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 Bernheim and Sprenger (2020, Econometrica) presented experimental evidence 11 

aimed to falsify rank dependence (and, thus, prospect theory). We argue that their 12 

experiment captured heuristics and not preferences. The same tests, but with 13 

procedures that avoid heuristics, have been done before, and they confirm rank 14 

dependence. Many other violations of rank dependence have been published before. 15 

Bernheim and Sprenger recommend rank-independent probability weighting with 16 

complexity aversion, but this is theoretically unsound and empirically invalid. In view 17 

of its many positive results, prospect theory with rank dependence remains the best 18 

model of probability weighting and the existing model that works best for applied 19 

economics. 20 
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1. INTRODUCTION 1 

Bernheim & Sprenger (2020) (BS henceforth) claim to have experimentally falsified 2 

rank-dependent probability weighting and, hence, Tversky & Kahneman’s (1992) 3 

(cumulative) prospect theory (CPT). We dispute this claim. The main problem in BS’s 4 

experiment is that their stimuli are too complex while the stakes are too low. Many 5 

preceding papers have argued that such stimuli lead to responses based on heuristics 6 

rather than preferences; see §§4-5. Replications are desirable that circumvent these 7 

issues with filler questions, visual aids, and larger stakes (outcome differences). 8 

Fortunately, such replications have already been provided in the literature: Weber & 9 

Kirsner (1997) for BS’s first experiment (our Eq. 5), and Diecidue, Wakker, & 10 

Zeelenberg (2007) for BS’s second experiment (our Eq. 7). Both studies confirmed 11 

rank dependence, showing that the findings of BS are not robust.
1
 12 

 BS suggest a theory of rank-independent weighting. However, such weighting is 13 

unsound, more than commonly thought (§2.4). In their experimental measurement, BS 14 

overlook that a common power of probability weighting and utility cannot be 15 

identified from their stimuli. BS further suggest that the preference functional may 16 

depend on the number of outcomes of a lottery. Many papers have discussed this idea 17 

(§6.3). Tversky & Kahneman (1992 p. 317), for instance, argued that such 18 

dependence, as well as similar effects, do not lend themselves to formal analysis. 19 

Indeed, the idea never became popular in economics. BS argue for an aversion to 20 

many gains, but most empirical studies find the opposite: a preference for many gains 21 

(§6.3).  22 

 BS criticize a commonly-used statistical technique, but we dispute their criticism 23 

(§6.1). Possibly based in part on that criticism, they do not cite (or cite but do not 24 

discuss) much preceding literature. We understand that the rank-dependent stream is 25 

too big to completely survey, and thus add several references to preceding violations 26 

of rank dependence (§6.2, §6.4). Some are like those of BS but more serious. 27 

 Beyond our critique of BS’s experiments, we argue that models such as prospect 28 

theory should be evaluated by considering the body of tests of these theories, with no 29 

single test invalidating a model. Besides the many aforementioned violations, many 30 

                                                

1 It is understandable that papers in field journals of over a decade ago have not been widely known. 
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more studies have supported rank-dependent probability weighting. Its imperfections 1 

notwithstanding, prospect theory is the best model with probability weighting for use 2 

in modeling economic phenomena such as insurance or asset pricing (Barberis 2013; 3 

Fehr-Duda & Epper 2012). Quiggin (1982 Eq. 10) showed that, under mild 4 

assumptions, rank dependence is the only probability weighting model that does not 5 

violate stochastic dominance. 6 

 In sum, in our critique of BS, we put forth these three considerations – whether 7 

the experiment measures preferences or heuristics; how the new empirical evidence 8 

adds to prior empirical evidence; and the performance of the model in applied settings 9 

– as essential for making sense of empirical evidence and the models that they test. 10 

 11 

2. THREE PROBLEMS FOR BS’S TREATMENT OF 1979 12 

PROSPECT THEORY 13 

By  14 

 (𝑝: 𝑋, 𝑞: 𝑌, 1 − 𝑝 − 𝑞: 𝑍), (1) 15 

called lottery, we denote a probability distribution on ℝ+ that assigns probability 𝑝 to 16 

𝑋, probability 𝑞 to 𝑌, and probability 1 − 𝑝 − 𝑞 to 𝑍 (𝑝 ≥ 0, 𝑞 ≥ 0, 𝑝 + 𝑞 ≤ 1). In 17 

what follows, we use BS’s notation and terminology as much as possible.
2
 BS only 18 

consider lotteries with three or fewer outcomes, which are all gains (≥ 0). Fewer 19 

outcomes result if some of the probabilities in Eq. 1 are 0. By 𝑢: ℝ+ → ℝ+ we denote 20 

a utility function (or value function). It is assumed to be strictly increasing and 21 

continuous, with 𝑢(0) = 0. By 𝜋: [0,1] → [0,1] we denote a weighting function. It is 22 

assumed to be strictly increasing with 𝜋(0) = 0 and 𝜋(1) = 1. For original prospect 23 

theory (PT; Kahneman & Tversky 1979), BS propose the following evaluation of the 24 

lottery in Eq. 1: 25 

   𝜋(𝑝)𝑢(𝑋) + 𝜋(𝑞)𝑢(𝑌) + 𝜋(1 − 𝑝 − 𝑞)𝑢(𝑍). (2) 26 

                                                

