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Abstract. This paper proposes a unified framework for optimization over two or more components 

(e.g., risk and time). We identify a common cause (the “monotonicity problem”) underlying many 

current debates in behavioral decision theory, concerning correlation preference in intertemporal 

choice, incentive compatibility of the random incentive system, hedging in ambiguity measurements, 

the judgment aggregation paradox, ex post versus ex ante fairness in welfare, and many others. 

Further, the monotonicity problem implies that a “middle ground” for single component optimization, 

used in virtually all behavioral theories, is not available for multi-component optimization. That leads 

to an unavoidable bifurcation dilemma, where one has to choose one of only two disjoint routes 

available. Stances taken in the above debates all amount to a choice of one of those two routes. We 

provide general techniques for properly choosing in this dilemma, thus clarifying and unifying many 

debates, and obtaining many generalizations and new insights for many fields. For instance, our 

analysis supports the validity of the random incentive system and of ambiguity measurements despite 

hedging, criticisms of monotonicity in the Anscombe-Aumann framework of ambiguity, ex post over 

ex ante fairness, and it favors particular framings over others in experiments. 

Keywords: discounted expected utility • multiobjective optimization • hedging under ambiguity • ex 

ante inequality • random incentive system   
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1.  Introduction 

It may come as a surprise that many debates on various topics in the literature, from multiattribute risk 

aversion to Harsanyi’s veil of ignorance or to incentive compatibility of the random incentive system, 

share a common hidden cause: the “monotonicity problem.” This paper identifies that problem and 

provides diagnoses and solutions. The mathematics underlying the problem has been known for almost 

a century, since Nataf (1948), and special cases and parts of the problem have been discussed in 

numerous papers, independently in many fields. But the universality, unavoidability, and acuteness of 

the underlying monotonicity problem for all behavioral decision models with two or more components 

of optimization1 have not been observed before. That is, the problem is more serious and fundamental 

than has been known before. With the underlying cause identified for these many debates, we can 

provide diagnoses with a clear roadmap and steering techniques to navigate through the dilemmas, 

obtaining generalizations and new insights for many fields. 

 For decisions with a single component, behavioral decision models typically operate in a “middle 

ground” where classical strong separability is relaxed but basic monotonicity is maintained, e.g., in 

nonexpected utility for risk or in equity models for welfare. Whereas this “middle ground” has 

delivered numerous fruitful behavioral models for single components, when it is applied to decision 

situations with two or more components, puzzling paradoxes appear. 

 To illustrate the puzzles and prepare for identifying their underlying cause, Sections 2 and 4 

present two paradoxes, the separability and the no-separability paradox, with a puzzling appearance 

and disappearance of separability, respectively. Our central Theorem 7 in Section 5 then shows that 

the two paradoxes are two sides of the same coin. As it turns out, the “middle ground”, so fruitful for 

only one component, does not exist for two or more components. This is what we call the 

 

1 For instance, if we optimize over the two components risk and time, or over risk and persons. Components can 

also concern commodities, production inputs, prices, expert opinions, health attributes, regions, and so on. 
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monotonicity problem, and it is the abovementioned common cause. Structural changes occur when 

going from one component to two or more, and new techniques need to be developed. 

 Section 6 presents the first application of the monotonicity problem to quantitative optimizations. 

It leads to a “bifurcation dilemma” (Figure 4). We show that many stances in the literature, such as pre-

ference for ex post versus ex ante fairness, or for validity of the random incentive system (RIS; defined 

in Subsection 9.2) versus a hedging confound in ambiguity measurements, amount to choosing one of 

the only two possible routes in the bifurcation dilemma. Under classical models such as discounted 

expected utility (DEU), the workhorse of decision analysis (Baucells & Bodily 2024), different orders 

of “aggregation” (integration) give the same result so that the chosen order is immaterial. However, 

under behavioral generalizations, the order of aggregation does matter. Most papers implicitly, without 

any discussion, then choose one order of aggregation. Several papers did signal that this order can 

matter and discussed discrepancies between the orders. Section 6 shows that this choice of order is a 

special case of the bifurcation dilemma, and that it is more critical than has been known before. 

 Section 7 applies our results to the special case of welfare under risk. Section 8 then provides 

guidelines and steering techniques to solve the monotonicity problem and to make proper choices in 

the bifurcation dilemma. There we take welfare under risk as running example, but our 

recommendations and techniques apply to all cases of multiple components. Section 9 further presents 

new insights for particular cases of multiple components. 

 This paper is not a standard theory paper. Regarding its central theorem, Theorem 7, 

mathematical generalizations have been provided before (Mongin & Pivato 2015 Proposition 1). The 

basic mathematical result has been known for almost a century (Nataf 1948). However, its managerial 

implications, of absence of a middle ground for behavioral theories leading to a critical bifurcation 

dilemma, has not been understood before. We thus unify a wide range of seemingly unrelated debates 

and provide many new insights for various behavioral subfields. We next explain our novelties in 

further detail. 
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 Special cases of the monotonicity problem have been discussed in particular contexts before. 

However, its acuteness, where one has to choose one of two disjoint routes (Corollary 11), and in each 

route immediately has to give up half of the interactions of potential interest, has not been observed 

before. Most papers focused on one field of application, such as risk and welfare, and presented results 

only there. We provide results for many fields. 

 By pointing out that the same monotonicity problem applies to all fields, we organize pre-existing 

analyses in different fields into one unified framework. This unification facilitates knowledge transfer 

across different fields. For example, when discussing the validity of the RIS, it is useful to know that 

one is essentially considering the same arguments as in discussions of ex ante versus ex post fairness 

in welfare, of monotonicity in the Anscombe-Aumann framework, of correlation aversion, and so on. 

No-one working on RIS has mentioned such relations before. 

 We propose structural techniques to resolve or alleviate the monotonicity problem. Our partial 

information technique is entirely novel. While the framing and timing techniques have been discussed 

in isolated contexts, we are the first to synthesize them into a general framework, applicable in all 

fields. Section 8 presents practical guidelines to navigate the choice in the bifurcation problem. We 

next give examples of new insights for particular fields. 

 For welfare our guidelines show that, other things equal, Broome’s (1991) argument against 

Harsanyi’s utilitarianism is more convincing than Diamond’s (1967) competing argument. Diamond 

and Broome “simply” chose differently between the only two tractable routes available.  

 For the Anscombe-Aumann framework on ambiguity, we show that the monotonicity condition 

chose the less plausible of the two possible routes. Our analysis makes clear that existing criticisms of 

the framework, despite their varied forms, essentially hinge on this critical choice in the bifurcation 

problem. Our unified new perspective leads to new counterexamples to the Anscombe-Aumann 

framework in Figures 9 and 10.  
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 Regarding the RIS, previous justifications of its incentive compatibility appealed to “isolation,” 

which is our risk monotonicity. We are the first to show that this isolation concerns one of two 

possible routes in a bifurcation situation, and is the more plausible one, providing new support for the 

validity of RIS. Our analyses also clarify that the widespread misunderstanding, that validity of RIS 

would require full strength of expected utility, stems from the separability paradox in Section 2. We 

show that similar observations hold for the hedging problem in ambiguity experiments (Section 9.2). 

Our guidelines demonstrate that hedging is usually not a serious problem and show how it can be 

minimized. Note, again, that many papers have been written on only hedging for ambiguity, whereas 

our paper brings novelty (and unity) to that and many other cases. The judgement paradox has never 

yet been related to any of the above problems. 

 As for Theorem 1 on DEU, its novelty is not in mathematical generality but in achieving 

simplicity and appeal. We are the first to state the axiomatization of the important DEU model entirely 

verbally, thus making the axioms accessible to nonspecialists. As we show later, this theorem is a first 

signal of the monotonicity problem and of the absence of middle ground. 

 To focus the main text of this paper, limit its size, and maintain high accessibility, some powerful 

mathematical generalizations based on our aggregation techniques, generalizing several well-known 

preference axiomatizations with simplified proofs, are presented in Supplementary Appendix C. Those 

axiomatizations generalize Anscombe & Aumann (1963), Gul (1992), and Harsanyi (1955). 

 

2.  Discounted Expected Utility and the Separability Paradox 

This section presents our first paradox, yet within the classical, not yet behavioral, framework. 

2.1. Definitions for uncertainty and time 

We consider choices between “actstreams,” i.e., matrices as in Figure 1. Cells describe money 

amounts (real numbers). We here deal with two components, uncertainty (states of nature), and time 
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(timepoints). If state of nature 𝑠𝑖 obtains then at timepoint 𝑡𝑗 one receives money 𝑥𝑗
𝑖. Columns 

designate acts, i.e., maps from states to outcomes, and rows similarly are outcome streams. An 

actstream gives a stream yielding acts or, equivalently, an act yielding streams. 

 

 

 

 

 

 

 

Any outcome stream (𝛽1, … , 𝛽𝑛) ∈ ℝ𝑛 can be identified with the matrix having that outcome stream in 

each row, i.e., the degenerate lottery giving that outcome stream with certainty. Any act (𝛼1, … , 𝛼𝑚) ∈

ℝ𝑚 can be identified with the matrix having that act in the first column, and outcome 0 elsewhere; i.e, 

receiving that act at 𝑡1 and nothing after. This way, preferences over acts and streams are derived from 

preferences over actstreams. 

 Expected utility (EU) holds if there exist positive probabilities 𝑝1, … , 𝑝𝑚 and a utility function 𝑈 

(𝑈: ℝ → ℝ continuous and strictly increasing) such that preferences over acts (elements of ℝ𝑚) are 

represented by expected utility 

 (𝛼1, … , 𝛼𝑚) ↦  ∑ 𝑝𝑖 × 𝑈(𝛼𝑖)𝑚
𝑖=1  (1) 

 Discounted utility (DU) holds if there exist discount factors 0 < 𝑑𝑗 (𝑗 = 1, … , 𝑛) and a utility 

function 𝑈 such that preferences over streams are represented by discounted utility (DU) 

 (𝛽1, … , 𝛽𝑛) ↦  ∑ 𝑑𝑗 × 𝑈(𝛽𝑗)𝑛
𝑗=1  (2) 

𝑠1 
 . 
 . 
 . 
𝑠𝑖 
 . 
 . 
 . 
𝑠𝑚 

FIGURE 1. An actstream 
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Exponential discounting can readily be obtained by adding a preference condition that guarantees the 

same discount rate over time. 

