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Abstract

Among the most popular models for decision under risk and uncertainty are the rank-dependent models, intro-
duced by Quiggin and Schmeidler. Central concepts in these models are rank-dependence and comonotonicity.
It has been suggested that these concepts are technical tools that have no intuitive or empirical content. This
paper describes such contents. As a result, rank-dependence and comonotonicity become natural concepts upon
which preference conditions, empirical tests, and improvements in utility measurement can be based. Further,
a new derivation of the rank-dependent models is obtained. It is not based on observable preference axioms or
on empirical data, but naturally follows from the intuitive perspective assumed. We think that the popularity
of the rank-dependent theories is mainly due to the natural concepts used in these theories.
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Many models for decision under risk and uncertainty have been proposed that deviate
from classical expected utility. Among the most popular are the rank-dependent models.
They were introduced by Quiggin (1981) for decision under risk (known probabilities)
and by Schmeidler (1989) for decision under uncertainty (unknown probabilities). Rank-
dependence has been incorporated in original prospect theory (Kahneman and Tversky,
1979), leading to cumulative prospect theory (Tversky and Kahneman, 1992). The present
paper proposes an intuitive justification of rank-dependence, building on Lopes (1984),
Weber (1994), and Yaari (1987). A new derivation of rank-dependent utility is presented
that naturally follows from the intuitive conditions. For intuitive arguments for between-
ness models, see Epstein (1992).
In order to generate fruitful applications, a decision model should satisfy three require-

ments. First, it should be mathematically sound. For instance, it should not exhibit
behavioral anomalies such as implausible violations of stochastic dominance (Fishburn,
1978). This first requirement can be guaranteed by preference axiomatizations. For the
rank-dependent models, such axiomatizations were given by Quiggin (1982), Schmeidler
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(1989), and many others (see Karni and Schmeidler, 1991, Schmidt, 1998, and Starmer,
2000, for surveys).
The second requirement for a decision model concerns its empirical performance. It

has been found that rank-dependent utility can accommodate several empirical violations
of expected utility. The study of its empirical potential is still going on today (Abdellaoui
and Munier, 1999; Birnbaum and McIntosh, 1996; Bleichrodt and Pinto, 2000; Gonzalez
and Wu, 1999; Harless and Camerer, 1994; Tversky and Fox, 1995).
The third requirement is that the model should be intuitively plausible. Its concepts

should provide new insights and be economically meaningful. Future connections with
concepts from other fields should be conceivable (nomological validity). Only a few
authors have given intuitive arguments for rank-dependence. These arguments are scat-
tered around over various papers in different fields. It has been suggested recently that
a complete intuitive foundation of rank-dependence is still lacking (Luce, 1996a, p. 85;
Luce, 1996b, p. 304; Safra and Segal, 1998, p. 28). Providing such a foundation is
the purpose of this paper. We will argue, using the terminology of Backhouse (1998,
p. 1857), that rank-dependence relates to real-world (psychological) concepts. As sug-
gested by Backhouse, such arguments are, “in the last resort, informal” (see also Loomes
and Sugden, 1982, p. 817).
The paper is structured as follows. Section 1 presents the first attempt to model non-

additive probabilities, commonly used before the 1980s. Section 2 describes the intu-
ition of rank-dependence for decision under risk. The rank-dependent utility formula
follows from this intuition in a natural and elementary manner (Section 3). The intuition
also leads to natural ways of modeling pessimism and optimism, two common attitudes
towards probabilistic risk (Section 4). Section 5 extends the foundation to uncertainty.
It shows that Quiggin’s (1981) contribution for risk and Schmeidler’s (1989) contribu-
tion for uncertainty can be based on the same intuition. Using the intuitive foundation
of the preceding sections, Section 6 argues that preference conditions and measurement
procedures based on the comonotonicity restriction are not only valid under the rank-
dependent theory but also have merits in the real world. Conclusions and comments are
given in Section 7. Appendix A discusses some intuitive arguments for rank-dependence
that were presented before in the literature and Appendix B gives proofs.

1. The first attempt

Consider a lottery �p1� x1� · · · � pn� xn�, yielding outcome xj with probability pj� j =
1� 	 	 	 � n. The probabilities p1� 	 	 	 � pn are nonnegative and sum to one. In this paper,
outcomes are real numbers designating money. It is assumed throughout that the lottery
is evaluated by the following formula, called the general weighting model:

n∑

j=1

jU�xj�� (1)

