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Abstract. This paper proposes a unified framework for optimization over two or more components
(e.g., risk and time). We identify a common cause (the “monotonicity problem”) underlying many
current debates in behavioral decision theory, concerning correlation preference in intertemporal
choice, incentive compatibility of the random incentive system, hedging in ambiguity measurements,
the judgment aggregation paradox, ex post versus ex ante fairness in welfare, and many others.
Further, the monotonicity problem implies that a “middle ground” for single component optimization,
used in virtually all behavioral theories, is not available for multi-component optimization. That leads
to an unavoidable bifurcation dilemma, where one has to choose one of only two disjoint routes
available. Stances taken in the above debates all amount to a choice of one of those two routes. We
provide general techniques for properly choosing in this dilemma, thus clarifying and unifying many
debates, and obtaining many generalizations and new insights for many fields. For instance, our
analysis supports the validity of the random incentive system and of ambiguity measurements despite
hedging, criticisms of monotonicity in the Anscombe-Aumann framework of ambiguity, ex post over

ex ante fairness, and it favors particular framings over others in experiments.
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1. Introduction

It may come as a surprise that many debates on various topics in the literature, from multiattribute risk
aversion to Harsanyi’s veil of ignorance or to incentive compatibility of the random incentive system,
share a common hidden cause: the “monotonicity problem.” This paper identifies that problem and
provides diagnoses and solutions. The mathematics underlying the problem has been known for almost
a century, since Nataf (1948), and special cases and parts of the problem have been discussed in
numerous papers, independently in many fields. But the universality, unavoidability, and acuteness of
the underlying monotonicity problem for all behavioral decision models with two or more components
of optimization' have not been observed before. That is, the problem is more serious and fundamental
than has been known before. With the underlying cause identified for these many debates, we can
provide diagnoses with a clear roadmap and steering techniques to navigate through the dilemmas,
obtaining generalizations and new insights for many fields.

For decisions with a single component, behavioral decision models typically operate in a “middle
ground” where classical strong separability is relaxed but basic monotonicity is maintained, e.g., in
nonexpected utility for risk or in equity models for welfare. Whereas this “middle ground” has
delivered numerous fruitful behavioral models for single components, when it is applied to decision
situations with two or more components, puzzling paradoxes appear.

To illustrate the puzzles and prepare for identifying their underlying cause, Sections 2 and 4
present two paradoxes, the separability and the no-separability paradox, with a puzzling appearance
and disappearance of separability, respectively. Our central Theorem 7 in Section 5 then shows that
the two paradoxes are two sides of the same coin. As it turns out, the “middle ground”, so fruitful for

only one component, does not exist for two or more components. This is what we call the

! For instance, if we optimize over the two components risk and time, or over risk and persons. Components can

also concern commodities, production inputs, prices, expert opinions, health attributes, regions, and so on.



monotonicity problem, and it is the abovementioned common cause. Structural changes occur when
going from one component to two or more, and new techniques need to be developed.

Section 6 presents the first application of the monotonicity problem to quantitative optimizations.
It leads to a “bifurcation dilemma” (Figure 4). We show that many stances in the literature, such as pre-
ference for ex post versus ex ante fairness, or for validity of the random incentive system (RIS; defined
in Subsection 9.2) versus a hedging confound in ambiguity measurements, amount to choosing one of
the only two possible routes in the bifurcation dilemma. Under classical models such as discounted
expected utility (DEU), the workhorse of decision analysis (Baucells & Bodily 2024), different orders
of “aggregation” (integration) give the same result so that the chosen order is immaterial. However,
under behavioral generalizations, the order of aggregation does matter. Most papers implicitly, without
any discussion, then choose one order of aggregation. Several papers did signal that this order can
matter and discussed discrepancies between the orders. Section 6 shows that this choice of order is a
special case of the bifurcation dilemma, and that it is more critical than has been known before.

Section 7 applies our results to the special case of welfare under risk. Section 8 then provides
guidelines and steering techniques to solve the monotonicity problem and to make proper choices in
the bifurcation dilemma. There we take welfare under risk as running example, but our
recommendations and techniques apply to all cases of multiple components. Section 9 further presents
new insights for particular cases of multiple components.

This paper is not a standard theory paper. Regarding its central theorem, Theorem 7,
mathematical generalizations have been provided before (Mongin & Pivato 2015 Proposition 1). The
basic mathematical result has been known for almost a century (Nataf 1948). However, its managerial
implications, of absence of a middle ground for behavioral theories leading to a critical bifurcation
dilemma, has not been understood before. We thus unify a wide range of seemingly unrelated debates
and provide many new insights for various behavioral subfields. We next explain our novelties in

further detail.



Special cases of the monotonicity problem have been discussed in particular contexts before.
However, its acuteness, where one has to choose one of two disjoint routes (Corollary 11), and in each
route immediately has to give up half of the interactions of potential interest, has not been observed
before. Most papers focused on one field of application, such as risk and welfare, and presented results
only there. We provide results for many fields.

By pointing out that the same monotonicity problem applies to all fields, we organize pre-existing
analyses in different fields into one unified framework. This unification facilitates knowledge transfer
across different fields. For example, when discussing the validity of the RIS, it is useful to know that
one is essentially considering the same arguments as in discussions of ex ante versus ex post fairness
in welfare, of monotonicity in the Anscombe-Aumann framework, of correlation aversion, and so on.
No-one working on RIS has mentioned such relations before.

We propose structural techniques to resolve or alleviate the monotonicity problem. Our partial
information technique is entirely novel. While the framing and timing techniques have been discussed
in isolated contexts, we are the first to synthesize them into a general framework, applicable in all
fields. Section 8 presents practical guidelines to navigate the choice in the bifurcation problem. We
next give examples of new insights for particular fields.

For welfare our guidelines show that, other things equal, Broome’s (1991) argument against
Harsanyi’s utilitarianism is more convincing than Diamond’s (1967) competing argument. Diamond
and Broome “simply” chose differently between the only two tractable routes available.

For the Anscombe-Aumann framework on ambiguity, we show that the monotonicity condition
chose the less plausible of the two possible routes. Our analysis makes clear that existing criticisms of
the framework, despite their varied forms, essentially hinge on this critical choice in the bifurcation
problem. Our unified new perspective leads to new counterexamples to the Anscombe-Aumann

framework in Figures 9 and 10.



Regarding the RIS, previous justifications of its incentive compatibility appealed to “isolation,”
which is our risk monotonicity. We are the first to show that this isolation concerns one of two
possible routes in a bifurcation situation, and is the more plausible one, providing new support for the
validity of RIS. Our analyses also clarify that the widespread misunderstanding, that validity of RIS
would require full strength of expected utility, stems from the separability paradox in Section 2. We
show that similar observations hold for the hedging problem in ambiguity experiments (Section 9.2).
Our guidelines demonstrate that hedging is usually not a serious problem and show how it can be
minimized. Note, again, that many papers have been written on only hedging for ambiguity, whereas
our paper brings novelty (and unity) to that and many other cases. The judgement paradox has never
yet been related to any of the above problems.

As for Theorem 1 on DEU, its novelty is not in mathematical generality but in achieving
simplicity and appeal. We are the first to state the axiomatization of the important DEU model entirely
verbally, thus making the axioms accessible to nonspecialists. As we show later, this theorem is a first
signal of the monotonicity problem and of the absence of middle ground.

To focus the main text of this paper, limit its size, and maintain high accessibility, some powerful
mathematical generalizations based on our aggregation techniques, generalizing several well-known
preference axiomatizations with simplified proofs, are presented in Supplementary Appendix C. Those

axiomatizations generalize Anscombe & Aumann (1963), Gul (1992), and Harsanyi (1955).

2. Discounted Expected Utility and the Separability Paradox

This section presents our first paradox, yet within the classical, not yet behavioral, framework.

2.1. Definitions for uncertainty and time

We consider choices between “actstreams,” i.e., matrices as in Figure 1. Cells describe money

amounts (real numbers). We here deal with two components, uncertainty (states of nature), and time



(timepoints). If state of nature s’ obtains then at timepoint tj one receives money x}. Columns

designate acts, i.e., maps from states to outcomes, and rows similarly are outcome streams. An

actstream gives a stream yielding acts or, equivalently, an act yielding streams.

FIGURE 1. An actstream
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Any outcome stream (B4, ..., Bn) € R™ can be identified with the matrix having that outcome stream in
each row, i.e., the degenerate lottery giving that outcome stream with certainty. Any act (a?, ...,a™) €
R™ can be identified with the matrix having that act in the first column, and outcome 0 elsewhere; i.e,
receiving that act at £; and nothing after. This way, preferences over acts and streams are derived from
preferences over actstreams.

Expected utility (EU) holds if there exist positive probabilities p?, ..., p™ and a utility function U
(U:R — R continuous and strictly increasing) such that preferences over acts (elements of R™) are

represented by expected utility
(@, ..., a™) » Y p' x U(a?) (1)

Discounted utility (DU) holds if there exist discount factors 0 < d; (j = 1, ...,n) and a utility

function U such that preferences over streams are represented by discounted utility (DU)

(Bry s B) P Zj1dj x U(B)) 2



Exponential discounting can readily be obtained by adding a preference condition that guarantees the
same discount rate over time.
Discounted expected utility (DEU) holds if there exist probabilities, discount factors, and a utility

function U such that preferences over actstreams are represented by their discounted expected utility

(DEU)
map' Yl d; x U(xf) 3)

(Keeney & Raiffa 1976 Ch. 9). The order of aggregation, row-first or column-first, is immaterial,

because Eq. 3 is equivalent to
Jo1d; I p X U(x)) @

We will usually use Eq. 3. DEU has the following implications:

(1) EU holds for uncertainty preferences.