 Discounted expected utility (DEU) holds if there exist probabilities, discount factors, and a utility 

function 𝑈 such that preferences over actstreams are represented by their discounted expected utility 

(DEU) 

 ∑ 𝑝𝑖 ∑ 𝑑𝑗 × 𝑈(𝑥𝑗
𝑖)𝑛

𝑗=1
𝑚
𝑖=1  (3) 

(Keeney & Raiffa 1976 Ch. 9). The order of aggregation, row-first or column-first, is immaterial, 

because Eq. 3 is equivalent to 

 ∑ 𝑑𝑗 ∑ 𝑝𝑖 × 𝑈(𝑥𝑗
𝑖)𝑚

𝑖=1
𝑛
𝑗=1   (4) 

We will usually use Eq. 3. DEU has the following implications: 

(1) EU holds for uncertainty preferences. 

(2) DU holds for intertemporal preferences. 

(3) EU and DU use the same utility function. 

Each of these implications has often been criticized on normative grounds. For instance, numerous 

debates on cardinal utility (Moscati 2018) and on the difference between risky and riskless utility 

(Abdellaoui, Attema, & Bleichrodt 2010; Dyer & Sarin 1982; Keeney & Raiffa 1976) have been 

advanced, challenging implication (3). The three implications have also been extensively criticized on 

empirical grounds; see Starmer (2000) for (1), Attema (2012) for (2), and Abdellaoui et al. (2013) for 

(3). In Subsections 2.2 and 2.3, we present the axioms needed to axiomatize DEU. 

2.2. “Unobjectionable” axioms 

AXIOM 1. Weak ordering: transitivity and completeness (including reflexivity). 

AXIOM 2. Continuity: the usual (Euclidean) continuity on ℝ𝑚×𝑛. 

AXIOM 3. Outcome monotonicity: strictly increasing any cell 𝑥𝑗
𝑖 strictly improves the actstream. 
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AXIOM 4. Act monotonicity: at any timepoint, replacing the act there by a weakly [strictly] preferred 

act leads to a weakly [strictly] preferred actstream. 

AXIOM 5. Stream monotonicity: at any state, replacing the stream there by a weakly [strictly] preferred 

stream leads to a weakly [strictly] preferred actstream. 

2.3. Objectionable axioms 

Given the strong separabilities (defined in Section 3) over states and timepoints involved in DEU, 

which have been so widely falsified empirically, one may expect strong objectionable axioms to be 

listed in this section. However, there is none! That is, the axioms in Subsection 2.2 suffice to give 

DEU. This may come as a paradox. How can such seemingly innocuous preference conditions have 

such strong implications? The paradox is displayed in Theorem 1 in the following Subsection. 

2.4. Axiomatization of discounted expected utility 

THEOREM 1. The following two statements are equivalent. 

(i) Discounted expected utility holds. 

(ii) Weak ordering, continuity, and monotonicity with respect to outcomes, acts, and streams hold. 

 

 The first paradox of this paper, the separability paradox, refers to the question of how such 

seemingly weak preference conditions (Pivato & Tchouantez 2024: “uncontroversial”) can have such 

strong implications, with strong separabilities over states and timepoints. Because of its simplicity, we 

claim that Theorem 1 provides the most appealing axiomatization of DEU presently available. As we 

will show later, Theorem 1 is the first puzzling consequence of the monotonicity problem. Before 

touching on the crux of that problem, Section 3 introduces a unified framework that will serve to 

showcase the monotonicity problem. 
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 In many contexts, extensions to infinite components, such as continuum time intervals, are 

desirable. Supplementary Appendix B shows that they can readily be achieved using standard tools 

from mathematical measure theory (e.g., Theorem 14).2 Grabisch, Monet, & Vergopoulos (2023) 

provided such a result for continua of components that, unlike our results, do not need a continuum of 

outcomes. The important point to note is that our intuitive axioms, mainly the monotonicities, remain 

unaffected in this process. Only the technical continuity is modified. Thus, these modifications do not 

affect the practical and conceptual implications discussed in the main text of this paper. 

 

3.  General Definitions and Versions of Separability 

We throughout assume that all decisions are made at one fixed timepoint, preceding all timepoints of a 

time component if the latter is present. The decision timepoint also precedes any information about the 

resolution of risk or uncertainty if an uncertainty component is present. Thus, if the true state was 

determined prior to the decision, the decision maker does not know which it is.3 We also assume that 

all uncertainty is resolved at one fixed timepoint, i.e., in one stage, prior to any receipt of outcomes. 

Thus, we also do not deal with multistage complications such as preferences for the timing of the 

resolution of uncertainty, as in Kreps & Porteus (1978) and Epstein & Zin (1989), and we do not 

consider the corresponding recursive formulas. 

 We now fully formalize our analysis, and add one generalization, amounting to state- and time-

dependence of the utility function 𝑈 in Eq. 3. This greatly enhances the applicability of our results. 

 

2 The theorem can also be readily extended to risk. For example, if all 𝑠𝑖 have known probabilities 1/𝑚 implying 

symmetry (and subjective probabilities 𝑝𝑖=1/m) we obtain all equal-probability distributions, comprising all 

rational probabilities. Extension to all probability distributions follows from common continuity (Supplementary 

Appendix B). 

3 Prior resolution of uncertainty is only a matter of perception and never of strategic relevance, and dynamic 

decision principles and updating play no role in this paper. 
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Our general framework considers preferences ≽ over matrices.There are two components: (1) a finite 

row set 𝑅 = {𝑟1, … , 𝑟𝑚} with its attributes being 𝑚 rows and (2) a finite column set 𝐶 = {𝑐1, … , 𝑐𝑛} 

with its attributes being 𝑛 columns. Before, the components concerned uncertainty and time, with 

𝑚 attributes (states) and 𝑛 attributes (timepoints), respectively. For simplicity, we continue to assume 

that the outcome space is ℝ, say monetary. In some of our examples, outcomes may concern 

nonmonetary goods.4 We assume 𝑚, 𝑛 > 1 fixed. Rows in ℝ𝑛 map 𝐶 to ℝ and columns in ℝ𝑚 map 𝑅 

to ℝ. A matrix in ℝ𝑚×𝑛 (called actstream before) maps 𝑅 × 𝐶 to ℝ. It specifies a row (𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ) for 

each 𝑟𝑖 and a column (𝑥𝑗
1, … , 𝑥𝑗

𝑚) for each 𝑐𝑗. A matrix in ℝ𝑚×𝑛 consists of 𝑚 × 𝑛 cells 𝑥𝑗
𝑖 . 

 

 

 

 

 

 

 

 Separability is central in our analysis. A subset of cells is separable if preferences over those 

cells, while keeping the outcomes at all other cells fixed, are independent of the levels where the other 

cells are kept fixed. We will consider various versions of separability, imposed on various collections 

of subsets of cells. The strongest version is strong separability, imposing separability on all subsets of 

cells. Weak separability means that every single cell is separable.  

 We will also consider intermediate levels of separability, applied to rows or to columns, as 

follows. We consider underlying preferences ≽𝑖 over rows (𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ) and ≽𝑗 over columns 

 

4 Mathematical extensions of our theorems to connected topological outcome spaces (e.g., convex sets of 

commodity bundles) are straightforward. However, this paper seeks for conceptual implications and accessibility 

rather than mathematical generality. 

FIGURE 2. A matrix 
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(𝑥𝑗
1, … , 𝑥𝑗

𝑚) that can be derived from ≽ over matrices by keeping “outside cells” fixed. This 

“conditioning” procedure works well if proper separability conditions hold: 

 

DEFINITION 2. Weak separability of rows, or row monotonicity, holds if each row is separable. Weak 

separability of columns, or column monotonicity, holds if each column is separable. 

 

Separability of a subset is equivalent to the possibility to define an underlying preference relation, 

“conditional” on that subset (≽𝑖 and ≽𝑗 above), so that we have monotonicity with respect to that 

relation. Hence, the relations ≽𝑖 and ≽𝑗 work well under the separability conditions in Definition 2. 

Outcome monotonicity is defined as before (strictly increasing any cell strictly improves the matrix), 

and readily implies weak separability. Definition 2 generalizes act and stream monotonicity by 

allowing for row and column dependence, indicated by the sub- and superscripts in  ≽𝑖 and ≽𝑗. For 

consistency with the literature, we maintain the monotonicity terminology. 

 

DEFINITION 3. Strong separability of rows holds if every union of rows is separable. Strong 

separability of columns holds if every union of columns is separable. 

 

Weak and strong separability, as default, take cells as “unit,” whereas their alternatives in Definitions 

2 and 3 specify rows or columns as “unit.”  

 

4.  The Behavioral Middle Ground and the No-Separability 

Paradox 

This section presents our second paradox for decisions involving two or more components. To 

illustrate the essence of the paradox, we first take a step back, and look at how researchers deal with 

separability when modeling decisions involving only one component. 
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  Sono (1945) and Leontief (1947) introduced separability. They did so for consumer theory, 

where only one component is considered, describing commodities. As in the preceding section, a 

subset of commodities is separable if preferences over those commodities, while keeping the levels of 

the other commodities fixed, are independent of the levels where those other commodities are kept 

fixed. Strong separability means that every subset of commodities is separable, and weak separability 

means that every single commodity is separable.  

 It has long been known that strong separability is very restrictive. For three or more commodities, 

it implies maximization of an additively decomposable function (Gorman 1968). That is, it precludes 

any interaction between commodities, implying constant marginal rates of substitution. Weak 

separability is weak. For one component, it is already implied by outcome monotonicity, which is 

commonly considered nonobjectionable.  

 Separability turned out to be central in many fields. Thus, for decision under uncertainty, 

Savage’s (1954) famous sure-thing principle (his P2), the watershed between Bayesian and non-

Bayesian models (Wu, Zhang, & Gonzalez 2004 p. 401) and the main cornerstone of normative 

decision analysis, is nothing but a reinvention of strong separability, imposed on a state space. 

 Classical decision models were first developed for one component. They include expected utility 

for uncertainty, discounted utility for time, and utilitarianism for welfare. They all assume strong 

separability. Modern behavioral models relax strong separability to capture the certainty effect in 

uncertainty, habit formation in time, fairness in welfare, and numerous other interactions violating 

separability. When relaxing strong separability in classical models, behavioral models do commonly 

maintain weak separability though, and the stronger outcome monotonicity. That is, they operate in 

what we call the middle ground: models that give up strong separability but maintain weak 

separability. Thus, when Fishburn (1978) pointed out that separate probability weighting, as partly 

used in original prospect theory (Kahneman & Tversky 1979), violates outcome monotonicity, 

Tversky & Kahneman (1992) updated prospect theory, using Quiggin’s (1982) invention of rank 
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dependence, to return to the middle ground, which improved empirical performance (Hirshman & Wu 

2025).  

 It is natural to expect behavioral models involving two or more components to also operate in 

such a middle ground. The following example demonstrates a typical attempt to achieve such middle 

ground, which will lead to the second paradox of this paper.  

