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SUMMARY

A method is introduced to derive strength of preference revelations on
consequences from ordinal preferences on acts. By means of this a
behavioural foundation is given for the maximization of subjective
expected utility with continuous utility, where ‘probabilities’ may be
nonadditive. Further, utility may be nonlinear, no lottery mechanisms
are needed, and the state space may be arbitrary. An alternative
interpretation of the resulting approach is given according to which the
deviation from expected utility is not so much the nonadditivity of the
probabilities, but rather is act-dependence of the probabilities.
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1. INTRODUCTION.

This paper considers Schmeidler’s approach to decision making under uncertainty.
Schmeidler’s approach generalizes expected utility by dealing with (capacities =) nonadditive
probabilities; it uses the ‘Choquet integral’ to derive decisions from these. Nonadditivity of
probabilities of decision makers is often taken to reflect uncertainty about the quantification
of uncertainty. If probabilities of elementary outcomes add up to less than one, the difference
with one is taken to measure the uncertainty about the probabilities.

Mainly Savage(1954) provided the behavioural foundation for additive probabilities, using
expected utility to derive decisions from these additive probabilities. Only after publication of
Savage’s result did subjective expected utility theory become full-blown. Schmeidler(1984a)
was the first to provide (in the spirit of Savage) a behavioural foundation for the use of
nonadditive probabilities. In this behavioural foundation Schmeidler required the availability
of (‘objective’) lottery mechanisms on consequences. That requirement is removed by the
Main Theorem of this paper, Theorem 6.8, which requires continuity instead.

In section 2 we shall sketch the historical background of nonadditive probabilities.
Section 3 gives some methodological observations concerning generalizations of expected
utility. Section 4 gives elementary definitions and notations on preference relations. Section 5
presents the Choquet integral. This generalizes the usual integral to cope also with
nonadditive probabilities. Within ‘comonotonic’ sets the Choquet integral will behave as a
usual additive integral.

The main new ideas of this paper are presented in section 6, where the extension of
expected utility to nonadditive probabilities is characterized with continuity of utility as only

- restriction, for ‘strongly bounded’ acts. This should make matters suited for economic '
applications. The main new tool for our result is given in Definitions 6.1 and 6.3, where
strength-of -preference revelations over consequences are derived from solely an ‘ordinal’
preference relation over the acts, by means of a tradeoff-idea from multiattribute utility
theory. A condition to exclude ‘comonotonic-contradictory’ (revelations of) strengths of
preferences will then characterize the desired representation. Also this way to derive strengths
of preferences is used to reformulate the characterization of subjective expected utility
maximization of Wakker(1984), by reformulating ‘cardinal coordinate independence’ as the
exclusion of contradictory (revelations of) strengths of preferences (without any
comonotonicity restriction). The characterizing conditions could just as well have been

formulated directly in terms of the primitive, the preference relation; it is hoped that the
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present formulations, in terms of derived strengths of preferences, are more transparent. The
issue of how these derived strengths of preferences may be related to other notions of
strengths of preferences, such as strengths of preferences under certainty, is not taken up in
this paper. References on related discussions are Allais(1952, 1979), Krzysztofowicz(1983).

Nonadditivity of probabilities does not provide the only way to interpret Schmeidler’s
generalization of expected utility. In subsection 7.1 we shall expound that Schmeidler’s
approach can also be considered the gene}alization of expected utility which allows
probabilities to be act-dependent through the ordering of states of nature according to
‘favourableness’. Given an act, the state of nature giving the most preferred consequence 'is
the most favourable one; and so on. (The act-dependent probabilities will then be required to
satisfy a consistency condition (7.2).) Further section 7 gives examples and special cases of
capacities, ranging from max-min-behaviour to fuzzy sets. This should show that Schmeidler’s
approach is general enough to entail many other approaches as special cases. Section 8
concludes the main body of the paper. In the Appendix the proof of the main theorem will
be given.

Our results have been formulated for decision making under uncertainty, where the
coordinates refer to states of* nature. One may also let coordinates refer to individuals, and
for instance reinterpret acts as allocations. In that case our theorems give results for welfare
theory. Definitions 6.1 can then be interpreted to formalize a role of individual strengths of
preferences in social welfare.

The formulations of the main Theorem 6.8 and the previously published, now
reformulated, Theorem 6.6 are such that they can be understood without consultation of the
remainder of the text, with the exception of the involved definitions of course; these -

definitions are listed directly above Theorem 6.8.

2. HISTORY OF THE SUBJECT

The main restrictive assumption in Savage’s derivation of subjective expected utility
maximization (giving a list of sufficient conditions) for decision making under uncertainty is
his postulate ‘P6’, requiring the state space to be infinitely divisible. A second derivation of
subjective expected utility maximization, important for this paper, has been given by
Anscombe&Aumann(1963). They use a well-known result of von Neumann&Morgenstern
(1947, 1953), to characterize subjective expected utility maximization (i.e. give a list of

conditions, not only sufficient, but also necessary) for the case where lotteries on
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consequences are available and the utility function on the consequences is a ‘von Neumann &
Morgenstern’ utility function, i.e. it is linear. Mathematically the result of
Anscombe&Aumann is closely related to the result of de Finetti(1937; see also de

Finetti, 1972, 1974), who obtained his result for the case where consequences are amounts of
money, and utility is linear. This restriction is not common in economic literature, hence de
Finetti’s result has not received much attention there, as opposed to statistical literature where
his ‘coherence condition’ is well-known. The third derivation of subjective expected utility
maximization considered in this paper is the author’s result in Wakker(1984; 1986,

Theorems 1V.3.3 and V.6.1). There subjective expected utility maximization is derived under
the restrictive assumption of continuity of the utility function. This has been done with the
purpose to obtain a restriction, suited for economic applications.

The most important innovation in Savage’s work may be the ‘sure-thing principle’ which
adapts the ‘independence condition’ of von Neumann&Morgenstern to the context of decision
making under uncertainty. It is mainly this principle which implies the additivity of the
obtained subjective (‘personalistic’) probability measure. As the independence condition of
von Neumann&Morgenstern (and Anscombe&Aumann), the sure-thing principle has been
subjected to heavy criticisms. For one part these criticisms are based on the finding of
systematic violations of the principle by decision makers in experiments and in actual
decision situations. Secondly the criticisms are based on introspections of scientists, primarily
Allais(1953, 1979), leading them to disagree with the normative appeal as was ascribed to the
sure-thing principle, for instance in Savage(1954, first paragraph of section 2.7, in particular
the last sentence), or Raiffa(1970, p. 82). The critics usuélly refer to the Allais paradox (see
Example 7.5) and the Ellsberg Paradox (see Example 7.4). A well-contemplated exposition on
this is McClennen(1983). The dissatisfaction with the sure-thing principle has impelled the
introduction of new abproaches.