(2) DU holds for intertemporal preferences.

(3) EU and DU use the same utility function.

Each of these implications has often been criticized on normative grounds. For instance, numerous
debates on cardinal utility (Moscati 2018) and on the difference between risky and riskless utility
(Abdellaoui, Attema, & Bleichrodt 2010; Dyer & Sarin 1982; Keeney & Raiffa 1976) have been
advanced, challenging implication (3). The three implications have also been extensively criticized on
empirical grounds; see Starmer (2000) for (1), Attema (2012) for (2), and Abdellaoui et al. (2013) for

(3). In Subsections 2.2 and 2.3, we present the axioms needed to axiomatize DEU.

2.2. “Unobjectionable” axioms

AXIOM 1. Weak ordering: transitivity and completeness (including reflexivity).
AXIOM 2. Continuity: the usual (Euclidean) continuity on R™*™,

AXIOM 3. Outcome monotonicity: strictly increasing any cell x} strictly improves the actstream.



AXIOM 4. Act monotonicity: at any timepoint, replacing the act there by a weakly [strictly] preferred
act leads to a weakly [strictly] preferred actstream.
AXIOM 5. Stream monotonicity: at any state, replacing the stream there by a weakly [strictly] preferred

stream leads to a weakly [strictly] preferred actstream.

2.3. Objectionable axioms

Given the strong separabilities (defined in Section 3) over states and timepoints involved in DEU,
which have been so widely falsified empirically, one may expect strong objectionable axioms to be
listed in this section. However, there is none! That is, the axioms in Subsection 2.2 suffice to give
DEU. This may come as a paradox. How can such seemingly innocuous preference conditions have

such strong implications? The paradox is displayed in Theorem 1 in the following Subsection.

2.4. Axiomatization of discounted expected utility

THEOREM 1. The following two statements are equivalent.
(i) Discounted expected utility holds.

(i1)) Weak ordering, continuity, and monotonicity with respect to outcomes, acts, and streams hold.

The first paradox of this paper, the separability paradox, refers to the question of how such
seemingly weak preference conditions (Pivato & Tchouantez 2024: “uncontroversial”) can have such
strong implications, with strong separabilities over states and timepoints. Because of its simplicity, we
claim that Theorem 1 provides the most appealing axiomatization of DEU presently available. As we
will show later, Theorem 1 is the first puzzling consequence of the monotonicity problem. Before
touching on the crux of that problem, Section 3 introduces a unified framework that will serve to

showcase the monotonicity problem.



In many contexts, extensions to infinite components, such as continuum time intervals, are
desirable. Supplementary Appendix B shows that they can readily be achieved using standard tools
from mathematical measure theory (e.g., Theorem 14).2 Grabisch, Monet, & Vergopoulos (2023)
provided such a result for continua of components that, unlike our results, do not need a continuum of
outcomes. The important point to note is that our intuitive axioms, mainly the monotonicities, remain
unaffected in this process. Only the technical continuity is modified. Thus, these modifications do not

affect the practical and conceptual implications discussed in the main text of this paper.

3. General Definitions and Versions of Separability

We throughout assume that all decisions are made at one fixed timepoint, preceding all timepoints of a
time component if the latter is present. The decision timepoint also precedes any information about the
resolution of risk or uncertainty if an uncertainty component is present. Thus, if the true state was
determined prior to the decision, the decision maker does not know which it is.> We also assume that
all uncertainty is resolved at one fixed timepoint, i.e., in one stage, prior to any receipt of outcomes.
Thus, we also do not deal with multistage complications such as preferences for the timing of the
resolution of uncertainty, as in Kreps & Porteus (1978) and Epstein & Zin (1989), and we do not
consider the corresponding recursive formulas.

We now fully formalize our analysis, and add one generalization, amounting to state- and time-

dependence of the utility function U in Eq. 3. This greatly enhances the applicability of our results.

2 The theorem can also be readily extended to risk. For example, if all s¢ have known probabilities 1/m implying
symmetry (and subjective probabilities p’=1/m) we obtain all equal-probability distributions, comprising all
rational probabilities. Extension to all probability distributions follows from common continuity (Supplementary
Appendix B).

3 Prior resolution of uncertainty is only a matter of perception and never of strategic relevance, and dynamic

decision principles and updating play no role in this paper.
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Our general framework considers preferences > over matrices. There are two components: (1) a finite
row set R = {rl, ..., r™} with its attributes being m rows and (2) a finite column set C = {cy, ..., Cy,}
with its attributes being n columns. Before, the components concerned uncertainty and time, with

m attributes (states) and n attributes (timepoints), respectively. For simplicity, we continue to assume
that the outcome space is R, say monetary. In some of our examples, outcomes may concern
nonmonetary goods.* We assume m,n > 1 fixed. Rows in R™ map C to R and columns in R™ map R
to R. A matrix in R™<" (called actstream before) maps R X C to R. It specifies a row (x, ..., x%) for

each r* and a column (x7}, ..., x;") for each ¢;. A matrix in R™*™ consists of m X n cells x;.

FIGURE 2. A matrix
i ... C ...Cy
Xt X
i i
r X;
rmLx’. Coxn

Separability is central in our analysis. A subset of cells is separable if preferences over those
cells, while keeping the outcomes at all other cells fixed, are independent of the levels where the other
cells are kept fixed. We will consider various versions of separability, imposed on various collections
of subsets of cells. The strongest version is strong separability, imposing separability on all subsets of
cells. Weak separability means that every single cell is separable.

We will also consider intermediate levels of separability, applied to rows or to columns, as

WS. ider u i =t ov w. . Z: 0V u
follows. We consider underlying preferences >' over rows (xi, ..., x5,) and >; over columns

4 Mathematical extensions of our theorems to connected topological outcome spaces (e.g., convex sets of
commodity bundles) are straightforward. However, this paper seeks for conceptual implications and accessibility

rather than mathematical generality.
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(le, s x}”) that can be derived from > over matrices by keeping “outside cells” fixed. This

“conditioning” procedure works well if proper separability conditions hold:

DEFINITION 2. Weak separability of rows, or row monotonicity, holds if each row is separable. Weak

separability of columns, or column monotonicity, holds if each column is separable.

Separability of a subset is equivalent to the possibility to define an underlying preference relation,
“conditional” on that subset (' and > j above), so that we have monotonicity with respect to that
relation. Hence, the relations >* and > j work well under the separability conditions in Definition 2.
Outcome monotonicity is defined as before (strictly increasing any cell strictly improves the matrix),
and readily implies weak separability. Definition 2 generalizes act and stream monotonicity by

allowing for row and column dependence, indicated by the sub- and superscripts in >* and > j- For

consistency with the literature, we maintain the monotonicity terminology.

DEFINITION 3. Strong separability of rows holds if every union of rows is separable. Strong

separability of columns holds if every union of columns is separable.

Weak and strong separability, as default, take cells as “unit,” whereas their alternatives in Definitions

2 and 3 specify rows or columns as “unit.”

4. The Behavioral Middle Ground and the No-Separability

Paradox

This section presents our second paradox for decisions involving two or more components. To
illustrate the essence of the paradox, we first take a step back, and look at how researchers deal with

separability when modeling decisions involving only one component.
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Sono (1945) and Leontief (1947) introduced separability. They did so for consumer theory,
where only one component is considered, describing commodities. As in the preceding section, a
subset of commodities is separable if preferences over those commodities, while keeping the levels of
the other commodities fixed, are independent of the levels where those other commodities are kept
fixed. Strong separability means that every subset of commodities is separable, and weak separability
means that every single commodity is separable.

It has long been known that strong separability is very restrictive. For three or more commodities,
it implies maximization of an additively decomposable function (Gorman 1968). That is, it precludes
any interaction between commodities, implying constant marginal rates of substitution. Weak
separability is weak. For one component, it is already implied by outcome monotonicity, which is
commonly considered nonobjectionable.

Separability turned out to be central in many fields. Thus, for decision under uncertainty,
Savage’s (1954) famous sure-thing principle (his P2), the watershed between Bayesian and non-
Bayesian models (Wu, Zhang, & Gonzalez 2004 p. 401) and the main cornerstone of normative
decision analysis, is nothing but a reinvention of strong separability, imposed on a state space.

Classical decision models were first developed for one component. They include expected utility
for uncertainty, discounted utility for time, and utilitarianism for welfare. They all assume strong
separability. Modern behavioral models relax strong separability to capture the certainty effect in
uncertainty, habit formation in time, fairness in welfare, and numerous other interactions violating
separability. When relaxing strong separability in classical models, behavioral models do commonly
maintain weak separability though, and the stronger outcome monotonicity. That is, they operate in
what we call the middle ground: models that give up strong separability but maintain weak
separability. Thus, when Fishburn (1978) pointed out that separate probability weighting, as partly
used in original prospect theory (Kahneman & Tversky 1979), violates outcome monotonicity,

Tversky & Kahneman (1992) updated prospect theory, using Quiggin’s (1982) invention of rank
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dependence, to return to the middle ground, which improved empirical performance (Hirshman & Wu
2025).

It is natural to expect behavioral models involving two or more components to also operate in
such a middle ground. The following example demonstrates a typical attempt to achieve such middle

ground, which will lead to the second paradox of this paper.