 

EXAMPLE 4 [No-Separability Paradox: A Paradoxical Disappearance of Separability]. We consider 

actstreams as in Figure 1 and Eq. 3 (DEU). We assume two timepoints with no discounting (𝑑1 =

𝑑2 = 1), two equally likely states (𝑃(𝑠1) =  𝑃(𝑠2) = 0.5), and linear utility (𝑈(𝛼) = 𝛼). A manager 

wants to relax strong separability for risky states, i.e., generalize EU for risk, by allowing extra 

pessimism as in Allais’ paradox, through overweighting of the worst outcome. She wants to maintain 

strong separability for timepoints 𝑡𝑗 though. Thus, in Eq. 3, the right summation, DU over columns, is 

kept, but the left summation, EU, is replaced by a nonexpected utility formula that satisfies stochastic 

dominance.5 It may be any nonexpected utility model with overweighting of the worst outcome, such 

as rank-dependent utility with pessimism. At first sight, the manager seems to have achieved the 

desired middle ground, with weak but no strong separability of risky states (rows), and strong, so 

surely weak, separability of timepoints (columns).  

 

 

 

 

 

 

 

5 Kochov (2015) and Bastianello & Faro (2023) argued for maintaining stochastic dominance (monotonicity). 
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𝑡1  𝑡2 

𝑠1 
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FIGURE 3. 𝑡1 is not separable 
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 However, a closer look reveals a serious problem. The overweighting of the worst state implies 

the preferences in Figure 3, which implies a puzzling violation of separability of 𝑡1. Contrary to what 

the manager had hoped for, preferences implied by the proposed model violate strong separability and 

even weak separability (column monotonicity) of timepoints. Unbeknownst to the manager, she has 

introduced interactions between timepoints “under the cover.” □ 

 

 Example 4 is paradoxical. The manager only wanted to give up strong separability of states, to 

work in the middle ground of behavioral theories, and she did not touch the formula of time 

aggregation. Yet, inadvertently, separability of timepoints was lost, even their weak separability. The 

model thus fell out of the desired middle ground.  

 We have presented two paradoxes. In the separability paradox, where the most restrictive decision 

model DEU was implied by the seemingly most innocuous conditions, separability appeared in a 

puzzling manner. In the no-separability paradox, where the gentle relaxation of strong separability for 

one component implied violation of even weak separability of the other, separability disappeared in a 

puzzling manner. One couldn’t help but wonder: 

 

QUESTION 5. How can the behavioral middle ground (no strong separability but still weak 

separability) be reached, if at all, for two or more components? 

 

This question will be answered in the next section. Many, seemingly unrelated, issues in the 

behavioral field, presented later, will be clarified by this answer.  

 

5.  Resolving the Paradoxes and Answering Question 5 

To prepare, we present a theorem that has essentially been known for almost a century. Additive utility 

(AU) holds if preferences over matrices are represented by 
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 ∑ ∑ 𝑉𝑗
𝑖(𝑥𝑗

𝑖)𝑛
𝑗=1

𝑚
𝑖=1  (5) 

for strictly increasing continuous functions 𝑉𝑗
𝑖(𝑥𝑗

𝑖). AU readily implies strong separability of cells and, 

consequently, of rows and columns. The following remarkable observation, known as the Theorem of 

aggregation, is basic to this paper. Its history is discussed after the observation. 

 

OBSERVATION 6 [Theorem of Aggregation] The following two statements are equivalent for ≽ on 

ℝm×n. 

(i) Additive utility holds. 

(ii) Weak ordering, continuity, and monotonicity with respect to outcomes, rows, and columns hold. 

 

It is obvious that Statement (i) implies Statement (ii), and even strong separability of cells. For the 

reversed implication, it is clear that row and column monotonicity preclude particular interactions 

between cells. (A subset of cells is subject to interactions if it is not separable.) However, the 

interactions that are directly precluded this way are only few. The surprising point of Observation 6 is 

that, in this setting with multiple components, all interactions are precluded “indirectly” after all, also 

for the many subsets of cells besides unions of rows or unions of columns. This point was, essentially, 

Nataf’s (1948) finding, although his proof has sometimes been criticized for being inaccessible. 

Nowadays, the result can readily be obtained as one of the many surprising implications of Gorman’s 

(1968) strong result. Hence, we will not give a separate proof. Our results can easily be extended to 

more than two components: additive utility holds if and only if Statement (ii) holds with now 

monotonicity (weak separability) for every component. 

 With Observation 6 available, the two preceding paradoxes are no more surprising. The no-

separability paradox immediately follows: with weak separability of states but no strong separability, 

not only strong separability of timepoints must be violated, but even their weak separability must be. 

Whereas the no-separability paradox only showed that unintended interactions may arise, Observation 
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6 shows that the case is yet more critical: such unintended interactions always arise. They are 

unavoidable. Regarding the separability paradox of Theorem 1, with Observation 6 available, the 

underlying mathematics becomes understandable. Theorem 1 concerned the special case of 

Observation 6 where ≽𝑖 and ≽𝑗 were independent of 𝑖 and 𝑗, respectively, implying that the 𝑉𝑗
𝑖 in 

Observation 6 can be taken proportional, and Theorem 1 quickly follows (see appendix). As we 

explained, its novelty is not in mathematical generality but in accessibility and appeal.  

 The most shocking implication of Observation 6 is the following theorem, providing a negative 

answer to Question 5. 

 

THEOREM 7 [Central Theorem; the Monotonicity Problem: Absence of Middle Ground]. A middle 

ground for behavioral approaches, with strong separability of components abandoned but weak 

separability (“monotonicity”) maintained, is not available for two or more components. 

 

 This negative answer provides the common cause underlying many confusions and debates 

carried out independently in many subfields of behavioral decision theory. Whereas Observation 6 has 

essentially been known for almost a century, its vast implications for behavioral decision theory, 

starting with Theorem 7, have not been understood before. The remainder of this paper will discuss 

these implications further. 

 This section ends with some terminology. Whenever risk, the most-studied component in the 

literature and also in this paper, is involved we let it correspond with rows 𝑟𝑖, which then are states 

with known probabilities. We then refer to row monotonicity as risk monotonicity. Further, in general 

contexts, where rows need not designate streams, we use the terms uniform row monotonicity instead 

of stream monotonicity. Uniform column monotonicity similarly generalizes act monotonicity. 

Uniformity means that all rows (or columns) have the same “conditional” preferences  ≽1= ⋯ = ≽𝑚, 

or all columns have the same  ≽1= ⋯ = ≽𝑛.  The difference between DEU and AU, or between 
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uniform and general monotonicity/separability, or between Theorem 1 and Observation 6, never plays 

a role in any of the conceptual discussions in this paper. 

 

6.  A First Application: A Bifurcation Dilemma for Behavioral 

Quantitative Optimization 

For quantitative optimizations with two (or more) components, recursive procedures, defined next, are 

commonly used because they are tractable. They can occur in two ways, i.e., using two orders of 

aggregation, in the next two definitions.6 

 

DEFINITION 8. Row-monotonic aggregation holds if there exist row-functions 𝑅i and a column-

function 𝐶, all continuous and strictly increasing in each coordinate, such that preferences are 

represented by 

 𝐶 (𝑅1(𝑥1
1, … , 𝑥𝑛

1), . . . . . . , 𝑅𝑖(𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ), . . . . . . , 𝑅𝑚(𝑥1
𝑚, … , 𝑥𝑛

𝑚)) (6) 

 

Here one first, for every row 𝑟𝑖, aggregates over the columns 𝑐1, … , 𝑐𝑛, and one next aggregates the 𝑚 

resulting values into the final value.  

 

DEFINITION 99. Column-monotonic aggregation holds if there exist column-functions 𝐶j and a row-

function 𝑅, all continuous and strictly increasing in each coordinate, such that preferences are 

represented by 

 

6 The popular terms row-first and column-first aggregation, used in our title, are ambiguous. For instance, row-

first has as well referred to row-monotonic aggregation (first aggregate within a row) as to column-monotonic 

aggregation (first aggregate rows (within a column)). Hence, we will not use these terms in our formal analysis. 
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 𝑅 (𝐶1(𝑥1
1, … , 𝑥1

𝑚), . . . . . . , 𝐶𝑗(𝑥𝑗
1, … , 𝑥𝑗

𝑚) , . . . . . . , 𝐶𝑛(𝑥𝑛
1 , … , 𝑥𝑛

𝑚)) (7) 

Now one first, for every column 𝑐𝑗, aggregates over the rows 𝑟𝑖, … , 𝑟𝑚 and one next aggregates the 𝑛 

resulting values into the final value. Under uniform row monotonicity, we can take all 𝑅𝑖 in Eq. 6 the 

same, i.e., independent of 𝑖, and under uniform column monotonicity, we can take all 𝐶𝑗 in Eq. 7 the 

same, independent of 𝑗. 

 A choice between the two procedures is commonly made randomly or implicitly, without any 

discussion. In classical theories the choice is indeed immaterial. Further, the two procedures do not 

seem to be very restrictive anyhow – contrary to what we will show below – because they involve 

many functions that can be chosen independently and with almost no restrictions imposed on them. 

Similarly, in preference axiomatizations one of the two monotonicities is often imposed without 

further discussion, as-if self-evident. 

 The following preparatory observation shows that orders of aggregation, i.e., aggregation 

monotonicities, are quantitative versions of the corresponding preference monotonicities. 

 

OBSERVATION 10. Given weak ordering, continuity, and outcome monotonicity, column-monotonic 

aggregation can be used if and only if column monotonicity holds. Row-monotonic aggregation can be 

used if and only if row monotonicity holds. 

 

We briefly describe the proof. Row- (column-)monotonic aggregation can be derived from the 

corresponding preference condition by taking constant-equivalent functions for the functions 𝑅𝑖, 𝐶𝑗, 𝑅, 

and 𝐶. The rest is straightforward.  

 The monotonicity problem showed that, for two or more components, row and column 

monotonicity are more restrictive than has been known before. Therefore, Observation 10 is alarming. 
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It leads to the following impossibility result. It, again, has vast and paradoxical implications for 

quantitative behavioral theories, as next sections will show. Figure 4 displays its critical nature. 

 

COROLLARY 11 [Bifurcation for Recursive Optimization]. If one wants to adopt a quantitative 

behavioral model with interactions (violations of strong separability), and for tractability reasons use a 

recursive model, then the only two routes available, row-monotonic or column-monotonic 

aggregation, are mutually exclusive, and one faces a bifurcation dilemma. 

 

 

 

 

 

 

 

 Corollary 11 implies that in Example 4, to maintain weak (or even strong) separability of 

timepoints, one has to first aggregate risks for each timepoint and only then aggregate over timepoints. 

