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Nonmonotonic Choquet integrals
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Abstract

This paper shows how the signed Choquet integral, a generalization of the regular Choquet
integral, can model violations of separability and monotonicity. Applications to intertemporal pref-
erence, asset pricing, and welfare evaluations are discussed. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

This paper deals with signed Choquet integrals. These integrals relax the monotonicity
condition of regular Choquet integrals. The belonging capacities (nonadditive measures)
are nonmonotonic and may even take negative values. We give preference axioms for the
signed Choquet integral and show that results on convexity, well known for monotonic
Choquet integrals, naturally extend to signed Choquet integrals. In particular, a concave
signed Choquet integral still is the minimum of Core integrals (Theorem 3).

Several papers have considered signed Choquet integrals. Schmeidler (1986) character-
ized these integrals through functional equations. Gilboa and Schmeidler (1994), Gilboa
and Schmeidler (1995), and Denneberg (1997) used signed Choquet integrals in studies of
Möbius inverses and Jordan decompositions. Murofushi et al. (1994) used them in a study
of fuzzy measures of bounded variation. We demonstrate how the signed Choquet integral
can be applied to intertemporal preferences, modeling interactions between separate periods
that can be so strong that monotonicity is violated. For intertemporal preferences, the signed
Choquet integral provides a common generalization of the functionals of Gilboa (1989) and
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Shalev (1997). Applications of signed Choquet integrals to other areas are mentioned, in
particular to asset pricing in a context with uncertainty. Proofs are given in Appendix A.

2. Notation, definitions, and preparatory results

Let {1, . . . , n} be a finite set of time points. Profiles aren-tuples (x1, . . . , xn), also denoted
by x. They can be interpreted as functions from {1, . . . , n} toR, describing consumption or
income at each time point. For simplicity, we consider only a finite number of time points.
The extension to infinitely many time points can be obtained through Wakker’s (1993)
techniques and is a topic for future research.

For decision under uncertainty, time points are reinterpreted as states of nature and profiles
as acts, for welfare theory time points are persons and profiles are welfare allocations. Other
interpretations are possible. We will use the terminology of the main field of application in
this paper, i.e. intertemporal preference.

Profiles x and y are comonotonic if there are no time points i, j such that xi > xj and
yi < yj . A subset ofRn is comonotonic if every pair of profiles in the subset is comonotonic.
We consider general set functions ν : 2{1,...,n} → R; ν is permitted to take negative values.
Here ν is a capacity if ν(∅) = 0, ν({1, . . . , n}) = 1, and ν satisfies monotonicity (with
respect to set inclusion), i.e. A ⊃ B ⇒ ν(A) ≥ ν(B). A capacity cannot take negative
values. For a signed capacity ν, the monotonicity requirement is dropped, and ν(∅) = 0 and
ν({1, . . . , n}) = 1 are the only requirements. A signed capacity can therefore take negative
values.

Let ν be an arbitrary set function. For any x ∈ Rn, we define the signed Choquet integral∫
x dν, analogously to the Choquet integral, as

∫ ∞

0
[ν({j : xj ≥ t}) − ν(∅)] dt +

∫ 0

−∞
[ν({j : xj ≥ t}) − ν({1, . . . , n})] dt. (1)

In this paper, the following method for calculating the signed Choquet integral is useful. It
follows from the preceding equation by integration by parts.

(i) Take a permutation ρ on {1, . . . , n} that is compatible with x, i.e. xρ(1) ≥ · · · ≥ xρ(n).
(ii) Define

πρ(j) := ν({ρ(1), . . . , ρ(j)}) − ν({ρ(1), . . . , ρ(j − 1)}) (2)

for all j (thus, πρ(1) = ν({ρ(1)}) − ν(∅)).
(iii)

∫
x dν = ∑n

j=1πjxj is the signed Choquet integral of x with respect to ν.
The integral remains the same if ν is replaced by ν′ = ν − c for any constant c. In

particular, we can take ν′ = ν − ν(∅) and thus restrict attention to set functions assigning
0 to the empty set. The numbers πj are called decision weights. In general, they can well
be negative. They are all nonnegative if and only if ν is monotonic. The signed Choquet
integral of (α, . . . , α) with respect to a signed capacity ν is α for all α ∈ R, because
ν({1, . . . , n}) = 1.

Schmeidler (1986) gave the following functional characterization, and extended the result
to infinitely many time points and bounded profiles. The characteristic property of the signed
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Choquet integral is comonotonic additivity, which for a general functional V means that
V (x + y) = V (x) + V (y) whenever x and y are comonotonic. If the equality also holds
for all noncomonotonic x, y, then V is additive.

Theorem 1. V : Rn → R is a signed Choquet integral if and only if it is continuous and
satisfies comonotonic additivity.

