
A GENERAL THEORY FOR QUANTIFYING BELIEFS*

Rakesh Sarin & Peter Wakker

University of California, Los Angeles

Los Angeles, CA

and

University of Nijmegen

NICI

Nijmegen, The Netherlands

May 1992

* The support for this research was provided in part by the Decision, Risk, and Management Science

branch of the National Science Foundation; the research of Peter Wakker has been made possible by a

fellowship of the Royal Netherlands Academy of Arts and Sciences, and a fellowship of the Netherlands

Organization for Scientific Research.



2

Abstract

This paper presents conditions under which a person’s beliefs about the occurrence of

uncertain events are quantified by a capacity measure, i.e., a nonadditive probability.

Additivity of probability is violated in a large number of applications where probabilities

are vague or ambiguous due to lack of information.

The key feature of the theory presented in this paper is a separation of the derivation of

capacities for events from a specific choice model. This is akin to eliciting a probability

distribution for a random variable without committing to a specific decision model.

Conditions are given under which Choquet expected utility, the Machina-Schmeidler

probabilistically sophisticated model, and subjective expected utility can be derived as

special cases of our general model.

Keywords: ambiguity, nonadditive probability, nonexpected utility, measures of belief
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1. INTRODUCTION

Models of decisions under uncertainty require two inputs: a measure of subjective

beliefs about the occurrence of uncertain events, and a measure of tastes about the

outcomes that will eventually be realized. In the classical subjective expected utility theory

the former is captured by a probability measure and the latter by a utility function.

In this paper we present conditions under which a person’s beliefs about the

occurrence of uncertain events are quantified by a capacity measure. A capacity measure

satisfies monotonicity with respect to set inclusion, but unlike a probability measure it

may not necessarily be additive for two disjoint events. The additivity property of

probability measures is violated in a large number of applications where probabilities are

vague or ambiguous due to lack of information.

In recent work, capacity measures have been derived from some assumptions about a

person’s decisions that together imply maximization of a Choquet Expected Utility (CEU)

form. Such a decision theoretical foundation for capacities makes them observable, thus

scientifically well-founded. It is, however, unclear whether CEU is the most appropriate

decision model for all situations.  In particular, the CEU form is not Fréchet differentiable,

which limits its use (see Chew, Karni, & Safra, 1987). Further, in some applications, the

information about capacities of events may be useful in itself regardless of the specific

decision model that a decision maker may eventually employ. Hence this paper provides a

decision-theoretic foundation for capacities in a very general decision model that only

imposes a minimal restriction in the form of a dominance axiom. By separating the

derivation of capacities for events from a specific choice model such as CEU, our

approach provides a greater flexibility for applications and research. We provide

conditions under which the Machina-Schmeidler (1990) probabilistically sophisticated

model,  CEU, and subjective expected utility can be derived as special cases of our general

model.

De Finetti (1937) and Savage (1954) provided a hallmark contribution to the theory of

decisions under uncertainty by providing assumptions about a person’s behavior that

imply a measure of subjective beliefs which mimics the properties of mathematical

probability. This measure is widely known as subjective probability. In many

applications, however, the additivity property of the subjective probability is violated.

Starting with Schmeidler (1989, first version 1982), several contributions in recent years

(Gilboa, 1987, Wakker, 1989, Nakamura (1990), Sarin & Wakker, 1990) have relaxed

the additivity property and proposed a less restrictive capacity measure for quantifying an

individual’s subjective beliefs. All of these contributions, to our knowledge, propose a

CEU form for the preference functional. Our aim here is to derive the capacity measure

without requiring that a person maximize CEU in choosing among acts. This aim has a
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close parallel with that of Machina & Schmeidler (1990), who derived a probability

measure without requiring that a person maximize subjective expected utility.

Judgments and preferences that may lead to nonadditive probability have been well-

known to economists and psychologists for a long time. Knight (1921) made the

distinction between risk and uncertainty based on whether the event probabilities are

known or unknown. Keynes (1921) has argued that confidence in probability influences

decisions under uncertainty. Schmeidler (1989) has argued that the amount of

information available about an event may influence probabilities in such a way that the

probabilities are not necessarily additive. Edwards (1954), Ellsberg (1961), and recently

Einhorn & Hogarth (1985), have observed that a majority of subjects violates additivity

of probability.

Why do such frequent and persistent violations of  additivity occur in experimental

data? The issue is not fully resolved yet, but it seems that an individual’s willingness to

bet on an event does not depend solely on the perceived likelihood of the occurrence of

the event. It seems to be influenced by the confidence one has about one’s judgment.

Thus, for example, when one does not know the proportion of yellow or white balls in

an urn, one is cautious on betting either on the yellow or the white ball. This cautiousness

(often called aversion to ambiguity) leads to a revealed probability of less than 0.5 for

betting on either color, thus to nonadditivity of probability. Tversky & Kahneman (1990)

advance, as an alternative, the idea of source dependence. A person may prefer to bet on

sports-related events rather than political events, even if the events have the same

perceived likelihood of occurrence. Such a preference may be observed because of an

inherent liking of sports-related events. A model that permits the betting behavior to be

influenced by psychological concerns such as regret, confidence, or source dependence

seems to be more appropriate for describing peoples’ actual behavior. The notion of

capacity as advanced by Schmeidler does indeed place less stringent restrictions than

probability on a person’s betting behavior. It is this notion of capacity that we fully

exploit in providing a general model of decisions under uncertainty. Alternative

approaches to model confidence in probabilities have been presented in Jaffray (1989)

and Nau (1986).