2 We do not use BS’s notation of lotteries because their use of braces to denote arrays rather than sets is 

unconventional. 
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This is an understandable proposal that has often been made in the literature but, and 1 

this is the first problem, it is not correct strictly speaking. Eq. 2 has been known as 2 

separable prospect theory. The correct formula for PT, where we may assume 3 

𝑋 > 𝑌 > 𝑍 and 1 − 𝑝 − 𝑞 > 0, is: 4 

 𝜋(𝑝)(𝑢(𝑋) − 𝑢(𝑍)) + 𝜋(𝑞)(𝑢(𝑌) − 𝑢(𝑍)) + 𝑢(𝑍).  (3) 5 

That is, the lowest outcome 𝑍, called riskless by Kahneman and Tversky, should not 6 

be weighted. The Appendix explains the background of this formula. 7 

 The second problem of BT’s rank-independent weighting is that both formulas 8 

(Eqs. 2 and 3) are not theoretically sound. In particular, as has often been pointed out, 9 

they violate stochastic dominance. We add here that they can lead to violations that 10 

are absurd in magnitude. Consider the lottery yielding outcome 0 with probability 11 

0.01, and outcome 1 + 𝑗 × 10−5 with probability 0.01 for 𝑗 = 1, … ,99. The certainty 12 

equivalent of the lottery, with the parametric estimates of Tversky & Kahneman 13 

(1992) and under the extensions of both Eq. 2 and Eq. 3, is 6.90, which exceeds the 14 

maximal outcome of the lottery by a factor of more than 6. This does not make any 15 

sense.
3
 Further, Rieger & Wang (2008) showed that any extension of the original PT 16 

to continuous distributions is problematic, depending on 𝜋 only through 𝜋´(0) and 17 

depending much on the particular discrete approximations chosen.  18 

 One of the main empirical findings concerns the overweighting of extreme 19 

outcomes (Fehr-Duda & Epper 2012; l’Haridon & Vieider 2019; Luce & Suppes 1965 20 

§4.3; Starmer 2000). It fits well with rank dependence, but cannot be accommodated 21 

with rank-independent weighting. For all the aforementioned reasons, the rank-22 

independent versions of PT have been generally abandoned in favor of rank-23 

dependence (Barberis 2013 p. 174).  24 

 BS aimed to measure probability weighting and utility. To do so, they only 25 

considered lotteries with one nonzero outcome in their first and second experiment, 26 

probably because they used these measurements both in their rank-dependent and 27 

rank-independent weighting analyses. However, this gives rise to the third problem: a 28 

joint power of probability weighting and utility cannot be identified from these 29 

stimuli. Thus, 𝜋(𝑝)𝑢(𝑥) is empirically indistinguishable from 𝜋(𝑝)𝑟𝑢(𝑥)𝑟 for any 30 

                                                

3 Normalizing decision weights, as in BS (p. 1402 top) does not help (Wakker 2010 pp. 275-276). 
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𝑟 > 0 (Cohen & Jaffray 1988 Eq. 7a). For this reason, Fehr-Duda & Epper (2012 p. 1 

583) strongly advised against using only such stimuli. BS find that  2 

 (𝑝: 𝑥, 1 − 𝑝: 0) →  
𝑝0.715

(𝑝0.715+(1−𝑝)0.715)1/0.715 𝑥0.941   3 

fits their data best in Experiment 1. But (
𝑝0.715

(𝑝0.715+(1−𝑝)0.715)1/0.715)

1

0.941
𝑥  fits their data 4 

equally well. In particular, the power family that they assume for utility can never rule 5 

out linear (or convex or concave) utility as best fitting. By taking 𝑟 above small or 6 

large enough, 𝜋 can be as high or low as desired, violating the inverse-S shape of the 7 

probability weighting function that BS claim as optimal and that is commonly found. 8 

Similarly, in BS’s second experiment, (
𝑝0.766

(𝑝0.766+(1−𝑝)0.766)1/0.766)

1

0.982
𝑥 fits the data 9 

equally well as their claimed optimal fit. Hence, BS could not really measure their 10 

model empirically. 11 

 Because of the three aforementioned problems, we will not discuss BS’s analyses 12 

of PT further, including their rank-independent probability weighting. We instead 13 

focus on BS’s analyses of rank dependence henceforth. 14 

 15 

3. DETERMINISTIC ANALYSIS OF BS’S EXPERIMENTS 16 

This section gives some preparatory mathematical definitions. It also displays an 17 

assumption of linear utility that will be central in later discussions and is by itself 18 

reasonable. We assume CPT, with the following evaluation of lotteries:  19 

 (𝑝: 𝑋, 𝑞: 𝑌, 1 − 𝑝 − 𝑞: 𝑍)  →  𝑤𝑋𝑢(𝑋) + 𝑤𝑌𝑢(𝑌) + 𝑤𝑍𝑢(𝑍). (4) 20 

Here, 𝑢 is as above, and 𝑤𝑋 , 𝑤𝑌, and 𝑤𝑍 are decision weights. Decision weights are 21 

rank-dependent. For example, 𝑤𝑋  depends on whether 𝑋 is the best, middle, or worst 22 

outcome. We follow BS in using the term rank informally and in not expressing rank 23 

dependence in notation.
4
 24 

 BS’s first and main experiment concerns indifferences of the form 25 

                                                

4 Wakker (2010) formalized ranks and rank dependence. 
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 (𝑝: 𝑋, 𝑞: 𝑌, 1 − 𝑝 − 𝑞: 𝑍) ~ (𝑝: 𝑋, 𝑞: 𝑌 + 𝑚, 1 − 𝑝 − 𝑞: 𝑍 − 𝑘). (5) 1 

𝑋, the common outcome, is varied across BS’s main experiment, with 𝑚 and 𝑘 so 2 

small that the ranking of outcomes does not change (i.e., “comonotonicity” is 3 

satisfied). Throughout, 𝑌 = 24, 𝑍 = 18, 𝑚 = 5, and 𝑞 = 0.3. Price lists are used to 4 

elicit 𝑘 (called an equalizing reduction by BS) for three different values of 𝑝: 𝑝 = 0.1, 5 