We next characterize the preference relations that can be represented by signed Choquet
integrals with respect to signed capacities. The characterization follows from Schmeidler’s
(1986) Proposition 2 (our Theorem 1), in the same way as Schmeidler’s (1989) famous
preference characterization of Choquet expected utility follows from the functional char-
acterization of the Choquet integral in Schmeidler’s (1986) Corollary. Schmeidler (1989)
assumed that the outcome set is a convex set of probability distributions and that linear-
ity refers to probabilistic mixing. We follow Chateauneuf’s (1991) approach where the
outcome set is R and linearity refers to outcome-mixing. This difference in interpretation
does not affect the mathematics. The generalization of our results to nonlinear utility, and
thus of Gilboa (1987), Wakker (1989a), Oginuma (1994), and Chateauneuf (1999) to the
nonmonotonic case, is a topic for future research.

A binary relation � onRn is a weak order if it is complete (x � y or y � x for all
x, y) and transitive. It is continuous if {x ∈ Rn : x � y} and {x ∈ Rn : x � y} are closed
for all y ∈ Rn. It satisfies comonotonic additivity if x � y implies x + z � y + z for all
comonotonic x, y, z. (α, . . . , α) is a constant equivalent of x if it is equal in preference to x.
A binary relation � is constant–monotonic if α > β ⇒ (α, . . . , α) � (β, . . . , β) for all real
α, β. Constant monotonicity implies that the set function of a representing signed Choquet
integral assigns a positive value to the set of all time points. A function V represents � if
x � y ⇔ V (x) ≥ V (y).

Corollary 1. Let � be a binary relation on Rn. Then � can be represented by a signed
Choquet integral with respect to a signed capacity if and only if

(i) � is a weak order;
(ii) � is continuous;
(iii) � is constant–monotonic;
(iv) � satisfies comonotonic additivity.
Further, the representing signed Choquet integral is uniquely determined.

We next show that convexity and concavity results, well known in the literature for
Choquet integrals, naturally extend to signed Choquet integrals. Although these extensions
are elementary and may have been known before, we have not been able to find references
where they are stated. Throughout the rest of this section, V is a signed Choquet integral
with respect to a set function ν. We consider V as a function on Rn and convexity and
concavity properties of V refer to mixtures of elements of Rn (and not to mixtures of set
functions). A set function ν is convex if

ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B) (3)

for all A,B, and it is concave if the reversed inequality holds.
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It is elementarily verified that V satisfies positive homogeneity, i.e. V (λx) = λV (x) for
all λ > 0. V is superadditive if V (x + y) ≥ V (x)+V (y) for all x, y, and V is subadditive
if the reversed inequality holds. For a set function ν with ν(∅) = 0, Core(ν) is the set of
additive set functions µ that (weakly) exceed ν everywhere and satisfy µ({1, . . . , n}) =
ν({1, . . . , n}). Then also µ(∅) = 0, because of additivity. If ν is a capacity (hence, non-
negative) then all elements of Core(ν) are nonnegative and therefore are probability mea-
sures. The following lemma gives the main tool for extending results from monotonic
Choquet integrals to signed Choquet integrals. It was pointed out to us by Denneberg
(1998).

Lemma 1 (Denneberg). For each set function ν and additive measure P,
(i) ν is convex if and only if ν + P is.
(ii) µ is a Core member of ν if and only if µ + P is of ν + P .
Further:
(iii) For each set function ν with ν(∅) ≥ 0 there exists an additive measure P such that

ν + P is nonnegative.
(iv) If (ν + P)(∅) = 0, ν + P is nonnegative and ν + P is convex, then ν + P is also

monotonic.

The following two theorems extend Schmeidler’s (1986) Proposition 3 to signed Choquet
integrals. For Choquet integrals, many alternative results are given by Schmeidler (1989, the
“Proposition”). In this paper, we use linear as equivalent to affine. Hence, a linear function
need not be zero at the origin.

Theorem 2. The following four statements are equivalent for a signed Choquet integral V.
(i) V is concave.
(ii) V is superadditive.
(iii) V is the minimum of dominating linear functionals.
(iv) ν is convex.

The following theorem, demonstrating that a set function is convex if and only if its signed
Choquet integral is the minimum of Core integrals, has often been stated for monotone
capacities (Anger, 1977; Huber, 1981). The result turns out to hold for all set functions that
vanish on the empty set.

Theorem 3. Assume that ν(∅) = 0. Then the set function ν is convex if and only if Core(ν)
is nonempty and V (x) = min{∫ x dµ|µ ∈ Core(ν)}.

For capacities, Shapley (1965) first proved that convexity implies a nonempty Core. We
next turn to dual versions of the preceding results.

Observation 1. Theorems 2 and 3 can be applied to −V and −ν, resulting in substitution of
the terms convex for concave, subadditive for superadditive, maximum for minimum, domi-
nated for dominating, anti Core(ν) (set of additive set functionsµ that lie below ν everywhere
and satisfy µ({1, . . . , n}) = ν({1, . . . , n})) for Core(ν), below for above, and vice versa.
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3. Nonmonotonicity in multi-period decisions

Classical models for intertemporal preference have usually assumed separability over
disjoint periods. Such separability underlies, for instance, discounted utility (Koopmans,
1972) as well as the Quality-Adjusted-Life-Years model commonly used in health eco-
nomics (Drummond et al., 1987). Interaction between different periods is, however, central
in human preference. The utility of seeing a movie, listening to music, buying a brand
of coffee, the salary of a new job, or a year in Australia, crucially depends on past ex-
perience and consumption. Such dependency has been amply demonstrated (Kreps and
Porteus, 1978; Loewenstein and Thaler, 1989; Loewenstein and Elster, 1992). Dependence
on past consumption underlies many phenomena, such as habit formation and the equity
premium puzzle (Pollak, 1970; Constantinides, 1990), fashion and addiction (Becker and
Murphy, 1988), and changing tastes (Strotz, 1956; Hammond, 1976; Karni and Schmeidler,
1990).