EXAMPLE 4 [No-Separability Paradox: A Paradoxical Disappearance of Separability]. We consider
actstreams as in Figure 1 and Eq. 3 (DEU). We assume two timepoints with no discounting (d; =

d, = 1), two equally likely states (P(s) = P(s?) = 0.5), and linear utility (U(a) = a). A manager
wants to relax strong separability for risky states, i.e., generalize EU for risk, by allowing extra
pessimism as in Allais’ paradox, through overweighting of the worst outcome. She wants to maintain
strong separability for timepoints ¢; though. Thus, in Eq. 3, the right summation, DU over columns, is
kept, but the left summation, EU, is replaced by a nonexpected utility formula that satisfies stochastic
dominance.’ It may be any nonexpected utility model with overweighting of the worst outcome, such
as rank-dependent utility with pessimism. At first sight, the manager seems to have achieved the
desired middle ground, with weak but no strong separability of risky states (rows), and strong, so

surely weak, separability of timepoints (columns).

FIGURE 3. t; is not separable

1 b t &

st/ 1 0 st/ 0o 0
2 > 2

S 0 2 S 1 2

1 b t &

5 Kochov (2015) and Bastianello & Faro (2023) argued for maintaining stochastic dominance (monotonicity).
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However, a closer look reveals a serious problem. The overweighting of the worst state implies
the preferences in Figure 3, which implies a puzzling violation of separability of t;. Contrary to what
the manager had hoped for, preferences implied by the proposed model violate strong separability and

even weak separability (column monotonicity) of timepoints. Unbeknownst to the manager, she has

introduced interactions between timepoints “under the cover.” O

Example 4 is paradoxical. The manager only wanted to give up strong separability of states, to
work in the middle ground of behavioral theories, and she did not touch the formula of time
aggregation. Yet, inadvertently, separability of timepoints was lost, even their weak separability. The
model thus fell out of the desired middle ground.

We have presented two paradoxes. In the separability paradox, where the most restrictive decision
model DEU was implied by the seemingly most innocuous conditions, separability appeared in a
puzzling manner. In the no-separability paradox, where the gentle relaxation of strong separability for
one component implied violation of even weak separability of the other, separability disappeared in a

puzzling manner. One couldn’t help but wonder:

QUESTION 5. How can the behavioral middle ground (no strong separability but still weak

separability) be reached, if at all, for two or more components?

This question will be answered in the next section. Many, seemingly unrelated, issues in the

behavioral field, presented later, will be clarified by this answer.

5. Resolving the Paradoxes and Answering Question 5

To prepare, we present a theorem that has essentially been known for almost a century. Additive utility

(AU) holds if preferences over matrices are represented by
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i) 27:1 Vji(x}) Q)

for strictly increasing continuous functions V}-i (x]?). AU readily implies strong separability of cells and,

consequently, of rows and columns. The following remarkable observation, known as the Theorem of

aggregation, is basic to this paper. Its history is discussed after the observation.

OBSERVATION 6 [Theorem of Aggregation] The following two statements are equivalent for > on
Rmxn.
(1) Additive utility holds.

(il) Weak ordering, continuity, and monotonicity with respect to outcomes, rows, and columns hold.

It is obvious that Statement (i) implies Statement (ii), and even strong separability of cells. For the
reversed implication, it is clear that row and column monotonicity preclude particular interactions
between cells. (A subset of cells is subject to interactions if it is not separable.) However, the
interactions that are directly precluded this way are only few. The surprising point of Observation 6 is
that, in this setting with multiple components, all interactions are precluded “indirectly” after all, also
for the many subsets of cells besides unions of rows or unions of columns. This point was, essentially,
Nataf’s (1948) finding, although his proof has sometimes been criticized for being inaccessible.
Nowadays, the result can readily be obtained as one of the many surprising implications of Gorman’s
(1968) strong result. Hence, we will not give a separate proof. Our results can easily be extended to
more than two components: additive utility holds if and only if Statement (ii) holds with now
monotonicity (weak separability) for every component.

With Observation 6 available, the two preceding paradoxes are no more surprising. The no-
separability paradox immediately follows: with weak separability of states but no strong separability,
not only strong separability of timepoints must be violated, but even their weak separability must be.

Whereas the no-separability paradox only showed that unintended interactions may arise, Observation
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6 shows that the case is yet more critical: such unintended interactions a/ways arise. They are
unavoidable. Regarding the separability paradox of Theorem 1, with Observation 6 available, the
underlying mathematics becomes understandable. Theorem 1 concerned the special case of
Observation 6 where >’ and > j were independent of i and j, respectively, implying that the Vji in
Observation 6 can be taken proportional, and Theorem 1 quickly follows (see appendix). As we
explained, its novelty is not in mathematical generality but in accessibility and appeal.

The most shocking implication of Observation 6 is the following theorem, providing a negative

answer to Question 5.

THEOREM 7 [Central Theorem; the Monotonicity Problem: Absence of Middle Ground]. A middle
ground for behavioral approaches, with strong separability of components abandoned but weak

separability (“monotonicity”) maintained, is not available for two or more components.

This negative answer provides the common cause underlying many confusions and debates
carried out independently in many subfields of behavioral decision theory. Whereas Observation 6 has
essentially been known for almost a century, its vast implications for behavioral decision theory,
starting with Theorem 7, have not been understood before. The remainder of this paper will discuss
these implications further.

This section ends with some terminology. Whenever risk, the most-studied component in the
literature and also in this paper, is involved we let it correspond with rows 7%, which then are states
with known probabilities. We then refer to row monotonicity as risk monotonicity. Further, in general
contexts, where rows need not designate streams, we use the terms uniform row monotonicity instead
of stream monotonicity. Uniform column monotonicity similarly generalizes act monotonicity.
Uniformity means that all rows (or columns) have the same “conditional” preferences »'= --- = ™,

or all columns have the same >,= -+ = »,,. The difference between DEU and AU, or between
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uniform and general monotonicity/separability, or between Theorem 1 and Observation 6, never plays

arole in any of the conceptual discussions in this paper.

6. A First Application: A Bifurcation Dilemma for Behavioral

Quantitative Optimization

For quantitative optimizations with two (or more) components, recursive procedures, defined next, are
commonly used because they are tractable. They can occur in two ways, i.e., using two orders of

aggregation, in the next two definitions.®

DEFINITION 8. Row-monotonic aggregation holds if there exist row-functions R' and a column-

function C, all continuous and strictly increasing in each coordinate, such that preferences are

represented by

E(Rl(xll, -3 R JRY(xE, o xh), ,Rm(x{”,...,x,’{‘)) (6)

Here one first, for every row r', aggregates over the columns ¢y, ..., ¢,,, and one next aggregates the m
s 5 1 n

resulting values into the final value.

DEFINITION 99. Column-monotonic aggregation holds if there exist column-functions C; and a row-

function R, all continuous and strictly increasing in each coordinate, such that preferences are

represented by

® The popular terms row-first and column-first aggregation, used in our title, are ambiguous. For instance, row-
first has as well referred to row-monotonic aggregation (first aggregate within a row) as to column-monotonic

aggregation (first aggregate rows (within a column)). Hence, we will not use these terms in our formal analysis.



18

ﬁ(Cl(xll, X, Gt X, ,Cr(xl, ...,x,’l”)) (7

Now one first, for every column ¢;, aggregates over the rows ri, ...,r™ and one next aggregates the n

resulting values into the final value. Under uniform row monotonicity, we can take all R? in Eq. 6 the

same, i.e., independent of i, and under uniform column monotonicity, we can take all ; in Eq. 7 the

same, independent of j.

A choice between the two procedures is commonly made randomly or implicitly, without any
discussion. In classical theories the choice is indeed immaterial. Further, the two procedures do not
seem to be very restrictive anyhow — contrary to what we will show below — because they involve
many functions that can be chosen independently and with almost no restrictions imposed on them.
Similarly, in preference axiomatizations one of the two monotonicities is often imposed without
further discussion, as-if self-evident.

The following preparatory observation shows that orders of aggregation, i.e., aggregation

monotonicities, are quantitative versions of the corresponding preference monotonicities.

OBSERVATION 10. Given weak ordering, continuity, and outcome monotonicity, column-monotonic
aggregation can be used if and only if column monotonicity holds. Row-monotonic aggregation can be

used if and only if row monotonicity holds.

We briefly describe the proof. Row- (column-)monotonic aggregation can be derived from the
corresponding preference condition by taking constant-equivalent functions for the functions R, Ci, R,
and C. The rest is straightforward.

The monotonicity problem showed that, for two or more components, row and column

monotonicity are more restrictive than has been known before. Therefore, Observation 10 is alarming.
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It leads to the following impossibility result. It, again, has vast and paradoxical implications for

quantitative behavioral theories, as next sections will show. Figure 4 displays its critical nature.

COROLLARY 11 [Bifurcation for Recursive Optimization]. If one wants to adopt a quantitative
behavioral model with interactions (violations of strong separability), and for tractability reasons use a
recursive model, then the only two routes available, row-monotonic or column-monotonic

aggregation, are mutually exclusive, and one faces a bifurcation dilemma.

FIGURE 4. Bifurcation
dilemma with no
middle ground

Recursivity with
interactions

Corollary 11 implies that in Example 4, to maintain weak (or even strong) separability of
timepoints, one has to first aggregate risks for each timepoint and only then aggregate over timepoints.
Weak separability of states then is just unachievable (unless one also has strong separability of states).
If one starts from aggregating timepoints for each risky state, then separability of timepoints, even
weak, can never be achieved anymore, no matter how one generalizes the functionals (unless one
reverts to strong separability of states). These observations illustrate that the order of aggregation,
immaterial in classical models, becomes critical in behavioral generalizations.