U is the utility function and the 
js are called decision weights. The decision weights are
nonnegative and sum to one, and will be discussed later. The general weighting model
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is not intended to immediately imply operational predictions but serves as a general
point of departure. Intuitive arguments will be formulated in terms of the model, and
operational implications will be established subsequently.
Stochastic dominance is assumed throughout the paper. It means that moving positive

probability mass from an outcome to a strictly higher outcome leads to a strictly higher
evaluation. This assumption implies that the utility function is strictly increasing (as
follows from considering riskless lotteries). We do not yet make any further assumption
about the decision weights, and they may depend on the entire lottery for now.1 In a
descriptive context, 
j can be interpreted as the attention given to outcome xj , possibly
due to misperception of probability. In a normative context, 
j can be interpreted as an
importance weight for outcome xj that may deliberately have been chosen different than
the probability pj .
It may be possible to relate decision weights to psychological notions such as the time

span during which the decision maker looks at outcomes (Johnson and Schkade, 1989).
An empirical operationalization of decision weights is, however, not our purpose at this
stage. When further assumptions have been added, the decision weights will become
operational.
Utility is assumed to be independent of the lottery under consideration. Like decision

weights, utility is not operational at this stage but will become so later when further
assumptions have been added. Utility can be operationalized if it is interpreted in the
riskless sense of Allais (1953). Expected utility is the special case of the general weight-
ing model where 
j agrees with pj for all j.
As a preparation for what follows, and for historical reasons, we start with the follow-

ing assumption. It will turn out to be too restrictive for our purposes and will be relaxed
later on.

Assumption 1 [independence of beliefs from tastes]. The decision weight 
j of receiv-
ing outcome xj depends only on the probability pj .

The assumption requires that the decision weight 
j is independent of the outcomes
and the other probabilities of the lottery. We can now write w�p� for the decision weight
generated by a probability p, thus defining a function w. The general weighting model
becomes

n∑

j=1
w�pj�U�xj�� (2)

As we will see next, the requirement that the w�pj�s sum to one implies expected utility.
The proof is given in Appendix B.

Theorem 2. Under Assumption 1, the general weighting model �1� reduces to expected
utility, i.e. w�p� = p.

To obtain Eq. 2 with a nonlinear w function, the requirement that decision weights
sum to one will have to be relaxed. This was indeed the approach originally taken in
the literature (Edwards, 1955; Preston and Baratta, l948). The resulting model, however,
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leads to violations of stochastic dominance (Fishburn, 1978). We conclude that a trans-
formation of probabilities, independently of outcomes, is not well possible. To obtain a
decision theory with transformed probabilities, an additional relaxation of the expected
utility principles is required. Such a relaxation, rank-dependence, was introduced by
Quiggin (1981). Its intuition is explained in the next section and the rest of the paper
elaborates on this intuition.

2. The intuition and definition of rank-dependence for decision under risk

The intuition of rank-dependence entails that the attention given to an outcome depends
not only on the probability of the outcome but also on the favorability of the outcome in
comparison to the other possible outcomes. To illustrate this intuition, assume that the
decision maker is a pessimist and evaluates the lottery � 13 � 30�

1
3 � 20�

1
3 � 10�. Then he will

pay more than 1
3 of his attention to outcome 10, the reason being that 10 is the worst

outcome. Say that 
3, the decision weight for outcome 10, is
1
2 . The decision maker,

accordingly, pays relatively less attention to each of the other outcomes �
1 + 
2 = 1
2

if 
3 = 1
2 �. Being a pessimist, he will pay more than half of the remaining attention to

outcome 20 and, hence, 
2 >
1
4 ; say 
2 = 1

3 . The remainder of the attention, devoted to
outcome 30, is small (
1 = 1

6 ). Next consider the lottery with outcome 20 changed into 0,
i.e. � 13 � 30�

1
3 � 0�

1
3 � 10�. The outcome 10 is no longer the worst outcome and a pessimist

will therefore pay less attention to it than in the first lottery. In human behavior, such
attitudes are commonly observed in every-day life. Rank-dependence is a psychologically
realistic phenomenon. Savage (1954, end of Chapter 4) already pointed out that there is
no room for expressing optimism or pessimism in traditional expected utility.
Descriptively, a pessimistic attitude can result from an irrational belief that unfavorable

events tend to happen more often, leading to an unrealistic overweighting of unfavorable
likelihoods (Murphy’s law). If rank-dependence is taken normatively, then a pessimistic
attitude can result from conscious and deliberate decisions. The decision maker may
decide that unfavorable outcomes are especially important in decision making and there-
fore should receive more attention than equally likely favorable outcomes (Ellsberg, 1961,
p. 667; Fellner, 1961, p. 681; Lopes and Oden, 1999, p. 310; Weber, 1994, p. 236).
Empirically, another kind of rank-dependence is often found, where subjects pay much

attention not only to the worst outcomes but also to the best outcomes. Less attention is
paid to the intermediate outcomes. This phenomenon may result from extreme outcomes
being more noticeable. It once more illustrates the realistic nature of rank-dependence.
A discussion of the phenomenon is given in Section 4.
Further generalizations of expected utility could obviously be considered. To some

extent, the decision weight of an outcome will depend not only on whether it is bet-
ter than some other outcome but also on how much better it is. Such generalizations
may be considered in future developments. It should, however, be kept in mind that a
theory should not be too general. The theory should be sufficiently restrictive to allow
for specific predictions. In this sense, rank-dependence can be considered a pragmatic
compromise between generality and parsimony. It incorporates some major deviations
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Figure 1. Ranking position of outcome xj . : Graph of distribution function of lottery
�p1� x1� · · · � pn� xn�.