Gilboa (1989) demonstrated how the Choquet integral can be used in intertemporal pref-
erence to model interactions between different periods. The integral can model dependency
on orderings of outcomes and thus it can incorporate sensitivity towards increases and de-
creases of income. Many studies have demonstrated that people are especially sensitive to
such changes in income (Scitovsky, 1965; Frank, 1989; Constantinides, 1990; Loewenstein
and Prelec, 1991; Hsee and Abelson, 1991; Erev et al., 1997). This special sensitivity can
be modeled by means of Gilboa’s (1989) special, Markovian, version of the Choquet in-
tegral. Gilboa retained the classical monotonicity condition of Choquet integrals, thus did
not permit that increases in income can lead to decreases in utility.

In extreme cases, the interaction between different periods can be so strong that it dom-
inates the intrinsic values of outcomes. Then violations of monotonicity can result. For
example, the dislike of decreases in income can be so extreme that people prefer an increas-
ing wage profile to a decreasing one even if the latter at every time point yields at least as
much money, and thereby larger budget sets to choose from (Benzion et al., 1989; Loewen-
stein and Sicherman, 1991; Hsee and Abelson, 1991). One reason can be that increases in
salary are interpreted as a signal of success, and that signal may be more important than
the absolute amount of money involved. Another reason can be that people find a reduction
of standard of living especially hard to adapt to. A different kind of violation of mono-
tonicity was found in experiments by Kahneman. He found that subjects violate temporal
monotonicity when choosing between aversive episodes such as immersing hands in cold
water (Kahneman et al., 1993). Shalev (1997) introduced a new functional for intertemporal
preference that accommodates violations of monotonicity. He characterized the functional
in terms of preference conditions.

Our model generalizes the models of Gilboa (1989) and Shalev (1997). A difference
between our model and theirs is that we assume a one-stage model with linearity di-
rectly in outcomes, similar to Chateauneuf (1991). Gilboa and Shalev assumed a two-stage
Anscombe–Aumann (1963) model where outcomes are probability distributions over prizes
and expected utility applies to those. That is, Gilboa and Shalev use linearity with respect to
probabilistic mixtures rather than with respect to quantitative outcomes. This is a difference
in interpretation that does not essentially affect the mathematics, which is based solely upon
linearity in outcomes.
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Shalev introduced the following, basic, condition. Two profiles x, y are sequentially
comonotonic if there are no two adjacent periods s, t such that xs > xt and ys < yt .
Note that the natural ordering of the time points {1, . . . , n} is essential. A set of profiles is
sequentially comonotonic if every contained pair of profiles is sequentially comonotonic.
The preference relation � satisfies sequential additivity if x � y implies x + z � y + z

whenever {x, y, z} is sequentially comonotonic. Obviously, if profiles are comonotonic then
they are also sequentially comonotonic. Hence, sequential additivity implies comonotonic
additivity.

The functional used to value profiles in this section is of the form

λ1x1 +
n∑

j=2

[λjxj − τj (xj−1 − xj )
+] (4)

where the λj ’s sum to one and for any real number β we define β+ = max{0, β}. We call
such a functional a sequential Choquet integral.

Under Eq. (4), a regular weighting scheme
∑n

j=1λjxj applies if the sequence is nonde-
creasing, in other words, if xj−1 ≤ xj for all j . For decreases there is a “decision weight
penalty”, that is, if xj−1 > xj , then decision weight τj is shifted from xj−1 to the lower
outcome xj , leading to subtraction of a term τj (xj−1 − xj ). In some cases, the τj ’s may
be so large that violations of monotonicity result. The terminology in this interpretation
is adapted from the example of income valuation, where preference is monotonic if in-
come is increasing (λj > 0 for all j ), but for decreases in salary a penalty is subtracted,
i.e. τj > 0 for all j . The following analysis also considers the general case in which
some λj ’s and τj ’s may be negative. Observation 2 could be proved by deriving comono-
tonic additivity and then invoking Theorem 1. We present an independent proof in the
main text because this proof clarifies the role of the parameters in the sequential Choquet
integral.

Observation 2. The functional in Eq. (4) is a signed Choquet integral.

Proof. The “Choquet-integral” decision weights πj (Eq. (2)) can be obtained as follows
for a profile x, where we use the notational convention that x0 = −∞ and xn+1 = ∞. At
first the decision weight, still to be modified, of each xj is λj . If xj−1 > xj , then τj is added
to the decision weight of xj (and similarly subtracted from the decision weight of xj−1). If
xj > xj+1, then τj+1 is subtracted from the decision weight of xj (and similarly added to
the decision weight of xj+1). The following decision weights result:

(i) πj = λj if xj−1 ≤ xj ≤ xj+1.
(ii) πj = λj + τj if xj−1 > xj and xj ≤ xj+1.
(iii) πj = λj − τj+1 if xj−1 ≤ xj and xj > xj+1.
(iv) πj = λj + τj − τj+1 if xj−1 > xj > xj+1.
Setting τn+1 = 0, the signed capacity satisfies ν(i) = λi − τi+1 for all singletons {i}.