𝑝 = 0.4, or 𝑝 = 0.6.   6 

 BS used seven values of 𝑋. In some instances, 𝑋 is the best ranked outcome 7 

(𝑋 = 34, 𝑋 = 32, or 𝑋 = 30); in other cases, 𝑋, which we denote 𝑋′, is ranked in the 8 

middle (𝑋′ = 23, 𝑋′ = 21, or 𝑋′ = 19). When 𝑋 is ranked best, the weights for 9 

outcomes 𝑌 and 𝑌 + 𝑚 are denoted 𝑤𝑌. When 𝑋 is ranked middle, they are denoted 10 

𝑤𝑌′.  11 

 Under linear utility, 
𝑤𝑌

𝑤𝑍
=

𝑘

5
 and 

𝑤𝑌´

𝑤𝑍
=

𝑘´

5
. The ratio 12 

 
𝑘′

𝑘
=

𝑤𝑌
′

𝑤𝑌
  (6) 13 

captures the proportional change of the decision weight and, hence, rank dependence. 14 

This ratio, or its log, is used in BS’s analysis. 15 

 BS repeatedly claim that they can have Eq. 6 for all differentiable utility 16 

functions.
 
However, this claim is based on marginal rates of substitution involving 17 

infinitesimal changes 𝑚 and 𝑘, which cannot be implemented empirically.
5
 18 

Empirically, we have to work with the following, reasonable, assumption: 19 

 20 

ASSUMPTION 1 [linear utility for moderate outcome changes]. For outcome changes 21 

within a small interval [𝐴, 𝐵], utility is approximately linear. □ 22 

 23 

More precisely, for Eq. 6, it can be seen that linearity of utility is used on the interval 24 

[min{18 − 𝑘, 18 − 𝑘′} , 18]. Assumption 1 provides a good approximation for all 25 

                                                

5 BS’s Footnote 13 even claims validity for infinitesimals for every strictly increasing continuous 

utility, dispensing with differentiability. However, this is not correct. For singular Cantor-type 

functions the positive right derivatives claimed by BS may exist nowhere, let be at the points where 

needed. See Paradı́s, Viader, & Bibiloni (2001; their Theorem 3.1 and its proof are also valid for right 

and left derivatives).  
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common nonlinear utility functions. Empirical evidence supporting it is also 1 

abundant.
6
  2 

 BS’s second experiment concerned indifferences of the form 3 

 (𝑝: 𝑋, 𝑞: 𝑌, 1 − 𝑝 − 𝑞: 𝑍) ~ (𝑝: 𝑋 + 𝑚, 𝑞: 𝑌 − 𝑘, 1 − 𝑝 − 𝑞: 𝑍 − 𝑘). (7) 4 

In this experiment, 𝑝 = 0.4 and 𝑞 = 0.3, or 𝑝 = 0.6 and 𝑞 = 0.2, with 𝑌 = 36 , 5 

𝑍 = 18, and 𝑚 = 4 throughout. Finally, 𝑋 = 2, 3, 4, 20, 21, 22, 38, 39, or 40, with 6 

price lists again used to elicit 𝑘, which BS again call an equalizing reduction. Under 7 

linear utility and Eq. 4,  8 

 𝑤𝑋 =
𝑘

𝑚+𝑘
 .  (8) 9 

Consider 𝑋 = 4 (with 𝑘) and 𝑋´ = 20 (with 𝑘´). In the lottery with 𝑋 = 4, 𝑋 has the 10 

worst rank, whereas 𝑋´ = 20 has the middle rank in the corresponding lottery. The 11 

rank of 𝑍 changed from middle to worst in these two lotteries. Such rank changes 12 

affect the decision weight in Eq. 8. BS again capture the change by the ratio 
𝑘´

𝑘
.
7
 Eq. 8 13 

again uses Assumption 1. More precisely, it uses linearity of utility on the intervals 14 

[min{18 − 𝑘, 18 − 𝑘′} , 18] and [min{36 − 𝑘, 36 − 𝑘′} , 36]. As argued before and 15 

supported by numerical analyses by BS, this is a reasonable assumption. 16 

 17 

4. SMALL PAYOFF CHANGES: RAMSEY’S TRIFLE 18 

PROBLEM AND A STATISTICAL PROBLEM 19 

 Ramsey (1931) pointed out a difficulty that applies to BS’s implementation of 20 

Assumption 1, which we call Ramsey’s trifle problem:  21 

                                                

6 See Birnbaum (2008 p. 469), Epper, Fehr-Duda, & Bruhin (2011), Homonoff (2018 p. 182), 

Kahneman & Lovallo (1993), Lopes & Oden (1999 footnote 1), Luce (2000 p. 86), Marshall (1890 

Book III), Pigou (1920 p. 785), Rabin (2000), Savage (1971 p. 786). 