Nonadditive capacities are often rejected prematurely or are viewed with suspicion

because they entail a violation of the theory of probability. In a theory of decision

making, however, we will show that it is possible to relax the additivity assumption

while preserving a consistency in choices. For over two centuries since Bernoulli (1738),

the assumption that the utility of money (total cash balance) is the sum of the individual

utilities of the cash balances in two bank accounts has been discarded. In a similar vein,

in the recent literature the assumption that a measure of subjective belief about the

occurrence of either of two disjoint events is the sum of the individual measures of

subjective beliefs about the occurrence of each event has been relaxed. Whether or not the
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restriction to additivity is justified in a special class of applications must be judged by the

appeal of the assumptions about the decision maker’s preferences that are needed to

restrict the capacity to the additive case. In Figure 6.1, we provide a unifying map of

alternative assumptions that lead to additive capacities and further down to subjective

expected utility.

We begin by presenting some notation and definitions in Section 2. Axioms and the

general decision model are presented in Section 3. Since the notion of capacity is central

to our development, special properties of capacity functions are discussed in Sections

4 and 5. Section 6 shows that several existing models can be derived as special cases of

our general model by imposing additional assumptions. Examples and discussions are

contained in Section 7.

2. ELEMENTARY DEFINITIONS

This section presents the notation and some definitions that are subsequently used

throughout the paper. There is a set C of consequences (payoffs, prizes, outcomes) and a

set S of states of nature. The states in S are mutually exclusive and collectively exhaustive

so that exactly one state is the true state. We shall let A denote a collection of subsets of

S. The elements of A are called events; capacities will be assigned to them. The setup of

this paper allows for a considerable generality, and does not require that A is a σ-algebra.

We do however assume that A contains a σ-algebra Aua that should be thought of as

containing unambiguous events1. The conditions in the main Theorem 3.1 below will

ensure that the σ-algebra Aua is sufficiently rich to “calibrate” the ambiguous events from

A\Aua. For the collection A\Aua of ambiguous events, considerable flexibility is allowed.

For example, Aua may describe events related to the outcome of a roulette wheel, and

A\Aua may consist of the events: {rain, cloudy, sunshine}. As A need not be a σ-

algebra, no unions of the events in A\Aua, e.g. rain-or-cloudy, as well as no intersections

of A with events related to the roulette wheel need to be incorporated. Further comments

on the choice of Aua are provided following Theorem 3.1.

F denotes a set of acts, i.e., its elements are functions from S to C. A measurability

condition will be imposed below. We assume that the elements from F have a finite

range, i.e., are simple.2 We do not assume that F contains all (measurable) simple

1It is to be noted that we do not require an a priori definition of unambiguous or ambiguous events. The

events in Aua only are to satisfy the axioms below. This will imply that probabilities can be assigned to

the events in Aua.

2In the setup of this paper there is no difference between simple acts and the "step-acts" as considered in

Sarin & Wakker (1990, see Footnote 1 there).
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functions from S to C, but F is assumed to contain the entire set Fua of simple

unambiguous acts, i.e., acts f such that f−1(E)∈ Aua for each E⊂ C. Act f is constant if,

for some α∈ C, f(s)=α for all states s. Often a constant act is identified with the resulting

consequence. Note that all constant acts are contained in Fua, so are contained in F.

Statements of conditions are simplified by defining fA as the restriction of f to A, fAh as

the act that assigns consequences f(s) to all s∈ A, and consequences h(s) to all s∈ S\A.

Given that consequences are identified with constant acts, fAα designates the act that is

identical to f on A and constant α on S\A; αAβ is similar. Further, for a partition

{A1,...,Am}, α1
A1

...αm
Am

 denotes the act that assigns consequence αj to each s∈ Aj,

j=1,...,m. A binary relation  over F gives the decision maker's preferences. The

notations , , , and ~ are as usual. Further,  is a weak order if it is complete (f  g

or g  f for all f,g) and transitive.

We define  on C from  on F through constant acts. We impose the following

measurability condition on the acts: For each act f∈ F, and each consequence α, the

cumulative event {s∈ S: f(s) α} is contained in A. Note that this is less restrictive than

the usual measurability conditions for σ-algebras A. Cumulative events play a central role

in our analysis. Following Savage (1954) (see also de Finetti, 1931, 1937), we define 

on A from  on F through "bets on events": A B if there exist consequences α β such

that αAβ  αΒβ; Postulate P5 below will ensure that such acts exist in F. An event

A∈ Aua is null if fAh ~ gAh for all f,g∈ Fua; it is non-null otherwise.

A function v : A → [0,1] is a capacity if v(∅ ) = 0, v(S) = 1, and v is monotonic with

respect to set-inclusion, i.e., A⊃ B ⇒  v(A) ≥ v(B). If A is an algebra, then the capacity v

is a (finitely additive) probability measure if furthermore v is additive, i.e., v(A∪ B) =

v(A) + v(B) for all disjoint A,B. A capacity v is convex-ranged if for every A⊃ C and

every µ between v(A) and v(C) there exists A⊃ B⊃ C such that v(B)=µ.

3. THE MAIN RESULT

We use Savage's setup to formulate our axioms that lead to a nonadditive capacity

measure. Since our main result generalizes Savage (1954), Machina & Schmeidler (1990,

hereafter abbreviated M&S), and Sarin & Wakker (1990), we note here some important

differences.

Savage’s Postulate P2 (the sure-thing principle) will not be used in our main theorem.

This was dropped in M&S as well, but was assumed for unambiguous acts in Sarin &

Wakker (1990). Instead we use P2*, which can be seen to be the restriction of the sure-

thing principle to unambiguous two-consequence acts and is implied by the P4* condition

used by M&S. We drop M&S's P4* and instead use a cumulative dominance condition.
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We first state the axioms and then the main theorem. Special cases are discussed in the

next section.

POSTULATE P1. Weak ordering.

POSTULATE P2* (sure-thing principle for unambiguous two-consequence acts). For all

consequences α β and unambiguous events A,B,H with A∩H = B∩H = ∅ :

αAβ  αBβ    ⇔  αA∪ Hβ  αB∪ Hβ.

POSTULATE P3. For all events A∈ A, acts f∈ F, and consequences α,β: α β ⇒
αAf βAf whenever the latter two acts are contained in F. The reversed implication holds

as well if A∈ Aua, A is nonnull, and f∈ Fua.