from expected utility but at the same time provides analytical tractability and specific
empirical predictions.
For the following analysis, we consider rank-ordered lotteries �p1� x1� · · · � pn� xn�

with x1 > · · · > xn. Every lottery can obviously be written in this manner by coalescing
identical outcomes and then reordering the outcomes.
The distribution function of the lottery will be used for the formal definition of ranking

positions (Figure 1). The distribution function assigns to each outcome the probability
of receiving that outcome or anything worse. It orders the outcomes from best to worst,
with value zero assigned to anything below the worst outcome, value one to anything
above the best outcome, and value p to the outcome for which, in terms of probability
mass, a p part of the other outcomes is worse and a 1 − p part is better. Therefore,
the ranking position of any outcome xj is defined as its distribution function, i.e. it is
pj + · · · + pn.

Assumption 3 [rank-dependence]. The decision weight 
j of receiving outcome xj
depends only on its probability pj and its ranking position.

This assumption has relaxed Assumption 1 by also permitting rank-dependence. To
illustrate the assumption, consider the lottery � 13 � 30�

1
3 � 20�

1
3 � 10�. The ranking position

of outcome 10 is 1
3 . For the lottery �

2
3 � 25�

1
3 � 12�, the ranking position of outcome 12 is

also 1
3 . The two outcomes also have the same probability. By Assumption 3, they must

have the same decision weight.

3. Operational implications: rank-dependent utility for risk

With Assumption 3 added, the decision weights become operational and empirical predic-
tions can be derived from the decision weights. For example, with∼ denoting equivalence,
assume that

�p1� 10� p2� 2� p3� 1� ∼ �q1� 12� q2� 2� q3� 0��
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Then the decision weight of outcome 2 in the left lottery exceeds the corresponding
decision weight in the right lottery if and only if, with � denoting preference,

�p1� 10� p2� 3� p3� 1� � �q1� 12� q2� 3� q3� 0��

The claim follows because, under Assumption 3, the middle outcomes of the left lotteries
(2 in the upper lottery and 3 in the lower) have the same decision weight 
2, and the
middle outcomes of the right lotteries (2 in the upper lottery and 3 in the lower) have the
same decision weight 
 ′

2. The increase in evaluation of the left lottery, 
2�U�3�−U�2��,
apparently exceeds the increase in evaluation of the right lottery, 
 ′

2�U�3� − U�2��.
Consequently, 
2 ≥ 
 ′

2. That is, the decision weights show where to put your money
(see Sarin and Wakker, 1998, using an idea of Gilboa, 1987).
We next demonstrate that rank-dependent utility follows from the general weighting

model and Assumption 3. Assumption 3 implies in particular that the decision weight of
a maximal outcome of a lottery depends only on its probability p, its ranking position
always being one. The function w�p� is defined as this decision weight. Let us emphasize
that w�p� is the decision weight generated by the probability p when associated with
the best outcome. Obviously, w�0� = 0� w�1� = 1, and w is strictly increasing because
of stochastic dominance.
The general rank-dependent formula for the lottery �p1� x1� · · · � pn� xn� with x1 > · · ·

> xn can be expressed in terms of the function w. The decision weight 
1 is equal to
w�p1� by definition. We next turn to the decision weight of outcome xi for some general
i. The following observation serves as a preparation.

Observation. The total decision weight assigned to outcomes x1� 	 	 	 � xi, i.e. 
1 + · · ·
+ 
i, is w�p1 + · · · + pi�.

Explanation. Consider the lotteries �p1� x1� · · · � pi� xi� pi+1� xi+1� · · · � pn� xn� and
��p1+ · · ·+pi�� z� pi+1� xi+1� · · · � pn� xn� for any outcome z exceeding xi+1, e.g., z = x1.
Because decision weights must sum to one, 
1 + · · · + 
i = 1 − 
i+1 − · · · − 
n =
w�p1 + · · · + pi�, where the second equality can be inferred from inspecting the second
lottery. Crucial in this explanation is that the outcomes xi+1� 	 	 	 � xn all have the same
ranking position in the two lotteries and therefore, by Assumption 3, the same decision
weights denoted by 
i+1� 	 	 	 � 
n.

The decision weight 
i of outcome xi is 
1 + · · · + 
i − �
1 + · · · + 
i−1�. By the
preceding observation, 
i is equal to w�p1 + · · · + pi�− w�p1 + · · · + pi−1�. Therefore,
every decision weight can be expressed in terms of w. In agreement with the rank-
dependence Assumption 3, the decision weight of xi depends only on its probability pi
and its ranking position q = pi + · · · + pn, because it can be written as w�pi + 1− q�−
w�1− q�.
Let us summarize. The model that has been derived is called rank-dependent utility

(RDU). If x1 > · · · > xn then

RDU�p1� x1� · · · � pn� xn� =
n∑

j=1

jU�xj� (3)
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where, for each j,


j = w�p1 + · · · + pj�− w�p1 + · · · + pj−1��

In particular, 
1 = w�p1�.