7
 More precisely, the ratio of decision weights is 

𝑘´

𝑘
×

𝑚+𝑘

𝑚+𝑘´
 which is, roughly, a monotonic nonlinear 

transformation of 𝑘´/𝑘. Importantly, it does not affect being larger or smaller than 1. We conjecture 

that BS still used 𝑘´/𝑘, or its log, as index in their analysis for this reason. 
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Since it is universally agreed that money has a diminishing marginal 1 

utility, if money bets [to measure decision weights (subjective 2 

probabilities) through ratios] are to be used, it is evident that they should 3 

be for as small stakes as possible. But then again the measurement is 4 

spoiled by introducing the new factor of reluctance to bother about trifles. 5 

[Italics added] [p. 176] 6 

This trifle problem was also pointed out by Samuelson (1959 Footnote 5). In order to 7 

approximate infinitesimal changes with perfect linearity, BS took payoff changes 8 

𝑚, 𝑘  that are very small. But these changes became too small to motivate subjects.  9 

 In BS’s main (first) experiment, subjects completed 28 price lists, with 21 of 10 

those (seven values of 𝑋 and three different sets of probabilities) constituting the 11 

elicitation of equalizing reductions, 𝑘 or 𝑘′. Altogether, subjects answered 980 12 

(21 × 38 + 7 × 26) questions, most of which involved nearly-identical lotteries. 13 

Although subjects earned $26.87 on average, the effective incentive was the 14 

possibility of getting $4 extra with probability 0.3 at the cost of a chance at losing a 15 

few dollars. Similar numbers and stakes appeared in BS’s second experiment. It is 16 

inconceivable that subjects, even if only subconsciously in an as-if sense, would do 17 

anything near determining preference values of these complex lotteries, several 18 

hundreds of times in a row, for such small stakes. Instead, it is likely that subjects, 19 

when facing the figures of the stimuli (BS Online Appendix) will quickly recognize 20 

the structure of Eq. 5 or 7, develop a simple algebraic heuristic and use that repeatedly 21 

(combined with the usual noise) to quickly get through the experiment (§5). Smith 22 

(1982) posited a dominance requirement for experimental economics: the rewards 23 

should dominate subjective costs. Wilcox (1993) confirmed empirically that good 24 

incentives are necessary for complex stimuli. These requirements are violated by BS. 25 

von Winterfeldt & Edwards (1982) reviewed a number of studies that showed that 26 

subjects use simple strategies in situations with inadequate incentives. 27 

 We also note a statistical problem concerning preferences (as opposed to BS’s 28 

data). BS’s §2.1 reports a deterministic CPT preference analysis of their stimuli that 29 

uses ratios 
𝑘

𝑘´
, where 𝑘 and 𝑘´ are small in an absolute sense relative to the other 30 

numbers in the stimuli. We note here that 18 − 𝑘 and 18 − 𝑘′ were the values actually 31 

elicited. Small relative errors in these give large relative errors in 𝑘, 𝑘′. Hence, ratios 32 

𝑘

𝑘´
 are very vulnerable to noise. As BS emphasize throughout, it is important to reckon 33 

with noise beyond a deterministic analysis. It would have been of special interest to 34 
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analyze the role of plausible noise in preferences in their §2.1. Adding an error term 1 

to their CPT values (as in BS’s Eq. 5 and Footnote 60) affects the certainty 2 

equivalents of the overall lotteries by some dollars. Given the complexity of their 3 

three-outcome lotteries and Ramsey’s trifle problem, such errors in preference values 4 

are plausible. This leads to errors in the measured 𝑘, 𝑘´ that may readily make them 5 

approximate 0 (no negative answers were possible). If such errors occur with 6 

probabilities exceeding 0.05, then the confidence intervals of the ratios 
𝑘

𝑘′ span the 7 

whole ℝ+. Then BS’s analysis may lack the statistical power to reject any hypothesis 8 

about preference, be it rank dependence or rank independence. 9 

 The above statistical analysis was back-of-the-envelope, for illustrative purposes. 10 

It shows that a fully elaborated power analysis, based on adding plausible error 11 

models for preferences to the calibrated CPT models used throughout BS’s paper, 12 

would have provided useful insights. It would have shown if the claim in their abstract 13 

“Conventional calibrations of CPT preferences imply that the percentage change in 14 

probability weights should be an order of magnitude larger than we observe,” and 15 

claimed nonoverlapping confidence intervals (BS p. 1366 middle; p. 1382 l. 12; p. 16 

1388), can hold statistically for noisy-preference calibration models. It would also 17 

show whether the variances found in their data may at all represent preferences rather 18 

than heuristics, as we argue. In general, power analyses are best done prior to 19 

observing data. For brevity, we do not elaborate on them. 20 

 21 

5. HEURISTICS IN BS’S EXPERIMENTS 22 

 The data that BS found did not exhibit the volatility suggested at the end of the 23 

preceding section. BS obtained stable patterns giving statistical power and tight 24 

confidence intervals. Our claim is that this is because their experiment did not 25 

measure preferences, and did not, even in an as-if sense, speak to Eqs. 2, 3, or 4. 26 

Instead, subjects faced with hundreds of choices of complex and nearly-identical 27 

lotteries, for a one-time trifle reward received with some probability, develop simple 28 

algebraic heuristics to get through the experiment.  29 

 Many studies have shown that multiple repetitions of complex tasks can lead to 30 

stable but invalid patterns, in our case heuristics instead of preferences. Ariely, 31 
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Loewenstein, & Prelec (2001) call it coherent arbitrariness, while Loomes, Starmer, & 1 

Sugden (2003) call it the shaping hypothesis. See also Baron et al. (2001 p. 3 l. -2), 2 

Carlin (1992 p. 219), Dolan & Stalmeier (2003), and Hardisty et al. (2013). 3 

 This main heuristic in BS’s first and main experiment, based on Eq. 5, was 4 

cancellation: subjects ignored the common outcome 𝑋, not because of preference, but 5 

only as a heuristic to simplify the experimental task. It precludes rank dependence. BS 6 

(p. 1366) acknowledge this problem, citing Wu (1994) and Weber & Kirsner (1997). 7 