For a general set E, the signed capacity is given by

ν(E) =
∑
j∈E

λj −
∑

j∈E:j+1/∈E
τj+1.
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ν assigns value 0 to the empty set and value 1 to {1, . . . , n} and, hence, it is a signed capacity
indeed. The verification that this capacity generates the appropriate decision weights is left
to the reader. �

The sequential Choquet integral can also be used if subjects are especially sensitive to
changes of outcomes in a profile, positive as well as negative. To illustrate this point, we
rewrite the sequential Choquet integral as a weighted sum, adjusted for variations of any kind
between successive terms. The following equation is equivalent to Eq. (4) after appropriate
substitutions, described next.

p(s1)x1 +
n∑

j=2

(p(sj )xj + δj |xj − xj−1|). (5)

To establish equivalence with Eq. (4), rewrite Eq. (4) as

λ1x1 +
n∑

j=2

[
λjxj − τj

2
|xj − xj−1| + τj

2
(xj − xj−1)

]
.

Then use the following substitutions: δj = −τj /2 for j = 2, . . . , n, p(s1) = λ1 − τ2/2,
p(sj ) = λj + τj /2 − τj+1/2 for j = 2, . . . , n− 1, and p(sn) = λn + τn/2. Gilboa (1989)
used Eq. (5) for monotonic sequential Choquet integrals. Yet another, equivalent, formula
was used by Shalev (1997, Theorem 1). The following theorem characterizes the sequential
Choquet integral.

Theorem 4. Let � be a binary relation onRn. It can be represented by a sequential Choquet
integral with respect to a signed capacity if and only if

(i) � is a weak order;
(ii) � is continuous;
(iii) � is constant–monotonic;
(iv) � satisfies sequential additivity.
The sequential Choquet integral is uniquely determined.

The functional, characterized in Theorem 4, reduces to Gilboa’s (1989) functional if
monotonicity is added; x � y whenever xj ≥ yj for all j . Gilboa used a somewhat different
axiom than our sequential additivity or Shalev’s sequential comonotonicity. He assumed,
first, comonotonic independence as in Schmeidler (1989), which plays the same role as
comonotonic additivity in our approach and implies a Choquet integral representation.
Then a variation-preserving sure-thing principle was added. It requires, loosely speaking,
that preference be unaffected if common outcomes on a connected set of time points are
replaced by other common outcomes in such a manner that the variations between successive
noncommon outcomes remain unaffected. The latter does permit changes in rank ordering,
thus imposing the additional restrictions on the Choquet integral that reduce it to a monotonic
sequential Choquet integral.

The case in which all λj ’s and τj ’s are nonnegative is most interesting for the application
to income evaluation. This case is characterized as follows. The λj ’s are nonnegative if and
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only if monotonicity holds for all profiles x with x1 ≤ · · · ≤ xn. The τj ’s (for j ≥ 2) are
nonnegative if and only if

(x − a, . . . , x − a, x − a, x + b, x + b, . . . , x + b)

∼ (x − a, . . . , x − a, x, x, x + b, . . . , x + b) ⇒ (x + b, . . . , x + b)

� (x + b, . . . , x + b, x + a + b, x, x + b, . . . , x + b),

where the (j − 1)th and j th coordinate have been boldprinted and a and b are nonnegative.
In this preference condition, the second preference has been generated by raising the first
j−1 incomes by a term a+b. This implies a decrease in income in period j , which generates
a lower valuation of the last profile. A preference condition characterizing negative δj ’s in
Eq. (5), called variation aversion, is available in Gilboa (1989).

This section has presented a special case of the signed Choquet integral that is useful in
intertemporal preference. The signed Choquet integral can be of use in other areas, such
as welfare evaluations where an allocation (10, 10, 10, 10) (US$ 10 for person 1, . . . , 4)
should sometimes be preferred to an allocation (11, 12, 13, 15) if the latter can arise envy
and conflict (Crosby, 1976; Tversky and Griffin, 1991; Ng, 1997, p. 1849). The next section
considers an application to asset pricing.

4. Nonmonotonicity in asset pricing

This section elaborates on an application in asset pricing. Here, the elements of {1, . . . , n}
are states of nature. At date zero, assets can be traded. At a later date, date one, exactly one
of the states of nature will turn out to be true, and the assets yield a pay off depending on
the true state.

