) = 1. U is unique and so are the
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(restrictions of ) the probability transformation function w+ at the values∑i
j=1 pj; i = 1; : : : ; n, and w− at the values

∑n
j=i pj; i = 1; : : : ; n.

Proof. Lemmas A.3 and A.4 have demonstrated that the representation of
Lemma A.2 is a CPT form for nonnegative outcomes, and also for nonpos-
itive outcomes. Next consider a lottery P with both gains and losses. The
additive representation of Lemma A.2 is a sum of its value at P+ and at P−.
Hence, the value of the lottery P is CPT(P+) + CPT(P−). By Eq. (4), CPT
follows. QED

The following analysis extends the CPT representation from 4xed sets
L(p1; : : : ; pn) to the set of all simple lotteries. Lemma A.6 prepares.

Lemma A.6. The CPT representations on two di<erent sets of lotteries
L(p1; : : : ; pn) and L(q1; : : : ; qm) with m ¿ 3; n ¿ 3; and all probabilities
positive; coincide in the sense that the utility function U is the same for
both sets and w+ and w− agree on the intersection of their domains.

Proof. By Lemma A.1, there exists a set L(r1; : : : ; ri) that contains both sets
of lotteries in the lemma. We may assume that all probabilities rj are positive
by dropping the zero probabilities. Obviously, i ¿ 3. By the uniqueness result
of Lemma A.4, the CPT representation on L(r1; : : : ; ri) agrees with the one
of L(p1; : : : ; pn) and the one of L(q1; : : : ; qm) on their respective domains. On
their common domain both of the latter two CPT representations agree with
the former and, hence, with each other. QED

Proof of Theorem 3 (Conclusion). By considering all sets L(p1; : : : ; pn), w+

and w− are determined on the entire unit interval [0; 1]. They are strictly
increasing by Lemmas A.3 and A.4. Because every lottery is contained in a
set L(p1; : : : ; pn) satisfying the requirements of Lemma A.2, a CPT value is
determined for every lottery. By Lemma A.6, the CPT value is independent
of the particular set L(p1; : : : ; pn). Every pair of lotteries is contained in
some set L(p1; : : : ; pn), on this set CPT represents preference, therefore CPT
represents preference between every pair of lotteries.
The uniqueness of the representation is derived next. For any other CPT

representation with U ∗; w+∗; w−∗, reconsideration of the preceding analysis
shows that U ∗(:)=U ∗(1) must agree with U (·), and next that the two proba-
bility transformations w+∗ and w−∗ must agree with w+ and w−, respectively.
Conversely, for any positive !, U can be replaced by !U .
Finally, we consider strong constant proportional risk aversion. It was ex-

plained in the main text that this condition holds under CPT with positive
power utility functions with the same powers �= � for gains and losses. We
next show that the condition does not hold if � �= �. Take any positive x; y
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such that (0:5; x; 0:5;−y) ∼ 0. By stochastic dominance and continuity, such
x and y can always be found. Then, because � �= �, (0:5; 2x; 0:5;−2y) is not
equivalent to 0, violating strong proportional risk aversion. Therefore, strong
proportional risk aversion holds if and only if �= �. The proof of Theorem
3 is now complete.

Proof of Corollary 4. This proof follows from restricting the proof of The-
orem 3 to nonnegative outcomes. Logarithmic and negative power utility are
still excluded because the zero outcome is contained in the domain. If out-
comes were restricted to R++, utility could also have been logarithmic or a
negative power.

We 4nally characterize continuity of the probability transformations. ¡
satis4es continuity in probabilities for gains on ]0; 1[ if, for all probabilities
p and outcomes X ¿x¿ 0:

If (p;X ; 1− p; 0) � (1; x) then there exists q¡p
such that still (q; X ; 1− q; 0) � (1; x); (A.4)

and the same holds with the two preferences and the inequality reversed, i.e.

If (p;X ; 1− p; 0) ≺ (1; x) then there exists q¿p
such that still (q; X ; 1− q; 0) ≺ (1; x) (A.5)

¡ satis4es continuity in probabilities for gains at 1 if Eq. (A.4) holds for
p = 1. ¡ satis4es continuity in probabilities for gains at 0 if Eq. (A.5)
holds for p=0. Similar conditions can be de4ned for losses instead of gains
by assuming that X ¡x¡ 0 in Eq. (A.4) and Eq. (A.5) (and reordering
the outcomes under the notational convention of rank-ordered outcomes) and
reversing the strict preferences. The next result is similar to Wakker’s (1994)
Theorem 12 for RDU.

Observation A.7. Assume that Statement (i) in Theorem 3 holds. Then con-
tinuity conditions of the probability transformations agree with the related
continuity conditions of ¡ in probability; with w+ related to gains prefer-
ence conditions and w− to loss preference conditions.

Proof. The range of utility is an interval with 0 in its interior. Hence, the
following facts are implied by substitution and strict increasingness of the
probability transformation functions: Eq. (A.4) implies that w+ cannot jump
down to the left of p and, hence, is left continuous at p. Eq. (A.5) implies
that w+ cannot jump up to the right of p, and therefore is right continuous
at p. Similar facts hold for w− and losses.
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