Schmeidler’s approach can best be considered to be the generalization to nonadditive
probabilities of the approach of Anscombe&Aumann(1963). The ‘nonadditive generalization’
of de Finetti’s linear-utility-result can be obtained in a way which mathematically is
analogous. An analogue of Savage’s result for the case of nonadditive probabilities has been
obtained by Gilboa(1985a), who was inspired by an early version of Schmeidler’s work. The
main result of this paper, Theorem 6.8, will adapt Theorems IV.3.3 and V.6.1 of
Wakker(1986) to the case of nonadditive probabilities. As compared to the results of
Schmeidler(1984a) and the nonadditive version of de Finetti’s result, our result does not need
lotteries on consequences any more, or linearity of utility. As compared to Gilboa’s adaptation
of Savage(1954), no restrictions on the state space are needed anymore; the state space may
for instance be finite, or have atoms. The restriction for our result is continuity of the utility

function w.r.t. a connected! separable? topology. This restriction can be satisfied for instance
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in the case where consequences are amounts of money, or commodity bundles. The restriction
is also applicable in contexts where no (physical) quantification for consequences is available
yet.

In the proof of the main theorem we shall use Theorem VI.5.1 of Wakker(1986; see also
Wakker,1987, Theorem 5.1); in this theorem the desired adaptation was already obtained for

finite state spaces, without yet using the derived strength of preference relation.

3. THE EVALUATION OF MORE GENERAL APPROACHES

The prevailing view in the literature on decision making under uncertainty is nowadays
that the expected-utility-approach excludes too many interesting ways of decision making
under uncertainty. Such ways are revealed for instance in the Allais paradox and in the
Ellsberg paradox. Hence there appears an increasing number of approaches to generalize
expected utility. One such approach is Schmeidler’s. Obviously the advantage of a more
general approach, to allow for more interesting ways of decision making under uncertainty,
should be weighed against the disadvantage to allow for more uninteresting ways of decision
making under uncertainty. By this disadvantage fewer theorems and predictions can be
obtained, and methods to elicit, or help a decision maker choose, the parameters in such a
more general approach will be more complicated (in the approach studied in this paper tﬁe
parameters will be the utilities and capacities).

Another example of a generalization of expected utility maximization is the approach
proposed by Machina(1982). His approach may be interpreted to permit the expected utility
model to depend ‘locally’ on a considered act. As long as the preferences are smooth enough
Machina’s approach is less specified, i.e. more general, than expected utility. It allows for the
ways of decision making under uncertainty such as usually exhibited in the Allais Paradox
and the Ellsberg Paradox. An important step in Machina’s propagation of his approach is to
show that it still excludes sufficiently many uninteresting ways of decision making under
uncertainty to allow the derivation of theorems on the measurement of risk aversion in the
spirit of Arrow&Pratt. Besides Machina’s approach, many other generalizations of expected
utility have been considered. For the context of decision making under uncertainty we
mention Arrow&Hurwicz(1972) and Cohen&Jaffray(1980) on complete ignorance,

Skyrms(1980) and Goldsmith&Sahlin(1981) on higher-order-probabilities, Bell(1982) and
Loomes&Sudgen(1982, 1986) on regret theory, Fishburn(1984) on the skew-symmetric bilinear
theory, and Gilboa(1986) and Jaffray(1986) on a an approach dealing with the ‘security




factor’.

Like Machina’s approach, and almost all generalizations of expected utility, Schmeidler’s
approach does not exclude the behaviour such as usually exhibited in the Allais paradox and
in the Ellsberg paradox. Such behaviour can now be explained as ‘uncertainty aversion’,
formalized as superadditivity of the nonadditive probability measure (see subsection 7.1, or

Schmeidler,1984a, below Remark 3: see also Schmeidler,1984b,1984c).

4. STATES, ACTS, CONSEQUENCES, AND THE PREFERENCE RELATION

Let S be a set of states (of nature). Exactly one of them is the ‘true state’, the other
states are untrue. By I' we denote a set of consequences. An act f is a function from S to T
If a decision maker chooses an act f , this results in consequence f(s) for (him or) her, where s
is the true state of nature. The decision maker is unsure about which state of nature is the
true one, hence is unsure about what the consequence of an act is. By > we denote the
preference relation of the decision maker on the acts; it is a binary relation on I'S,

For any a in T, « is the constant act which assigns consequence « to every state. For
any set A C S, consequence a, and act f , f_pa is the act which assigns f(s) to every s A€,
and o to every s € A,

Next we introduce measure-theoretic structure. A reader not interested in that may
simply assume that £, introduced below, is 25, Then all functions from S to T" are
‘measurable’, and all measure-theoretical conditions in the sequel will be trivially satisfied, so
can be ignored. By ¥ we denote an algebra on §, i.e. © C 25 contains @, S, and is closed
w.r.t. finite union and intersection taking and w.r.t. complement taking. Elements A,B of & )

are called gvents. Further we assume that an algebra A on T is given. By ® we denote the set

of acts f which are (A-Z-) measurable, i.e. for every set E€ A, (s € S: f(s) € E} is in X,

Note that f_,o is in & whenever A is an event and f is in @,

We say that the binary relation > is a weak order on a subset E of I‘S, if it is complete on

E (ie. for all f,g in E: f > g or g > f) and transitive on E (i.e. for all f,g,h in E: if f > g and

gzhthenfah).Asusualwewritef>giffggandnotng,fzgiffzgandgzf,
further f <g if g > f, and f < g if g > f. We call > trivial on E c TS if f ~ g for all f,g in E.
We call > an ordering if it is a weak order with f ~ g only if f = g. As usual, for > on I'S we
denote also by > the binary relation on T defined bya> gif a > 3.

Let again E c TS, A function ¢ : E - IR represents > on E if, for all f,g in E, f > g iff
©(f) > p(g). A function is said to be continuously ordinal (w.r.t. a list of properties) if the set
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of all functions possessing these properties is the set of all continuous increasing transforms
of the concerned function. [We use the term ‘increasing’ instead of ‘strictly increasing’.] A
function is said to be cardinal (w.r.t. a list of properties) if the set of all functions possessing
these properties is the set of all positive affine transforms of the concerned function. [A
positive affine transform is obtained by adding a real number, and multiplying with a
positive real number,]

Let m = (Aj)j:l be an ordered partition, or partition for short, of S, consisting of
events. Note that in our notation the ordering of the events in the partition is relevant. By &7
we denote the algebra of the subsets of S which are a union of events from m. We write
Zj;"lalej for the act in & which assigns @; to every s in A;, j = 1,...,m. Obviously
this act is gimple, i.e. it has a finite range. The notation for the simple act above is just
suggestive. It does not designate any addition or multiplication operation, these not even
being defined for general I'. For a partition 7 = (Ay,...,A,) of S consisting of events, &7 is
the set of acts of the form Zj:lalej, and ®T is the set of acts of the form Zj:lalej
with furthermore o;_; > a; for all j > 2. Note that indeed the ordering of events in 7 is
relevant here. Let ®* := (f € ®: f is simple). Then f_,o € ® whenever f € & and A € £.

We shall assume throughout the sequel that I' is a connected! separable? topological space,
e.g. I' is IR, or (IR*)™, The following topological condition is of a finite-dimensional

character, thus is weaker than most of the other continuity conditions, used in literature.