Cancellation has been widely documented in the literature (see below). Weber & 8 

Kirsner (1997 top of p. 57) showed that Wakker, Erev, & Weber (1994) suffered from 9 

cancellation, explaining the absence of rank dependence there. All these papers used 10 

stimuli as in BS’s first experiment (Eq. 5). In a treatment using such stimuli while 11 

avoiding cancellation (by asking for pricing rather than direct choice) and other 12 

heuristics, Weber & Kirsner did find rank dependence. The problem of cancellation in 13 

Wakker, Erev, & Weber’s design reappears in BS’s first experiment. 14 

 A general finding is that, the more saliently the common outcome is displayed, 15 

the stronger cancellation is.
8
 In the stimuli of BS’s first experiment, throughout and 16 

invariably, the most left column of lotteries displays the common outcome, each time 17 

spanning the whole page (BS Online Appendix). This is as salient as it can be. 18 

Heuristics were further facilitated by the following features of the stimuli, that can be 19 

inferred from the experimental instructions provided online. Invariably, the middle 20 

column displayed the outcomes 24 (for the left lottery) and 29 (for the right lottery), 21 

always with the same probability 0.3. Further, the right column always displayed 22 

outcomes $18 (for the left lottery) and $18 − 𝑘 (for the right lottery), with the same 23 

probability vector. Probabilities of those outcome always decreased in the same order 24 

in all blocks of three. 25 

 To avoid cancellation, BS (§5.3) carried out a second, smaller experiment, based 26 

on Eq. 7. Now there is no common outcome to be cancelled. They also had a bigger 27 

variation in outcomes 𝑋, which has two advantages. First, it makes it harder for 28 

subjects to develop some simple heuristics that ignore nonvarying outcomes. Second, 29 

                                                

8 We give one reference from every decade: Kahneman & Tversky (1979 p. 274—on their Figures 1 

versus 2); Keller (1985); Kashima & Maher (1995); Birnbaum (2008 p.481 ff.) ; Schneider, Leland, & 

Wilcox (2018); Blavatskyy, Ortmann, & Panchenko (2020 —compound vs. lottery). 
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middle ranks are not only changed into best ranks, where rank dependence is known 1 

to be weak (§6.2), but also into worst ranks, where rank dependence is known to be 2 

stronger (Fehr-Duda & Epper 2012 end of §2; Wakker 2010 p. 227; Weber & Kirsner 3 

1997 p. 58).  4 

 The format in BS’s second experiment has not been used much before and, hence, 5 

less is known about presence or absence of heuristics. Despite the aforementioned 6 

advantages, we still think that heuristics were measured and not preferences, because 7 

many problems of BS’s Experiment 1 remain in their Experiment 2. The complexity 8 

of the lotteries has worsened due to the absence of a common outcome. This augments 9 

Ramsey’s trifle problem. The statistical problem of ratios of small numbers also 10 

remains. The layout of the stimuli (their Online Appendix, Figure 5) facilitates the 11 

heuristics with, again, the same format for hundreds of choices over several pages, 12 

again inducing coherent arbitrariness.  13 

 It is, for instance, heroic to think that, for the many complex lotteries and trifle 14 

rewards, subjects would incorporate the separate values 𝑌 = 24, 𝑌 = 24 − 𝑘, 𝑍 =15 

18, 𝑍 = 18 − 𝑘, 𝑞, and 1 − 𝑝 − 𝑞 from Eq. 7 into their valuation, even in an as-if 16 

sense. Instead, if the values were subsumed into one concept, “lose 𝑘 otherwise,”
9
 17 

there is no perception of the ranking of outcomes and no scope for rank dependence.  18 

 Diecidue, Wakker, & Zeelenberg (2007; DWZ henceforth) used the same 19 

equalizing reductions as in BS’s second experiment, i.e., indifferences as in our Eq. 7; 20 

see their Eq. 3.2. They thus avoided the common outcomes in Wakker, Erev, & 21 

Weber (1994) that had been criticized by Weber & Kirsner (1997). They also used 22 

Assumption 1 to obtain nonparametric estimations of decision weights, and their 23 

primary purpose was also to test rank dependence (main hypothesis on p. 185; p. 195 24 

2nd para). Their amounts 𝑚, 𝑘 were considerably larger than in BS (𝑚 never below 25 

Dfl. 20, which in present value would be about $20). We discuss this difference. The 26 

exact validity for general utility in BS’s theorems only concerns infinitesimal 𝑚, 𝑘. In 27 

experiments, as in BS and DWZ, one needs to take small discrete 𝑚, 𝑘, small enough 28 

to have good approximations. However, if 𝑚, 𝑘 are too small, as in BS, then one runs 29 

into Ramsey’s trifle problem, and the statistical problem at the end of §4. Hence, 𝑚, 𝑘 30 

                                                

9 Given probability 𝑝 for 𝑋 and 𝑋 + 4, loss 𝑘 automatically occurs with complementary probability 

1 − 𝑝. 
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have to be larger (but not too much), as in DWZ. And one needs Assumption 1, which 1 

is still reasonable for the amounts considered (referenced above). This is the only way 2 

in which BS’s approach with equalizing reductions can be used, and this is what DWZ 3 

did. 4 

 In the beginning of §3, DWZ explain that three-outcome prospects are too 5 

difficult to evaluate in general; see also DWZ (p. 181, 3rd & 4th para). Hence, they 6 

used a visual design (their Figure 1) to facilitate these choices,
10

 developed in 7 

extensive pilot studies with debriefings to identify and then avoid the major heuristics 8 

used by subjects (see their p. 188 last two paras; p. 194 last para; p. 195 last para). 9 