Asset trading often occurs through brokers or dealers charging a price for their inter-
mediation. This implies that the functional that assigns a price to any asset portfolio is
nonlinear. Indeed, the price to be paid to the broker for buying an asset is strictly larger
than the price received from the broker when selling the same asset, the difference be-
ing the bid-ask spread. Chateauneuf et al. (1996) considered asset markets with a dealer
charging bid-ask spreads, and showed how the asset prices can be represented by a Cho-
quet integral with respect to a concave capacity. In the related area of insurance pricing,
the development of premium systems based on Choquet integrals has recently gained con-
siderable interest. Wang (1996) argued that when there is ambiguity regarding the loss
distribution, or when there is considerable correlation between the individual risks, the tra-
ditional pricing principles may be inadequate to determine premiums that accurately cover
the risk. Moreover, insurance price functionals should be subadditive in order to capture
the pooling effect. Wang (1996) therefore proposed to use the proportional hazard mean
as an alternative pricing rule and shows that it is equivalent to taking the Choquet inte-
gral of the insured risk with respect to a concave measure. Wang et al. (1997) gave an
axiomatic characterization of insurance prices implying that the price of an insurance risk
has a Choquet integral representation. The use of Choquet integrals in insurance pricing
has been further developed by Wang and Dhaene (1998), Wang and Young (1998), and
Hürlimann (1998).



A. De Waegenaere, P.P. Wakker / Journal of Mathematical Economics 36 (2001) 45–60 53

The trade on asset markets or insurance markets is often subject to exogenous constraints
on portfolio holdings such as leverage constraints or no-overinsurance constraints (i.e. an
insurance contract for a certain risk can only be bought by agents who bear the risk). The
following example shows that in the presence of exogenous trading constraints, the concept
of Choquet pricing needs to be extended to allow for signed Choquet integrals in order
to assure existence of equilibrium Choquet pricing rules. Indeed, the example shows that
on markets with constraints on portfolio holdings and an intermediary or insurer charging
subadditive, comonotonically additive premiums, an equilibrium price functional can be
nonmonotonic. The equilibrium price of a portfolio then equals the signed Choquet integral
of its pay off with respect to a concave set function. The standard general equilibrium model
on incomplete asset markets on which this example is based can be found in Magill and
Shafer (1991).

Example 1. We consider a two-period financial market model where trade takes place
through an intermediary, and portfolio holdings are constrained by the prohibition of overin-
surance.

There are three assets that can be traded in the first period (date zero) and pay off in
the second period (date one). There are three states of nature in this second period, i.e.
n = 3. The pay off of an asset can therefore be represented by a vector in R3. The pay off
vectors for the three assets are given by A1 = (1, 1, 1), A2 = (1, 1, 0), and A3 = (0, 1, 1),
respectively. Hence, asset 1 is a riskless bond that pays off one regardless of the true state
at date one, asset 2 is an insurance contract that pays off one if state 1 or state 2 is the true
state at date one and nothing otherwise, and asset 3 is an insurance contract that pays off
one if state 2 or state 3 is the true state at date one and nothing otherwise.

For trading a portfolio z = (z1, z2, z3) ∈ R3, i.e. buying z1 units of asset 1 (or selling −z1
if z1 is negative), buying z2 units of asset 2, and buying z3 units of asset 3, the intermediary
charges an amount q(z) = πAz + γ ((Az)ρ(1) − (Az)ρ(2))/3 + γ ((Az)ρ(1) − (Az)ρ(3))/3,
where ρ is a permutation that is compatible with Az, π ∈ R3, and γ ≥ 0. Thus, q(z)
consists of a linear part πAz, which is the “price”, augmented by a subadditive, positive
part representing the “risk-premium” charged by the intermediary. Because then q(z) >

−q(−z) for all portfolios with a risky pay off (i.e. with (Az)i �= (Az)j for some i, j ),
the intermediary makes a profit by buying this portfolio from one agent and selling it
to the other. The two agents each have a 50% share in the intermediary’s firm. Hence,
the intermediary’s profit, denoted πd, is divided equally between the two agents after
trade.

The no-overinsurance constraint implies that the amount of assets 2 and 3 that an agent
is allowed to buy is bounded above, with the upperbound depending on the risk he bears.
In this case, the agents are only allowed to buy portfolios satisfying z2 ≤ 0.5 and z3 ≤ 0.5.
There is no exogenous constraint on trading the riskless asset. Hence, the portfolio choice
set of each agent equals Zi = R×] − ∞, 0.5]2.

Since there are three states at date one, a consumption bundle of an agent consists of
a vector (x0, x1, x2, x3) ∈ R4+, where x0 denotes the amount of money the agent owns at
date zero, and xj denotes the amount of money he will own at date one if state j occurs,
j = 1, 2, 3. The endowment (before trading) of the agents is given by w1 = (5.5, 5, 4.5, 4)
and w2 = (11.5, 12, 12.5, 13). The trade of portfolio zi ∈ Zi by agent i has the following
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effect on his resources:

xi0 = wi
0 − q(zi) + ξ iπd

xi1 = wi
1 + zi1 + zi2

xi2 = wi
2 + zi1 + zi2 + zi3

xi3 = wi
1 + zi1 + zi3,

where ξ1 = 0.5 and ξ2 = 0.5 denote the shares of the respective agents in the intermediary’s
profit.