DEFINITION 4.1. The preference relation > is simple-continuous, or s-continuous, if for any

partition (Aj)j ml, consisting of events, and any act f = Z,mlﬁlej, the sets
= }:
(s ) € T Zj:“lalej > f} and {(ay,...,q,;) € T™ Zji"lajIAj < f} are closed w.r.t. the

product topology on I'™,

One may formulate s-continuity as: the binary relation > on I™, defined by:
. m m
(4.1) (al""’am) >’ (ﬂl""’ﬁm) lff Zj=laleJ > Zj:lﬂle_]

is continuous w.r.t. the product topology on I'™, This continuity is weaker than continuity of
2 w.r.t. the product topology on I‘S, and also weaker than the sup-metric continuity as used
in Koopmans(1972).

For the extension of the Choquet-integral to nonsimple acts, as derived in section A2 of

the Appendix, the following definitions will be used.

DEFINITION 4.2. The preference relation > is constant-continuous on ® c IS if
(¢ €T: a2 f)and {a €T a < ) are closed for all f € &',

As s-continuity, constant-continuity is implied by the product-topology-continuity, and

=




by Koopmans’ sup-metric-continuity.

DEFINITION 4.3. The preference relation > satisfies pointwise monotonicity if:
[f(s) > g(s) for all s € S] => [f > g].

We shall obtain the desired representation only for nonsimple acts which are ‘strongly

bounded”:

DEFINITION 4.4. An act f is strongly bounded if there exist consequences «,4 such that

a > f(s) > B for all states s.

The set of all strongly bounded acts is denoted as ®P, Obviously, if a best and worst
consequence exist, then every act is strongly bounded. If > is a weak order then every simple

act is strongly bounded (by means of its *‘maximal’ and ‘minimal’ consequences).

5. THE CHOQUET INTEGRAL AND COMONOTONICITY

In the sequel the following kind of set functions will be taken to measure the decision

makers degrees of belief in the truth of events.

DEFINITION 5.1. A function v: £ — IR is a capacity (on S) if:
(5.1) v(@)=0

(5.2) v(S)=1

(5.3) ACB= v(A) < v(B) (monotonicity)

Note that the range of v must be contained in [0,1]. A (finitely-additive) probability
measure P is a capacity which satisfies additivity, i.e. P(A U B) = P(A) + P(B) for all disjoint
events A,B. The following generalization of the notion of an integral, originating from

Choquet(1953-54, formula 48.1) will be used in this paper:

DEFINITION 5.2. Let v : A — IR be a capacity. Let ¢ : S — IR be such that ©~1[r,00) and

p~Y(-o0,7] are events for all real 7. Then the Choquet integral of ¢ w.r.t. v, denoted as fsqodv,

or as [pdv, is

(5.4) J' Sov({s € S: (s) = t})dr + _l'(_)oo[v({s € S o(s) > r})-1]dr




In this paper we shall deal only with bounded functions . For these (5.4) is always
defined and finite. Integration by parts shows that for additive capacities the Choquet integral
coincides with the usual integral (i.e. expectation). It is well-known (see for instance
Wakker,1986, formulas V1.2.8 to V1.2.10) that the Choquet integral satisfies positive
homogeneity ( [Mpdv = Afpdv for all A > 0), translation invariance (JO+p)dv = A + [edv for
all real ), and monotonicity ( if ¢(s) > ¢(s) for all s, then _[qodv > fgdv ). For a nonadditive
capacity v, the Choquet integral is not additive, i.e. the equality [[(p+¢)dv = [pdv + Jedv]

does not hold for some ¢,¢. The latter equality is known to hold for all ©,¢ which satisfy
[ ©(s) > ©(t) => not {(t) > ¢(s) ]. So we define analogously:

DEFINITION 5.3. Acts f and g are comonotonic if for all s,t € S, not simultaneously
(5.5) f(s) > f(t) and g(t) > g(s).

Hence comonotonicity will be important in our work. A set of acts is called comonotonic
if each pair of acts from the set is comonotonic. Note that ®T is comonotonic; this explains
the index c. If consequences are real numbers, indicating money, and f and g are
comonotonic, then receipt of g in addition to an already received f will not induce any
‘hedging against riskiness’. Thus the condition in (5.5) already occurred in Yaari(1969, bottom
of page 324 and top of page 328) in a study of risk aversion.

A set C of acts may suggest that an event can be ignored, e.g. for being impossible;

DEFINITIONS 5.4. Let C c TS, Event A is inessential (w.r.t. ) on C if, for all f,g in C
which coincide outside of A, we have f = g. The opposite of ‘inessential’ is essential. For a
partition 7 of S, consisting of events, event A is r-inessential (respectively w-essential) if

A € IT and A is inessential (respectively essential) on @7,

6. THE MAIN THEOREM

The plan in this paper will be to work as much as possible with finite-dimensional
aspects, thus with simple functions. Only with simple functions will be dealt in the
(intuitively-)central conditions, those given in Definitions 6.1 through 6.5 below. And first

for simple functions the desired representation will be derived, in the proof in section Al of
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the Appendix. Only after that the extension of the desired representation to nonsimple acts
will be obtained, with proof provided in section A2 in the Appendix.
The first idea is to derive strengths of preferences w.r.t. consequences from the

preference relation over the acts. This idea was mentioned in Wakker(1984, section 3).

- DEFINITIONS 6.1. We write, for consequences a,f,7,5,

(6.1) aB > 46
if there exist an event A, and simple acts

£ aa, 848, f_A7, 8_,6 such that both

(62) f_ACEZ g,Aﬁ and

f_A7 < B.aS.
We write >* instead of >* in (6.1) if in (6.2) we have < instead of < and if furthermore A is

essential on ®°,

a

The idea of (6.2) is that replacement of a,B by 7,6, contingent on event A, apparently has
made event A a less favourable argument (or a more unfavourable argument) for the left act
against the right act, in view of the reversion of preference. The idea is further that this
should be interpreted to reveal that the strength of preference of a over § is larger than the
strength of preference of v over §. If A is inessential on %, then (6.2) with < instead of <
can be arfanged for all @,8,7,6, by the choice f = g. This obviously should not give
information about strengths of preferences. Hence the éssentiality condition at the end of the
above definition of >". Note that we have not assumed that >* is the asymmetric part of >

The following lemma is a preparation for the second part of Definitions 6.3,

LEMMA 6.2. The four simple acts £ a, g A8, £.A7, and 8-a8, are comonotonic if and only if

there exists a partition T of S, consisting of events and containing A, such that ®T contains all
four acts.

PROOF. See Wakker(1986, Lemma VI.3.5.iv).

]

In this paper we shall not deal with additive contexts, in our work comonotonicity will be
central. Hence:

B AT 1 rear S L
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DEFINITIONS 6.3. We write, for consequences «,5,7,5,

(6.3) af >¢ 16
if there exist an event A, and comonotonic
simple acts f_,a, g_ 48, f_,7, and g_,58,
for which the two preferences in (6.2) hold.

We write :_-: instead of >: in (6.3) if in the involved (6.2) we have < instead of < and if
furthermore A is m-essential for a 7 such that the four involved acts are in 7T (compare

Lemma 6.2 above).

In the proof of Lemma 6.10 we shall show (by deriving (6.9) from the first part of (6.7))

that under the assumption of Choquet integral representation:
af 2, 18 => U(a)-U(B) > U(y)-U(s).
Analogously of >, 46 => U(a)-U(8) > U(y)-U(5).

- The next definition is mainly useful in additive contexts.