Weak separability of states then is just unachievable (unless one also has strong separability of states). 

If one starts from aggregating timepoints for each risky state, then separability of timepoints, even 

weak, can never be achieved anymore, no matter how one generalizes the functionals (unless one 

reverts to strong separability of states). These observations illustrate that the order of aggregation, 

immaterial in classical models, becomes critical in behavioral generalizations.  

 In behavioral approaches, the choice of route and, hence, the order of aggregation in Figure 4 is 

mostly made implicitly, without any argument given (Andreoni & Sprenger 2012; Machina 2014 Eq. 6 

& footnote 11 & p. 3821 l. -3). As we have shown, the choice is critical though and explicit arguments 

for the route chosen are desirable. Several papers did provide discussions, including Dejarnette et al. 

FIGURE 4. Bifurcation 

dilemma with no 

middle ground

Recursivity with 

interactions
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(2020 Section 4), Epper & Fehr-Duda (2024), Marinacci (2015 p. 1026), and Onay & Öncüler (2009). 

But the critical nature of the issue (Figure 4) has not been observed before. Not only may interactions 

arise, as has been observed before, but even they are unavoidable, as we show. Our Theorem 7 

explains why in the numerous discussions in the literature no-one ever came up with an actual middle 

ground: it does not exist. The following claim illustrates another new practical implication of Theorem 

7. Whereas the division of logical implications over assumptions in the claim remains informal, the 

claim shows the true face of the monotonicity problem and signals the alarming restrictiveness of 

recursive optimization procedures, inadvertently precluding many interactions. The “at least” clause 

below is because of interactions precluded by both monotonicities. 

 

CLAIM 12 [Precluding Many Interactions]. Given weak ordering, continuity, outcome monotonicity, 

and m = n, row monotonicity precludes at least half of the possible interactions (violations of strong 

separability), and so does column monotonicity. Each condition precludes all interactions allowed by 

the other. 

 

For 𝑚 ≠ 𝑛, one monotonicity is less restrictive than the other and precludes fewer interactions, but the 

situation is similarly alarming. 

 

7.  A Second Application: Risk and Welfare 

This section presents implications of our results for welfare under risk, where the two relevant 

components concern risky states and persons. We show how several issues in this field are, once 

again, due to the monotonicity problem. We consider generalizations of Harsanyi’s (1955) 

utilitarianism that amount to choices in the bifurcation dilemma. Harsanyi’s utilitarianism adds row-

uniformity to AU; i.e., it is a column-dependent generalization of DEU. 
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EXAMPLE 13 [Welfare and Risk]. Rows 𝑟𝑖 refer to risk, i.e., states with known probabilities 𝑝𝑖, and 

columns 𝑐𝑗 refer to persons. For simplicity, we assume 𝑝𝑖 = 1/𝑚 for all 𝑖. Harsanyi’s (1955) 

utilitarian model is AU with 𝑉𝑘
𝑖 = 𝑈𝑘/𝑚 for all 𝑖, 𝑘, where 𝑈𝑘 is the utility function of person 𝑘. 

Preferences over a matrix are of a benevolent social planner with no stakes of her own. Harsanyi’s 

Pareto principle is column monotonicity, and his expected utility assumption for the social planner 

implies uniform risk (= row) monotonicity. 

 

 Harsanyi’s axiomatization was received as a paradox because people were not aware of the 

underlying cause, the monotonicity problem. A generalization of Harsanyi’s axiomatization can be 

obtained from Observation 6 by adding symmetry of rows 16 (implying uniformity of row preference 

and EU with equal probabilities). The extension to general, possibly continuous, probabilities follows 

from Theorem 14 in Supplementary Appendix B. The axiomatization obtained this way is more 

general than Harsanyi’s (1955) axiomatization in considerably weakening his assumption of expected 

utility for risk. In return, Harsanyi did not need continuity in outcomes, and could handle subdomains 

of the matrix space.7 This alternative axiomatization is a mathematical implication of our preceding 

results, but we do not elaborate on it because we focus on conceptual implications. 

 Pivato & Tchouantez (2024) provided the most general mathematical results along the above lines 

known to us. They allowed for nonstandard real numbers and they weakened continuity to solvability. 

These generalizations are empirically and conceptually preferable but have the drawback of using 

concepts that are not well-known. The authors further weakened completeness of preference and 

 

7 Harsanyi did not explicity introduce persons as different attributes, but his domain can be remodeled 

accordingly, turning it into a subdomain of Anscombe & Aumann’s (1963) framework. This way, Anscombe & 

Aumann’s theorem is a corollary of Harsanyi’s. For details, see De Meyer & Mongin (1995). Undoubtedly, 

Harsanyi (1955) devised his result independently without relating it to the preceding Nataf (1948). Mongin & 

Pivato (2015) also pointed out the relations between these theorems. 
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allowed for state- and person-dependent utility. They also provided impossibility-result interpretations 

and they surveyed further literature. 

 

 

 

 

 

 

 

 Harsanyi’s model has often been criticized for ignoring inequality aversion, illustrated in Figures 

5 and 6. We assume uniformity, i.e., symmetry of 𝑐1 and 𝑐2 (“anonymity”) and also of 𝑟1 and 𝑟2, 

which have probability 0.5. 

 Diamond (1967) proposed Figure 5 as a criticism of Harsanyi’s utilitarianism. In all matrices, 

both rows (states) give the good outcome to one of the two persons. Hence, by symmetry (anonymity) 

all rows are equivalent and by row monotonicity, all matrices are indifferent, and so are they under 

Harsanyi’s utilitarianism (Fig. 5a). Diamond pointed out that, to the contrary, the strict preferences in 

Fig. 5b are plausible under inequality aversion, nowadays usually interpreted as ex ante inequality. In 

the dispreferred matrices, one person certainly receives the good outcome and the other person 

certainly not, so that there is inequality from the ex ante perspective. In the preferred matrices there is 

equality from the ex ante perspective in the sense that both persons receive the same lottery, 10.50. 

Diamond emphasized that the sure-thing principle (i.e., strong separability of the states/rows) is 

violated in Fig. 5b. The preference over the first row is affected by the second here. Expected utility 

and Harsanyi’s utilitarianism are violated. Our monotonicity problem shows that this problem of ex 

ante fairness is more fundamental than Diamond pointed out: even weak separability of states is 
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violated, which for three or more states is considerably more fundamental than strong separability. 

Column monotonicity may still hold. 

 

 

 

 

 

 

 

 

 Broome (1991 p. 185) proposed Figure 6 as a criticism of Harsanyi’s utilitarianism. In all 

matrices, both persons always receive 10.50. Hence, under column monotonicity (“Pareto principle”), 

all matrices are indifferent, and so are they under Harsanyi’s utilitarianism (Fig. 6a). Broome argued 

that, to the contrary, the strict preferences in Fig. 6b are plausible under inequality aversion. From the 

ex post perspective, the dispreferred matrices certainly, under both 𝑟1 and 𝑟2, result in inequality, and 

the preferred matrices certainly (for every row) result in equality. The preference over the first column 

is affected by the second here. Column monotonicity, i.e, the Pareto principle, is violated. 

 Our bifurcation dilemma provides new insights. First, the dilemma of Broome versus Diamond, 

i.e., of ex post versus ex ante fairness, is more critical than has been observed before. The choice is 

between the only two tractable approaches available, and they are disjoint (beyond classical 

utilitarianism). Diamond’s choice, i.e. ex ante fairness, is the route downward in Figure 4, and 

Broome’s choice, i.e. ex post fairness, is the route upward. Further, the dilemma is more acute than 

known before. Diamond’s approach not only violates the sure-thing principle, but even risk-

monotonicity. 
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 A natural question now arises, as it will do in every behavioral application with two (or more) 

components: which of the routes in the bifurcation dilemma in Figure 4 is more natural, upward or 

downward? The next section will discuss the question for general components, using welfare under 

risk as running example. As follows from Corollary 11, Broome and Diamond provided yet another 

discussion of the bifurcation dilemma. The next section will, further, argue that, in general, Broome’s 

criticism is more serious than Diamond’s, and will provide similar new insights for many other 

domains. 

 

8.  Guidelines and Techniques to Avoid Undesirable Violations 

of Monotonicity 

In behavioral approaches with multiple components we face the bifurcation dilemma, and have to 

decide on the plausibility of monotonicity/separability of various components. One wants to avoid 

undesirable violations of monotonicity. This section provides guidelines for choosing in the 

bicurcation dilemma. For consistency with much literature, we continue to often use the term 

monotonicity, but sometimes we prefer the more neutral term separability.  

 We first provide a default ranking of plausibility, assuming other things equal. In general, 

separability is most plausible for uncertainty and risk because there can be no physical interactions 

between mutually exclusive events (Broome 1991 end of Section 1.3 and Section 8.3; Dejarnette et al. 

2020 p. 632). Whereas Samuelson (1950) first criticized separability for uncertainty, the exclusiveness 

argument later won him over to accept separability as normative for uncertainty (Samuelson 1952).8 It 

 

8 Samuelson (1950 p. 120) wrote, famously: “Let the axioms satisfy themselves.” However, Samuelson (1952 p. 

672) wrote: “Prior to 1950, I hesitated to go much further. But much brooding over the magic words “mutually-

exclusive” convinced me that there was much to be said for a further “strong independence axiom” [strong 

separability].” 
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gives a firm normative basis to decision analysis (Wu 1996). Within uncertainty, separability is more 

convincing for risk than for ambiguous events (Wakker 2010 Section 10.4). Next, interactions are less 

likely to occur between different persons at different locations than within one person at different 

timepoints (Baucells & Sarin 2010). Thus, the following  

  default ranking of separability (or “monotonicity”): 

  [risk > ambiguity > welfare > time] (8) 

results. For time, payment in consumption is more separable than payment in money (Cohen et al. 

2020). For commodities or attributes, separability is less plausible than for uncertainty, but can take 

any remaining place in the ordering depending on the nature of the attributes. The above ordering, 

while unavoidably informal, is plausible and will have many implications for many fields, as will be 

shown.  Thus, in our running example of welfare under risk, ex post fairness as propagated by Broome 

(maintaining risk monotonicity) is, other things equal, more plausible than the ex ante fairness 

propagated by Diamond. This is a further new insight into the Broome-Diamond dilemma. Similarly, 

with time and risk as components, risk-monotonic aggregation is most plausible (Abdellaoui et al. 

2019), allowing for nonneutrality towards intertemporal correlations. In applications there can be 

many other arguments though, that can overrule Eq. 8 and lead to deviations. 

 Researchers often add a component, not for its own interest but as an auxiliary tool to facilitate 

the analysis of other components. It then is desirable that separability holds with respect to that extra 

component. The ranking in Eq. 8 explains, therefore, why risk is most popular as auxiliary component. 