POSTULATE P4 (cumulative dominance). For all acts f,g we have:

f  g  whenever  {s∈ S: f(s) α}  {s∈ S: g(s) α} for all consequences α.3

POSTULATE P5 (nontriviality). There exist consequences α β such that αAβAc∈ F for

all events A∈ A.

POSTULATE P6 (fineness of the unambiguous events). If α∈ C and, for f∈ Fua,g∈ F, f 

g, then there exists a partition (A1,...,Am) of S, with all elements in Aua, such that  αAjf

 g for all j, and the same holds with  instead of .

Postulates P1-P6 are used to derive a capacity measure v over events in a general

decision model that will now be described. For a simple probability distribution over C,

the cumulative distribution function assigns to each consequence α∈ C the probability of

{β∈ C: β α}. It turns out that the present definitions, with  instead of ≤ as used in

distribution functions in probability theory, are more convenient. For an act f and a

capacity v, the cumulative distribution function Ff,v:C→[0,1] is defined by

Ff,v:α → v({s∈ S: f(s) α}). If α1  ...  αm and {α1, ... ,αm}⊃ range(f), then we

may denote Ff,v by (α1,v1;...;αm,vm), where vj:=v({s∈ S: f(s) αj}) for all j.  Note that

3Let us comment on a technical detail in relation to P4 in Sarin & Wakker (1990). That condition needed

to involve events that were inverses under act f of so-called "cumulative consequence sets". These events

are, for general acts, more general than the cumulative events as defined in this paper. For simple acts as

considered in this paper, however, the events are truly identical. Hence we chose now the simplest

formulation. In general, the formulation of Sarin & Wakker (1990) should be adopted.
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each cumulative distribution function generated by an act and a capacity in this manner

can be associated with the simple probability distribution over C that assigns probability

vi−vi−1 to consequence αi;  set here v0=0. Thus, for a fixed capacity v on S, the set of

cumulative distribution functions generated by the acts is a subset of the set of cumulative

distribution functions generated by simple probability distributions over C. In the main

Theorem 3.1 below, the two sets will turn out to be identical. Also note that our notation

automatically implies, for αi−1=αi, the equalities vi−1=vi and

(α1,v1;..;α i−1,vi−1;α i,vi;α i+1,vi+1;..;αm,vm) = (α1,v1;..;α i−1,vi−1;α i+1,vi+1;..;αm,vm).

A function V̂ is a cumulative distribution functional if its range is IR and its domain

consists of all the cumulative distribution functions generated by simple probability

distribution functions over C. Further, a cumulative distribution functional V̂ is required

to satisfy (strict first-order) stochastic dominance4 and mixture continuity. The latter

condition, proposed by M&S, requires, for each pair of cumulative distribution functions

Ff and Fg, continuity of λ → V̂(λFf+(1−λ)Fg) on [0,1]. Note that this implies that the

range of V̂ is convex, i.e., an interval. It is easily verified that stochastic dominance is

equivalent to strict monotonicity with respect to the vi’s, and αi’s with positive vi−vi−1 in

(α1,v1;...;αi,vi;...;αm,vm), and mixture continuity is equivalent to continuity in the vi’s.

A function V:F→IR is a cumulative capacity functional if it agrees with a cumulative

distribution functional, i.e., there exist a capacity v (the capacity related to V) and a

cumulative distribution functional V̂ such that V(f) = V̂(Ff,v) for all acts f. Under the

conditions of the theorem below, the capacity related to V̂ will be determined uniquely.

We call a function ordinal if it can be replaced by another function if and only if the

other function is a continuous strictly increasing transform of the original function; we

abstain from the possibly more accurate term continuously ordinal.

THEOREM 3.1. The following two statements are equivalent:

(i) There exists a non-constant cumulative capacity functional V that

represents . On Aua the capacity v, related to V, is additive and

convex-ranged; on Fua the functional V is mixture-continuous.

(ii) Postulates P1,P2*,P3, ..., P6 are satisfied.

Further, the function V is ordinal and the capacity v in (i) is unique.  

PROOF.

CASE 1. Suppose (ii) holds. We derive (i). From Savage (1954) we obtain a unique

atomless convex-ranged additive probability measure P on Aua, such that for all α β and

4I.e., V̂(Ff,v)>V̂(Fg,v) whenever Ff,v≠Fg,v and Ff,v≥Fg,v on its entire domain.
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unambiguous events A,B, [αAβAc αBβBc ⇔ A B ⇔ P(A) P(B)]. Following Sarin

& Wakker (1990, Lemma A.1 and below) we get:

For each event A there exists an Aua∈ Aua such that A~Aua, (3.1)

from which the capacity v(A)=P(Aua) can be defined; monotonicity of v with respect to

set-inclusion is implied mainly by P5 and P3. We consider now two cases.

CASE 1a. There exists a maximal consequence µ and a minimal consequence ν.

Following Sarin & Wakker (1990, Lemma A.2), there exists for each act f a probability

0≤p≤1 such that the unambiguous act that assigns probability p to µ and probability 1−p

to ν is equivalent to f. We set V(f)=p. This functional indeed represents , and is non-

constant. We must show that it satisfies the other conditions in the Theorem. By two-fold

application of P4 (once with , once with ), different acts with the same cumulative

distribution function are equivalent, so they receive the same V value. Therefore we can

define the functional V̂ on the set of cumulative distribution functionals of simple acts

such that V(f) = V̂(Ff,v) for all simple acts f. Note that by convex-rangedness of P, the

domain of V̂ indeed consists of all cumulative distribution functions of simple probability

distributions over C. From P4 it follows immediately that V̂(Ff,v)≥V̂(Fg,v) whenever

Ff,v≥Fg,v on its entire domain. Let us now show strict inequality for Ff,v≠Fg,v. There

exist unambiguous fua,gua with the same distribution functions as f and g, so we can

assume fua=f, gua=g. It is elementarily shown that for Ff,v≥Fg,v and Ff,v≠Fg,v there exist

unambiguous f’ and g’ with the same distribution functions, but such that f’(s) g’(s) for

all states s. There must exist a nonnull event to which f’ assigns one consequence, and

g’ one strictly dispreferred consequence. From P3,P4, and transitivity, it

straightforwardly follows that f’ g’. Indeed V̂(Ff,v)>V̂(Fg,v), and strict stochastic

dominance is satisfied. The derivation of mixture-continuity follows mainly from P6, and

is similar to M&S; note that in our setup it suffices to derive the condition on Fua, as the

latter set generates all simple distribution functions. Indeed V may be called a cumulative

capacity functional.