They used filler questions, and more variations in outcomes, to further reduce 10 

heuristics. Following Weber & Kirsner (1997), DWZ minimized all aforementioned 11 

problems in the design of BS.
11

 Podsakoff, MacKenzie, & Podsakoff (2012) survey 12 

general techniques for reducing measurement-instrument biases. DWZ emphasized 13 

that avoiding heuristics is desirable to increase statistical power (p. 188 last line; p. 14 

195 3rd para). Their findings supported rank dependence. That is, there were 15 

significant changes of decision weight if ranks of events changed (p. 192 last para), in 16 

agreement with other findings of rank dependence in the literature. 17 

 DWZ also found violations of comonotonic independence, that is, of rank 18 

dependence. Decision weights sometimes changed even though ranks did not. BS’s 19 

finding is reversed in the sense that their decision weights did not change even if 20 

ranks did. Whereas BS’s finding can be taken as a special case of CPT (expected 21 

utility), DWZ’s finding is more serious because it cannot be reconciled with any 22 

version of CPT. Wu (1994) showed large violations of rank-dependence by testing 23 

                                                

10 This is commonly done for lotteries with three or more outcomes, by Weber & Kirsner (1997) and 

most others. Lola Lopes, specialized in multi-outcome lotteries, developed special visual designs 

(Lopes & Oden 1999; Fennema & Wakker 1997). 

11 Two further differences between DWZ and BS are as follows. First, DWZ used events with unknown 

probabilities rather than probabilities. This does not affect the theoretical working of rank dependence. 

See DWZ (p. 185 ll. 7-8) and Wakker (2010 Figure 7.4.1 versus 10.4.1). Second, an improvement of 

one prospect was not compensated by worsening that same prospect elsewhere, but instead by 

improving the other prospect. This avoids confounds due to differences between improvements and 

worsenings. 
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comonotonic independence. In particular, he showed that heuristics such as 1 

cancellation can sometimes generate patterns inconsistent with prospect theory. 2 

 It could be argued that the different findings of DWZ regarding rank dependence 3 

are because they considered uncertainty rather than risk. That deviations from 4 

expected utility are rank dependent for uncertainty but not for risk. However, we find 5 

this explanation implausible. We think that the differences are because DWZ’s design, 6 

unlike BS’s design, reduced heuristics and errors so that they achieved statistical 7 

power to test preference conditions. 8 

 9 

6. FURTHER COMMENTS 10 

6.1. BS’S CRITICISM OF COMMON STATISTICAL TESTS 11 

 BS (§2.3) criticize tests that compare numbers of violations of predictions 12 

(preference axioms), which are commonly used throughout decision theory and in 13 

other empirical sciences. BS erroneously claim that such tests would not assume any 14 

(“parametric”) noise model, writing:  15 

These types of frequency comparisons raise two difficulties, both 16 

stemming from the fact that the results are difficult to interpret without a 17 

parametric model of noisy choice. First, the premise of the approach—that 18 

violation frequencies are necessarily higher for invalid axioms—is flawed. 19 

[italics added] [p. 1376]  20 

See also BS (p. 1367 l. -3 and p. 1376 2nd para). However, the common tests are 21 

statistical, and statistical tests always assume a noise model, contrary to BS’s 22 

“necessarily” claim. These tests only assume that the aforementioned higher 23 

frequencies are likely, not necessary. Following up, BS claim the following two 24 

difficulties. 25 

 The first claimed difficulty concerns a counterexample where all choices testing 26 

one preference axiom are close to indifference and subject to much noise, whereas 27 

those for the other preference axiom are all far from indifference, with little noise. BS 28 

claim that this would invalidate the common tests. We argue that one cannot disregard 29 

a whole stream of literature based on one artificial counter-example. For every data 30 

set and statistical analysis based on a noise model, one can specify an alternative noise 31 

model that invalidates the analysis. However, to serve as a good counterexample, the 32 

alternative noise model should be plausible. Every good test based on counting 33 
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violations was done in a design where BS’s first difficulty was not plausible. Note 1 

also that there have been many such tests in the literature. Even if one by accident was 2 

as in BS’s example, then this does not invalidate the whole literature based on it. We 3 

finally point out that, even under common designs with plausible error theories, 4 

unlikely data may arise as in BS’s example, or other kinds of unlikely data, leading to 5 

errors of type I or II. Statistical tests never claim that such errors are “necessarily” 6 

absent; only, that they are unlikely. P-values, powers, Bayes factors, and so on capture 7 

such unlikely exceptions. 8 

 BS’s second claimed difficulty concerns the example at the end of their Online 9 

Appendix B. In this example, they assume rank dependence that “inadvertently” is too 10 

weak to affect optimal choice between any of the stimuli considered, and trembling-11 

hand errors depending only on preference and not on utility differences. Then CPT 12 

and expected utility have identical predictions in this design. Tests based on numbers 13 

of violations then indeed have no power to distinguish. But then, neither does any 14 

other test. This trivial example cannot serve as a criticism of any test. We were unable 15 

to understand BS’s description of this example in their main text (p. 1376): “For any 16 

given degree of rank dependence, one can construct simple examples (with constant 17 

“distance to indifference”) in which the differential between violation frequencies 18 

falls anywhere between zero and unity.” BS argue that they have refuted some widely 19 

used statistical tests and a whole stream of literature based on it. However, their 20 

criticisms are unfounded.  21 

 22 

6.2. WEAKNESS OF RANK DEPENDENCE IN LONGSHOT EFFECT 23 

 In their main experiment, BS consider changes in decision weights only when the 24 

rank changes from middle to best. It is well-known that rank dependence is not strong 25 

there (DWZ p. 185 ll. 4-6; DWZ p. 197 l. 7). The prevailing finding is that the 26 

weights then increase, consistent with inverse-S probability weighting and the 27 

longshot effect. Stronger rank dependence occurs when ranks change from middle to 28 

worst, consistent with the certainty effect. As for the change in rank considered by 29 