Now, using his initial resources wi , the agent can trade asset portfolios z = (z1, z2, z3) ∈
Zi in order to maximize his utility. Agent 1 has utility function u1(x0, x1, x2, x3) =
60

√
x0 + 7(

√
x1 + √

x2) + 31
√
x3. Agent 2 has utility function u2(x0, x1, x2, x3) =

15
√
x0 + 124

√
x1 + 28(

√
x2 + √

x3). Let xi ∈ R4+ and zi ∈ Zi denote the consumption
bundle and the asset portfolio that agent i will choose as a result of his utility maximizing
problem for a given πd, for i = 1, 2. It can be shown that, for

πd = 0.1

π = (2,−1, 2)

γ = 0.1

x1 = (16, 1, 1, 1); x2 = (1, 16, 16, 16)

z1 = (−3.5,−0.5, 0.5); z2 = (3.5, 0.5,−0.5),

the market is in equilibrium. That is, both agents have maximized their utility, the market
in assets and money clears (i.e. there is no excess demand or excess supply), and the
intermediary’s profit equals πd = q(z1) + q(z2).

Define the set function ν on 2{1,2,3} as follows: ν(∅) = 0, ν({1}) = ν({3}) = 31/15,
ν({2}) = −14/15, ν{(i, j)} = ν({i}) + ν({j}) − 0.1, for all i �= j , and ν({1, 2, 3}) = 3.
Then it immediately follows that q(z) = ∫

(Az) dν for all z ∈ R3, i.e. the equilibrium price
of a portfolio equals the signed Choquet integral of its pay off. Moreover, it is clear that
because ν({2}) is negative, this equilibrium price functional cannot be represented by a
Choquet integral with respect to a monotone set function.

Notice that in the above example the price for insurance in state 2 (i.e.
∫
(0, 1, 0) dν =

ν({2})) is negative. Such a “free lunch” would clearly be incompatible with equilibrium
in frictionless markets. The explanation is that the no-overinsurance constraints imply that
the amount of insurance bought for state 2 is bounded above by the amount of insurance
bought for state 1 plus 0.5, and by the amount of insurance bought for state 3 plus 0.5.
Once one of these constraints becomes binding, purchasing extra insurance for state 2 is
no longer costless. Consequently, the arbitrage possibility only yields bounded profits. This
implies that, because agent 1 has a higher utility for money at date zero than for insurance
at date one, it is optimal for him to sell insurance in state 2, rather than to buy it. Because
the opposite holds for agent 1, equilibrium results.
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5. Conclusion

Many properties of the Choquet integral, such as preference axiomatizations and concav-
ity and convexity, naturally extend to signed Choquet integrals. Signed Choquet integrals
can be used to model interactions in intertemporal preference that are so strong that mono-
tonicity is violated. Signed Choquet integrals can also be useful in other areas, such as asset
pricing. In general, they are applicable to aggregations where rank dependence is relevant
but violations of monotonicity should be permitted.

Appendix A. Proofs

Proof of Corollary 1. There are many derivations of linear representations under an addi-
tivity axiom available in the literature. One deviation of our result from most results is that
we do not have monotonicity. Further, we have to deal with comonotonicity restrictions.

Necessity of conditions (i)–(iii) is obvious; (iv), comonotonic additivity of �, follows
from comonotonic additivity of the signed Choquet integral. We therefore assume conditions
(i)–(iv) and derive the representation. Real numbers (outcomes) are identified with constant
profiles, that is, constant n-tuples, throughout. �

Lemma 2. Each profile has a unique constant equivalent.

Proof. Suppose, for contradiction, that there exists a profile x such that x � α for each
constant profile α. For any natural number n, x/n � α/n (to wit, x/n � α/n would imply,
because of comonotonicity and comonotonic additivity, 2x/n � α/n + x/n � 2α/n,
and then, by induction, m × x/n � m × α/n for all natural numbers m; for m = n a
contradiction would result). Because this holds for all real numbers α, we have x/n � β

for all real numbers β. Limit taking for n → ∞ and continuity of � then imply 0 � β for
each real number β, contradicting constant monotonicity. A contradiction similarly results
if x ≺ α for all real α. Hence, for each profile x there exist real numbers α, β such that
α � x � β. By continuity, {γ ∈ R : γ � x} and {γ ∈ R : γ � x} are closed, we have
already seen that both sets are nonempty, and, hence, because of connectedness of R, they
must intersect. The intersection contains the constant equivalent of x. It is unique because
of constant monotonicity. QED �

Define, for each profile x, V (x) as its constant equivalent. By constant–monotonicity,
this function represents �. Consider V (x) and V (y), for comonotonic x, y. Then x ∼ V (x)

implies x + y ∼ V (x)+ y. (Note here that each constant profile is comonotonic with each
other profile.) Now y ∼ V (y) implies V (x) + y ∼ V (x) + V (y). Transitivity implies
x + y ∼ V (x)+V (y). Hence, V (x + y) = V (x)+V (y). That is, V satisfies comonotonic
additivity. V is continuous because {x : V (x) ≥ α} = {x : x � (α, . . . , α)} and {x :
V (x) ≤ α} = {x : x � (α, . . . , α)} are closed for all α, because of continuity of �. By
Theorem 1, V is a signed Choquet integral.