In behavioral approaches, the choice of route and, hence, the order of aggregation in Figure 4 is
mostly made implicitly, without any argument given (Andreoni & Sprenger 2012; Machina 2014 Eq. 6
& footnote 11 & p. 3821 1. -3). As we have shown, the choice is critical though and explicit arguments

for the route chosen are desirable. Several papers did provide discussions, including Dejarnette et al.
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(2020 Section 4), Epper & Fehr-Duda (2024), Marinacci (2015 p. 1026), and Onay & Onciiler (2009).
But the critical nature of the issue (Figure 4) has not been observed before. Not only may interactions
arise, as has been observed before, but even they are unavoidable, as we show. Our Theorem 7
explains why in the numerous discussions in the literature no-one ever came up with an actual middle
ground: it does not exist. The following claim illustrates another new practical implication of Theorem
7. Whereas the division of logical implications over assumptions in the claim remains informal, the
claim shows the true face of the monotonicity problem and signals the alarming restrictiveness of
recursive optimization procedures, inadvertently precluding many interactions. The “at least” clause

below is because of interactions precluded by both monotonicities.

CLAIM 12 [Precluding Many Interactions]. Given weak ordering, continuity, outcome monotonicity,
and m = n, row monotonicity precludes at least half of the possible interactions (violations of strong
separability), and so does column monotonicity. Each condition precludes all interactions allowed by

the other.

For m # n, one monotonicity is less restrictive than the other and precludes fewer interactions, but the

situation is similarly alarming.

7. A Second Application: Risk and Welfare

This section presents implications of our results for welfare under risk, where the two relevant
components concern risky states and persons. We show how several issues in this field are, once
again, due to the monotonicity problem. We consider generalizations of Harsanyi’s (1955)
utilitarianism that amount to choices in the bifurcation dilemma. Harsanyi’s utilitarianism adds row-

uniformity to AU; i.e., it is a column-dependent generalization of DEU.
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EXAMPLE 13 [Welfare and Risk]. Rows r! refer to risk, i.e., states with known probabilities p‘, and

columns ¢; refer to persons. For simplicity, we assume pt = 1/m for all i. Harsanyi’s (1955)

utilitarian model is AU with V¥ = U, /m for all i, k, where U}, is the utility function of person k.
Preferences over a matrix are of a benevolent social planner with no stakes of her own. Harsanyi’s
Pareto principle is column monotonicity, and his expected utility assumption for the social planner

implies uniform risk (= row) monotonicity.

Harsanyi’s axiomatization was received as a paradox because people were not aware of the
underlying cause, the monotonicity problem. A generalization of Harsanyi’s axiomatization can be
obtained from Observation 6 by adding symmetry of rows 16 (implying uniformity of row preference
and EU with equal probabilities). The extension to general, possibly continuous, probabilities follows
from Theorem 14 in Supplementary Appendix B. The axiomatization obtained this way is more
general than Harsanyi’s (1955) axiomatization in considerably weakening his assumption of expected
utility for risk. In return, Harsanyi did not need continuity in outcomes, and could handle subdomains
of the matrix space.” This alternative axiomatization is a mathematical implication of our preceding
results, but we do not elaborate on it because we focus on conceptual implications.

Pivato & Tchouantez (2024) provided the most general mathematical results along the above lines
known to us. They allowed for nonstandard real numbers and they weakened continuity to solvability.
These generalizations are empirically and conceptually preferable but have the drawback of using

concepts that are not well-known. The authors further weakened completeness of preference and

7 Harsanyi did not explicity introduce persons as different attributes, but his domain can be remodeled
accordingly, turning it into a subdomain of Anscombe & Aumann’s (1963) framework. This way, Anscombe &
Aumann’s theorem is a corollary of Harsanyi’s. For details, see De Meyer & Mongin (1995). Undoubtedly,
Harsanyi (1955) devised his result independently without relating it to the preceding Nataf (1948). Mongin &

Pivato (2015) also pointed out the relations between these theorems.
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allowed for state- and person-dependent utility. They also provided impossibility-result interpretations

and they surveyed further literature.

FIGURE 5

g R - > E
trtlo o1 i oo | rirtfoo 1 rtl 10 !
210 r2l1 o] 1o r2 1 0 :
1 1
1 [ 1
i 01 U S U R A <r110 :
'r2 0 1 r2l 0 1 :Er201 rzl 0 1 !
1 1 1
1 [ 1
. FIG. 5a. Row monotonicity ! | FIG. 5b. Row monotonicity violated !

Harsanyi’s model has often been criticized for ignoring inequality aversion, illustrated in Figures
5 and 6. We assume uniformity, i.e., symmetry of ¢; and c, (“anonymity”) and also of r* and 72,
which have probability 0.5.

Diamond (1967) proposed Figure 5 as a criticism of Harsanyi’s utilitarianism. In all matrices,
both rows (states) give the good outcome to one of the two persons. Hence, by symmetry (anonymity)
all rows are equivalent and by row monotonicity, all matrices are indifferent, and so are they under
Harsanyi’s utilitarianism (Fig. 5a). Diamond pointed out that, to the contrary, the strict preferences in
Fig. 5b are plausible under inequality aversion, nowadays usually interpreted as ex ante inequality. In
the dispreferred matrices, one person certainly receives the good outcome and the other person
certainly not, so that there is inequality from the ex ante perspective. In the preferred matrices there is
equality from the ex ante perspective in the sense that both persons receive the same lottery, 1, 50.
Diamond emphasized that the sure-thing principle (i.e., strong separability of the states/rows) is
violated in Fig. 5b. The preference over the first row is affected by the second here. Expected utility
and Harsanyi’s utilitarianism are violated. Our monotonicity problem shows that this problem of ex

ante fairness is more fundamental than Diamond pointed out: even weak separability of states is
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violated, which for three or more states is considerably more fundamental than strong separability.

Column monotonicity may still hold.

FIGURE 6
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Broome (1991 p. 185) proposed Figure 6 as a criticism of Harsanyi’s utilitarianism. In all
matrices, both persons always receive 1, 50. Hence, under column monotonicity (“Pareto principle”),
all matrices are indifferent, and so are they under Harsanyi’s utilitarianism (Fig. 6a). Broome argued
that, to the contrary, the strict preferences in Fig. 6b are plausible under inequality aversion. From the
ex post perspective, the dispreferred matrices certainly, under both r* and 72, result in inequality, and
the preferred matrices certainly (for every row) result in equality. The preference over the first column
is affected by the second here. Column monotonicity, i.e, the Pareto principle, is violated.

Our bifurcation dilemma provides new insights. First, the dilemma of Broome versus Diamond,
i.e., of ex post versus ex ante fairness, is more critical than has been observed before. The choice is
between the only two tractable approaches available, and they are disjoint (beyond classical
utilitarianism). Diamond’s choice, i.e. ex ante fairness, is the route downward in Figure 4, and
Broome’s choice, i.e. ex post fairness, is the route upward. Further, the dilemma is more acute than
known before. Diamond’s approach not only violates the sure-thing principle, but even risk-

monotonicity.
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A natural question now arises, as it will do in every behavioral application with two (or more)
components: which of the routes in the bifurcation dilemma in Figure 4 is more natural, upward or
downward? The next section will discuss the question for general components, using welfare under
risk as running example. As follows from Corollary 11, Broome and Diamond provided yet another
discussion of the bifurcation dilemma. The next section will, further, argue that, in general, Broome’s
criticism is more serious than Diamond’s, and will provide similar new insights for many other

domains.

8. Guidelines and Techniques to Avoid Undesirable Violations

of Monotonicity

In behavioral approaches with multiple components we face the bifurcation dilemma, and have to
decide on the plausibility of monotonicity/separability of various components. One wants to avoid
undesirable violations of monotonicity. This section provides guidelines for choosing in the
bicurcation dilemma. For consistency with much literature, we continue to often use the term
monotonicity, but sometimes we prefer the more neutral term separability.

We first provide a default ranking of plausibility, assuming other things equal. In general,
separability is most plausible for uncertainty and risk because there can be no physical interactions
between mutually exclusive events (Broome 1991 end of Section 1.3 and Section 8.3; Dejarnette et al.
2020 p. 632). Whereas Samuelson (1950) first criticized separability for uncertainty, the exclusiveness

argument later won him over to accept separability as normative for uncertainty (Samuelson 1952).% It

8 Samuelson (1950 p. 120) wrote, famously: “Let the axioms satisfy themselves.” However, Samuelson (1952 p.
672) wrote: “Prior to 1950, I hesitated to go much further. But much brooding over the magic words “mutually-
exclusive” convinced me that there was much to be said for a further “strong independence axiom” [strong

separability].”
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gives a firm normative basis to decision analysis (Wu 1996). Within uncertainty, separability is more
convincing for risk than for ambiguous events (Wakker 2010 Section 10.4). Next, interactions are less
likely to occur between different persons at different locations than within one person at different

timepoints (Baucells & Sarin 2010). Thus, the following

default ranking of separability (or “monotonicity”):

[risk > ambiguity > welfare > time] ()

results. For time, payment in consumption is more separable than payment in money (Cohen et al.
2020). For commodities or attributes, separability is less plausible than for uncertainty, but can take
any remaining place in the ordering depending on the nature of the attributes. The above ordering,
while unavoidably informal, is plausible and will have many implications for many fields, as will be
shown. Thus, in our running example of welfare under risk, ex post fairness as propagated by Broome
(maintaining risk monotonicity) is, other things equal, more plausible than the ex ante fairness
propagated by Diamond. This is a further new insight into the Broome-Diamond dilemma. Similarly,
with time and risk as components, risk-monotonic aggregation is most plausible (Abdellaoui et al.
2019), allowing for nonneutrality towards intertemporal correlations. In applications there can be
many other arguments though, that can overrule Eq. 8 and lead to deviations.