BS, quite some studies found that the increase of decision weight is weak or absent. 30 

Even, several studies found the opposite effect to be prevailing, of decreasing decision 31 

weight, consistent with pessimistic probability weighting. See van de Kuilen & 32 

Wakker (2011). Their Footnotes 7 & 8 survey the many other papers that found this 33 
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opposite effect. In view of this literature, finding no effect of rank dependence in BS’s 1 

first experiment is no surprise anyhow. 2 

 3 

6.3. COMPLEXITY SEEKING INSTEAD OF AVERSION 4 

 BS favor adding a component to risk theory that reckons with the number of 5 

outcomes of a lottery, to capture complexity aversion. Many authors have investigated 6 

proposals of this sort. Neilson (1992) proposed a formal model, but it was tested 7 

unsuccessfully by Humphrey (2001). Related models received some attention in 8 

psychology (Birnbaum 2008 p. 481; Krantz et al. 1971 Ch. 8; Luce 2000). Tversky & 9 

Kahneman (1992 p. 317) were pessimistic about modeling this phenomenon: 10 

Despite its greater generality, the cumulative functional is unlikely to be 11 

accurate in detail. We suspect that decision weights may be sensitive to the 12 

formulation of the prospects, as well as to the number, the spacing and the 13 

level of outcomes. … The present theory can be generalized to 14 

accommodate such effects but it is questionable whether the gain in 15 

descriptive validity, achieved by giving up the separability of values and 16 

weights, would justify the loss of predictive power and the cost of 17 

increased complexity. … The heuristics of choice do not readily lend 18 

themselves to formal analysis because their application depends on the 19 

formulation of the problem, the method of elicitation, and the context of 20 

choice. [italics added]  21 

We agree with this pessimism, and this old model never caught on in economics to 22 

our best knowledge. The volatility of empirical findings adds to our pessimism. In a 23 

literature review (Online Appendix), we found two additional empirical studies 24 

confirming complexity aversion, but seven studies finding the opposite, complexity 25 

seeking. Thus, the prevailing empirical finding is opposite to BS’s model. 26 

 27 

6.4. FURTHER PRECEDING FALSIFICATIONS OF PROSPECT THEORY 28 

 Given that prospect theory is the most tested risk theory, besides being most 29 

confirmed, it is also most violated. The keyword “PT falsified” in Wakker (2020) 30 

gives 49 papers.  31 

 We call special attention to a finding of Birnbaum & McIntosh (1996), which is 32 

not cited by BS. It was confirmed in several follow-up studies by Birnbaum and 33 

colleagues, surveyed by Birnbaum (2008 pp. 484-487), and found independently by 34 

Humphrey & Verschoor (2004). This finding concerns lotteries of the same format as 35 

in Eq. 5, i.e., as in BS’s first experiment, with the common outcome 𝑋 moved to test 36 

rank dependence. Prospect theory predicts that weights increase if ranks change from 37 
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middle to best or worst. BS quantitatively find no change in decision weighs. The 1 

aforementioned studies attempted to avoid heuristics and found in fact a stronger 2 

deviation: a decrease in weight.  3 

 The strongest counterexample to rank dependence that we are aware of is 4 

Machina’s (2009) reflection example, confirmed empirically by l’Haridon & Placido 5 

(2010). Ending on a positive note, Fehr-Duda & Epper (2012) and Barberis (2013) 6 

provide surveys with many useful applications of rank dependence. See also the 7 

impressive data sets of l’Haridon & Vieider (2019) and Ruggeri et al. (2020), and 8 

DellaVigna’s (2018) review in the context of structural behavioral economics. A 9 

psychological justification for rank-dependent decision weights is based on cognitive 10 

attention: individuals tend to attend to extreme outcomes (Weber & Kirsner 1997; 11 

Pachur et al. 2018).  12 

 13 

7. CONCLUSION 14 

 We have offered a critique of BS’s experiments and analyzes. While we applaud 15 

BS’s call for more investigations of rank dependence, we attribute their observed 16 

stability of equalizing reductions to subjects’ use of heuristics, not a failure of rank 17 

dependence as claimed by BS. Every study should be interpreted relative to a large set 18 

of admittedly mixed empirical results. Prospect theory is an imperfect theory, as will 19 

be every theory that aims to make sense of the complex problem of how people make 20 

decisions. Nevertheless, for now, we see prospect theory as the most tractable and 21 

best performing model with nonlinear probability weighting. 22 

 23 

APPENDIX A: BACKGROUND OF PROSPECT THEORY 24 

FORMULA OF 1979 25 

 Kahneman & Tversky (1979) only wrote Eq. 3 explicitly for at most two nonzero 26 

outcomes, i.e., when either 𝑍 = 0 (their Eq. 1) or 𝑝 = 0 (their Eq. 2). This has led to 27 

much confusion about Eqs. 2 and 3 in the literature. We quote their verbal description 28 

to show that Eq. 3 is correct.  29 
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... prospects are segregated into two components: (i) the riskless 1 

component, i.e., the minimum gain ... which is certain to be obtained or 2 

paid; (ii) the risky component, i.e., the additional gain[s] ... which is[are] 3 

actually at stake.... That is, the value of a strictly positive ... prospect 4 

equals the value of the riskless component plus the value-difference 5 

between the outcomes, multiplied by the weight associated with the more 6 

extreme outcome[s]. The essential feature ... is that a decision weight is 7 

applied to the value difference ... which represents the risky component of 8 

the prospect, but not to … the riskless component. (Kahneman & Tversky. 9 

1979 p. 276).  10 

We added the texts between square brackets to extend to plurality, with multiple non-11 