For uniqueness of the representation, note that the signed capacity ν assigns value 1 to
the set of all time points, implying that the signed Choquet integral assigns value α to each
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constant profile α. This uniquely defines the representing signed Choquet integral as the
constant equivalent of each profile.

Proof of Lemma 1. (i) and (ii) follow from linearity of the signed Choquet integral with
respect to the signed capacity, and substitution. For (iii), take any additive P ′ that is positive
for all singletons and multiply it by a sufficiently large scalar to obtain P . (iv) follows from
Eq. (3) when applied to disjoint sets A,B. �

Proof of Theorem 2. We first derive the equivalence of (i) and (ii). BecauseV is continuous,
concavity holds if and only if midpoint concavity holds, we therefore consider midpoint
concavity. The equivalence follows from:

V (x + y) ≥ V (x) + V (y) ⇔ V (x+y)
2 ≥ V (x)+V (y)

2 ⇔ V (
x+y

2 ) ≥ V (x)+V (y)
2

where the last step applies positive homogeneity to the left-hand side.
Equivalence of (i) and (iii) is well known, even holding for general functions V ; it will

not be proved here. We finally turn to the equivalence of (i) and (iv). It is first shown
that concavity of V implies convexity of ν. Consider any two subsets A,B of {1, . . . , n}.
Then ν(A ∪ B) + ν(A ∩ B) = V (1A∪B) + V (1A∩B) = (because 1A∪B and 1A∩B are
comonotonic) V (1A∪B + 1A∩B) = (because 1A∪B + 1A∩B = 1A + 1B ) V (1A + 1B) ≥
(becauseV is concave and, hence, as shown before, superadditive)V (1A)+V (1B) = ν(A)+
ν(B).

The implication (iv) ⇒ (i) follows from Lemma 1: neither V nor convexity of ν are
affected if ν is replaced by ν − ν(∅), and, hence, we may assume ν(∅) = 0. First take P as
in (iii) of the lemma. Then convexity of ν implies convexity of ν + P by (i) of the lemma
and, hence, monotonicity by (iv) of the lemma. The Choquet integral of ν + P is concave
by Schmeidler’s (1986) Proposition 3. Because of linearity of the signed Choquet integral
with respect to the set-function, the Choquet integral of ν must also be concave. �

Proof of Theorem 3. IfV is the minimum as described in the theorem, thenV is a minimum
of linear functionals and therefore is concave. By the implication (i) ⇒ (iv) in Theorem 2,
ν is convex.

Conversely, assume that ν is convex. Then V is the minimum of dominating linear
functionals (Theorem 2). We have to prove that V is also the minimum of a subset of these
dominating functions, i.e. of the Core integrals. This follows from Lemma 1:

Take P as in (iii) there; ν + P is convex by (i) and monotonic by (iv). Therefore, by
Theorem 3 when applied to (monotonic) capacities (Anger, 1977; Huber, 1981), the Choquet
integral of ν + P is the minimum of Core integrals of ν + P . By subtracting P from the
Core elements of ν + P and the P integral from their Choquet integrals and invoking (ii),
we find that the signed Choquet integral of ν is the minimum of its Core integrals. �

Proof of Theorem 4. Throughout this proof, we use the notational convention that, for all
x ∈ Rn, x0 = −∞ and xn+1 = ∞. For any permutation ρ on {1, . . . , n}, the comonotonic
cone Cρ associated with ρ is defined as {x ∈ Rn : xρ(1) ≥ · · · ≥ xρ(n)}. Hence, to each
rank number j , ρ assigns the time point that has the j th place in the rank ordering with
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respect to outcomes. A set is comonotonic if and only if there is a permutation ρ such that
the subset is contained in the comonotonic cone Cρ (Wakker, 1989b, Lemma VI.3.3).

As a tool in the proof, a change vector c is defined as an n + 1-tuple of plusses and
minuses, with c1 = + = cn+1, and for each j either cj is + or cj is −. For every change
vector c,Cc is defined as the set containing all x such that for all j ≥ 2, xj ≥ xj−1 if cj = +
and xj−1 ≥ xj if cj = −. Cc is sequentially comonotonic. Note that x is an element of
several Cc’s if xj = xj−1 for some j . The constant profiles are contained in all sets Cc. Cc

is the union of all rank ordered cones whose change vector agrees with c. Cc is a convex
cone because weak inequalities are preserved under convex combinations. �

Lemma 3. A set E ⊂ Rn is sequentially comonotonic if and only if it is contained in one
set Cc.

Proof. For any change vector c, the set Cc, and thus any of its subsets, is sequentially
comonotonic. Next assume that E is any sequentially comonotonic set. We define the
change vector c. Consider three, exclusive and exhaustive, cases as follows.

(i) There is x ∈ E with xi > xi−1. Then, by sequential consistency, yi ≥ yi−1 for all
y ∈ E. Define ci = +.

(ii) There is x ∈ E with xi < xi−1. Then, by sequential consistency, yi ≤ yi−1 for all
y ∈ E. Define ci = − in this case.

(iii) xi = xi−1 for all i. Then ci can be chosen arbitrarily.
Now E ⊂ Cc. QED �

Lemma 4. A sequential Choquet integral V is additive on any set Cc.