Conclusion 4. Under the general weighting model �Eq. 1�, stochastic dominance and
Assumption 3 imply rank-dependent utility.

The preceding analysis used the function w�p�, the decision weight generated by prob-
ability p when associated with the best outcome. An equivalent analysis could have been
presented in terms of a dual function w∗�p�, describing the decision weight generated
by probability p when associated with the worst outcome. The two functions are dual in
the sense that w∗�p� = 1−w�1− p� for all p. This duality follows because the decision
weights should sum to one for any lottery �p�M� 1− p�m� with outcomes M > m. The
analysis can be based both on w and on w∗, but it should be kept in mind whether the
function describes decision weights of best outcomes or of worst outcomes. In (3), 
j can
as well be expressed in terms of w∗� 
j = w∗�pj + · · · + pn�− w∗�pj+1 + · · · + pn� for
each j. w can be called the goodnews weighting function and w∗ the badnews weighting
function.
The decision weights are now uniquely determined and can be derived from observable

choice. Most empirical studies of decision weights have used simultaneous parametric fit-
tings for U and w. Non-parametric fittings still involving utility estimation were provided
by three independent and simultaneous studies: Abdellaoui (2000), Bleichrodt and Pinto
(2000), and Gonzalez and Wu (1999). Abdellaoui (1999) introduced a parameter-free
method for measuring decision weights without the need to estimate utilities.
Other nonexpected utility models than the rank-dependent ones can be derived from the

general weighting model. For example, if the decision weights do not depend on the rank-
ordering of outcomes but instead on the equivalence class that a lottery is contained in,
then betweenness models result (Chew, 1989; Epstein, 1992). These models are outside
the scope of this paper.
We hope that the preceding explanation has demonstrated that RDU is not solely a

mathematical device for deriving decisions from nonlinear probabilities. The theory is
based on two intuitive assumptions regarding decision making. First, people process prob-
abilities in a nonlinear manner. Second, the attention people pay to outcomes depends
on how good or bad these outcomes are. The RDU formula naturally follows from these
two intuitive assumptions.

4. Pessimism and optimism

This section shows how rank-dependence can describe phenomena outside the domain
of expected utility. We first consider pessimism. Assume that a lottery yields outcome x
with probability p. Let q denote the ranking position of x, i.e. the probability of receiving



288 DIECIDUE AND WAKKER

a lower or equal outcome. The decision weight of x then is w�p + �1− q��− w�1− q�.
Under pessimism, improving the ranking position (increasing the probability q of receiv-
ing something not preferred) decreases the decision weight of x. It is well-known that
w�p + �1 − q�� − w�1 − q� is decreasing in q if and only if w is convex. Hence, pes-
simism is characterized by a convex weighting function.
Similarly, optimism corresponds to a decision weight w�p+ �1− q��−w�1− q� that

is increasing in q, and thus to a concave weighting function. This rank-dependent way of
modeling pessimism and optimism was suggested before by Quiggin (1982, p. 335). It
was described in full by Yaari (1987, p. 108) and, subsequently, by many other authors.
It is in full agreement with the intuition advanced in this paper. Similar effects have been
demonstrated in other contexts (Viscusi, 1997, p. 1667).
In empirical investigations, many observed weighting functions are not completely

convex or concave but exhibit a mixed pattern. They are concave for small probabilities
and convex for moderate and high probabilities. This pattern is called inverse-S. It implies
that subjects pay much attention to best and worst outcomes, and little attention to
intermediate outcomes (Quiggin, 1982; Weber, 1994). Its empirical support is reviewed
by Wakker (2001). Counterevidence can be found in Birnbaum and McIntosh (1996) and
Birnbaum and Navarrete (1998). For a psychological theory about the attention paid to
low outcomes (security) and high outcomes (potential), see Lopes and Oden (1999). The
pattern suggests that people are overly sensitive to changes from impossible to possible
and from possible to certain but are insufficiently sensitive to probabilistic information
otherwise (Karmarkar, 1978; Tversky and Wakker, 1995).
The inverse-S shape predicts that people are optimistic and, hence, risk seeking for

gambles that yield gains with small probabilities such as found in public lotteries. People
are pessimistic and, hence, risk averse for gambles that yield losses with small proba-
bilities, which is relevant for insurance. The simultaneous existence of gambling and
insurance, a classical paradox in economics, can therefore be explained by the inverse-S
pattern (Quiggin, 1982).

5. The intuition for decision under uncertainty

The analysis of uncertainty, presented in this section, is parallel to the analysis of risk.
Uncertainty is, however, more interesting because subjective degrees of belief can play
a role. Risk is the special case of uncertainty where probabilities are unambiguously
known. We briefly describe the uncertainty framework. A set of states (of nature) S is
given. This set is considered to be an exhaustive list of mutually exclusive states: one
and only one state will be the true state, but the decision maker is uncertain about which
that will be. Subsets of S are called events. As in Section 1, the outcome set is assumed
to be �. Acts are finite-valued functions from S to �. The generic notation of an act is
�E1� x1� · · · � En� xn�. This act yields outcome xj if the true state belongs to event Ej . It
is implicitly understood in this notation that the events �E1� 	 	 	 � Em� partition the state
space.