DEFINITION 6.4. The preference relation > exhibits contradictory strengths of preferences
(between consequences) if there exist consequences «,8,7,8, such that -

[both o8 > 6 and 6 > of] .

In the present nonadditive context we shall mainly use the following definition.

Lemma 6.10 below has been added to illustrate its meaning.

DEFINITION 6.5. The preference relation > exhibits comonotonic-contradictory strengths of

preferences (between consequences) if there exist consequences a,f,v,6 such that

[both & >; 46 and 6 > af] .

In Wakker(1986, Theorem V.4.4) the following characterization of subjective expected
utility maximization was given, using a ‘cardinal coordinate independence’ condition. The
terminology in Definition 6.4 and statement (ii) below, by means of derived strengths of

preferences, is straightforwardly seen to be equivalent, and is hoped to be more appealing.
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THEOREM 6.6. The following two statements are equivalent for the preference relation > on
rS;

(i) There exist a finitely additive probability measure P on S, and a continuous ‘utility
function’ U : T — IR, such that f v [(Uof)dP represents » on @b,

(i)  The preference relation > is a constant- and s-continuous pointwise monotone weak
order on ®°, and does not exhibit contradictory strengths of preferences on

consequences.

Another characterization of the same representation, in terms of a ‘mean groupoid
operation’ on the set of consequences, derived from the preference relation, is given in
Grodal(1978). Next we will formulate the main new result of the present paper, the
adaptation of the above theorem to the ‘nonadditive’ case. Before, we summarize the

assumptions made so far:

ASSUMPTION 6.7 (Structural Assumption). S is a nonempty éét, endowed with an algebra £,

I' is a connected! separable? topological space, endowed with an algebra A containing all open
subsets of T.

Let us recall that capacities have been introduced in Definition 5.1, that ®> has been
introduced below Definition 4.4, that simple-continuity, constant-continuity, and pointwise
monotonicity have_been introduced in Definitions 4.1, 4.2, and 4.3, and that the

comonotonic-contradictory-condition occurring in (ii) below has been introduced through
Definitions 6.3 and 6.5.

THEOREM 6.8 (Main Theorem). Under the Stiuctural Assumption 6.7, the following two

Statements are equivalent for the preference relation > on T'S:

(i) There exist a capacity v on S and a continuous ‘utility function’ U : T' — IR, such
that f — [(Uof)dv represents > on @b,

(ii)  The preference relation > is a constant- and simple-continuous pointwise monotone

weak order on ®°, and does not exhibit comonotonic-contradictory strengths of

preferences on consequences.

O

The integral in (i) above is well-defined since for every act f in ®b, Uof is bounded. For
the case where § is finite and X equals 25 a, complicated, proof of this theorem, and of the

uniqueness results listed below, has been given in Wakker(1986, Chapter VI). The idea of that
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proof is to first restrict attention to comonotonic subsets of the set-of acts. Within such
subsets, the comonotonicity restrictions are trivially satisfied and can be ignored, and results
for additive contexts from literature (e.g. Debreu,1960, Theorem 3, or Krantz et al.,1971,
Theorem 6.14) can be used to obtain ‘local’ expected utility representations. Next these local
expected utility representations have to be fit together to give a ‘global’ representation, with
now probabilities depending on the favourableness ordering of the states. The latter orders
the states according to which state receives the better consequence from the act under
consideration. The proof of the extension to general (S,Z), as given in Theorem 6.8, is
presented in the appendix of this paper. In this proof the assumption of topological
separability is necessary only for the (unimportant) case described in (6.5) below, as can be
inferred from the reference Wakker(1986) used in the proof. For the sake of clarity of
presentation we have assumed topological separability for all cases. Proof of the following

theorem will also be provided in the Appendix.

THEOREM 6.9 (Uniqueness results for Theorem 6.8). Let, under the conditions of
Theorem 6.8, Statement (i) there hold. Then we have the following uniqueness results, where
denotes a partition of S consisting of events: -
(6.4) If some m contains two or more w-essential events, then U is
cardinal, and v is uniquely determined.

(6.5) If > is not trivial, and no m contains more than one r-essential
event, then U is continuously ordinal, and v is uniquely
determined; v assigns 1 to every (A,A%)-essential event A,
and 0 to every (A,A%)-inessential event A.

(6.6) If > is trivial, then U is any constant function, and v is
arbitrary.,

The following lemma gives part of the implication (i) => (ii) in Theorem 6.8, and may be

clarifying,

LEMMA 6.10. Let there exist a capacity v on S, and a ‘utility function’ U : T — IR, such that
f - f (Uof)dv represents > on ®°. Then > does not exhibit comonotonic-contradictory

Strengths of preferences.

PROOF. Obviously > is a weak order. Now suppose that > exhibits comonotonic-contradictory

strengths of preferences. Contradiction will follow. There exist a,8,7,6 € T, such that

(6.7)  [both aB >_ 46 and 46 >! af]




s M. s
First we concentrate on af >, 76. By Lemma 6.2 there exist a partition 7 of S consisting of
events, an event A € I7, and acts f_pa, g_pf, f_,7, and g_,6 € &7 with
faa2>g pfand f_,v < g ,6,

and, to have w-essentiality of A as required in Definitions 6.3, there also exist f_ AO,

f_or € ®F with f_y0 > [_,r. Apparently

JU(f_pe)dv > [U(g_,B)dv and JU(E_gmdv < [U(g_,6)dv, so
(6.8) JU(E_po)dv - JU(f_4y)dv > [U(g_,B)dv - JU(g_p86)dv .
Because of comonotonicity of the involved acts, in the left-hand side of inequality (6.8) the
contributions to the Choquet integral of the states outside of A can be seen to cancel, thus
this left-hand side of (6.8) equals PT(A)[U(c)-U(v)], where
PT(A) := v({s € S: s is an element of an event placed in T before A} U A) -
v({s € S: s is an element of an event placed in T before A}) .
Analogously the difference in the right-hand side of inequality (6.8) can be seen to equal

PT(A)NU(B)-U(6)]. And since f_,0 > f_,r implies PT(A)[U(0)-U(7)] > 0, we conclude that
PT(A) > 0. Thus (6.8) must imply [U(a)-U(7)] > [U(B)-U(8)], or

(6.9)  [U(x)-U(B)] = [U(7)-U(s)] .
This is what we wanted to derive from of >! 45 .

Analogously from 8 >: af it can be derived that [U(y)-U(6)] > [U(a)-U(B)], in
contradiction with (6.9).

7. ILLUSTRATIONS

7.1. A finite State Space.

In this subsection we give an interpretation of the Choquet-integral-approach as a
deviation from the usual expected utility approach by allowing for act-dependence of the
probabilities. For the sake of representation we shall assume that the state space is a finite set
(s1,--.8,). Lemma VI.3.5(ii) in Wakker(1986) gives the main tool to show analogous things for
infinite state spaces.

Suppose the decision maker has to choose an act from a set of available acts. The decision

maker will exhibit behaviour as represented in (i) of Theorem 6.8 if (he or) she proceeds as
follows:

ke
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Stage 1.  The decision maker determines her utility function U.

Stage 2.  For every ordering > of the state space the decision maker
determines ‘probabilities” P™(s,),...,P(s,).