Researchers often add a component, not for its own interest but as an auxiliary tool to facilitate
the analysis of other components. It then is desirable that separability holds with respect to that extra
component. The ranking in Eq. 8 explains, therefore, why risk is most popular as auxiliary component.
It is the main tool in decision analysis (Keeney & Raiffa 1976). Harsanyi (1955) used risk as auxiliary
component for welfare (our Example 13). Other examples include Anscombe & Aumann (1963) for
ambiguity. Theorem 1 and Observation 6 explain why strong results could be obtained this way.

Empirically, it is also plausible that decision makers mostly adopt one of the two routes in the
bifurcation dilemma. Again, for tractability reasons, but now from the psychological perspective of a

cognitively limited decision maker rather than from the modeling perspective of a researcher.
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Nevertheless, some interactions and spillover effects due to the presence of other attributes and stimuli
can still be expected. Hence, empirically, people will be close to one of the two routes in Figure 4, but
with small deviations.

We next discuss further aspects of stimuli and their framings that can impact the plausibility of
separability, and the resulting route in the bifurcation dilemma of Figure 4, possibly leading to
deviations of the default ranking of Eq. 8. We explain some steering techniques based on such aspects.
These techniques can be used to avoid undesirable violations. For example, spillover effects in
preference measurements, hedging effects in ambiguity measurements, and particular forms of
inequality aversion, can be confounding and undesirable in experiments and in applications. We will
introduce three steering techniques for the running example of welfare under risk here. They can be
used for general multicomponent optimizations. The next section gives further examples, applications,
and references.

The first steering technique is the framing technique. In general, a two-stage display of matrices
will enhance one of the two kinds of monotonicity. Thus, Fig. 7a enhances row monotonicity and Fig.
7b enhances column monotonicity. Framing can also be done verbally. In Figure 1, the framing “For
each i, at state s* you receive stream (x%, ..., x})” enhances row-monotonicity, similarly to Fig. 7a.

The framing “For each j, at timepoint ¢; you receive act(x?, ..., xI)” enhances column-monotonicity,

similarly to Fig. 7b.

FIGURE 7. Two-stage displays of matrices
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Regarding our running example of welfare under risk, in Figure 5, if a social planner wants the
dispreferred matrices in Fig. 5b to be accepted by the public for some good extraneous reason, then the

framing of Fig. 7a (with ¢;s designating persons) is best suited to enhance the row monotonicity of

Fig. 5a. In Figure 6, if a social planner wants the dispreferred matrices in Fig. 6b to be accepted, the

framing of Fig. 7b (with ¢;s designating persons) is best suited to enhance the column monotonicity of

Fig. 6a.

The second steering technique, the timing technique, can be used if risk or uncertainty is
involved, and concerns the perceived timing of the resolution of uncertainty—early, before decision
time, or late, after decision time. Early resolution of uncertainty enhances a perception as in Fig. 7a
(with the r/s uncertain events) and row-monotonic aggregation. In Figure 5, it leads to Fig. 5a. It
enhances ex post fairness, focusing on affairs after resolution of uncertainty. Late resolution of
uncertainty enhances a perception as in Fig. 7b and column-monotonic aggregation. In Figure 6, it
leads to Fig. 6a. It enhances ex ante fairness, providing an argument counter to the default ranking of
Eq. 8. Thus, the perception of fairness can be steered by choosing prior or late resolution. We stress
that this paper only considers situations where, if resolution takes place before the decision time, then
the decision maker knows that the uncertainty has been resolved, but does not know how it has been
resolved. It is, therefore, of no strategic relevance here and only concerns perception. The timing
technique has been widely discussed and tested in the welfare literature and other fields (Section 9.3).
In particular, Onay & Onciiler (2009) used the two different framings in Figure 7, with risk and time
as components, to generate early and late resolution. They thus combined the framing and timing
techniques. Our analysis gives a theoretical justification of such experimental procedures.

The third technique, the partial-info technique, provides only partial information to the decision
maker or to persons involved in welfare. For example, in Figures 5 and 6, the two persons ¢4, ¢, may

not be informed about the outcomes that the other person receives. This enhances separability of the
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columns and, hence, column-monotonic aggregation. There then is less room for inequality aversion
because the persons themselves cannot perceive it.

One can also avoid the monotonicity problem by only considering particular subdomains of
matrices. Our analysis as yet made the idealized assumption, common in decision theory and
preference axiomatizations, that we deal with a full domain containing all matrices in R™*™. This
assumption is essential for our theorems. Some studies on risk and time only considered actstreams
with one nonzero outcome (Baucells & Heukamp 2012), or matrices where nonzero outcomes appear
only at one timepoint, in which case the order of aggregation is immaterial under many behavioral
models. Halevy (2008) considered a restricted (comonotonic) domain where both orders of
aggregation can hold simultaneously for behavioral theories. Alon & Gayer (2016) imposed the Pareto
principle only if agreement on probabilities and utilities. For principled discussions of decision
principles this escape route, of restricting the domain, is not very convincing. If conditions deemed
fully appropriate cannot survive extension to all possibilities, then this remains a point of concern.

Subdomains arise in several applications in the next section and will be further discussed there.

9. Further Applications

This section presents several further applications. We elaborate on details in two more applications in
our area of expertise, ambiguity, in Subsections 9.1 and 9.2, and briefly mention many others in

Subsection 9.3. In all examples in this section, rows 7* model risky events.

9.1. Third Application: Monotonicity in the Anscombe-Aumann Framework for Ambiguity

The monotonicity problem also occurs in the well-known Anscombe-Aumann (AA) framework for
ambiguity, where the traditional approach involves an implicit choice in the bifurcation dilemma of
Figure 4. We again apply our techniques to shed new light on the relevant issues. A criticism of the

traditional approach will result.
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We use Fishburn’s (1970 Section 13.1) two-stage AA framework that has become the standard
today. In Figure 2, roulette events (rows) 1%, ..., 7™ partition the universal event and have known
probabilities. Horse events (columns) ¢4, ..., ¢, also partition the universal event but are ambiguous.
The AA framework adopts uniform column monotonicity, called horse monotonicity here, using the
same EU functional (for C; in Eq. 7) for each column. It implies that only the marginal distributions
given every horse ¢; matter. We thus have correlation neutrality between columns. This implication is
characteristic of the modern AA framework. A notation: by a, 8 we denote a lottery, i.e., probability
distribution, yielding a with probability p and  with probability 1 — p.

We first assume a full domain where all matrices are available, as for instance in Machina (2014)
who assumed simultaneity of the horse and roulette events. Figure 8 displays ambiguity aversion as
commonly assumed in the literature. The rows have 0.5 probability each. The indifference in the figure
follows from the AA assumptions: each horse yields lottery (1;50), and in this sense there is no
ambiguity. The strict preferences reflect ambiguity aversion as commonly taken in the AA approach.
For instance, the left matrix, a gamble with known probability, is preferred to the right upper matrix, a
gamble with unknown probability. The two strict preferences reveal a violation of risk (row)
monotonicity: preferences over the first row are affected by the second row, and rows interact.

Having committed to horse monotonicity, the common AA framework necessarily has to give up
risk monotonicity (and conditioning on risky events) to capture the behavioral nonneutrality towards
ambiguity. This follows from the monotonicity problem. However, by the default ranking of Eq. 8,
other things equal, risk (row) monotonicity is more plausible than column monotonicity. The common
AA framework thus chose the less plausible route in the bifurcation dilemma of Figure 4. Jaffray
(1992, personal communication) emphasized the implausibility of horse monotonicity and
recommended risk monotonicity for ambiguity, adopting it in all his works (e.g., Jaffray 1989).
Eichberger & Pasichnichenko (2021) and Monet & Vergopoulos (2024) followed Jaffray’s approach

in this regard. Again, our analysis gives a theoretical justification for these approaches.
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The early Keeney & Raiffa (1976) provided a rich toolbox for risk monotonicity with interactions
between columns. By the timing technique, for risk monotonicity it works best to let the resolution of
the roulette events precede those of the horse events, rather than come after as commonly assumed in
the AA framework. Oechssler & Roomets (2021) used Fig. 7b in their experiment, which enhances
horse monotonicity. but nevertheless found much risk monotonicity, providing strong empirical

evidence against horse monotonicity.

FIGURE 8. Violation of risk monotonicity in the
Anscombe-Aumann framework
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The partial info technique is also used in most current implementations of the AA framework. If
some horse s; wins the race, subjects will only be informed about the resolution of the corresponding
lottery, and not what the lotteries for the other horses would have given. This works best if the domain
of matrices considered is also restricted by assuming the lotteries for different horses to be
stochastically independent.’ Then the matrices in Figure 8 can no more be used and formally we have
escaped from the monotonicity problem there, avoiding violations of risk monotonicity. Theorem 7
still shows that correlations between horses cannot be added without violating risk monotonicity (or

sacrificing one of the other conditions), which remains a worrisome issue especially for normative

% Equivalently, they can be taken as mutually unspecified, e.g., by taking them as conditional on a horse
(“statewise randomization”; Ke & Zhang 2020). Compare Figures 9 and 10 below. The essence is that they are
mutually uninformative. Thus, subjects may only be informed about the outcome realized for the winning horse

and the roulette resolution there. These points do not impact the conceptual issues discussed here.
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purposes. In particular, we cannot add risk prior to, or simultaneously with the horse race and have EU
there, because this would, by horse monotonicity and Observation 6, automatically preclude any
nonneutral ambiguity attitude. A new insight resulting from our analysis is that already the basic risk
monotonicity, rather than EU, is critical here.