 Uniqueness of the capacity follows from uniqueness of the probability measure P as

established by Savage, and (3.1). It is immediate that another function V’ represents  if

and only if V’ is a strictly increasing transform of V. It is also immediate that any

continuous strictly increasing transform of V gives another functional satisfying all

conditions of the theorem, including mixture continuity for V̂. Finally, that only strictly

increasing transformations can be applied that are continuous, follows because the range
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of V is equal to the range of V when restricted to the unambiguous acts, and this is

convex, so an interval, by mixture continuity of V̂.

Case 1a is now completed.

CASE 1b. There does not exist a maximal consequence, or there does not exist a minimal

consequence. Let µ ν be two consequences. If a maximal consequence exists, let µ be

that consequence; if a minimal consequence exists, let ν be that consequence. Further µ
and ν are arbitrary. Suppose there does not exist a maximal consequence. We first

construct a sequence µ µ1 µ2 ... such that each consequence is dominated by some

µj. For any consequence α µ there exists, similarly to (3.1) and Lemma 13 in Sarin &

Wakker (1990), a 0<pα<1 such that the act giving α with probability pα, and ν with

probability 1−pα, is equivalent to µ. Mainly by P3, β α implies pβ<pα. Because there

does not exist a maximal consequence, there does not exist a minimal pα. Let

µ µ1 µ2 ... be such that the associated sequence pµ1,pµ2,... tends to the infimum of

the pα’s. Then each consequence α µ is dominated by a µj.

Similarly, if there does not exist a minimal consequence, then we construct

ν ν1 ν2 ... such that each consequence dominates some νj.

Below, if µ is maximal, we simply set µ1=µ2= ... =µ; if ν is minimal, then set ν1=ν2=

... =ν. By Case 1a, we get a representing functional Vm of the desired kind on the set of

acts with consequences in {α∈ C: νm α µm}. We can further ensure that the range of

Vm is a subset of [−m,m], and coincides with the range of Vm−1 on common domain.

Note that uniqueness of the capacity from Case 1a implies that the capacities associated

with V1,V2, etc., all coincide. Thus all functions Vm can be combined into one function

V that incorporates all acts in its domain. The conditions for V are straightforwardly

verified; ordinality follows primarily because the range of V is an interval.

Case 1b, thus Case 1, is completed.

CASE 2. Suppose (ii) holds. We derive (i). Postulate (i) (  is a weak order) is direct;

P2* follows from additivity of the capacity v on Aua and strict stochastic dominance;

Postulates P3 and P4 follow from strict stochastic dominance; P5 follows from non-

constantness of V; finally, P6 follows mainly from mixture continuity of the functional,

similarly to M&S.

This completes the proof of Case 2, and thus of the theorem.  

It is assumed in Theorem 3.1 that in order to elicit a capacity v, a sub σ-algebra of

unambiguous events, Aua, has been preselected. The choice of a particular Aua however,

is left to the decision maker. Example A1 in the appendix shows that there may be several
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sub σ-algebras that satisfy the postulates for Aua but result in different capacities. Thus,

the interpretation of Aua as σ-algebra of unambiguous events cannot be justified solely by

satisfaction of the Postulates in the main Theorem 3.1. It requires in addition a subjective

evaluation of the decision maker that indeed the events of Aua are unambiguous.

Alternatively, the decision maker may omit any such subjective evaluation and simply let

the capacity depend on the particular set Aua, where the capacity now is strictly relative to

Aua. The generality of the representing cumulative capacity model does not allow a

unique determination of a σ-algebra Aua. The dependence of a capacity on a chosen Aua

is related to Tversky & Kahneman’s idea of source-dependence.

4. SUPERADDITIVITY, SUBADDITIVITY, AND COMPLEMENTARITY

OF THE CAPACITY

The method to calibrate capacities through P4 is elementary but has proven to be

powerful in Theorem 3.1. Without further restrictions, the capacity function is quite

general. In the following sections we will formulate behavioral conditions that restrict

capacities in a way that resembles closely the calibration technique. This will lead to

transparent results, and again we hope that this transparency is considered a virtue;

compare Figure 4.1 below. For simplicity we will assume henceforth that A is a σ-

algebra.

The first property we consider is "superadditivity". A capacity is superadditive if, for

all events A,B, v(A)+v(Β) ≤ v(A∪ B)+v(A∩Β). By substituting A1=A∩Β, A2=A\B,

A3=B\A, we can rewrite this condition:

For all disjoint events A1,A2,A3

v(A1∪ A2) − v(A1) ≤ v(A1∪ A2∪ A3) − v(A1∪ A3). (4.1)

That is, the marginal capacity-contribution of event A2 increases as the set to which it is

added increases. Subadditivity holds if the inequality (4.1) is reversed. Since we can

assess the capacity of an event by comparing it with an unambiguous event, the following

approach seems natural to characterize super- and subadditivity. Suppose that for disjoint

events A1,A2,A3, there exist disjoint unambigous events B1,B2,B3, such that

B1~A1, B1∪ B2 ~ A1∪ A2, B1∪ B3 ~ A1∪ A3. (4.2)
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So, B1 matches A1, B2 matches the increment from A1 to A1∪ A2, and B3 matches the

increment from A1 to A1∪ A3. By substitution it follows that (4.1) holds for A1,A2,A3, if

and only if

B1∪ B2∪ B3  A1∪ A2∪ A3. (4.3)

That is, the joint increment of A2 and A3 is greater than the joint increment of B2 and B3.