Stage 3.  Every single act f is evaluated as follows:

Step 3.1. The decision maker chooses a favourableness ordering
>™ compatible with f, i.e. one of the (possibly several)
orderings > of S such that for no states Sis S
simultaneously s; > s; and f(s;) < f(s;).

Step 3.2. Now the act is valued by its ‘(generalized) expected
utility”:

(7.1) - L PTS)UEG))) -

Stage 4. Finally the decision maker chooses the available act with highest

value in (7.1).

In Step 3.1 there was some arbitrariness in the choice of the favourableness ordering >7,
Hence we must guarantee that this arbitrariness is immaterial. For instance the valuation of
an act al, + ﬂlAc (say a > f), writable as [ZHAP"'(S)] x [U(a)-U(B)] + U(B), should be
unambiguous. This leads to the following consistency requirement:

(7.2) CONSISTENCY: IRLOED N O]
whenever, both w.r.t. > and w.r.t. >P,

A contains the ||A | most favourable states.

This consistency is necessary and sufficient for the possibility to define a capacity
= T,
(7.3) VA Z“AP (s),

where the ordering > is chosen such that A contains the | A most >T-favourable states.

Under (7.2) and (7.3) indeed for any act f, and favourableness ordering > compatible with f \
[(Uot)dv = 3 * PT(s U(E(sy)),

as one derives from the definition of the Choquet integral (see Wakker, 1986,

formula VI.2.7). Every P™(s) can now be recovered from v as the ‘marginal capacity

contribution’ of s to the set of all states, more favourable than s:

(7.4)  PT(s) = v[{sz s >T s} U (s)] - v[{sz s >T s}].

Formula (7.4), and formula (7.3) in case consistency (7.2) applies, give the interconnection

between the capacity v, and the ‘act-dependent probabilities’ P7(s).

A topic for future research is the question what are good procedﬁres to elicit, or help a

decision maker determine, the utility function as in Stage 1, and the act-dependent
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‘probabilities’ as in Stage 2.

The capacities studied most in literature are the superadditive capacities, i.e. capacities
satisfying v(A U B) + v(A N B) > v(A) + v(B) for all events A,B. Schmeidler(1984a, the
Proposition; or Schmeidler,1984c, insertion at page 10), in the context where lotteries on
consequences are available, characterizes this property. It is interpreted as ‘uncertainty
aversion’. In the present context, without lotteries available, Wakker(1986, Theorem VI.11.4)
characterizes the property by means of a ‘pessimism’-property of the preference relation,
which reflects the idea that a state is given less weight as it becomes more favourable. If is

well-known (see Schmeidler,1972) that superadditive capacities v assign to each event
A r— : min{P(A): P dominates A},
and that this equals
min{i’?f(A): PT is obtained as above).
Thus it can be seen that for superadditive capacities the decision making represented by the

Choquet integral as in (7.1) may also result in the following way:

A ‘Bayesian-like’ decision maker has decided that (his or) her prior probability shall be an
element from a set of P™’s as above, but she has not decided which element. Then, if the
decision maker is a pessimistic one (there seem to be many such), and if she is willing to
leave the Bayesian path, she may come to value any act f by an integral which assigns to
every favourable event A = (s € S: f(s) > r} the most pessimistic, so the smallest possible,
‘probability’ min {P7(A)}, thus assigns to every unfavourable event B = {s € S f(s) < 1) the
largest possible ‘probability’ max {P™(B)}. This indeed can be seen to assign to every act its
Choquetl integral. Further it is known that for superadditive capacities the Choquet integral,
obtained this way, equals the minimum of the expected utilities | SU(f)dP’T, with the PT’s as
above; see for finite state spaces Huber(1981, Propositions 10.2.5, and 10.2.1 applied to

v¥ 1 A — 1-v(A°), or for arbitrary state spaces Schmeidler(1984b, Proposition 3); see also
Anger(1977). The capacities introduced in Examples 7.1, 7.4 and 7.5 below can be seen to be

super-additive.

7.2. Examples.

In the examples below always I' = IR+, indicating money; U is always assumed to be
identity; further v(g) = 0, v(S) = 1.

EXAMPLE 7.1 (Maximin behaviour). Let v(A) = 0 whenever A # S. Then the Choquet

integral assigns to every act the infimum utility of the consequences of that act. The decision
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maker chooses the act with highest infimum of payment. This behaviour is exhibited by the
pessimistic decision maker who chooses her subjective probabilities dependent upon the
involved act, and behaves as if being sure that the state (or the ‘ultrafilter’ of states) will be

true which is the most unfavourable given the involved act.

EXAMPLE 7.2 (Maximax behaviour). Let v(A) = 1 whenever A # @. Now the Choquet
integral assigns to every act the supremum utility of the consequence of that act and the
decision maker chooses the act with highest supremum of payment. The decision maker is
optimistic and behaves as if being sure that the state (or the ultrafilter of states). will be true

which is the most favourable given the involved act.

EXAMPLE 7.3 (The a-Hurwicz criterion). Let 0 < @ < 1, and let v(A) = o for all @ # A + S.
Then the Choquet integral of every act is a x sup(f(s)) + (1-a) x inf(f(s)). This approach is

a mixture of the two approaches in the above examples.

EXAMPLE 7.4 (The Ellsberg paradox). First an arbitrary ball will be drawn from an urn,
containing one blue and one green ball. Next a ball is drawn from a second urn containing
either two blue balls, or two green balls. The decision maker does not know if the balls in the
second urn are blue, or green, and has no information to consider one more likely than the
other. Let 8§ = {sy,...,54}, with s; = bb the state of nature where two blue balls will be drawn,

analogously s, = bg, s3'= gb, s, = gg. We shall consider four acts f1, g!, f2, g2, given by
INSERT TABLE 7.1 ABOUT HERE

Act f! will yield $1 if the ball drawn first is blue, $0 otherwise; etc. So the consequences of
the f-acts depend upon the first drawing, the consequences of the g-acts upon the second
drawing,

The most commonly exhibited behaviour in this example is to prefer f! to gl, and f2 to
g2, Expected utility cannot explain this behaviour because the first preference would imply
P(bb,bg) > P(bb,gb), the second P(gb,gg) > P(bg,gg). These two inequalities cannot hold
simultaneously for an additive probability P. The behaviour can be explained by statement (1)
in the Main Theorem 6.8: e.g. the decision maker may let a new state (e.g. bb) contribute in
capacity, to an event, 2/6 if the other state referring to the same first ball (e.g. bg, if the
new state is bb) as the new state was already present, and 1/6 otherwise. The capacity v

determined this way (see (7.3)) is given in Table 7.2.

L]
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INSERT TABLE 7.2 ABOUT HERE

The acts f! and f2 have Choquet integral 3/6, the Choquet integral of g! and g? is 2/6.
The capacity v can be seen to be superadditive.

An alternative explanation of the behaviour usually exhibited in the Ellsberg paradox,
and of uncertainty about uncertainty, is by means of ‘second-order probabilities’, see
Skyrms(1980), or Goldsmith&Sahlin(1981).

EXAMPLE 7.5 (The Allais paradox). The Allais paradox usually involves given ‘objective’
probabilities. For our set-up it will be rephrased. A point (= state) will be chosen arbitrarily

from the unit interval (0,1] =: S. We shall consider the four acts indicated in Table 7.3.