It is the main tool in decision analysis (Keeney & Raiffa 1976). Harsanyi (1955) used risk as auxiliary 

component for welfare (our Example 13). Other examples include Anscombe & Aumann (1963) for 

ambiguity. Theorem 1 and Observation 6 explain why strong results could be obtained this way. 

 Empirically, it is also plausible that decision makers mostly adopt one of the two routes in the 

bifurcation dilemma. Again, for tractability reasons, but now from the psychological perspective of a 

cognitively limited decision maker rather than from the modeling perspective of a researcher. 
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Nevertheless, some interactions and spillover effects due to the presence of other attributes and stimuli 

can still be expected. Hence, empirically, people will be close to one of the two routes in Figure 4, but 

with small deviations. 

 We next discuss further aspects of stimuli and their framings that can impact the plausibility of 

separability, and the resulting route in the bifurcation dilemma of Figure 4, possibly leading to 

deviations of the default ranking of Eq. 8. We explain some steering techniques based on such aspects. 

These techniques can be used to avoid undesirable violations. For example, spillover effects in 

preference measurements, hedging effects in ambiguity measurements, and particular forms of 

inequality aversion, can be confounding and undesirable in experiments and in applications. We will 

introduce three steering techniques for the running example of welfare under risk here. They can be 

used for general multicomponent optimizations. The next section gives further examples, applications, 

and references. 

 The first steering technique is the framing technique. In general, a two-stage display of matrices 

will enhance one of the two kinds of monotonicity. Thus, Fig. 7a enhances row monotonicity and Fig. 

7b enhances column monotonicity. Framing can also be done verbally. In Figure 1, the framing “For 

each 𝑖, at state 𝑠𝑖 you receive stream (𝑥1
𝑖 , … , 𝑥𝑛

𝑖 )” enhances row-monotonicity, similarly to Fig. 7a. 

The framing “For each 𝑗, at timepoint 𝑡𝑗 you receive act(𝑥𝑗
1, … , 𝑥𝑗

𝑛)” enhances column-monotonicity, 

similarly to Fig. 7b. 
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 Regarding our running example of welfare under risk, in Figure 5, if a social planner wants the 

dispreferred matrices in Fig. 5b to be accepted by the public for some good extraneous reason, then the 

framing of Fig. 7a (with 𝑐𝑗s designating persons) is best suited to enhance the row monotonicity of 

Fig. 5a. In Figure 6, if a social planner wants the dispreferred matrices in Fig. 6b to be accepted, the 

framing of Fig. 7b (with 𝑐𝑗s designating persons) is best suited to enhance the column monotonicity of 

Fig. 6a. 

 The second steering technique, the timing technique, can be used if risk or uncertainty is 

involved, and concerns the perceived timing of the resolution of uncertainty—early, before decision 

time, or late, after decision time. Early resolution of uncertainty enhances a perception as in Fig. 7a 

(with the 𝑟𝑗s uncertain events) and row-monotonic aggregation. In Figure 5, it leads to Fig. 5a. It 

enhances ex post fairness, focusing on affairs after resolution of uncertainty. Late resolution of 

uncertainty enhances a perception as in Fig. 7b and column-monotonic aggregation. In Figure 6, it 

leads to Fig. 6a. It enhances ex ante fairness, providing an argument counter to the default ranking of 

Eq. 8. Thus, the perception of fairness can be steered by choosing prior or late resolution. We stress 

that this paper only considers situations where, if resolution takes place before the decision time, then 

the decision maker knows that the uncertainty has been resolved, but does not know how it has been 

resolved. It is, therefore, of no strategic relevance here and only concerns perception. The timing 

technique has been widely discussed and tested in the welfare literature and other fields (Section 9.3). 

In particular, Onay & Öncüler (2009) used the two different framings in Figure 7, with risk and time 

as components, to generate early and late resolution. They thus combined the framing and timing 

techniques. Our analysis gives a theoretical justification of such experimental procedures. 

 The third technique, the partial-info technique, provides only partial information to the decision 

maker or to persons involved in welfare. For example, in Figures 5 and 6, the two persons 𝑐1, 𝑐2 may 

not be informed about the outcomes that the other person receives. This enhances separability of the 
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columns and, hence, column-monotonic aggregation. There then is less room for inequality aversion 

because the persons themselves cannot perceive it. 

 One can also avoid the monotonicity problem by only considering particular subdomains of 

matrices. Our analysis as yet made the idealized assumption, common in decision theory and 

preference axiomatizations, that we deal with a full domain containing all matrices in ℝ𝑚×𝑛. This 

assumption is essential for our theorems. Some studies on risk and time only considered actstreams 

with one nonzero outcome (Baucells & Heukamp 2012), or matrices where nonzero outcomes appear 

only at one timepoint, in which case the order of aggregation is immaterial under many behavioral 

models. Halevy (2008) considered a restricted (comonotonic) domain where both orders of 

aggregation can hold simultaneously for behavioral theories. Alon & Gayer (2016) imposed the Pareto 

principle only if agreement on probabilities and utilities. For principled discussions of decision 

principles this escape route, of restricting the domain, is not very convincing. If conditions deemed 

fully appropriate cannot survive extension to all possibilities, then this remains a point of concern. 

Subdomains arise in several applications in the next section and will be further discussed there. 

 

9.  Further Applications 

This section presents several further applications. We elaborate on details in two more applications in 

our area of expertise, ambiguity, in Subsections 9.1 and 9.2, and briefly mention many others in 

Subsection 9.3. In all examples in this section, rows 𝑟𝑖 model risky events. 

9.1. Third Application: Monotonicity in the Anscombe-Aumann Framework for Ambiguity 

The monotonicity problem also occurs in the well-known Anscombe-Aumann (AA) framework for 

ambiguity, where the traditional approach involves an implicit choice in the bifurcation dilemma of 

Figure 4. We again apply our techniques to shed new light on the relevant issues. A criticism of the 

traditional approach will result.  
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 We use Fishburn’s (1970 Section 13.1) two-stage AA framework that has become the standard 

today. In Figure 2, roulette events (rows) 𝑟1, … , 𝑟𝑚 partition the universal event and have known 

probabilities. Horse events (columns) 𝑐1, … , 𝑐𝑛 also partition the universal event but are ambiguous. 

The AA framework adopts uniform column monotonicity, called horse monotonicity here, using the 

same EU functional (for 𝐶𝑗 in Eq. 7) for each column. It implies that only the marginal distributions 

given every horse 𝑐𝑗 matter. We thus have correlation neutrality between columns. This implication is 

characteristic of the modern AA framework. A notation: by 𝛼𝑝𝛽 we denote a lottery, i.e., probability 

distribution, yielding 𝛼 with probability 𝑝 and 𝛽 with probability 1 − 𝑝. 

 We first assume a full domain where all matrices are available, as for instance in Machina (2014) 

who assumed simultaneity of the horse and roulette events. Figure 8 displays ambiguity aversion as 

commonly assumed in the literature. The rows have 0.5 probability each. The indifference in the figure 

follows from the AA assumptions: each horse yields lottery (10.50), and in this sense there is no 

ambiguity. The strict preferences reflect ambiguity aversion as commonly taken in the AA approach. 

For instance, the left matrix, a gamble with known probability, is preferred to the right upper matrix, a 

gamble with unknown probability. The two strict preferences reveal a violation of risk (row) 

monotonicity: preferences over the first row are affected by the second row, and rows interact.  

 Having committed to horse monotonicity, the common AA framework necessarily has to give up 

risk monotonicity (and conditioning on risky events) to capture the behavioral nonneutrality towards 

ambiguity. This follows from the monotonicity problem. However, by the default ranking of Eq. 8, 

other things equal, risk (row) monotonicity is more plausible than column monotonicity. The common 

AA framework thus chose the less plausible route in the bifurcation dilemma of Figure 4. Jaffray 

(1992, personal communication) emphasized the implausibility of horse monotonicity and 

recommended risk monotonicity for ambiguity, adopting it in all his works (e.g., Jaffray 1989). 

Eichberger & Pasichnichenko (2021) and Monet & Vergopoulos (2024) followed Jaffray’s approach 

in this regard. Again, our analysis gives a theoretical justification for these approaches. 



 30 

 The early Keeney & Raiffa (1976) provided a rich toolbox for risk monotonicity with interactions 

between columns. By the timing technique, for risk monotonicity it works best to let the resolution of 

the roulette events precede those of the horse events, rather than come after as commonly assumed in 

the AA framework. Oechssler & Roomets (2021) used Fig. 7b in their experiment, which enhances 

horse monotonicity. but nevertheless found much risk monotonicity, providing strong empirical 

evidence against horse monotonicity. 

 

 

 

 

 

 

 

 The partial info technique is also used in most current implementations of the AA framework. If 

some horse 𝑠𝑗 wins the race, subjects will only be informed about the resolution of the corresponding 

lottery, and not what the lotteries for the other horses would have given. This works best if the domain 

of matrices considered is also restricted by assuming the lotteries for different horses to be 

stochastically independent.9 Then the matrices in Figure 8 can no more be used and formally we have 

escaped from the monotonicity problem there, avoiding violations of risk monotonicity. Theorem 7 

still shows that correlations between horses cannot be added without violating risk monotonicity (or 

sacrificing one of the other conditions), which remains a worrisome issue especially for normative 

 

9 Equivalently, they can be taken as mutually unspecified, e.g., by taking them as conditional on a horse 

(“statewise randomization”; Ke & Zhang 2020). Compare Figures 9 and 10 below. The essence is that they are 

mutually uninformative. Thus, subjects may only be informed about the outcome realized for the winning horse 

and the roulette resolution there. These points do not impact the conceptual issues discussed here. 
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purposes. In particular, we cannot add risk prior to, or simultaneously with the horse race and have EU 

there, because this would, by horse monotonicity and Observation 6, automatically preclude any 

nonneutral ambiguity attitude.  A new insight resulting from our analysis is that already the basic risk 

monotonicity, rather than EU, is critical here. 

 Although the modern version of the AA framework can formally escape from the monotonicity 

problem and the “counterexample” of Figure 8 by the partial info technique, the underlying problem, 

that weak separability of horse events does not fit well with their ambiguity, remains. We illustrate this 

problem through another implication in Figure 9, a variation of Figure 8 that uses only stimuli within 

the restricted domain assumed by restrictive versions of the AA framework, and with partial info fully 

effective. To clarify the latter claim, Figure 10 displays the same choices as in Figure 9 but now using 

the matrix notation of this paper, where for each matrix the two columns are stochastically 

independent. In Figure 9, we take outcome 𝛼 such that 𝛼~80.50, i.e., it gives the indifference in Fig. 