This idea is formally different, but closely related to, the notion "curved relative to" of

Krantz & Tversky (1975). In terms of the capacity, the above conditions say that

v(A1∪ A2) − v(A1) = P(B2) and v(A1∪ A2∪ A3) − v(A1∪ A3) ≥ P(B2), in accordance with

the definition of superadditivity. Formula (4.1) with reversed inequality holds if and only

if

B1∪ B2∪ B3  A1∪ A2∪ A3. (4.4)

So (4.3) and (4.4) show how the elicitation procedure of this paper can be used to elicit

and characterize super- and subadditivity.

There remains one final complication to be discussed. That concerns the case where no

B1,B2,B3 exist to satisfy (4.2); this will occur for example if v(A1)<1,

v(A1∪ A2)=v(A1∪ A3)=v(A1∪ A2∪ A3)=1, which by (4.2) would force

P(B1)+P(B2)+P(B3) to be larger than 1, i.e., B1,B2,B3, as in (4.2) do not exist.

Formula (4.5) below will show that this can only happen if (4.1) holds with > instead of

≤, i.e., if A1,A2,A3 satisfy the subadditivity inequality. Thus, if no B1,B2,B3 exist to

satisfy (4.2), then superadditivity of v is necessarily violated. So we define:  exhibits

superadditivity if for each triple of disjoint events A1,A2,A3, there exist disjoint

unambiguous events B1,B2,B3 satisfying (4.2), and furthermore for all such triples of

events, (4.3) holds;  exhibits subadditivity if for each triple of disjoint events

A1,A2,A3, and each triple of disjoint unambiguous events B1,B2,B3 satisfying (4.2),

(4.4) is satisfied.

LEMMA 4.1. Suppose that the conditions of Theorem 3.1 hold, and that A is a σ-algebra.

Then v is superadditive if and only if  exhibits superadditivity, and v is subadditive if

and only if  exhibits subadditivity.
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Unambiguous events

B1A1

 Ambiguous events

FIGURE 4.1 ( Elicitation of superadditivity). Events have been revealed as 
more likely when they are higher. In the ambiguous world there appears to
be additional appreciation for the joining of disjoint increments. 
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PROOF. As a preparation we show:

If v(A1∪ A2) − v(A1) ≤ v(A1∪ A2∪ A3) − v(A1∪ A3), then there exist B1,B2,B3 that

satisfy (4.2). (4.5)

By (3.1), there exists an unambiguous B123 ~ A1∪ A2∪ A3. By convex-rangedness, we

can find B12⊂ B123 such that B12~A1∪ A2, and B1⊂ B12 such that B1~A1. We define B2

:= B12\B1, and B3´:=B123\B12. Now

          v(B1∪ B2) + v(B1∪ B3´) − v(B1) = v(B1∪ B2∪ B3´) = v(B123) =

                  v(A1∪ A2∪ A3) ≥ v(A1∪ A2) + v(A1∪ A3) − v(A1),

where the inequality follows from the antecedent in (4.5). Since v(B1∪ B2) = v(A1∪ A2)

and v(B1) = v(A1), we conclude v(B1∪ B3´) ≥ v(A1∪ A3). By convex-rangedness, there

exists B1∪ B3 ⊂  B1∪ B3´ with B1∪ B3 ~ A1∪ A3. So (4.2), and thus (4.5), follows.

To show that superadditivity of the capacity implies that  exhibits superadditivity,

suppose A1,A2,A3 are disjoint. By (4.5) there exist B1,B2,B3 satisfying (4.2); take also

B3´ as above. Obviously, v(B1∪ B2∪ B3) ≤ v(B1∪ B2∪ B3´) = v(B123) = v(A1∪ A2∪ A3),

and (4.3) follows. Indeed  exhibits superadditivity.

To show that v is superadditive if  exhibits superadditivity, suppose A1,A2,A3 are

disjoint. By definition, there exist B1,B2,B3 and preferences as in (4.2) and (4.3). By

(4.2), v(A1∪ A2) + v(A1∪ A3) − v(A1) = v(B1∪ B2) + v(B1∪ B3) − v(B1) =

v(B1∪ B2∪ B3). By (4.3), the latter is smaller/equal v(A1∪ A2∪ A3). The inequality

v(A1∪ A2) + v(A1∪ A3) − v(A1) ≤ v(A1∪ A2∪ A3) yields superadditivity of v.
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Next we turn to subadditivity. Suppose first that v is subadditive. To show that 

exhibits subadditivity, take disjoint A1,A2,A3, and suppose there exist B1,B2,B3

satisfying (4.2); otherwise, we are done immediately. Then v(B1∪ B2∪ B3) = v(B1∪ B2)

+ v(B1∪ B3) − v(B1) which, by (4.2), is equal to v(A1∪ A2) + v(A1∪ A3) − v(A1). By

subadditivity of v, the latter is smaller/equal v(A1∪ A2∪ A3). So v(B1∪ B2∪ B3) ≤
v(A1∪ A2∪ A3), and (4.4) follows;  exhibits subadditivity.

Finally, we show that the capacity is subadditive if  exhibits subadditivity. Suppose

A1,A2,A3 are disjoint. If no B1,B2,B3 exist that satisfy (4.2), then, by (4.5), the

inequality of subadditivity must be satisfied, even strictly. So assume B1,B2,B3 as in

(4.2) exist. Then, by (4.4), v(A1∪ A2∪ A3) ≤ v(B1∪ B2∪ B3) = v(B1∪ B2) + v(B1∪ B3) −
v(B1). The latter is, by (4.2), equal to v(A1∪ A2) + v(A1∪ A3) − v(A1). The inequality

v(A1∪ A2∪ A3) ≤ v(A1∪ A2) + v(A1∪ A3) − v(A1) implies subadditivity of v.  