INSERT TABLE 7.3 ABOUT HERE

Usually people prefer ! to gl, and g2 to f2. Again expected utility cannot explain this
since the différence in expected utility of fl and g!, after cancellation of the contributions of
the interval (0.11 , 1], consists of exactly the same terms as the difference in expected utility
of f2 and g2 after cancellation of the contributions of the interval (0.11 , 1]. Again the
behaviour can be explained by (i) in the Main Theorem 6.8: Let ) be Lebesgue measure. Let
V(A) = MA)/2 whenever A # S. Then the Choquet integral of f! is 500,000, that of g! is
347,500 , that of f2 is 27,500, and the Choquet integral of g2 is 125,000.

From the above preferences contradictory strengths of preference can be derived. To this
end let a = 500,000, 8 = 0, and let event A = (0.11 , 1] exhibit all strengths of preferences.
The above two preferences, according to the Definitions 6.1, give the implausible ac > 3,
whereas {2 > f2 together with f! < f! gives A8 >* aa. By Theorem 6.8 no comonotonic-

‘contradictory strengths of préferences can result from the above preferences; indeed g! and f2

are not comonotonic.

EXAMPLE 7.6 (The rank-order approach). One way to obtain a capacity is to take an
additive probability measure P on %, a nondecreasing function ¢ : [0,1] — [0,1] with qo(O)-== 0,
©(1) = 1, and to take as capacity the ‘distorted probability’ v := @oP. We shall call this
approach the rank-order approach. (Yaari indicated this way to consider the rank-order
approach as a special case of the Choquet-integral-approach, see for instance Gilboa,1985b,
footnote at page 3, or Yaari, 1987, page 114. It is also apparent from Chateauneuf ,1986.)
Obviously the probability measure P may simply be a mathematical device, without any
interpretation associated with it. We shall in the sequel consider two other cases, with two

extreme interpretations associated with P.

st
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The first case is the case of ‘risk’, where the probability measure P is an ‘objective’
probability measure, completely known and given in advance. For monetary consequences
from the interval [0,1], linear utility, a coninuous transformation ¢, and, finally, a probability
space (8,X,P) which is ‘rich enough’ to generate all probability distributions, an elegant
characterization of the rank-order approach has been provided in Yaari(1987). Let us now see
what conditions are required on top of those in statement (ii) in Theorem 6.8 to obtain

Yaari’s approach. Yaari’s axiom Al of ‘neutrality’ states that acts which induce the same

probability distributions over outcomes are equivalent. This can be seen to be necessary and
sufficient for the condition that any pair of events A,B with the same probability P(A) = P(B)
shall also have the same capacity v(A) = v(B) (for consequences a, with « > B, the acts

aly + ﬁlAc and alg + ﬁch must be equivalent). Thus it is a necessary and sufficient
condition for the capacity v to be a transform @oP of P. Yaari’s axiom A4 of monotonicity
w.r.t. ‘first-order-stochastic dominance’ (i.e. P[f(s) > 4] > P[g(s) > 7] for all consequences 7) is
necessary and sufficient for nondecreasingness of ¢ (again by comparing acts al, + ,rS‘lAc and
alg + ,BIBC). If > is nontrivial, then ¢(0) = 0 and (1) = 1 can be arranged by applying a

proper positive affine transformation on ¢. So we have:

OBSERVATION 7.6.1. The rank-order approach is equivalent to the Choquet-integral-
approach together with the neutrality axiom and the condition of monotonicity w.r.t. firsi-

order-stochastic dominance.

Since both the neutrality axiom and the condition of monotonicity with respect to first-order
stochastic dominance are uncontroversial in decision making under risk, in a loose-hand way
it may be said that the rank-order approach is the risk-analogue of the Choquet-integral-
approach.

Yaari also characterizes and uses continuity of the transformation ¥, by means of a L;-
continuity condition for distribution functions. In our alternative set-up, without a richness-
of -space assumption and without boundedness-of -outcomes, continuity of ¢ will require
substantial adaptation, or'a different characterizing condition; we do not take up this point.
For the special case where consequences are monetary, linearity of utility can be defined, and
can be characterized by the condition [oB m: 76 whenever a-f = 4-6]. Concavity of the
utility function can be characterized by the condition [of >, 46 whenever a-8 = -6 and
@ < 9], a condition which reflects the idea of decreasing marginal utility. Yaari’s work under
linear utility makes very clear the main purpose of the rank-order approach, to explain risk
aversion as a phenomenon related to probability, rather than to utility as is the case under
expected utility. Also linearity of utility makes possible the presentation of the rank-order
approach as a ‘dual’ of expected utility.,

The second case considered in this example deals with subjective probability measures P

which are not known and given in advance. In that case, when obtaining the representation of
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statement (ii) of Theorem 6.8, one may wonder whether there exists a probability measure P
such that v = poP, with ¢ nondecreasing. This is the case if and only if there exists a
probability measure P such that, for > on £ defined by A > B iff v(A) = v(B), we have

P(A) > P(B) => A > B. Questions of this kind are studied in ‘comparative probability theory’,
see Wakker(1981, supplying Savage,1954), Gilboa(1985b, explicitely indicating the significance
for the rank-order approach), or Fishburn(1986, giving a survey). The five-point example in
Kraft,Pratt&Seidenberg(1959) can be used to show that there exist, even for a finite state
space, capacities which cannot be obtained as nondecreasing transforms of an additive

probability, so which will never be obtained through the rank-order appproach.

EXAMPLE 7.7 (Belief functions). Let S be finite. Shafer(1976), following earlier work of
Dempster(1967), considers belief functions v, i.e. functions v : & — IR, with v(&) = 0,
v(S) = 1 which furthermore can be characterized by nonnegativity of the (uniquely
determined) function m : ¥ — IR which satisfies v : A ZB CAm(B). Belief functions
satisfy (5.3), thus are capacities. Wallsten&Forsyth(1985) refer to Krantz(1982) for

consideration of the existence of an axiomatic base for Shafer’s belief functions.

EXAMPLE 7.8 (Fuzzy sets). We start with some arbitrary finite set X of ‘points’, and a finite
collection %, the elements of which are called fuzzy sets. For every point x and fuzzy set A
there is a real number m(x,A) € [0,1], indicating the ‘grade of membership’ of x in A.
Zadeh(1965) modeled this by means of ‘membership functions’ f A such that fA(x) = m(x,A)
for all x,A. For every pair of fuzzy sets A,B the ‘union’ A U B has a membership function
defined by fo g : x — max(f A (x),fg(x)}, and the ‘intersection’ A N B has a membership
function defined by fANB : X min{f o (x),fg(x)}. We write A D B if fao>fp,and ACB
if fo < fg. We may assume that ¥ is closed under union and intersection taking, and that &
contains the constant-zero-function denoted as @, and the constant-1-function, denoted as fg
(if not, then we add all required fuzzy sets). By Sikorski(1969, section 8) there exists an
algebra ¥’ of subsets of a set S’ that is isomorphic to ¥ as an algebra (this also applies to
infinite ). We shall identify T with %',

The situation described above may also be modeled in a ‘dual way’, by means of a family
{(Vx)xex of capacities on %, instead of a family {fA}Ax; of membership functions on X. To
this end, for every x € X we define the function vx on by vy 1 A = m(x,A) (= fA(x)).
This function is easily seen to be a capacity, assigning maximums to unions and minimums to
intersections. Thus V(A) = max{v({s}): s € S) for all A € %, Reversedly, every family of
capacities assigning maximums to unions and minimums to intersections can be transferred

into a family of fuzzy sets. One interpretation for the set X could be that this is a group of
decision makers.
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A topic for future study is the question what the intersection of the Choquet-integral-
approach is with other, independent, approaches. The intersection with the complete-
ignorance-models of Arrow&Hurwicz(1972) and Cohen&Jaff ray(1980) is given by
Example 7.3, the intersection with the security-factor-models of Jaffray(1986) and
Gilboa(1986) is the representation f = AEU(f) + (1-A)inf(U(f)), where EU is (additive)
expected utility (see Gilboa,1986, section 1.5). The intersection with the skew-symmetric
theory of Fishburn(1984), by transitivity, is expected utility.