9a. Under expected value maximization, 𝛼 = 4, but in general it depends on the risk attitude. All 

columns in Figure 9 are indifferent. By AA’s horse monotonicity, all matrices should be indifferent. 

However, under ambiguity aversion the strict preferences in the figure are plausible: for the 

dispreferred matrices all outcomes are ambiguous whereas for the other matrices none is.  
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FIGURE 10. Violation of horse monotonicity due to ambiguity aversion using matrices. 
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 Many authors discussed horse monotonicity in the AA framework, both theoretically and 

empirically. Besides those cited before, they include Machina (2014 p. 3835 3rd bulleted point), 

Oechssler & Roomets (2021), and Schneider & Schonger (2018). More general discussions of the role 

of the timing of uncertainty include Berger & Eeckhoudt (2021), Kochov (2015), and Oechssler, Rau, 

& Roomets (2019). We have presented the debate on monotonicity for AA in its most basic form, 

showed that the monotonicity problem is underlying, and showed that the issue is more critical than 

has been known before, as it, again, amounts to a choice in the bifurcation dilemma. 

9.2. Fourth Application: Validity of the Random Incentive System and Hedging for Ambiguity 

Our next application concerns incentive compatibility of the random incentive system (RIS) in 

experiments (Jacquement & l’Haridon 2018 Section 5.2.3). Let each row of our matrices specify one 

of 𝑚 choice situations in an experiment. We assume that in each choice situation a subject chooses an 

option that is an 𝑛-dimensional object. It may be a commodity bundle, an outcome stream, a welfare 

allocation over 𝑛 persons, an act assigning outcomes to 𝑛 states of nature, and so on. In the RIS, one 

choice situation (row) will be randomly selected for real implementation. Say each has a probability of 

1/𝑚 of being the one implemented for real. At the end of the experiment, the subject receives the 

option chosen in the implemented choice situation. The other choice situations will not be 

implemented. During the experiment, the subject does not know which of the 𝑚 choice situations will 

be implemented for real. Matrices are strategies, specifying a choice for each of the 𝑚 choice 

situations in the experiment. 

 It trivially follows that incentive compatibility of the RIS is equivalent to risk (row) monotonicity 

where the underlying preferences are the true preferences in the choice situations. In this context, row 

monotonicity has been known as isolation (Cohen, Jaffray, & Said 1987, appendix). Trivially, row-

monotonic aggregation together with EU for risk then is also sufficient for incentive compatibility, 

where the assumption of EU is just redundant. This redundancy was pointed out by Bardsley et al. 
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(2010 p. 269) and several others. Nevertheless, there have been misunderstandings about this point in 

the literature, where several papers claimed that full-force EU was needed for incentive compatibility. 

Adding extra assumptions of column monotonicity, uniformity of monotonicities, and a full domain 

would, by Theorem 1, indeed give EU for risk. But, again, these extra assumptions are not needed for 

incentive compatibility of RIS. Unawareness of the monotonicity problem, i.e., the restrictiveness of 

those added extra assumptions explains the misunderstandings in the literature. 

 As explained before, our theorems assumed full domains and complete preferences, whereas in 

many applications only subdomains are relevant or available. Nevertheless, these subdomains are 

often rich enough for our results to provide new insights. This point is further illustrated in the 

following application. We there show that the monotonicity problem is the underlying cause for the 

hedging problem in ambiguity measurements, and then how our techniques of Section 8 can be used to 

avoid this hedging problem. 

 We assume two Ellsberg urns: a known urn K containing 50 White and 50 Black balls, and an 

unknown ambiguous urn A containing 100 balls, each White or Black, but in unknown proportions. 

From both urns a ball will be drawn at random. 𝑊𝐾 denotes the event that the ball drawn from urn K is 

white, and 𝐵𝐾, 𝑊𝐴, and 𝐵𝐴 are similar. These events are uncertain to subjects during the experiment. 

(𝐵𝐴: 101) denotes a gamble yielding €101 if the ball drawn from urn A is black and nothing 

otherwise. Other gambles are denoted similarly. Imagine that an experiment concerns 𝑚 = 2 choice 

situations for a given subject. The first, 𝑟1, reveals the preference (𝐵𝐴: 101) ≽ (𝐵𝐾: 100); the second, 

𝑟2, reveals the preference (𝑊𝐴: 101) ≽ (𝑊𝐾: 100). The RIS randomly selects 𝑟1 or 𝑟2 for real 

implementation, say each with probability 0.5. Which is implemented for real is unknown to subjects 

during the experiment. Can we conclude that there is virtually no ambiguity aversion? Hedging, 

explained below, has often been advanced as a confound invalidating this conclusion. 

 Three components can be distinguished: the color from K, the color from A, and the selection 

from {𝑟1, 𝑟2}. It is convenient here to combine the first two components into one. We thus define four 
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𝑐𝑗 as in Figure 11. The figure illustrates the two observed preferences. In the usual RIS, we do not 

directly consider choices between strategies for the whole experiment (matrices). However, the two 

aforementioned experimental preferences do, indirectly, reveal the preference between the two 

matrices in Figure 11. 

 If we assume column monotonicity, then the preferences in Figure 11 follow from nothing other 

than stochastic dominance: all columns of the preferred matrix stochastically dominate those of the 

dispreferred matrix (1010.50 > 1000.50). In the left matrix, the outcomes under 𝑟2 provide a kind of 

hedge against those under 𝑟1, and so they do in the right matrix, which explains the term hedging. The 

preferences then do not speak to ambiguity attitudes in any sense. It has often been observed that, 

under column monotonicity and ambiguity nonneutrality, validity of the RIS may be violated in this 

way. The monotonicity problem provides the new insight that the case is yet more critical: there then 

necessarily exist choice situations where validity of the RIS is violated. 

 We here have another case of the bifurcation dilemma. Hedging occurs if the lower route with 

column monotonicity is chosen in Figure 410, whereas validity of RIS holds if the upper route is 

chosen. Of course, besides hedging, any other reason to violate risk monotonicity discussed before can 

invalidate the ambiguity measurement here. 

 

 

 

 

 

 Discussions of hedging under ambiguity include Bade (2015) and Oechssler, Rau, & Roomets 

(2019). Baillon, Halevy, & Li (2022) provided the first empirical demonstration that hedging can 

 

10 The hedging in the above example involved event complementarity, an extreme case of hedging (Hartmann 

2023). 
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really occur, and reviewed further literature. As our guidelines of Section 8 show, their presentation of 

stimuli in fact maximized violations of risk (row) monotonicity, so as to best demonstrate the potential 

severity of the basic problem. The techniques of Section 8 provide tools for establishing validity of the 

RIS and, in particular, for avoiding hedging in ambiguity measurements. Johnson et al.’s (2021) 

Prince, an implementation of RIS to maximize validity, in fact used such techniques informally. 

Regarding the timing technique, Prince selects the real choice situation prior to the experiment rather 

than after as usually done, enhancing the desired row monotonicity. Johnson et al. also used framing 

(e.g., as in Fig. 7b) and partial-info techniques as best as possible. Again, our results provide 

theoretical justifications. 

 Regarding the partial-info technique for general RIS, when facing a choice situation in an 

experiment, subjects are usually not yet informed about the choice situations that come after, 

precluding all “backward” interactions. To reduce “forward” interactions, each choice situation may 

be presented on a different page or screen, so that subjects can only know about preceding choice 

situations from memory. In general, full understanding of strategies in an experiment is humanly 

impossible. Validity of the RIS can therefore be expected to be good in general (Bardsley et al. 2010 

Section 7.5: “behavioral incentive compatibility”). Our analysis shows that the hedging confound for 

ambiguity measurements will usually not be a serious problem in practice. Aydogan, Berger, & 

Theroude (2024) and König-Kersting, Kops, & Trautmann (2023) indeed found no hedging.  

 Some interactions between different choice situations in RIS can nevertheless occur, e.g. due to 

spillover effects, contrast effects, learning, and so on. Johnson et al.’s (2021) Prince seeks to minimize 

those. 

9.3. Further Applications 

There are numerous cases where aggregation over two or more components is central, besides the 

cases considered before. The monotonicity problem, the bifurcation dilemma, and the guidelines and 

techniques of Section 8 can be applied to all those cases, underscoring the unity and common 
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underlying cause, and providing new insights similarly as above. We briefly mention some of such 

cases. A complete review is impossible given the vastness of the relevant literature. 

 Violations of column monotonicity as in Fig. 6b can be due to correlation aversion. This has been 

extensively studied in many domains, including multiattribute utility theory (multivariate risk 

aversion: Attema, l’Haridon, & van de Kuilen 2019; Richard 1975; Tsetlin & Winkler 2009), 

intertemporal choice (Epper & Fehr-Duda 2024; Lanier et al. 2024; Rohde & Yu 2024), and consumer 

theory with 𝑡1 and 𝑡2 commodities with diminishing marginal rates of substitution. For temporal 

ambiguity (unknown probabilities for 𝑟1 and 𝑟2 in Fig. 6b), Kochov (2015) emphasized the 

plausibility of row monotonicity and correlation preference. 

 Epstein & Halevy (2019) considered an interesting case: Both rows and columns refer to events 

with known probabilities, but their correlation is ambiguous. Then ambiguity aversion gives both 

Figures 5b and 6b with reversed preferences. The monotonicity problem implies that neither Eq. 6 nor 

7 can be used to accommodate this phenomenon, so that finding a tractable model (e.g., a tractable 

subcase of their Section 5) will not be easy. 

 Andreoni & Sprenger (2012) considered actstreams for risk, with probabilities of the states given. 

They did not explicitly state or discuss the order of aggregation (Eq. 6 or 7) assumed in their 

behavioral analyses, i.e., the route in the bifurcation dilemma chosen, which complicates their 

interpretations. Cheung (2015), Epper & Fehr-Duda (2015), and Miao & Zhong (2015), accordingly, 

criticized them. Andreoni & Sprenger’s Section III.A reports violations of our uniform risk 

(stream/row) monotonicity, which they interpret as violations of prospect theory. Our monotonicity 

problem provides the new insight that such a violation is more fundamental: it entails a violation of 

virtually any existing risk theory if one does not want to abandon column monotonicity.11 Similar 

 

11 An exception is the utility of gambling theory (Diecidue, Schmidt, & Wakker 2004; Fishburn 1980). This 

theory in itself comprises a violation of uniform risk monotonicity and, thus, can accommodate these violations. 