Weak superadditivity requires (4.1) only if A1=∅ , i.e., when events A and B are

disjoint. Weak subadditivity is defined similarly. Weak superadditivity is characterized by

the restriction of (4.2) and (4.3) to empty A1. Next we turn to the property of

"complementarity". Gilboa (1989) argued in favor of this condition. The capacity v

satisfies complementarity if v(A) + v(Ac) = 1 for all events A. The preference relation 

exhibits complementarity if for all events A and unambiguous events B~A we have

Bc~Ac. The following lemma is an easy corollary of (3.1), hence the proof is omitted.

LEMMA 4.2. Suppose that the conditions of Theorem 3.1 hold, and that A is a σ-algebra.

Then v satisfies complementarity if and only if  exhibits complementarity.  

Alternatively, complementarity can be characterized by a variation of condition P4, as

follows5:

LEMMA 4.3. Suppose that the conditions of Theorem 3.1 hold, and that A is a σ-algebra.

Then v satisfies complementarity if and only if f g whenever {s∈ S: f(s) α}   {s∈ S:

g(s) α} for all consequences α.

PROOF. First suppose the variation of P4 holds. Consider, for any α β, acts of the form

αA,βAc and αB,βBc with B unambiguous, and such that v(Bc) = v(Ac). By twofold

application of the variation of P4, the two acts are equivalent. This implies v(A)=v(B).

The latter is identical to 1−v(Bc), which is equal to 1−v(Ac). Complementarity of v

follows.

5The condition was proposed by Nehring (1991, personal communication).
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Conversely, suppose v satisfies complementarity, and suppose that v{s∈ S: f(s) α} ≤
v{s∈ S: g(s) α}. Then, by complementarity of v, v{s∈ S: f(s) α} ≥ v{s∈ S: g(s) α}

for all α. This implies, by elementary manipulations, v{s∈ S: f(s) β} ≥ v{s∈ S:

g(s) β} for all β (for simple f,g, replace α by a consequence β from the closest more

preferred equivalence class from f(S)∪ g(S)).  By P4, f g.  

Let us comment more on the above variation, seemingly dual, of P4. Recall that the

more likely than relation  on events was derived from bets “on events”: A B if, for

α β, αAβ αBβ. That is, A and B are cumulative events, describing the receipt of a

consequence or anything better. It is natural to adopt this ordering of events in Postulate

P4, where cumulative events are also compared. The above, seemingly dual, condition

however, applies the more likely than relation as derived for events when they are

cumulative to the case where these events have another role, i.e., they are “decumulative”

(describing the receipt of a consequence or anything worse). As the above lemma

demonstrates, this can only be done in the case of complementarity, where the ordering

of events through bets on the events coincides with the ordering of events through bets

against the events.

An alternative, and truly dual, characterization could have been obtained in Theorem

3.1, if P4 had been replaced by the condition requiring f g whenever {s∈ S: f(s) α}

*  {s∈ S: g(s) α}, where now the ordering * is derived from bets against events:

A *B if, for α β, βAα βBα.  (Here the measurability condition needs to be modified

so that for each act all decumulative events are contained in A.) Our version of P4 was

chosen because betting on events is more natural than betting against events.

5. ADDITIVITY OF THE CAPACITY: “PROBABILISTICALLY

SOPHISTICATED” PREFERENCES

This section considers the special case of additive capacities. We first show ways to

obtain an alternative characterization of the result of M&S6. They considered the special

case of Theorem 3.1 where A=Aua, and called the characterized preference relations

probabilistically sophisticated.

OBSERVATION  5.1. If A=Aua is taken, then Theorem 3.1 gives a characterization of

probabilistically sophisticated preferences.  

6Note that they use the term "non-atomic" instead of our term convex-ranged".
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There are two differences between the above observation and the result of M&S. The

main difference is that we replaced their "strong comparative probability axiom” P4* by

P2* and P4. Example 5.2 demonstrates that (with A=Aua) our axioms except the

structural P6 do not imply the strong comparative probability axiom, so are not stronger.

Conversely, P2* is immediately implied by the strong comparative probability axiom (see

M&S, end of Subsection 4.1). It can be shown however that in the absence of P6, the

strong comparative probability axiom does not imply our P4. Thus, in the absence of P6,

the conditions are logically independent. Obviously, in the presence of the other

conditions, given A=Aua, they are logically equivalent because they characterize the same

preferences.

EXAMPLE 5.2 (In the absence of P6, the strong comparative probability axiom of M&S is

not implied by P2* and P4). Let S={s1,s2,s3}, with every subset an event, and every

event unambiguous. P is an additive probability measure on S, described by P({s1})=
4
9,

P({s2})=
3
9, P({s3})=

2
9. The consequence set C is {0,1,9}. Suppose  maximizes

expected value, with one exception: (0s1,9s2,1s3) ~ (0s1,1s2,9s3). Obviously condition

P6 is not satisfied. Conditions P1,P2*,P3,P4,P5 are satisfied. The only violation that
might be expected is when the equivalence (0s1,9s2,1s3) ~ (0s1,1s2,9s3) is involved.

However, no violation of the conditions, in particular of P4, occurs. It can be seen that

the strong comparative probability axiom of M&S is violated, e.g., by the preferences

(0s1,1s2,9s3)  (0s1,9s2,1s3) and (0s1,0s2,1s3)  (0s1,1s2,0s3).  

The second difference between Observation 5.1 and the result of M&S is that

Observation 5.1 does not require the existence of maximal and minimal consequences.

The analysis of Case 1b in the proof of Theorem 3.1 shows that this restrictive

assumption could also have been dropped in M&S.

Theorem 3.1 makes further generalizations of the M&S result possible. For example,

cases where A≠Aua can be incorporated by including conditions that imply additivity of

v. The additivity of the capacity v is easily obtained by (5.1) or (5.2) below.7 Note that

(5.2) is stronger than (5.1), but it may be more intuitive. This generalizes Observation

5.1 and the result of M&S because conditions such as P6 are invoked only for the subset

A=Aua, rather than for all events.