On many places in literature (nonadditive) capacities play a role, and are required to
satisfy conditions suited for the particular situation. Wallsten&Forsyth(1985), for the context
of risk assessment, give many references to studies casting doubts on additivity of
(probability) measures to assess human probability judgments. Huber(1981, section 10.2) and
Huber&Strassen(1973) use capacities in the study of robustness in statistics. In
Sugeno&Murofushi(1987) the term ‘fuzzy measure’ is used for capacities which satisf y certain
continuity conditions w.r.t. decreasing and increasing sequences of events; a way to integrate
w.r.t. these is given, very different from the Choquet integral; it does not extend the
(additive) Lebesgue integral. Capacities are called ‘characteristic f unctions’, or ‘games’, in
cooperative game theory with side-payments, see Shapley( 1972) and Driessen(1985). From
pure mathematics we mention Adams(1981) for LP-Potential théory, Dellacherie(1970), and in
particular Anger(1977); Theorem 3 in the latter, for the case where the domain of the
capacity is finite, can be considered a predecessor of the characterization given in section 2
in Schmeidler(1984c) of functionals which are Choquet integrals. Papamarcou&Fine(1986)
consider ‘undominated lower probabilities’ (again a special class of capacities) and give

references to physical applications.

8. CONCLUSION.

Schmeidler’s approach to decision making under uncertainty by means of (‘nonadditive
probabilities’ =) capacities in the Choquet integral is one of the new approaches to decision
making under uncertainty, aiming to avoid the exclusion of several interesting ways of
decision making under uncertainty which are excluded by expected utility. Schmeidler’s
approach can be considered to allow for act-dependence of probabilities through the
‘f avourableness’-ordering of the states as induced by an act under consideration. In contexts
where Schmeidler’s approach, in its full generality, is considered to include too many

uninteresting ways of behaviour to give interesting results, still his characterization theorems
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(e.g. the Theorem in section 3 in Schmeidler,1984a), or our Main Theorem 6.8, may be
useful. These theorems then may still serve as a convenient starting point for the
characterization of more specified approaches, such as those mentioned in section 7. A topic
for future research is the question which strategic properties for preference relations must be

added in (i) of Theorem 6.8, to give characterizations of these more specified approaches.

Department of Mathematical Psychology, University of Nijmegen, Nijmegen, The
Netherlands
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APPENDIX. DERIVATION OF THE MAIN THEOREM 6.8.

In this appendix the Main Theorem 6.8 will be derived in full generality; also the

uniqueness results in Theorem 6.9 will be established. We shall take as point of departure the
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following observation, proved in Wakker(1986, Theorem VI.5.1; 1987, Theorem 5.1). ‘

OBSERVATION Al. The Main Theorem 6.8 holds if S is finite and % = 25,

Throughout this appendix we shall, without further mention, assume that any partition

m_is a partition of S,'consisting of events. In the first paragraph Al we treat simple acts.

Al. The main theorem for simple acts

The next lemma treats the ‘degenerate’ case where the decision maker does not exhibit
uncertainty, but behaves as if knowing for sure, for every act, what consequence (or

ultrafilter of consequences) will result from that act.

LEMMA Al.2. Let no partition © contain more than one m-essential event. Under the

Structural Assumption 6.7 the following two statements are equivalent.

(i) There exists a capacity v on S, and a continuous U : I' — IR, such that

f — _f(Uof )dv represents > on ®®,

(ii) > is an s-continuous weak order on s,

FEurthermore, if (i) holds, then > does not exhibit comonotonic-contradictory strengths of

preferences.

Uniqueness results are as in (6.5) and (6.6).

PROOF. First suppose (i) holds. Let 7 = {Ay,...,Ap,) be a partition. The map

(Qyyeennty) = (U(ey),...,U(y,)) from m (endowed with the product topology) to IR™ js
continuous; so is, by Wakker(1986, Proposition VI1.2.4), the function (TysesesTry) fstpdv

(p = Zj:lrjl Aj) from (U(I))™ to IR. The, consequently continuous, composition of these
two represents > as defined in (4.1). So this > is continuous, and s-continuity of > follows.
The remainder of (ii) is obvious. The "Furthermore"-statement is by Lemma 6.10.

Next we suppose that (ii) holds, and derive (i) and the uniqueness results. If > is trivial
on %, then obviously no event A and partition 7 exist with A m-essential. Also the reversed
implication holds. (For any two simple measurable acts take a partition 7 so fine that both
acts are in ®™, Then transform one simple act, step by step, on one element of the partition
after the other, into the other simple act; always staying within the same =-equivalence
class.) For this case everything is straightforward.

So from now on we assume that > is nontrivial on ®°, By s-continuity the binary




-27 -

relation > on I' as defined in section 4 is a continuous weak order. Hence by
Debreu(1954,1964) we can find a continuous, continuously ordinal, function U on I' which
represents this > on I'. Note that the function U to be found in (i) must indeed represent
this >. So all we can hope is that the presently obtained U will be as required in (i), further
that every possible U representing this > on ' will be as required in (i), the latter to obtain
continuous ordinality of U.

We define, for all events A, v(A) = 1 if A is (A,A%)-essential, v(A) = 0 otherwise. First
we show that v is monotone. So let, for events A and B, A C B and v(A) = 1. To derive is
that v(B) = 1, i.e. that B is p-essential for p := (B,B¢). Since A is wm-essential for 7 := (A,A°),
4ce and (to be in &)
such that o > 6, > 0. Say al, + tS'lAc > Bl + ﬁlAc. Let Ay := A, Ay := B\A, Az = B, and

there exist consequences «,8,§ such that not al, + GlAc ~ Bl + 01

let 7= (A;,A,,Ag). Then obviously A is m-essential. By the first sentence of the Lemma,
A, is m-inessential. So aly + alAz + 91A3 ~oaly + 01, c> Blp+ 01, m ﬁlAl t By, + 01y,
This shows that B is p-essential. So v(B) = 1, and v is monotone.

Obviously v(@) = 0. To show that v(S) = 1, we first recall from the exposition for the
case where > was assumed trivial on ®®, that the presently-supposed nontriviality of > on &2
implies existence of an event A, and a partition w, such that A is m-essential. So f_ A > f_48
for some f_po,f ,8 in ®T By the first sentence of the Lemma, A° is m-inessential, and
a;~ f_pa > f_pf ~ P follows. This implies that v(S) = 1.