Although the modern version of the AA framework can formally escape from the monotonicity
problem and the “counterexample” of Figure 8 by the partial info technique, the underlying problem,
that weak separability of horse events does not fit well with their ambiguity, remains. We illustrate this
problem through another implication in Figure 9, a variation of Figure 8 that uses only stimuli within
the restricted domain assumed by restrictive versions of the AA framework, and with partial info fully
effective. To clarify the latter claim, Figure 10 displays the same choices as in Figure 9 but now using
the matrix notation of this paper, where for each matrix the two columns are stochastically
independent. In Figure 9, we take outcome a such that a~8, 50, i.e., it gives the indifference in Fig.
9a. Under expected value maximization, @ = 4, but in general it depends on the risk attitude. All
columns in Figure 9 are indifferent. By AA’s horse monotonicity, all matrices should be indifferent.
However, under ambiguity aversion the strict preferences in the figure are plausible: for the

dispreferred matrices all outcomes are ambiguous whereas for the other matrices none is.

FIGURE 9. Violation of horse monotonicity due to ambiguity aversion
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Many authors discussed horse monotonicity in the AA framework, both theoretically and
empirically. Besides those cited before, they include Machina (2014 p. 3835 3 bulleted point),
Oechssler & Roomets (2021), and Schneider & Schonger (2018). More general discussions of the role
of the timing of uncertainty include Berger & Eeckhoudt (2021), Kochov (2015), and Oechssler, Rau,
& Roomets (2019). We have presented the debate on monotonicity for AA in its most basic form,
showed that the monotonicity problem is underlying, and showed that the issue is more critical than

has been known before, as it, again, amounts to a choice in the bifurcation dilemma.

9.2. Fourth Application: Validity of the Random Incentive System and Hedging for Ambiguity

Our next application concerns incentive compatibility of the random incentive system (RIS) in
experiments (Jacquement & I’Haridon 2018 Section 5.2.3). Let each row of our matrices specify one
of m choice situations in an experiment. We assume that in each choice situation a subject chooses an
option that is an n-dimensional object. It may be a commodity bundle, an outcome stream, a welfare
allocation over n persons, an act assigning outcomes to n states of nature, and so on. In the RIS, one
choice situation (row) will be randomly selected for real implementation. Say each has a probability of
1/m of being the one implemented for real. At the end of the experiment, the subject receives the
option chosen in the implemented choice situation. The other choice situations will not be
implemented. During the experiment, the subject does not know which of the m choice situations will
be implemented for real. Matrices are strategies, specifying a choice for each of the m choice
situations in the experiment.

It trivially follows that incentive compatibility of the RIS is equivalent to risk (row) monotonicity
where the underlying preferences are the true preferences in the choice situations. In this context, row
monotonicity has been known as isolation (Cohen, Jaffray, & Said 1987, appendix). Trivially, row-
monotonic aggregation together with EU for risk then is also sufficient for incentive compatibility,

where the assumption of EU is just redundant. This redundancy was pointed out by Bardsley et al.
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(2010 p. 269) and several others. Nevertheless, there have been misunderstandings about this point in
the literature, where several papers claimed that full-force EU was needed for incentive compatibility.
Adding extra assumptions of column monotonicity, uniformity of monotonicities, and a full domain
would, by Theorem 1, indeed give EU for risk. But, again, these extra assumptions are not needed for
incentive compatibility of RIS. Unawareness of the monotonicity problem, i.e., the restrictiveness of
those added extra assumptions explains the misunderstandings in the literature.

As explained before, our theorems assumed full domains and complete preferences, whereas in
many applications only subdomains are relevant or available. Nevertheless, these subdomains are
often rich enough for our results to provide new insights. This point is further illustrated in the
following application. We there show that the monotonicity problem is the underlying cause for the
hedging problem in ambiguity measurements, and then how our techniques of Section 8 can be used to
avoid this hedging problem.

We assume two Ellsberg urns: a known urn K containing 50 White and 50 Black balls, and an
unknown ambiguous urn A containing 100 balls, each White or Black, but in unknown proportions.
From both urns a ball will be drawn at random. Wy denotes the event that the ball drawn from urn K is
white, and B, W,, and B, are similar. These events are uncertain to subjects during the experiment.

(B4:101) denotes a gamble yielding €101 if the ball drawn from urn A is black and nothing

otherwise. Other gambles are denoted similarly. Imagine that an experiment concerns m = 2 choice
situations for a given subject. The first, 71, reveals the preference (B4: 101) > (Bg: 100); the second,
2, reveals the preference (W,: 101) > (Wg:100). The RIS randomly selects 7! or r2 for real
implementation, say each with probability 0.5. Which is implemented for real is unknown to subjects
during the experiment. Can we conclude that there is virtually no ambiguity aversion? Hedging,
explained below, has often been advanced as a confound invalidating this conclusion.

Three components can be distinguished: the color from K, the color from A, and the selection

from {r!,72}. It is convenient here to combine the first two components into one. We thus define four
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¢j as in Figure 11. The figure illustrates the two observed preferences. In the usual RIS, we do not

directly consider choices between strategies for the whole experiment (matrices). However, the two
aforementioned experimental preferences do, indirectly, reveal the preference between the two
matrices in Figure 11.

If we assume column monotonicity, then the preferences in Figure 11 follow from nothing other
than stochastic dominance: all columns of the preferred matrix stochastically dominate those of the
dispreferred matrix (101,50 > 100, 50). In the left matrix, the outcomes under r,, provide a kind of
hedge against those under r;, and so they do in the right matrix, which explains the term hedging. The
preferences then do not speak to ambiguity attitudes in any sense. It has often been observed that,
under column monotonicity and ambiguity nonneutrality, validity of the RIS may be violated in this
way. The monotonicity problem provides the new insight that the case is yet more critical: there then
necessarily exist choice situations where validity of the RIS is violated.

We here have another case of the bifurcation dilemma. Hedging occurs if the lower route with
column monotonicity is chosen in Figure 4'°, whereas validity of RIS holds if the upper route is
chosen. Of course, besides hedging, any other reason to violate risk monotonicity discussed before can

invalidate the ambiguity measurement here.

FIGURE 11. Hedging in ambiguity
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Discussions of hedging under ambiguity include Bade (2015) and Oechssler, Rau, & Roomets

(2019). Baillon, Halevy, & Li (2022) provided the first empirical demonstration that hedging can

19 The hedging in the above example involved event complementarity, an extreme case of hedging (Hartmann

2023).
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really occur, and reviewed further literature. As our guidelines of Section 8 show, their presentation of
stimuli in fact maximized violations of risk (row) monotonicity, so as to best demonstrate the potential
severity of the basic problem. The techniques of Section 8 provide tools for establishing validity of the
RIS and, in particular, for avoiding hedging in ambiguity measurements. Johnson et al.’s (2021)
Prince, an implementation of RIS to maximize validity, in fact used such techniques informally.
Regarding the timing technique, Prince selects the real choice situation prior to the experiment rather
than after as usually done, enhancing the desired row monotonicity. Johnson et al. also used framing
(e.g., as in Fig. 7b) and partial-info techniques as best as possible. Again, our results provide
theoretical justifications.

Regarding the partial-info technique for general RIS, when facing a choice situation in an
experiment, subjects are usually not yet informed about the choice situations that come after,
precluding all “backward” interactions. To reduce “forward” interactions, each choice situation may
be presented on a different page or screen, so that subjects can only know about preceding choice
situations from memory. In general, full understanding of strategies in an experiment is humanly
impossible. Validity of the RIS can therefore be expected to be good in general (Bardsley et al. 2010
Section 7.5: “behavioral incentive compatibility””). Our analysis shows that the hedging confound for
ambiguity measurements will usually not be a serious problem in practice. Aydogan, Berger, &
Theroude (2024) and Konig-Kersting, Kops, & Trautmann (2023) indeed found no hedging.

Some interactions between different choice situations in RIS can nevertheless occur, e.g. due to
spillover effects, contrast effects, learning, and so on. Johnson et al.’s (2021) Prince seeks to minimize

those.

9.3. Further Applications

There are numerous cases where aggregation over two or more components is central, besides the
cases considered before. The monotonicity problem, the bifurcation dilemma, and the guidelines and

techniques of Section 8 can be applied to all those cases, underscoring the unity and common
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underlying cause, and providing new insights similarly as above. We briefly mention some of such
cases. A complete review is impossible given the vastness of the relevant literature.

Violations of column monotonicity as in Fig. 6b can be due to correlation aversion. This has been
extensively studied in many domains, including multiattribute utility theory (multivariate risk
aversion: Attema, I’Haridon, & van de Kuilen 2019; Richard 1975; Tsetlin & Winkler 2009),
intertemporal choice (Epper & Fehr-Duda 2024; Lanier et al. 2024; Rohde & Yu 2024), and consumer
theory with t; and t, commodities with diminishing marginal rates of substitution. For temporal
ambiguity (unknown probabilities for ! and r2 in Fig. 6b), Kochov (2015) emphasized the
plausibility of row monotonicity and correlation preference.

Epstein & Halevy (2019) considered an interesting case: Both rows and columns refer to events
with known probabilities, but their correlation is ambiguous. Then ambiguity aversion gives both
Figures 5b and 6b with reversed preferences. The monotonicity problem implies that neither Eq. 6 nor
7 can be used to accommodate this phenomenon, so that finding a tractable model (e.g., a tractable
subcase of their Section 5) will not be easy.