For all disjoint events A and A', and disjoint unambiguous events Bua~A, Bua'~A',

                                              we have A∪ A' ~ Bua∪ Bua'. (5.1)

7The proof is obtained mainly by (3.1), and is omitted.
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P4*. For each partition {A1,...,Am}, and unambiguous partition {B 1
ua,...,Bm

ua}, of S, we

have:
                                                        Aj~B j

ua for all j  ⇒ (5.2)

α1
A1

...αm
Am

  ~  α1
B1

ua...αm
Bm

ua

for all consequences  α1,...,αm.

Obviously, Theorem 3.1 and Formula (5.2) can be used to determine additivity of the

capacity on subclasses of events, larger than Aua. For instance, if (5.2) is imposed on

one fixed partition {A1,...,Am}, or on all partitions from some subalgebra larger than

Aua, then the capacity is additive there.

6. SPECIAL FORMS OF CUMULATIVE CAPACITY FUNCTIONALS

In this section special forms of the cumulative capacity functional will be studied; see

Figure 6.1. Again, we assume that A is a σ-algebra. In particular, we shall consider the

case of Choquet expected utility and versions of weighted utility and quadratic utility with

a nonadditive capacity v, and relate these to the case where v is additive. Choquet

expected utility (CEU) is the special case of a cumulative capacity functional where there
exists a utility function u:C→IR such that, for f=(α1A1,...,αmAm), α1 . . . αm,

V(f)  =  u(αm) + ∑
i=1

m−1
(u(α i)−u(α i+1))v({A1∪ ...∪ Ai}). (6.1)

This form is characterized by replacing P2* with Savage’s sure-thing principle P2,

restricted to the unambiguous acts; see Sarin & Wakker (1990). In a similar way, by

retaining P2* and replacing P2 with P4*, we obtain the M&S model, see Section 5.

Finally, by assuming both P2 and P4*, we obtain the subjective expected utility model.

Table 6.1 demonstrates the generality of the cumulative capacity functional in

comparison to alternative models. The class of models that permit nonadditive capacities

for ambiguous events, but require expected utility maximization for the unambiguous

events (Schmeidler, 1989, or Sarin & Wakker, 1990), is consistent with the choices in

the third and fourth pair, but is inconsistent with the choices in the first and second pair.

The M&S model does the reverse,− it can describe the choices in the first and second pair

but fails to describe the pattern in the third and fourth pair. The cumulative capacity

functional is consistent with the entire pattern of choices over the four pairs.

In general, we can specialize our cumulative capacity functional to several alternative
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P

2 P4
*

P4
*P2+

Cumulative capacity functional

V̂ α1( , v1 ; ... ; ,αm
mv )

V̂ α1( , ; ... ; ,αm
mp )1p

(capacity additive)
          M&S

Σu(α )j vj vj-1−( )

(CEU)

Σu(α )j
j-1p−( )jp

(SEU)

P4
* P2

FIGURE 6.1 Special cases of cumulative capacity functionals( ). Let α1

1A , αm

mA,...( )f= ,

α1 αm... . Let vj = v (A1, ... , Aj). We write vjjp for if v is additive; recall that  

jp denotes a "cumulative" probability. P2 is imposed only on the unambiguous acts. 

-----------------------------------------------------------------------------------------------------------------

(20)  (25)    (          4 0           )  (15)

Red Black Yellow Orange White

* a1 3000 3000 3000 3000 3000

             a2        0                 4000              4000              4000                   4 0 0 0          

a3 0 3000   0   0   0       

      *     a4        4000             0                    0                    0                         0       

* a4 4000   0   0   0   0       

             a5          0                 0                  4000                0                         0       

a6 4000   0   0 4000   0       

      *     a7          0                 0                  4000              4000                     0       

TABLE 6.1. A ball will be drawn from an urn. The sum of the number of yellow and

orange balls is 40, but the exact number of yellow or orange balls is not known. In each
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pair of acts the act marked with an asterisk is the preferred choice for a majority of

subjects.

forms. Postulate P4 gives the tool to extend any model for decision making under risk

(e.g., rank-dependent utility, weighted utility8, quadratic utility9) that respects

transitivity, completeness, stochastic dominance, and mixture continuity10 to the case of

ambiguity with nonadditive capacities. For any ambiguous act one calculates the

cumulative distribution function and applies the particular model for decision making

under risk to that cumulative distribution function. Thus, we can for instance obtain a

version of weighted utility for nonadditive measures of belief. This shows that the

cumulative capacity functional is indeed strictly more general than CEU. Axioms that lead

to other specialized forms for cumulative capacity functionals deserve to be explored in

future research.

7. DISCUSSIONS

The flexibility that a nonadditive capacity measure affords to a decision maker can easily

be seen by means of a simple example. Suppose an urn is filled with 100 balls. There are

20 red balls, the number of yellow-or-white balls sums to 40, the number of green-or-

white balls sums to 40, and the remainder is blue. Obviously, there are as many blue

balls as white balls. Colors are abbreviated below by their first letter. Suppose a decision

maker expresses a preference for betting on R over Y (R Y). Now, a probability

measure will require that R∪ W  Y∪ W and R∪ W∪ G  Y∪ W∪ G and so on.

However, if a person likes specificity and dislikes ambiguity, then he may exhibit the

pattern R Y, R∪ W Y∪ W, R∪ W∪ G Y∪ W∪ G, R∪ W∪ G∪ B Y∪ W∪ G∪ B, which

is consistent with a nonadditive capacity but not with a probability measure. Since such

preference patterns are commonly observed empirically, the additional flexibility of the

capacity measure may be useful in descriptive applications.

R Y W G B

20 40 40

100

Figure 7.1 Numbers of balls in the urn( ).