Proof. Within one set Cc, we can use the same decision weights πj , defined before
Observation 2, for all Choquet integral calculations of V . Hence, V is additive
there. QED �

After these preparations, we turn to the proof of the theorem. First assume the represen-
tation. Necessity of preference conditions (i), (ii), and (iii) is obvious, and (iv) follows from
Lemmas 3 and 4.

We next assume conditions (i)–(iv) and derive the sequential Choquet integral represen-
tation. By the proof of Corollary 1, there exists a constant equivalent V (x) for each profile
x, and V represents preference. In fact, by the Corollary, V is a signed Choquet integral
and satisfies additivity within each comonotonic cone. We prove, in a number of steps, that
the decision weights of V are as for a sequential Choquet integral.

STEP 1. The decision weights depend only on the change vector c.

We demonstrate that V satisfies additivity on larger domains than comonotonic subsets,
i.e. on whole sets Cc. By sequential additivity, for x, y ∈ Cc, x ∼ (α, . . . , α) and y ∼
(β, . . . , β) implies x + y ∼ (α, . . . , α) + y ∼ (α, . . . , α) + (β, . . . , β), which implies
V (x + y) = α + β = V (x) + V (y). In other words, the continuous functional V satisfies
additivity on the convex cone Cc. Hence, it is linear there. Linearity implies that there are
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“decision weights” πc
j such that V (x) = ∑n

j=1π
c
j xj on Cc. Because of uniqueness, the

decision weights of the signed Choquet integral on all comonotonic cones contained within
Cc must coincide with the πc’s. Therefore, the term decision weight is justified for these
numbers. The reasoning shows that the decision weights in the signed Choquet integral are
completely determined by the change vector of a profile.

STEP 2. The j th decision weight depends only on cj and cj+1.

It was demonstrated before that a decision weight πj in signed Choquet integrals does
not depend on all of the rank ordering, but only on the “dominating set” of time points i

that are rank ordered before j . Step 2 in this proof is similar. For j , and a change vector c′,
consider the convex cone of profiles x such that

• x1 = · · · = xj−1;
• xj−1 and xj are ordered in agreement with c′

j (hence, xj ≥ xj−1 if c′
j = +, xj ≤ xj−1

if c′
j = −);

• xj and xj+1 are ordered in agreement with c′
j+1;

• xj+1 = · · · = xn.

This cone is at least two-dimensional (unless n = 1, but for this case the theorem is
trivial). It is the intersection of all cones Cc for which cj = c′

j and cj+1 = c′
j+1. Hence,

V (x) = axj−1 + bxj + dxj+1 for uniquely determined weights a, b, d on this cone. It
follows that πc

j = b for any change vector c with cj = c′
j and cj+1 = c′

j+1 (and a =
πc

1 + · · · + πc
j−1, d = πc

j+1 + · · · + πc
n). Hence, the decision weight πc

j does not depend
on all of the change pattern c, but only on cj and cj+1.

STEP 3. If c and c′ differ only on the j th coordinate, say cj = + and c′
j = −, then

πc′
j − πc

j is independent of c and c′ otherwise. This difference is called the j th decision
weight penalty and is denoted by τj .

We next prove that τj is independent of c and c′ indeed, for c and c′ as just described. τj
can be interpreted as the decision weight, subtracted from πj−1 if outcome xj falls below
xj−1. Because each decision weight πi depends only on the ith and (i + 1)th coordinate of
the change vector, πc

i = πc′
i for all i < j − 1 and i > j . This implies that πc

j−1 + πc
j =

πc′
j−1 + πc′

j and, hence, πc′
j−1 = πc

j−1 − τj . In other words, changing the change vector c
only on its j th coordinate generates a decision weight shift from the (j − 1)th coordinate
to the j th coordinate and leaves all other decision weights unaffected.
πc′
j and πc

j and therefore also their difference τj depend only on cj and cj+1, because
the decision weights of the j th coordinate are independent of c’s coordinates other than
cj and cj+1. In particular, τj is independent of c1, . . . , cj−1. Similarly, πc′

j−1 and πc
j−1,

thus also their difference τj , depend only on cj−1 and cj . In particular, τj is indepen-
dent of cj+1, . . . , cn. We conclude that τj is independent of c1, . . . , cj−1, cj+1, . . . , cn,
consequently it is independent of c and c′.

STEP 4. Definition of λj ’s.
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Define, for c′ = (+, . . . ,+), λj = πc′
j for all j . In the context of income evaluation,

these are the decision weights for the empirically most favorable case in which income
always increases. The decision weight πc

j depends only on cj and cj+1, and is as follows.
(i) If cj = + and cj+1 = +, then πc

j = λj , by the definition of λj .
(ii) If cj = − and cj+1 = +, then πc

j = λj + τj , by (i) and Step 3.
(iii) If cj = + and cj+1 = −, then πc

j = λj − τj+1, by (i) and Step 3.
(iv) If cj = − and cj+1 = −, then πc

j = λj + τj − τj+1, by (ii) (or (iii)) and Step 3.
By substitution (see also after Observation 2) it now follows that V is as in Eq. (4), which

means that V is a sequential Choquet integral. Uniqueness follows from Corollary 1.
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