Andreoni & Sprenger (2012) considered actstreams for risk, with probabilities of the states given.
They did not explicitly state or discuss the order of aggregation (Eq. 6 or 7) assumed in their
behavioral analyses, i.e., the route in the bifurcation dilemma chosen, which complicates their
interpretations. Cheung (2015), Epper & Fehr-Duda (2015), and Miao & Zhong (2015), accordingly,
criticized them. Andreoni & Sprenger’s Section III.A reports violations of our uniform risk
(stream/row) monotonicity, which they interpret as violations of prospect theory. Our monotonicity
problem provides the new insight that such a violation is more fundamental: it entails a violation of

virtually any existing risk theory if one does not want to abandon column monotonicity.'! Similar

' An exception is the utility of gambling theory (Diecidue, Schmidt, & Wakker 2004; Fishburn 1980). This
theory in itself comprises a violation of uniform risk monotonicity and, thus, can accommodate these violations.

However, this theory is not very tractable or suited for applications.
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violations of uniform risk monotonicity were found before, by Abdellaoui, Diecidue, & Onciiler
(2011), Bleichrodt & Pinto (2009), Cettolin & Riedl (2017), and others. Findings that the present bias
weakens if risk comes in (as in Epper & Fehr-Duda 2024 and Keren & Roelofsma 1995), entail such a
violation. Similarly, papers have shown that delaying risks moderates the certainty effect, implying a
violation of Axiom 4 in Subsection 2.2 (act monotonicity) and, indirectly, of column monotonicity
(Abdellaoui, Diecidue, & Onciiler 2011; Baucells & Heukamp 2010; Epper & Fehr-Duda 2024;
Kemel & Paraschiv 2023).

In judgment aggregation (Grossi & Pigozzi 2014), matrices concern cases to be decided on, rows
concern propositions, and columns concern judges. The majority rule can then give different results
under row-first aggregation than under column-first. This has been known as the judgment aggregation
paradox, and it is similar to our Corollary 11. Proposition-wise independence then is our row
independence and matter-wise independence is our column independence. In social discounting, the
aggregation concerns persons and time. The issues discussed in this paper are new (to our best
knowledge) in price index theory, with commodities and locations as two component, for instance, and
prices as matrix entries (Renneboog & Spaenjers 2013), and, undoubtedly, many other fields.

Besides the references mentioned before, numerous papers examined the timing technique,
theoretically and empirically. Again, we bring a unification of these analyses. We mention some
papers. For time and risk, see Dejarnette et al. (2020 Section 4) and Onay & Onciiler (2009). For
welfare and risk (where timing of resolution of uncertainty is only one way to impact an ex post or ex
ante viewpoint), see Cappelen et al. (2013), Miao & Zhong (2018), and Rohde & Rohde (2015). For
two-fold uncertainty as in the AA framework, see Baillon, Halevy, & Li (2022), Ke & Zhang (2020),
Kochov (2015), and Oechssler & Roomets (2021). Also see Machina (2014 footnote 11). Berger &
Emmerling (2020) examined the overall effect of inequality aversion in separate components under
different orders of aggregation. They provided a unifying framework of their results for the case of

several kinds of components.
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10. Conclusion

We presented a unified framework for optimization over two (or more) components. A paradoxical
appearance of separability, in the simplest axiomatization of discounted expected utility as yet
(Theorem 1), and a paradoxical disappearance of separability (Example 4), could be resolved by
Theorem 7. In a mathematical sense, this theorem is a small variation of Nataf’s (1948) century-old
theorem on micro-macro aggregation. However, its vast implications for modern behavioral
approaches have not been observed before. First, the theorem signals the monotonicity problem.
Although the possibility of such a problem occurring has been observed before, its universality and
unavoidability have not. It leads to a general bifurcation dilemma.

We next considered many debates in many behavioral fields, scattered over numerous papers, that
are all special cases of the monotonicity problem, with stances taken in the literature amounting to a
choice of one of the two routes available in the bifurcation dilemma. Our general guidelines and
techniques provide new insights and solutions to these debates. Whereas studies as yet brought new
insights for only one case of multiple components, our paper has bridged many models and

phenomena in the behavioral field and has provided new insights for many fields.

Appendix. Proofs

As explained in the introduction and in Supplementary Appendix A, Observation 6 follows from
Mongin & Pivato (2015 Proposition 1). We next prove Theorem 1. Statement (i) readily implies
Statement (i1). We assume Statement (ii), and derive Statement (i). By Observation 6, we obtain an

AU representation. We derive proportionality of the Vji in the AU representation. We can let all Vji

take value 0 at 0. The AU representation is a state- and time-dependent version of DEU. Gorman’s
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uniqueness result is at this state- and time-dependent stage: the functions Vji, all “grounded” at 0, can
jointly be replaced by 1 X Vji for any 1 > 0, independent of i and j, and by no other functions.

By act monotonicity, the n arrays (le, s ij) through their sum all represent the same
preference relation over acts (“column”). Hence, by standard uniqueness, these n arrays of functions,
grounded at 0, are proportional to each other. That is, each (V}', ..., V/™) is d; times (V{, ..., V{"™) for
positive d, ..., d,,, where we set d; = 1. Similarly, by stream monotonicity, the m arrays (V{, ..., ;)
though their sum all represent the same preference relation over streams (“rows”), and each is q° times
(VL ..., V1) for positive g2, ..., g™ with g* = 1. We can normalize the g's to sum to 1, and denote
them p'. All Vjis are proportional to each other and to one function that can be denoted U. For U we
can take V' or any other V.

For completeness, we give the uniqueness results of Theorem 1. By Gorman’s aforementioned
uniqueness result at the state- and time-dependent stage, now at this state- and time-independent stage

we have: U is unique up to a positive factor (scale), and the d;s are unique up to one other common

positive factor. Because of normalization, the p’s are unique. We can relax the requirement U(0) = 0

and add any constant, after which U is also unique up to location.
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SUPPLEMENTARY APPENDIX A. PRECEDING MATHEMATICAL RESULT

The mathematics underlying our results has been known longtime. We do not bring
mathematical novelties in the main text. This appendix discusses preceding literature.
Observation 6 has been known since Nataf (1948). There, rows described producers
and columns described production inputs. Nataf presented'? Observation 6 to show
when macro (column-first, or column-monotonic, defined below) aggregation of
production inputs can be equivalent to micro (row-first, or row-monotonic)
aggregation: only if there is not any interaction'®. van Daal & Merkies (1988)
provided an early historical account. This production example further illustrates the
wide applicability of our framework.

Mongin & Pivato (2015 Proposition 1) provided the mathematically most general
versions of Nataf’s (1948) result, implying our Observation 6. (Hence, we gave no
proof of it.) In the mathematical theory of functional equations, these results have
been known as generalized bisymmetry equations.'* See Maksa (1999), who also
pointed out their relatedness to aggregation. The special case of proportional
representations in our Theorem 1 is equivalent to mathematical theorems on

multisymmetry functional equations, explained by Miinnich, Maksa, & Mokken

12 He heavily used differentiability and his proof is not easily accessible.

13 Formally, we use the suggestive term interaction to indicate preference relations that violate strong
separability. In general, not only rows and columns, but every subset of cells can be nonseparable, i.e.,
be impacted by (interacting with) any other subset of cells.

14 They search for functions allowing identity of Egs. 6 and 7 in the main text.



(2000). Mongin & Pivato (2015 Theorem 1) is the most general result of this kind.
See Zuber (2016) for related results and literature with Anscombe-Aumann outcome
sets. Whereas all aforementioned results and virtually all results cited or given in this
paper heavily use continuity in outcomes, Grabisch, Monet, & Vergopoulos (2023)
give a version of our Theorem 1 that uses a continuum state space, rather than
outcome space.

Thus, the mathematics underlying our results has been known longtime. As for
Theorem 1 on DEU, its novelty is not in mathematical generality but in simplicity and
appeal. The preference conditions there can be stated verbally and are accessible to
nonspecialists more than any preceding axiomatization of DEU. Although many
authors, several cited later, used advanced implications of the preceding results in
various decision theories, their basic impact for empirical and theoretical work,
specified in Section 5 and applied in the rest of this paper, has not been presented

before.

SUPPLEMENTARY APPENDIX B. EXTENSION TO INFINITE-DIMENSIONAL

MATRICES
Extensions to matrices with infinitely many rows and/or columns are often of interest.
This holds mainly for Theorem 1. Infinite-dimensional extensions of Observation 6
are less common because they involve uncommon functionals, generalizing integrals.
Wakker & Zank (1999) examined them. We focus on Theorem 1 henceforth,
interpreting rows as states and columns as timepoints, but using the general notation
of Figure 2.

Equal-likely states in Figure 2 can capture all simple lotteries with rational
probabilities (McCarthy, Mikkola, & Thomas 2020). Mixture-closedness or
continuous distributions require a continuum of r!. Such extensions can be obtained
by standard techniques from mathematical measure theory. Theorem 14 provides a
typical example. It is explained next.

We continue to assume n columns cy, ..., ¢, withn > 2 fixed. A row continues to
be an element of R™. In the main text, we considered the special case of risk where
each 7 had probability 1/m, so that matrices could be identified with some simple
probability distributions over columns. We now consider more general probability

distributions over rows, such as the space of all simple probability distributions or all



bounded ones. To this effect, instead of R = {r?, ...,7™}, we now assume R = [0,1),
endowed with the uniform distribution P and instead of finite-dimensional matrices as
before, we now consider functions from R X {cy, ..., ¢, } to the reals. We continue to
call such functions matrices. Preferences will be over matrices. We make the
assumption characteristic of decision under risk: functions on R X {cy, ..., ¢, } that
generate the same probability distribution over rows are indifferent.