Also a > f# implies that for each partition 7 = (A,,...,A) there is at least (so exactly)
one event A; in m which is m-essential. Then any act f = ) ;1 A; in @ is equivalent to aj,
thus the function assigning U(AJ-) to this f represents > on ®5. Note that U(o:j) is equal to
J'S(Uof )dv. Also note that v must be as we defined it, to obtain the results of the last

sentences, and thus to have (i) satisfied. So indeed v is uniquely determined.

LEMMA Al.3. Let the Structural Assumption 6.7 hold. Let > be an s- continuous weak order
on ®. Let > exhibit no comonotonic-contradictory strengths of preferences. Let

ml = (Ayq,....,A;) be a partition containing at least two m'-essential events. Then there exists a
capacity v! on T, and a continuous Ul : T — IR, such that the function £ 1 [(Ulef)dv!
represents > on o,

This v! is uniquely determined, and U is cardinal.

PROOF. Define >’ on ®° as in (4.1), and apply Observation Al.

MR R TV A
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LEMMA Al.4. Let, under the assumptions and notations of Lemma Al.3, t? = (B,,...,B,) be
another partition containing at least two n%-essential events. Let application of Lemma Al.3
to n? give v and U2. Then U2 = poU! for a positive affine p, and if some event A is both in
=7 and 57 then vi(A) = v¥(A).

PROOF. Define
1r3:=(A1nB1,...,AlnBt,Aanl,...Aant,...,ABmBl,...,Asth).
Let A € ™ pe wl-essential, i.e. f > g for some f.g € qﬂri which coincide outside of A. Let
A = €1 U..U Cy for disjoint C's from #% such that, for j = 2,...k, C;., is placed before C;
in 73, Let, for j = 0,...,k, fi be such that it coincides with f and g outside A, with f on
C15-,Cjy and with g on Cy,4,...,Cy. Since fk = £ > g = £0, there is i with fi fi-1. And since
all fi are in @”3 (note here that f must assign to A a better consequence than g does), x3-
essentiality of C; follows. So every wl-essential event in 7! contains at least one m3-essential
event from 73, We conclude that 7 contains at least two disjoint m3-essential events. So we
obtain the v3,U3 for #3, as resulting from Lemma Al.3. If we let v3! be the restriction of v3
to 27"1, v31 and U2 satisfy all requirements for v! and U! of Lemma Al.3, for 7!, So
v3l = vl and U! = ploUS3 for a positive affine ©3. Analogously the restriction of v3 to £72 js

equal to vy, and U2 = ©2,U3. From this everything follows.

The following theorem is essentially Theorem 6.8 restricted to &5,

THEOREM A\.5. Under the Structural Assumption 6.7, for the preference relation > on IS

the following two statements are equivalent:

(i) There exists a capacity v on S, and a continuous function U : T — IR, such that
f = [(Uof)dv represents > on ®° .

(i) > is an s-continuous weak order on @5, and > does not exhibit comonotonic-

contradictory strengths of preferences.

Uniqueness results are as in Theorem 6.9.

PROOF. The implication (i)=>(ii) follows straightforwardly from application of Observation
Al to every ®T So in the sequel we assume (i), and derive (i) and the uniqueness results.
For the case described in (6.6) (i.e. » is trivial) everything is straightforward. The case
described in (6.5) has been treated in Lemma Al.2. So let there be a partition 7 containing
more than one 7-essential event. By Lemmas A1.3 and Al.4 for every partition p containing

at least two p-essential events, vP and UP can be taken, independent of p. That we do, and

PRV A T I VR T AR RE WSt € it e v
.
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we leave out indexes p. It is straightforwardly checked that v and U satisfy all requirements.

]

A2. The extension to strongly bounded acts

This section completes the proof of Theorem 6.8 by treating nonsimple acts. The
extension of the implication (i)=(ii) to nonsimple acts is straightforward, thus omitted. So
we assume (ii), and derive (i) and the uniqueness results. We can apply Theorem Al.5 to
obtain U and v to represent > on ®3. This also gives the uniqueness results. Remains to be

proved that these U and v also work for nonsimple acts.

It is elementarily verified (see Wakker,1986, Lemma V.4.3) that, for a constant-
continuous pointwise monotone wéak order on ®P, every act f in ®b has a certainty
equivalent a, i.e, :

(A2.1) fma.

Obviously we can assign U(a) to any f in &P ag above, thus obtain a function which
represents > on ®P. This we do. Remains to be shown that this function equals the Choquet
integral. That it does so for simple acts is implied by Theorem Al.5. So let f in ®P be
arbitrary, f ~ o. Let y,v € T be such that p > £(s) > v for all states s,

If 4 ~ v then by pointwise monotonicity f ~ i, so a ~ g, Uof is constant, and
indeed U(a) = [(Uof)dv. So from now on we assume that b> .

For notational convenience we shall assume that U(p) = 1, U(y) = 0. We shall construct a
sequence of pairs of simple functions (fm,g™) such that, for all s,m:

(A2.2)  U(f(s))-1/m < U(f™(s)) < U(£(s)) < U(g™(s)) < U(£(s)) + 1/m.
For any m, and 0 < k < m-1,
Ay = {s € §: k/m < U(f(s)) < (k + 1)/m)

is an event. Since U(T') is an interval, there exists, for any 0 < k < m, an oy such that
U(ey) = k/m. Let

-1
fm = 37 Al A+ o l(s: UE(s))=1)
and
m o A+ o
BT = Dl %A, * Oml(s UGEE)=1)

We have U(g™(s)) > U(f(s)) > U(f™(s)) so g8™(s) = f(s) > f™(s) for all s, By pointwise
monotonicity g™ > f > f™ Hence by Theorem AlS,

J(Uogm)dv > U(e) > [(Uofm)dy.
Further, by monotonicity of the Choquet integral:

J(Uogm)dv > [(Uof)dv > [(Uofm)dy.
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And we have
f(Uogm)dv - _[(Uofm)dv = 1/m.

By letting m go to infinity, we find that indeed U(a) equals the Choquet integral of Uof.
This completes the proof of the main theorem.
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FOOTNOTES

1. A topological space is connected if there is no nontrivial subset of T'

which is simultaneously open and closed.
% A topological space is separable if it has a countable dense subset.
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TABLE 7.1. The acts in the Ellsberg Paradox

LKA SO AR L

bb bg gb gg
11 1 0
gl 1 0 1
f2 0 1 1
g2 0 1 0 1




TABLE 7.2.

=+ 3% =

A contains one state

v(A)=1/6

A contains two states

v(A)=3/6 if A is {bb,bg) or ,eb},
ng;=2/6 otherwige 8 (B850}

A contains three states

v(A)=4/6

further

v(@)=0, v(S)=1

PG TR TR T




=34 o

TABLE 7.3. The acts involved in the Allais Paradox

(0, 0.01] (0.01, 0.11] 0.11, 1]
fl $500,000 $500,000 $500,000
gl %0 $2,500,000 $500,000
? $500,000 $500,000 $0
g? 30 $2,500,000 $0