ON THE INTUITION OF RANK-DEPENDENT UTILITY 289

We assume that the act �E1� x1� · · · � En� xn� is evaluated by the following formula,
the general weighting model:

n∑

j=1

jU�xj�� (4)

U denotes the utility function and the 
js are decision weights. Decision weights are
nonnegative and sum to 1. We assume monotonicity, i.e. if for some states of nature
the outcomes of an act are replaced by better outcomes then the resulting act is weakly
preferred to the original act. This implies that the utility function is nondecreasing. The
utility function is assumed to be non-constant so as to avoid triviality. No assumption
is yet made about the 
js and they are permitted to depend on the act in any possible
manner. Subjective expected utility �SEU� is the special case where the 
js are subjective
probabilities, i.e. the following two assumptions hold.

Assumption 5 [independence of beliefs from tastes]. The decision weight 
j of an
event Ej depends only on the event itself.

With Assumption 5 satisfied, the following assumption can be formulated:

Assumption 6 [additivity]. The decision weight 
A∪B of a disjoint union A ∪ B is the
sum 
A + 
B of the decision weights of the separate events A and B.

There is much interest in relaxations of Assumption 6. First, it is psychologically
plausible that people perceive likelihood in a nonlinear manner, a phenomenon which
is usually more pronounced under uncertainty than under risk (Currim and Sarin, 1989;
Fellner, 1961, p. 684; Tversky and Wakker, 1998; Weber, 1994). A nonlinear process-
ing seems to be as plausible for probabilities as for outcomes, and therefore probability
transformation seems to be as useful for descriptive purposes as utility. Second, nonad-
ditive measures of belief, such as Dempster-Shafer belief functions, are extensively used
in artificial intelligence (Dempster, 1967; Shafer, 1976). Unfortunately, a relaxation of
only Assumption 6 while maintaining full independence of beliefs from tastes turns out
to be impossible.

Theorem 7. Eq. 4 and Assumption 5 imply subjective expected utility �thus Assumption 6�.

Theorem 7 can be interpreted as a negative result. Nonadditive measures cannot be
implemented in decisions if Assumption 5 is to be maintained. We therefore turn to a
weakening of Assumption 5. The weakening could be interpreted as giving up inde-
pendence of beliefs from tastes. However, once Assumption 5 is given up, the inter-
pretation of decision weights as indexes of belief, already questionable under expected
utility, becomes highly problematic. The interpretation of nonadditive measures, which
are simply the decision weights of good- or badnews events, as indexes of belief is, obvi-
ously, similarly problematic. Another, more plausible, interpretation of decision weights
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is therefore that they are not pure indexes of belief. They may also comprise a component
of decision attitude, in addition to the belief component. Under such an interpretation,
a decomposition of decision weights into the belief and decision component can be
conjectured (Epstein, 1999; Tversky and Wakker, 1998; Wu and Gonzalez, 1999). For
consistency with traditional terminology, the name of Assumption 5 is maintained.
A relaxation of Assumption 5 that permits nonadditive measures is provided by Choquet

expected utility �CEU�, introduced by Schmeidler (1989). His model can be based on the
intuition of rank-dependence. That is, the attention paid to an event depends not only on
the event but also on how good the outcome yielded by the event is in comparison to the
outcomes yielded by the other events. This is the way in which subjective expected utility
is generalized.
For the following analysis, consider rank-ordered acts �E1� x1� · · · � En� xn�, with

xi > · · · > xn. For event Ej , the ranking position is identified with the event of receiving
a worse or equivalent outcome, i.e. it is Ej ∪ · · · ∪ En. Sarin and Wakker (1998) used the
term dominating event for the complement of the ranking position. The following analysis
is similar to the analysis under risk. It is presented concisely but in full because it demon-
strates the similarity of RDU under risk and CEU under uncertainty, thus the similarity
of Quiggin’s (1981) and Schmeidler’s (1989) ideas.

Assumption 8 [rank-dependence]. The decision weight 
j of an event Ej depends only
on the event and its ranking position.

Next, Choquet expected utility is derived from Assumption 8. The assumption implies
in particular that the decision weight of a maximal outcome of a lottery depends only on
the associated event E, the ranking position always being the universal event. W�E� can
now be defined as this decision weight. W�E� is therefore the decision weight generated
by the event E when associated with the best outcome.W is a capacity, i.e. (1)W�
� = 0,
(2) W�S� = 1, and (3) W is nondecreasing with respect to set inclusion. (Condition (3)
follows from consideration of acts �A� x� B ∪ C� y� and �A ∪ B� x�C� y� with U�x� >
U�y�. Monotonicity implies preference for the first act, which implies that W�A ∪ B� ≥
W�A�.)
We express the general weighting model in terms of the capacity W . Consider the

act �E1� x1� · · · � En� xn�. We assume that the events have been rank-ordered such that
x1 > · · · > xn. The decision weight 
1 is by definition equal to W�E1�. Next consider a
general i.