Using obvious notation, a simple probability distribution over rows can be
denoted (pt: 7%, ..., p*: %), with k variable, and all probabilities positive. We identify
it with a matrix that assigns row r* to each set R%, where (R%, ..., R¥) partitions [0,1)
and P(R i) = p' for each i. It, thus, is like the matrix in Figure 2, with R! for r! for
each i, and m = k. It will be sufficient to impose our intuitive axioms only on such
simple finite-dimensional matrices. Row and column monotonicity are now defined to
hold for all simple matrices.!® For each fixed (RY, ..., R¥), Theorem 1 then gives a
DEU representation. Normalizing U(0) = 0, U(1) = 1, these DEU representations
agree on common domain by standard uniqueness results, giving a probability
measure P’ on [0,1) that at this stage might be thought to possibly differ from P and
even be only finitely additive. However, partitions (R?, ..., R*) with P(Ri) = 1/k, by
symmetry, imply P'(Ri) = 1/k = P(R"). The unions of such R’ show that P’ agrees
with P on all R < [0,1) with rational P probability. By monotonicity w.r.t. set
inclusion, P’ and P are identical. We have obtained a DEU representation for all
simple matrices.

The extension of our theorems to all bounded matrices now follows using
standard techniques from mathematical measure theory. Monotonicity with respect to
rows and columns, but also with respect to outcomes, is imposed only on simple
matrices. Thus, null events are avoided and strict preferences are properly implied.
We reinforce outcome monotonicity to infinite dimensions by adding pointwise
monotonicity: a matrix is weakly preferred if all its cells weakly dominate. This
condition is as unobjectionable for infinite dimensions as it is for finitely many. Every
bounded matrix is now “sandwiched” more and more tightly by pointwise dominating

and dominated simple matrices. This determines a unique DEU value, such that strict

15 Bear in mind that we assume strictly positive probabilities, avoiding null events as required for

outcome monotonicity.



inequality of DEU values implies strict preference (using transitivity). Next, we
reinforce continuity into supnorm continuity, ensuring existence of constant
equivalents. Then equality of DEU values, again using transitivity, implies
indifference and, hence, we have a DEU representation. We have shown the following

result.

THEOREM 14. Assume that: (a) matrices map [0,1) X {cy, ..., ¢} to the reals and are
measurable; (b) preferences are over matrices; (c¢) decision under risk holds with
respect to the uniform distribution on [0,1). That is, our domain of matrices is
equivalent to probability distributions over “rows” in R™. On the domain of simple
matrices/distributions, and also on the domain of all bounded matrices/distributions,
discounted expected utility holds if and only if weak ordering, supnorm continuity,
pointwise monotonicity, and monotonicity with respect to outcomes, rows, and

columns hold.

Extension to unbounded matrices and connected topological outcome spaces
(including all convex sets of commodity bundles) can be obtained by Wakker’s
(1993) truncation continuity. The total subjective weight of space R is still assumed
bounded here. Unbounded subjective weight of R may occur, for instance, if R
reflects time rather than uncertainty, or populations of variable size. Then further
continuity conditions have to be invoked, discussed for instance by Asheim et al.
(2010), Banerjee & Mitra (2007), Christensen (2022), Drugeon & Huy (2022),
Marinacci (1998), and Pivato (2022). For extensions to infinitely many columns,
besides infinitely many rows, our extension techniques are similarly applied to
columns.

Theorem 14 can be used for all interpretations of columns. If they refer to
ambiguous events (horses), versions of the AA framework result. Here it is usually
assumed that only marginal distributions conditional on horses matter, which can be
added as a preference condition. Then our structure becomes isomorphic to the set of
maps from {c;, ..., ¢, } to probability distributions over R. Correlations between

different ¢; then play no role.



SUPPLEMENTARY APPENDIX C. THEORETICAL APPLICATIONS OF NATAF’S

AGGREGATION RESULT TO PREFERENCE AXIOMATIZATIONS

We briefly sketch some further theoretical applications to preference axiomatizations,
in addition to Theorem 1 in the main text. We first assume that both rows and
columns refer to events. Thus, {rl,...,7™} and {cy, ..., ¢, } are two partitions of the
universal event. In Figure 1, the intersection event r% N ¢j gives outcome x]‘ Outcome
monotonicity implies that none of those intersections is empty or null. Uniform row
and column monotonicity can be interpreted as versions of stochastic independence:
being informed about one partition does not affect preferences over the other.
Theorem 1 then gives an appealing axiomatization of subjective expected utility,
alternative to Savage (1954). Pfanzagl (1968; Section 12.5) presented this result using
the stochastic independence interpretation for m = n = 2. Mongin (2020) and Ceron
& Vergopoulos (2021) independently generalized it to general m, n.

We next continue to assume that rows and columns refer to events, but we further
assume decision under risk for the r*, with probability 1/m for each rt. We first
consider the case where the ¢;s may have unknown probabilities. Theorem 1 gives
expected utility for risk (evaluating each column). Our equally-likely case can cover
all simple rational-probability distributions. Supplementary Appendix B shows how
more general probability distributions can be incorporated, and that subjective
probabilities over rows must be equal to the objective probabilities over rows.
Theorem 1 also gives expected utility for the horse events ¢; and, thus, provides an
alternative axiomatization of the original expected utility model of AA, using the two-
stage framework that has become standard today. AA referred to standard mixture
independence to axiomatize expected utility for risk, and also assumed horse
monotonicity. In our approach, their mixture independence is weakened to risk
monotonicity. For our monotonicities the event, say row, to be conditioned on always
only involves one outcome per column, whereas for von Neumann-Morgenstern
mixture independence (or Savage’s sure-thing principle) such events to be
conditioned on must be allowed to involve any number of rows, i.e. any number of
outcomes per column. The symmetry of our two monotonicity conditions and, thus, of

the treatment of risk and uncertainty, adds to the appeal of our alternative Theorem.



As a price to pay, we need continuous utility whereas AA and Fishburn (1970)
allowed for complete generality in this regard.

If we interpret the ¢;s as persons rather than events, Theorem 1 becomes an
alternative to Harsanyi’s (1955) welfare result based on the veil of ignorance. His
Pareto principle is column monotonicity. Like AA, he refers to mixture independence
to obtain EU, and we similarly generalize here. In Theorem 1 there is no middle
ground: if the social welfare function is ordinal in the individual utilities then it must
be cardinal, leading to a linear sum. This is the essence of Harsanyi’s result. Grant et
al. (2010) provided generalizations that relaxed the independence and monotonicity
conditions in Harsanyi’s result.

We, finally, present an implication where only one component is available at the
outset, but we construct a second kind for auxiliary purposes. Gul (1992) considered a
finite state space {rl, e, MY Acts (xl, ..., Xx™) map states to R. Gul’s preference
relation on acts, denoted 3> ' here, satisfies weak ordering, continuity, and outcome
monotonicity, implying that all states are nonnull. One fixed event A (nontrivial
subset of the state space) plays a special role explained later (reminiscent of Ramsey’s
(1931) ethically neutral event). We define the function C on acts as the certainty
equivalent (“constant equivalent”) function, and R(y,,y,) = -+ = R™(y,,y,) as the
certainty equivalent function of acts (A4: y;, A°: y,), using obvious notation.

We take matrices as in Figure 2 withn = 2, ¢; = A, c, = A°. We define our
preference relation > over matrices as represented by Eq. 6. Thus, row monotonicity
holds (Observation 10) and it is uniform because all R/’s are the same. The act
(R (x},x3), oo , R™(x]", xJ")) can be identified with the equivalence class of
corresponding matrices with entries x{ " and xg " such that R/ (x{ ! xg V=R (x{ , xé)
for all j. Uniform column monotonicity for > over matrices in Figure 2 is equivalent
to Gul’s Assumption 2 for 3> ' on acts, a condition called act independence nowadays

(Chew & Karni 1994). Thus, we obtain as a corollary of Theorem 1:

THEOREM 15. Under the assumptions of this Appendix, the following four statements
are equivalent:

(i) Expected utility holds for 3> " over acts.

(i1) Discounted expected utility holds for > over matrices.

(ii1) Uniform column monotonicity holds for > over matrices.



(iv) Act independence holds for > " over acts.

In the above result, standard uniqueness results for DEU imply that the “discount
weight” d; of the left column, after normalization, is the probability of event A
resulting from the row probabilities. The conditions in Statements (iii) and (iv) are
appealing because they mimic mixture independence for risk to the context of
uncertainty.

Gul’s axiomatization of subjective expected utility through act independence thus
follows as a corollary of our Theorem 1. Our result is more general because Gul
required the event A to satisfy a symmetry condition implying that it has subjective
probability 0.5, which we do not need. Chew & Karni (1994) also provided this
generalization. Our verbal proof, involving the Appendix in the main text and the
preceding paragraphs, is considerably shorter and more accessible than that in Gul
(1992 pp. 104-109) or Chew & Karni (1994). It is remarkable that Gul (1992) can be
obtained as, essentially, a corollary of Nataf (1948).

Some other axiomatizations of expected utility used generalizations of
bisymmetry axioms that are all more restrictive than Gul’s Assumption 2: they also
consider more than two columns and many events A (Kobberling & Wakker 2003
Theorem 16). Hence, they also follow as corollaries of our Theorems 1 and 15. Such
results include Krantz et al. (1971, Theorem 6.9.10 which assumes m = n =2),
Pfanzagl (1959 pp. 287-288 which assumes m = n =2), and Miinnich, Maksa, &
Mokken (2000 Theorem 2).
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