However, this theory is not very tractable or suited for applications. 
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violations of uniform risk monotonicity were found before, by Abdellaoui, Diecidue, & Öncüler 

(2011), Bleichrodt & Pinto (2009), Cettolin & Riedl (2017), and others. Findings that the present bias 

weakens if risk comes in (as in Epper & Fehr-Duda 2024 and Keren & Roelofsma 1995), entail such a 

violation. Similarly, papers have shown that delaying risks moderates the certainty effect, implying a 

violation of Axiom 4 in Subsection 2.2 (act monotonicity) and, indirectly, of column monotonicity 

(Abdellaoui, Diecidue, & Öncüler 2011; Baucells & Heukamp 2010; Epper & Fehr-Duda 2024; 

Kemel & Paraschiv 2023). 

 In judgment aggregation (Grossi & Pigozzi 2014), matrices concern cases to be decided on, rows 

concern propositions, and columns concern judges. The majority rule can then give different results 

under row-first aggregation than under column-first. This has been known as the judgment aggregation 

paradox, and it is similar to our Corollary 11. Proposition-wise independence then is our row 

independence and matter-wise independence is our column independence. In social discounting, the 

aggregation concerns persons and time. The issues discussed in this paper are new (to our best 

knowledge) in price index theory, with commodities and locations as two component, for instance, and 

prices as matrix entries (Renneboog & Spaenjers 2013), and, undoubtedly, many other fields. 

 Besides the references mentioned before, numerous papers examined the timing technique, 

theoretically and empirically. Again, we bring a unification of these analyses. We mention some 

papers. For time and risk, see Dejarnette et al. (2020 Section 4) and Onay & Öncüler (2009). For 

welfare and risk (where timing of resolution of uncertainty is only one way to impact an ex post or ex 

ante viewpoint), see Cappelen et al. (2013), Miao & Zhong (2018), and Rohde & Rohde (2015). For 

two-fold uncertainty as in the AA framework, see Baillon, Halevy, & Li (2022), Ke & Zhang (2020), 

Kochov (2015), and Oechssler & Roomets (2021). Also see Machina (2014 footnote 11). Berger & 

Emmerling (2020) examined the overall effect of inequality aversion in separate components under 

different orders of aggregation. They provided a unifying framework of their results for the case of 

several kinds of components. 
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10.  Conclusion 

We presented a unified framework for optimization over two (or more) components. A paradoxical 

appearance of separability, in the simplest axiomatization of discounted expected utility as yet 

(Theorem 1), and a paradoxical disappearance of separability (Example 4), could be resolved by 

Theorem 7. In a mathematical sense, this theorem is a small variation of Nataf’s (1948) century-old 

theorem on micro-macro aggregation. However, its vast implications for modern behavioral 

approaches have not been observed before. First, the theorem signals the monotonicity problem. 

Although the possibility of such a problem occurring has been observed before, its universality and 

unavoidability have not. It leads to a general bifurcation dilemma.  

 We next considered many debates in many behavioral fields, scattered over numerous papers, that 

are all special cases of the monotonicity problem, with stances taken in the literature amounting to a 

choice of one of the two routes available in the bifurcation dilemma. Our general guidelines and 

techniques provide new insights and solutions to these debates. Whereas studies as yet brought new 

insights for only one case of multiple components, our paper has bridged many models and 

phenomena in the behavioral field and has provided new insights for many fields. 

 

Appendix.  Proofs 

As explained in the introduction and in Supplementary Appendix A, Observation 6 follows from 

Mongin & Pivato (2015 Proposition 1). We next prove Theorem 1. Statement (i) readily implies 

Statement (ii). We assume Statement (ii), and derive Statement (i). By Observation 6, we obtain an 

AU representation. We derive proportionality of the 𝑉𝑗
𝑖 in the AU representation. We can let all 𝑉𝑗

𝑖 

take value 0 at 0. The AU representation is a state- and time-dependent version of DEU. Gorman’s 



 39 

uniqueness result is at this state- and time-dependent stage: the functions 𝑉𝑗
𝑖, all “grounded” at 0, can 

jointly be replaced by 𝜆 × 𝑉𝑗
𝑖 for any 𝜆 > 0, independent of 𝑖 and 𝑗, and by no other functions. 

 By act monotonicity, the 𝑛 arrays (𝑉𝑗
1, … , 𝑉𝑗

𝑚) through their sum all represent the same 

preference relation over acts (“column”). Hence, by standard uniqueness, these 𝑛 arrays of functions, 

grounded at 0, are proportional to each other. That is, each (𝑉𝑗
1, … , 𝑉𝑗

𝑚) is 𝑑𝑗 times (𝑉1
1, … , 𝑉1

𝑚) for 

positive 𝑑2, … , 𝑑𝑛, where we set 𝑑1 = 1. Similarly, by stream monotonicity, the 𝑚 arrays (𝑉1
𝑖, … , 𝑉𝑛

𝑖) 

though their sum all represent the same preference relation over streams (“rows”), and each is 𝑞𝑖 times 

(𝑉1
1, … , 𝑉𝑛

1) for positive 𝑞2, … , 𝑞𝑚 with 𝑞1 = 1. We can normalize the 𝑞𝑖s to sum to 1, and denote 

them 𝑝𝑖. All 𝑉𝑗
𝑖s are proportional to each other and to one function that can be denoted 𝑈. For 𝑈 we 

can take 𝑉1
1 or any other 𝑉𝑗

𝑖. 

 For completeness, we give the uniqueness results of Theorem 1. By Gorman’s aforementioned 

uniqueness result at the state- and time-dependent stage, now at this state- and time-independent stage 

we have: 𝑈 is unique up to a positive factor (scale), and the 𝑑𝑗s are unique up to one other common 

positive factor. Because of normalization, the 𝑝𝑗s are unique. We can relax the requirement 𝑈(0) = 0 

and add any constant, after which 𝑈 is also unique up to location. 
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SUPPLEMENTARY APPENDIX A. PRECEDING MATHEMATICAL RESULT 

The mathematics underlying our results has been known longtime. We do not bring 

mathematical novelties in the main text. This appendix discusses preceding literature. 

Observation 6 has been known since Nataf (1948). There, rows described producers 

and columns described production inputs. Nataf presented12 Observation 6 to show 

when macro (column-first, or column-monotonic, defined below) aggregation of 

production inputs can be equivalent to micro (row-first, or row-monotonic) 

aggregation: only if there is not any interaction13. van Daal & Merkies (1988) 

provided an early historical account. This production example further illustrates the 

wide applicability of our framework. 

 Mongin & Pivato (2015 Proposition 1) provided the mathematically most general 

versions of Nataf’s (1948) result, implying our Observation 6. (Hence, we gave no 

proof of it.) In the mathematical theory of functional equations, these results have 

been known as generalized bisymmetry equations.14 See Maksa (1999), who also 

pointed out their relatedness to aggregation. The special case of proportional 

representations in our Theorem 1 is equivalent to mathematical theorems on 

multisymmetry functional equations, explained by Münnich, Maksa, & Mokken 

 

12 He heavily used differentiability and his proof is not easily accessible. 

13 Formally, we use the suggestive term interaction to indicate preference relations that violate strong 

separability. In general, not only rows and columns, but every subset of cells can be nonseparable, i.e., 

be impacted by (interacting with) any other subset of cells. 

14 They search for functions allowing identity of Eqs. 6 and 7 in the main text. 
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(2000). Mongin & Pivato (2015 Theorem 1) is the most general result of this kind. 

See Zuber (2016) for related results and literature with Anscombe-Aumann outcome 

sets. Whereas all aforementioned results and virtually all results cited or given in this 

paper heavily use continuity in outcomes, Grabisch, Monet, & Vergopoulos (2023) 

give a version of our Theorem 1 that uses a continuum state space, rather than 

outcome space. 

 Thus, the mathematics underlying our results has been known longtime. As for 

Theorem 1 on DEU, its novelty is not in mathematical generality but in simplicity and 

appeal. The preference conditions there can be stated verbally and are accessible to 

nonspecialists more than any preceding axiomatization of DEU. Although many 

authors, several cited later, used advanced implications of the preceding results in 

various decision theories, their basic impact for empirical and theoretical work, 

specified in Section 5 and applied in the rest of this paper, has not been presented 

before. 

 

SUPPLEMENTARY APPENDIX B. EXTENSION TO INFINITE-DIMENSIONAL 

MATRICES 

Extensions to matrices with infinitely many rows and/or columns are often of interest. 

This holds mainly for Theorem 1. Infinite-dimensional extensions of Observation 6 

are less common because they involve uncommon functionals, generalizing integrals. 

Wakker & Zank (1999) examined them. We focus on Theorem 1 henceforth, 

interpreting rows as states and columns as timepoints, but using the general notation 

of Figure 2. 

 Equal-likely states in Figure 2 can capture all simple lotteries with rational 

probabilities (McCarthy, Mikkola, & Thomas 2020). Mixture-closedness or 

continuous distributions require a continuum of 𝑟𝑖. Such extensions can be obtained 

by standard techniques from mathematical measure theory. Theorem 14 provides a 

typical example. It is explained next. 

 We continue to assume 𝑛 columns 𝑐1, … , 𝑐𝑛 with 𝑛 ≥ 2 fixed. A row continues to 

be an element of ℝ𝑛. In the main text, we considered the special case of risk where 

each 𝑟𝑖 had probability 1/𝑚, so that matrices could be identified with some simple 

probability distributions over columns. We now consider more general probability 

distributions over rows, such as the space of all simple probability distributions or all 
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bounded ones. To this effect, instead of 𝑅 = {𝑟1, … , 𝑟𝑚}, we now assume 𝑅 = [0,1), 

endowed with the uniform distribution 𝑃 and instead of finite-dimensional matrices as 

before, we now consider functions from 𝑅 × {𝑐1, … , 𝑐𝑛} to the reals. We continue to 

call such functions matrices. Preferences will be over matrices. We make the 

assumption characteristic of decision under risk: functions on 𝑅 × {𝑐1, … , 𝑐𝑛} that 

generate the same probability distribution over rows are indifferent. 

 Using obvious notation, a simple probability distribution over rows can be 

denoted (𝑝1: 𝑟1, … , 𝑝𝑘: 𝑟𝑘), with 𝑘 variable, and all probabilities positive. We identify 

it with a matrix that assigns row 𝑟𝑖 to each set 𝑅𝑖, where (𝑅1, … , 𝑅𝑘) partitions [0,1) 

and 𝑃(𝑅𝑖) = 𝑝𝑖 for each 𝑖. It, thus, is like the matrix in Figure 2, with 𝑅𝑖 for 𝑟𝑖 for 

each 𝑖, and 𝑚 = 𝑘. It will be sufficient to impose our intuitive axioms only on such 

simple finite-dimensional matrices. Row and column monotonicity are now defined to 

hold for all simple matrices.15 For each fixed (𝑅1, … , 𝑅𝑘), Theorem 1 then gives a 

DEU representation. Normalizing 𝑈(0) = 0, 𝑈(1) = 1, these DEU representations 

agree on common domain by standard uniqueness results, giving a probability 

measure 𝑃′ on [0,1) that at this stage might be thought to possibly differ from 𝑃 and 

even be only finitely additive. However, partitions (𝑅1, … , 𝑅𝑘) with 𝑃(𝑅𝑖) = 1/𝑘, by 

symmetry, imply 𝑃′(𝑅𝑖) = 1/𝑘 = 𝑃(𝑅𝑖). The unions of such 𝑅𝑖 show that 𝑃′ agrees 

with 𝑃 on all 𝑅 ⊂ [0,1) with rational 𝑃 probability. By monotonicity w.r.t. set 

inclusion, 𝑃′ and 𝑃 are identical. We have obtained a DEU representation for all 

simple matrices. 