8See Chew (1983, Econometrica).

9See Chew, Epstein, & Segal (1991).

10That is, the models as described by M&S, or, equivalently, Observation 4.4.
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One objection could be that a money pump (or Dutch book) can be made out of a

person with a nonadditive capacity. Suppose a person is offered a bet: win $10 if Y; win

$0 otherwise. Assuming the person is a CEU maximizer with linear utility, he pays

10.v(Y) for the bet. Now, he is offered a bet: win $10 if W, win $0 otherwise.

Supposing he evaluates this bet as before, he pays 10.v(W). Finally he is offered a bet:

win $−10 if W or Y; win $0 otherwise; he pays −10.[1−v((W∪ Y)c)]. It is easily seen

that the three bets jointly yield $0 no matter what. However, his total payment will be

zero only if v(W) + v(Y) + v((W∪ Y)c) =1, which, in general, is equivalent to additivity

of the capacity. In this example, if v(W) + v(Y) + v((W∪ Y)c) > 1, then the

person can be milked a positive amount. If v(W) + v(Y) + v((W∪ Y)c) < 1, then the

person can also be milked a positive amount, in the situation where the person owns the

three lotteries, and sells them sequentially, at the prices as described above. It is to be

noted that the money pump argument requires that a person evaluates each bet

independently. A person who exhibits a nonadditive capacity will, however, evaluate a

bet differentially depending on whether it was the only bet he undertook or if he took it in

conjunction with other bets. The above money pump argument does not therefore pose a

problem for a person with a nonadditive capacity.

Suppose we define a relation "is more likely than" through introspection or some

mechanism other than betting behavior. Such a relation may indeed satisfy some axioms

that imply an additive function a person may use to order the events by their perceived

likelihood of occurrence. Yet, his betting behavior on these events may reveal a

nonadditive capacity. The capacity measure may not reflect the degree of likelihood of

occurrence of an event. It is centrally focused on predicting peoples' betting behavior. In

a race with two rabbits (assuming no ties and that one rabbit must win) it makes no sense

to say that the brown rabbit has a 0.4 chance of winning and the white rabbit has a 0.4

chance of winning. A decision maker could, however, strictly prefer to bet on the toss of

a fair coin than bet on either the white or the brown rabbit. In fact his betting behavior

may well reveal the capacity associated with the event white rabbit wins to be 0.4 and the

same for the event brown rabbit wins. Our decision maker could even agree that the

chance of winning for either rabbit is 0.5. His betting behavior may be influenced by a

low confidence in his judgment or anticipated regret. He may self-blame if, for example,

he bets on the brown rabbit and finds it trailing by a long margin. He could lose on the

toss of a coin as well. But in this case he attributes his misfortune to bad luck and not to

bad judgment. An alternative explanation can be provided by source-dependence, see

Tversky & Kahneman (1990). The capacity measure permits one's betting behavior to be

influenced by such psychological concerns. In contrast, the probability measure imposes

a stringent code of consistency that effectively requires that these widely observed

psychological concerns should play no role in peoples' choices. It is conceivable that in

the future researchers may agree that the capacity measure provides a better description of
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peoples' actual behavior while the probability measure is an ideal to be attained upon

reflection and introspection.

APPENDIX

EXAMPLE A1. This example builds on the idea of "source-dependence" as explicated in

several works by Tversky, see for instance Heath & Tversky (1991) and Tversky &

Kahneman (1990). The example shows that the capacity v resulting from Theorem 3.1

depends on the particular σ-algebra Aua. That is, there may be several sub σ-algebras that

satisfy the axioms for Aua, and that yield different capacity measures.

Suppose S = [0,1] × [0,1]  × {rain,no rain}, where, for a state (s1,s2,s3), s1 describes

the outcome of a fairly constructed roulette wheel W1, s2 describes the outcome of an

asymmetric roulette wheel W2, and s3 describes whether or not it will rain. Let A1 be the

σ-algebra describing events related to the first, fair, roulette wheel, i.e., events of the

form A1×[0,1] × {rain,no rain} for Borel sets A1⊂ [0,1]. A2 is the σ-algebra describing

events related to the second, asymmetric, roulette wheel, i.e., events of the form

[0,1]×A2 × {rain,no rain} for Borel sets A2⊂ [0,1]. Suppose that C=[0,M], with

u:C→IR denoting the identity function. For acts depending solely on events from A1, the

cumulative capacity functional is expected (value =) utility. For acts f depending only on

A2, V is the "rank-dependent form with a quadratic probability transformation function".

That is,

V(f) = ∫
IR+

[P({s∈ S: f(s)≥τ})]2dτ,

where P denotes the Lebesgue measure. For example, the act receiving $1 conditional

upon the event {(s1,s2,s3)∈ S: s2≤1
2} has V value  ∫

[0,1]
[1/2]2dτ  +  0 = 

1
4,  the act receiving

$1 conditional upon the event {(s1,s2,s3)∈ S: s1≤1
4} has V value 

1
4 as well. We assume

both acts are equivalent to receiving $1 if it rains.

Formally, we can take either A1 or A2 as the σ-algebra Aua of unambiguous events. In

both cases all axioms are satisfied, and the additive probability measure will be the

Lebesgue measure, representing  on Aua. Denote the resulting capacities by v1 and v2

respectively. In the first case,

 v1(rain) = v1({(s1,s2)∈ S: s1≤1
4}) = 

1
4    (= v1({(s1,s2)∈ S: s2≤1

2})),
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in the second case

v2(rain) = v2({(s1,s2)∈ S: s2≤1
2}) = 

1
2     (= v2({(s1,s2)∈ S: s1≤1

4})).

So v1≠v2. P=v1≠v2 on A1, P=v2≠v1 on A2. One easily derives v1 = (v2)2. In this case

v1 seems the appropriate capacity. This decision, however, is based on subjective

evaluations, and cannot be inferred from the axioms in Theorem 3.1 because the axioms

are satisfied for both capacities.  
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