Observation. The total decision weight assigned to outcomes x1� 	 	 	 � xi, i.e. 
1 + · · ·
+ 
i, is W�E1 ∪ · · · ∪ Ei�.

Explanation. Consider the acts �E1� x1� · · · � Ei� xi� Ei+1� xi+1� · · · � En� xn� and
��E1 ∪ · · · ∪Ei�� z� Ei+1� xi+1� · · · � En� xn� for any outcome z exceeding xi+1, e.g., z = x1.
Because decision weights must sum to one, 
1 + · · · + 
i = 1 − 
i+1 − · · · − 
n =
W�E1 ∪ · · · ∪ Ei�. Note that, by Assumption 8, the outcomes xi+1� 	 	 	 � xn all have the
same ranking position in the two acts and therefore the same decision weights.
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The observation implies that the decision weight 
i of event Ei is the differenceW�E1 ∪
· · · ∪Ei�−W�E1 ∪ · · · ∪Ei−1�. It is standard that this difference is 
1 = W�E1� for i = 1.
The rank-ordering of the events was crucial in our analysis. Let us summarize and give
the formal definition of Choquet expected utility �CEU�. For x1 > · · · > xn,

CEU�E1� x1� · · · � En� xn� =
n∑

j=1

jU�xj� (5)

where


j = W�E1 ∪ · · · ∪ Ej�−W�E1 ∪ · · · ∪ Ej−1��

Conclusion 9. Under the general weighting model (Eq. 4), monotonicity and Assumption
8 imply CEU.

Empirical measurements of decision weights have been described by Fox, Rogers, and
Tversky (1996), Fox and Tversky (1995), Kilka and Weber (1999), and Wu and Gonzalez
(1999). We hope that the preceding explanation clarifies that the intuitive basis of CEU is
the same as of RDU. Thus, a psychological background has also resulted for Schmeidler’s
(1989) Choquet expected utility. It will be argued in the next section that, given this
intuition, the comonotonicity condition is not just a mathematical tool but is a natural
concept. Let us now turn to a discussion of pessimism.
Pessimism means again that the attention paid to an event gets higher as the event gets

rank-ordered worse. That is, assume that event E yields outcome x and D is the ranking
position of E. Then the decision weight of E is W�Dc ∪ E�−W�Dc�. Under pessimism,
worsening the ranking position (decreasing the event D of receiving something worse)
increases the decision weight of E. That is, if C ⊂ D, then

W�Cc ∪ E�−W�Cc� ≥ W�Dc ∪ E�−W�Dc�� (6)

Similar to risk, a capacity W satisfying Eq. 6 is called convex. Eq. 6 can be rewritten as
W�A ∪ B�+W�A ∩ B� ≥ W�A�+W�B� after appropriate substitution of symbols (left
to the reader). Optimism is similarly characterized by concavity of the capacity, i.e. Eq. 6
with ≤ instead of ≥.

6. Coalescing and comonotonicity

Both in risk and in uncertainty, the rank-dependent formulas have been given for distinct
outcomes x1 > · · · > xn. Eqs. 3 and 5 can also be used if the inequalities are weak, i.e.
x1 ≥ · · · ≥ xn. These claims follow from substitution and are left to the reader. For an
act �E1� x1� · · · � En� xn� with xi = xi+1, the decision weight and the ranking position of
event Ei depend on the chosen rank-ordering between xi and xi+1. This choice can be
made arbitrarily and is immaterial for the associated preferences.



292 DIECIDUE AND WAKKER

We next discuss comonotonicity, introduced by Schmeidler (1989). The condition has
sometimes been criticized. An explanation of its intuition therefore seems to be worth-
while. For simplicity, assume a finite state space S = �s1� 	 	 	 � sn�. For a permutation
� 1� 	 	 	 �  n� of �1� 	 	 	 � n�, consider the set C

 = �f ∈ �n " f 1 ≥ · · · ≥ f n�. It can be
seen that C is a convex cone. For all acts in the cone C , we can use the same decision
weights 
 j

determined by


 j
"= W�s 1� 	 	 	 � s j �−W�s 1� 	 	 	 � s j−1�

in the computation of CEU. If acts are in the same cone, then fi > fj and gj > gi for no
states si and sj . Acts belonging to the same cone are called comonotonic.
Within comonotonic sets, CEU coincides with an SEU functional. This SEU functional

is defined by taking the CEU utility function and taking as probabilities the decision
weights 
 j

associated with the comonotonic set. Therefore, CEU exhibits many charac-
teristics of SEU within comonotonic sets. In particular, it satisfies the same preference
axioms.
The comonotonic agreement of CEU with SEU is implied by the theory but is also

empirically interesting. Consider acts belonging to different comonotonic sets. The states
of nature are rank-ordered differently for such acts. This difference will enhance variations
in the psychological attention paid to the states. Subjects will exhibit more pronounced
violations of SEU, due to pessimism, optimism, etc. When only acts are considered from
one comonotonic set, fewer violations of SEU can be expected. According to CEU theory,
the effects of pessimism and optimism will then be kept constant. In reality, they can be
expected to be smaller than when the rank-ordering of the acts varies.
Comonotonicity is extensively used in preference axiomatizations of CEU. Most axiom-