 The extension of our theorems to all bounded matrices now follows using 

standard techniques from mathematical measure theory. Monotonicity with respect to 

rows and columns, but also with respect to outcomes, is imposed only on simple 

matrices. Thus, null events are avoided and strict preferences are properly implied. 

We reinforce outcome monotonicity to infinite dimensions by adding pointwise 

monotonicity: a matrix is weakly preferred if all its cells weakly dominate. This 

condition is as unobjectionable for infinite dimensions as it is for finitely many. Every 

bounded matrix is now “sandwiched” more and more tightly by pointwise dominating 

and dominated simple matrices. This determines a unique 𝐷𝐸𝑈 value, such that strict 

 

15 Bear in mind that we assume strictly positive probabilities, avoiding null events as required for 

outcome monotonicity. 
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inequality of 𝐷𝐸𝑈 values implies strict preference (using transitivity). Next, we 

reinforce continuity into supnorm continuity, ensuring existence of constant 

equivalents. Then equality of 𝐷𝐸𝑈 values, again using transitivity, implies 

indifference and, hence, we have a 𝐷𝐸𝑈 representation. We have shown the following 

result. 

 

THEOREM 14. Assume that: (a) matrices map [0,1) × {𝑐1, … , 𝑐𝑛} to the reals and are 

measurable; (b) preferences are over matrices; (c) decision under risk holds with 

respect to the uniform distribution on [0,1). That is, our domain of matrices is 

equivalent to probability distributions over “rows” in ℝ𝑛. On the domain of simple 

matrices/distributions, and also on the domain of all bounded matrices/distributions, 

discounted expected utility holds if and only if weak ordering, supnorm continuity, 

pointwise monotonicity, and monotonicity with respect to outcomes, rows, and 

columns hold. 

 

 Extension to unbounded matrices and connected topological outcome spaces 

(including all convex sets of commodity bundles) can be obtained by Wakker’s 

(1993) truncation continuity. The total subjective weight of space 𝑅 is still assumed 

bounded here. Unbounded subjective weight of 𝑅 may occur, for instance, if 𝑅 

reflects time rather than uncertainty, or populations of variable size. Then further 

continuity conditions have to be invoked, discussed for instance by Asheim et al. 

(2010), Banerjee & Mitra (2007), Christensen (2022), Drugeon & Huy (2022), 

Marinacci (1998), and Pivato (2022). For extensions to infinitely many columns, 

besides infinitely many rows, our extension techniques are similarly applied to 

columns. 

 Theorem 14 can be used for all interpretations of columns. If they refer to 

ambiguous events (horses), versions of the AA framework result. Here it is usually 

assumed that only marginal distributions conditional on horses matter, which can be 

added as a preference condition. Then our structure becomes isomorphic to the set of 

maps from {𝑐1, … , 𝑐𝑛} to probability distributions over ℝ. Correlations between 

different 𝑐𝑗 then play no role. 
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SUPPLEMENTARY APPENDIX C. THEORETICAL APPLICATIONS OF NATAF’S 

AGGREGATION RESULT TO PREFERENCE AXIOMATIZATIONS 

We briefly sketch some further theoretical applications to preference axiomatizations, 

in addition to Theorem 1 in the main text. We first assume that both rows and 

columns refer to events. Thus, {𝑟1, … , 𝑟𝑚} and {𝑐1, … , 𝑐𝑛} are two partitions of the 

universal event. In Figure 1, the intersection event 𝑟𝑖 ∩ 𝑐𝑗 gives outcome 𝑥𝑗
𝑖. Outcome 

monotonicity implies that none of those intersections is empty or null. Uniform row 

and column monotonicity can be interpreted as versions of stochastic independence: 

being informed about one partition does not affect preferences over the other. 

Theorem 1 then gives an appealing axiomatization of subjective expected utility, 

alternative to Savage (1954). Pfanzagl (1968; Section 12.5) presented this result using 

the stochastic independence interpretation for 𝑚 = 𝑛 = 2. Mongin (2020) and Ceron 

& Vergopoulos (2021) independently generalized it to general 𝑚, 𝑛. 

 We next continue to assume that rows and columns refer to events, but we further 

assume decision under risk for the 𝑟𝑖, with probability 1/𝑚 for each 𝑟𝑖. We first 

consider the case where the 𝑐𝑗s may have unknown probabilities. Theorem 1 gives 

expected utility for risk (evaluating each column). Our equally-likely case can cover 

all simple rational-probability distributions. Supplementary Appendix B shows how 

more general probability distributions can be incorporated, and that subjective 

probabilities over rows must be equal to the objective probabilities over rows. 

Theorem 1 also gives expected utility for the horse events 𝑐𝑗 and, thus, provides an 

alternative axiomatization of the original expected utility model of AA, using the two-

stage framework that has become standard today. AA referred to standard mixture 

independence to axiomatize expected utility for risk, and also assumed horse 

monotonicity. In our approach, their mixture independence is weakened to risk 

monotonicity. For our monotonicities the event, say row, to be conditioned on always 

only involves one outcome per column, whereas for von Neumann-Morgenstern 

mixture independence (or Savage’s sure-thing principle) such events to be 

conditioned on must be allowed to involve any number of rows, i.e. any number of 

outcomes per column. The symmetry of our two monotonicity conditions and, thus, of 

the treatment of risk and uncertainty, adds to the appeal of our alternative Theorem. 
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As a price to pay, we need continuous utility whereas AA and Fishburn (1970) 

allowed for complete generality in this regard. 

 If we interpret the 𝑐𝑗s as persons rather than events, Theorem 1 becomes an 

alternative to Harsanyi’s (1955) welfare result based on the veil of ignorance. His 

Pareto principle is column monotonicity. Like AA, he refers to mixture independence 

to obtain EU, and we similarly generalize here. In Theorem 1 there is no middle 

ground: if the social welfare function is ordinal in the individual utilities then it must 

be cardinal, leading to a linear sum. This is the essence of Harsanyi’s result. Grant et 

al. (2010) provided generalizations that relaxed the independence and monotonicity 

conditions in Harsanyi’s result. 

 We, finally, present an implication where only one component is available at the 

outset, but we construct a second kind for auxiliary purposes. Gul (1992) considered a 

finite state space {𝑟1, … , 𝑟𝑚}. Acts (𝑥1, … , 𝑥𝑚) map states to ℝ. Gul’s preference 

relation on acts, denoted  ≽ ′ here, satisfies weak ordering, continuity, and outcome 

monotonicity, implying that all states are nonnull. One fixed event 𝐴 (nontrivial 

subset of the state space) plays a special role explained later (reminiscent of Ramsey’s 

(1931) ethically neutral event). We define the function 𝐶 on acts as the certainty 

equivalent (“constant equivalent”) function, and 𝑅1(𝑦1, 𝑦2) = ⋯ = 𝑅𝑚(𝑦1, 𝑦2) as the 

certainty equivalent function of acts (𝐴: 𝑦1, 𝐴𝑐: 𝑦2), using obvious notation. 

 We take matrices as in Figure 2 with 𝑛 = 2, 𝑐1 = 𝐴, 𝑐2 = 𝐴𝑐. We define our 

preference relation ≽ over matrices as represented by Eq. 6. Thus, row monotonicity 

holds (Observation 10) and it is uniform because all 𝑅𝑗’s are the same. The act 

(𝑅1(𝑥1
1, 𝑥2

1), . . . . . . , 𝑅𝑚(𝑥1
𝑚, 𝑥2

𝑚)) can be identified with the equivalence class of 

corresponding matrices with entries 𝑥1
𝑗
′ and 𝑥2

𝑗
′ such that 𝑅𝑗(𝑥1

𝑗
′, 𝑥2

𝑗
′) = 𝑅𝑗(𝑥1

𝑗
, 𝑥2

𝑗
) 

for all 𝑗. Uniform column monotonicity for ≽ over matrices in Figure 2 is equivalent 

to Gul’s Assumption 2 for ≽ ′ on acts, a condition called act independence nowadays 

(Chew & Karni 1994). Thus, we obtain as a corollary of Theorem 1: 

 

THEOREM 15. Under the assumptions of this Appendix, the following four statements 

are equivalent: 

(i) Expected utility holds for ≽ ′ over acts. 

(ii) Discounted expected utility holds for ≽ over matrices. 

(iii) Uniform column monotonicity holds for ≽ over matrices. 
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(iv) Act independence holds for ≽ ′ over acts. 

 

In the above result, standard uniqueness results for DEU imply that the “discount 

weight” 𝑑1 of the left column, after normalization, is the probability of event 𝐴 

resulting from the row probabilities. The conditions in Statements (iii) and (iv) are 

appealing because they mimic mixture independence for risk to the context of 

uncertainty. 

 Gul’s axiomatization of subjective expected utility through act independence thus 

follows as a corollary of our Theorem 1. Our result is more general because Gul 

required the event 𝐴 to satisfy a symmetry condition implying that it has subjective 

probability 0.5, which we do not need. Chew & Karni (1994) also provided this 

generalization. Our verbal proof, involving the Appendix in the main text and the 

preceding paragraphs, is considerably shorter and more accessible than that in Gul 

(1992 pp. 104-109) or Chew & Karni (1994). It is remarkable that Gul (1992) can be 

obtained as, essentially, a corollary of Nataf (1948). 

 Some other axiomatizations of expected utility used generalizations of 

bisymmetry axioms that are all more restrictive than Gul’s Assumption 2: they also 

consider more than two columns and many events 𝐴 (Köbberling & Wakker 2003 

Theorem 16). Hence, they also follow as corollaries of our Theorems 1 and 15. Such 

results include Krantz et al. (1971, Theorem 6.9.10 which assumes 𝑚 = 𝑛 =2), 

Pfanzagl (1959 pp. 287–288 which assumes 𝑚 = 𝑛 =2), and Münnich, Maksa, & 

Mokken (2000 Theorem 2). 
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