atizations consist of restricting the SEU axioms to comonotonic acts. For a continuum of
outcomes, CEU holds as soon as SEU holds within every comonotonic set (this is easily
derived from Wakker and Tversky, 1993, Proposition 8.2). An empirical application of
comonotonicity can be found in utility measurement. Wakker and Deneffe (1996) demon-
strated that utility can be measured under CEU by restricting SEU techniques to comono-
tonic sets of acts. Such a restriction has the empirical advantage of avoiding the biases
generated by rank-dependence, and therefore seems desirable.
Some authors have pointed out that rank-dependence and comonotonicity are often used

as technical tools and that there is still a need for an intuitive foundation (Luce, 1996a,
p. 85; Luce, 1996b, p. 304; Safra and Segal, 1998, p. 28). Our paper has provided such
a foundation, building on ideas described before in the literature. We have argued that
rank-dependence and comonotonicity do have intuitive and empirical merit. Yaari (1987,
p. 104) already emphasized the intuitive importance of comonotonicity when discussing
his central axiom (dual independence): “The foregoing proposition makes it clear that the
economic interpretation of dual independence lies in the intuitive meaning of comono-
tonicity.”
Obviously, alternative derivations of CEU and RDU that do not use rank-dependence

or comonotonicity in their axioms are also interesting. Such derivations are given by Luce
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(1998) and Safra and Segal (1998). In these derivations, rank-dependence follows from
other conditions.

7. Conclusion

This paper has argued that RDU is not just a mathematical device but that it is based on
intuition and has real-world merits. The intuition of rank-dependence was described in
terms of decision weights. The RDU formula naturally followed as well as empirically
meaningful preference conditions. Optimism and pessimism were explained in terms of
the intuitive foundation. An analogous reasoning was applied to the uncertainty case and
a psychological background for Schmeidler’s (1989) Choquet expected utility resulted.
Once the intuition is understood, comonotonicity conditions and rank-dependence are
no longer mere theoretical tools. They become natural concepts upon which preference
conditions, empirical tests, and improvements of utility measurement can be based.
Our preference for RDU, and we believe also its general popularity, are based not

only on its mathematical or empirical performance but also on an intuitive aspect of the
model: The nonlinear weighting of chance, and nonadditive measures of belief, have the
potential of becoming useful concepts, not only in economics but also in other areas such
as psychology and artificial intelligence.

Appendix A. Related literature on the intuition of rank-dependence

This appendix discusses some intuitive arguments for rank-dependence that have been
presented in the literature. A first example from the psychological literature is Birnbaum’s
(1974) study of the formation of personality impressions. For example, Birnbaum studied
the likableness of a person on the basis of intellectuality, shyness, loyalty, etc. He found
empirical violations of additive aggregation and proposed a configural weighting model
that better describes how intellectuality etc. are aggregated into likableness of a person.
Under configural weighting, “	 	 	 the weight of a stimulus depends upon its rank within
the set to be judged” (p. 559). Although this model is formally different from RDU, it
does already contain an intuition of rank-dependence. Configural weighting theory was
later extended to risky choices (Birnbaum and Navarrete, 1998 and the references therein).
A remarkable study is Lopes (1984) who argued for the intuitive value of rank-depend-

ence in risk theory as an extension of the Gini index of inequality. The rank-dependent
aspect of such measures of inequality was formulated by her as “	 	 	 embody distribu-
tional objectives in terms of the relative weight given to inequality at different points on
the income scale 	 	 	 The central psychological premise in this article is that people’s
intuitions about risks are functionally similar to intuitions about distributional inequality.
	 	 	 representation that captures psychologically salient features of risky distributions”
(p. 468). She then explained that people, well aware of the objective probabilities, still
“may wish to weight outcomes differently at different points in the distribution” and dis-
cusses human ways of reasoning reflecting this procedure (p. 469). Experiments were
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presented to test for the role of rank-dependence. Lopes concluded that rank-dependence
(called the distributional model) “	 	 	 seems to offer the potential of capturing in a psycho-
logically meaningful way many interesting and important features of people’s processing
of and preference for risks” (p. 484).
Let us emphasize that Lopes (1984) derived her ideas solely from intuition and

psychological principles. No preference axioms were considered. Her work was devel-
oped independently of Quiggin (1981, 1982) or other presentations of RDU. Lopes (1987)
presented experiments where subjects were asked to speak aloud about their motives for
choices between multiple outcomes gambles. It turned out that subjects paid much atten-
tion to goodnews events (receiving at least as much as 	 	 	 ) and, similarly, badnews events.
This attention is formalized through the probability weighting function in rank-dependent
theories. Rank-dependent decision weights then result from difference-taking. The great
attention to good- and badnews events also supports the inverse-S shapes of the weighting
functions.
A third example from the psychological literature is Weber (1994). She used a some-

what different approach than this paper, invoking an analogy with estimation theory and
asymmetric loss functions, and concluded “these processes need not necessarily be percep-
tual in origin. Instead, in this article, I argued that configural or rank-dependent weighting
could be interpreted as strategic or motivational (i.e. a reasonable response that takes
into consideration existing constraints that are ignored by the expected utility model)”
(p. 236). On p. 237 she discussed perceptual origins (“attentional salience”): “	 	 	 and
more extreme outcomes may get greater weight than outcomes in the middle of the dis-
tribution, simply because they are more noticeable.”
Models that pay special attention to highest or lowest outcomes can be considered to

be special cases of rank-dependence. An example is Rawls’ (1971) proposal for welfare
evaluation, where all importance weight is allocated to the poorest person in the soci-
ety. Rank-dependent models for welfare were developed by Ebert (1988) and Weymark
(1981). Similar models, with the importance weight divided over the highest and lowest
outcomes, were proposed by Arrow and Hurwicz (1972) and Hurwicz (1951). Models
that deviate from expected utility only by overweighting highest and/or lowest outcomes
were proposed by Bell (1985), Cohen (1992), Gilboa (1988), and Jaffray (1988). In time
preference, rank-dependence arises when people are especially sensitive to decreases in
salary. This is a special case of rank-dependence, related to the immediately preceding
period (Gilboa, 1989; Shalev, 1997).
Yaari (1987) related the intuitive meaning of comonotonicity to hedging. Hedging con-

cerns combinations of outcomes and therefore requires a linear structure on the outcome
set. For example, consider two gambles for money on the same toss of a coin. The first
gamble is �H� 30� T � 10�, yielding $30 if heads comes up and $10 if tails comes up. The
second gamble is �H� 10� T � 30�. These two gambles are equivalent but their fifty-fifty-
outcomes-mixture �H� 20� T � 20� is usually preferred. In the mixture, a reduction of risk
has resulted. Hedging occurs because the good outcome of one lottery neutralizes the bad
outcome of the other lottery and vice versa. The lotteries serve as complementary goods.
The described neutralization can occur only because the gambles are not comonotonic.
Hence, Yaari argued that an independence condition (his Axiom A5) is natural only in the
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absence of hedging, i.e. only for comonotonic gambles. A similar argument was presented
by Röell (1987). Hedging is central in the portfolio selection of assets.
Schmeidler (1989) used a similar framework that generalizes Yaari’s model in two

respects. First, Yaari considered real-valued outcomes (interpreted as money), whereas
Schmeidler delt with general convex outcome sets (interpreted as probability distributions
over prizes). Second, Schmeidler assumed states of nature for which no probabilities need
to be given. Yaari’s model can be considered the special case of Schmeidler’s model where
probabilities of the states of nature are given and outcomes are one-dimensional.
We next discuss Quiggin (1982). He first discussed what he called the primitive ap-

proach, i.e. our Eq. 2, transforming only probabilities of fixed outcomes, and pointed out:
“the fundamental problem in these theories is that any two outcomes with the same proba-
bility must have the same decision weight. This fails to take account of the fact that while
individuals may distort the probability of an extreme outcome in some way, they need
not treat intermediate outcomes with the same probability in the same fashion.” A similar
intuition can be recognized in Fellner (1961, p. 674/675). So as to formalize this obser-
vation, Quiggin proposed to order the possible outcomes xi and the corresponding proba-
bilities pi in each prospect and denoted the rank-ordered probability vector �p1� 	 	 	 � pn�
by p. Quoting again from his paper: “The anticipated utility function is defined to be
V = h�p�U�x� = ∑

i hi�p�U�xi� where U is a utility function with properties similar to
that of von Neumann-Morgenstern, while h�p� is a vector of decision weights satisfy-
ing

∑
i hi�p� = 1. In general, hi�p� depends on all the pjs and not just on pi. Thus, for

example, the fact that pj = pk would not imply that hj�p� = hk�p�.”
Quiggin’s formula is a special case of the general weighting model where the decision

weights are independent of the outcomes given the rank-ordered probability vector p.
Quiggin gave preference conditions to characterize his formula. He then showed that
RDU follows from a continuity condition. The purpose of our analysis was different.
We did not invoke technical conditions such as continuity in the derivation but derived
rank-dependence from intuitive arguments.

Appendix B. Proofs

Proof of Theorem 2. Decision weights always sum to one and, hence, w�p1 + p2� =
1− w�1− p1 − p2� = w�p1�+ w�p2�. Consequently, w satisfies Cauchy’s equation. By
Aczél (1966), w must be linear. Note here that w is bounded by 0 and 1 so that no nonlinear
solutions to the Cauchy equation are possible. w is the identity function because w�0� = 0
and w�1� = 1. �

Proof of Theorem 7. For each event E, define W�E� as the decision weight of that
event. W�E� is nonnegative, W�
� = 0, and W�S� = 1. Decision weights of partitions
always sum to one, thereforeW�E1 ∪E2� = 1−W��E1 ∪E2�

c� = W�E1�+W�E2�.W is
a probability measure and SEU follows. �
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