minimal outcomes. 12 

 From the case 𝑝 = 0 it appears that Eq. 2 above, claimed by BS, cannot be 13 

correct, as the riskless outcome 𝑍 should not be weighted. Eq. 3 is the only natural 14 

extension of the formulas given by Kahneman & Tversky. That Eq. 3 is correct also 15 

appears from Kahneman & Tversky (1975 p. 18), a first working paper version of 16 

their 1979 paper. They do explicitly write the formula of PT for multiple outcomes 17 

there. They treat the value function somewhat differently than in their 1979 paper, 18 

taking utilities of differences rather than differences of utilities.
12

 But they treat 19 

probability weighting as in Eq. 3. They also emphasize (their p. 12) that the riskless 20 

outcome should be as in our Eq. 3 (not weighted) rather than in our Eq. 2 (where it is 21 

weighted). Whenever relevant, they pointed out that the riskless outcome should not 22 

be weighted (Tversky & Kahneman 1981 Footnote 5; Tversky & Kahneman 1986 23 

Footnote 2).  24 

 BS (footnote 11) cite Camerer & Ho (1994) for Eq. 2. However, Camerer & Ho 25 

(1994) used a different term, separable prospect theory, for Eq. 2. Their endnote 16 26 

pointed out that it deviates from prospect theory for strictly positive lotteries. BS 27 

(footnote 11) also cite Fennema & Wakker (1997) for Eq. 2. However, Fennema & 28 

Wakker (p. 54) pointed out that this equation should be used for mixed prospects, 29 

which assign positive probabilities to both gains and losses. Those are among what 30 

Kahneman & Tversky called regular prospects, and then the analog of Eq. 2 is indeed 31 

correct (Kahneman & Tversky 1975 p. 18).  32 

 33 

                                                

12 The latter is preferable because it can be applied to nonquantitative outcomes. 
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Bernheim & Sprenger (2020), BS henceforth, suggest that people are usually 15 

complexity averse. Complexity here refers only to the number of outcomes of 16 

lotteries. Aversion to more comprehensive or different forms of complexity of 17 

lotteries has been studied by Armantier & Treich (2016), Bruce & Johnson (1996), 18 

Kovarik, Levin, & Wang (2016), Mador, Sonsino, & Benzion (2000), and Sonsino, 19 

Benzion, & Mador (2002). Following BS, we focus only on empirical studies that 20 

have investigated the number of outcomes. BS cite five papers on complexity aversion 21 

in their footnote 70. The first four, Iyengar & Kamenica (2010), Iyengar & Lepper 22 

(2000), Iyengar,Jiang, & Huberman (2003), and Sonsino & Mandelbaum (2001),  23 

considered a different topic, preference against flexibility (number of available choice 24 

options to choose one from). The fifth, Stodder (1997), is on confusions of averages 25 

versus marginals and complexity of multiple stage lotteries, which, again, are 26 

different topics. (It is also only theoretical, with no data.) Hence, these references will 27 

not be considered here. 28 

 Complexity aversion here means that, other things equal, people prefer lotteries 29 

with few outcomes because they are less complex. We review the literature, focusing 30 

on gains, the domain considered by BS. We conclude that the prevailing finding is the 31 

opposite. That is, people usually prefer lotteries with many outcomes to few 32 

outcomes, and, in this sense, they are complexity seeking. 33 
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 BS find that certainty equivalents of lotteries (0.4: 30, 0.6: 20) exceed those of 1 

(0.4: 30, 0.3: 20 + 𝜀, 0.3: 20 − 𝜀) considerably, even for small 𝜀 > 0, with similar 2 

findings for (0.6: 30, 0.4: 20) versus (0.3: 30 + 𝜀, 0.3: 30 − 𝜀, 0.4: 20). By any 3 

rational theory, the certainty equivalents should, to the contrary, be almost the same 4 

for small 𝜀. On the basis of these two observations, BS conclude that people are 5 

complexity averse. 6 

 Many studies have tested special preferences for numbers of outcomes, usually 7 

considering a pure case: certainty equivalents are measured for different framings of 8 

identical lotteries, for instance (0.4: 30, 0.6: 20) versus (0.4: 30, 0.3: 20 0.3: 20). 9 

Although all rational theories of choice require identical certainty equivalents, 10 

experiments find systematic violations. Here a pure effect of perceived number of 11 

outcomes occurs. Terms used to designate such violations include boundary effects, 12 

violations of coalescing (collapsing), and event/outcome splitting effects. The latter 13 

term is sometimes (e.g., in works by Humphrey, Starmer, and Sugden) combined with 14 

a directional assumption, being complexity seeking. Birnbaum does not add this 15 

directional assumption to this term. 16 

 Violations of coalescing can be taken as a special case of the attribute splitting 17 

effect (Weber, Eisenführ, & von Winterfeldt 1988), or the part-whole bias (Bateman 18 

et al. 1997), or the unpacking effect (Tversky & Koehler 1994). Here splitting 19 

something up increases the total weight. This underlies Birnbaum’s theories. He 20 

studied violations of coalescing most extensively. His RAM and TAX models predict 21 

that splitting the best outcome of a lottery improves the lottery, but splitting the worst 22 

outcome (also if a gain) worsens it. If one normalizes decision weights to always add 23 

to 1, as in Birnbaum’s models, then Birnbaum’s predictions will hold. Then increasing 24 

the weight of the worst outcome indeed worsens the value. If one does not normalize 25 

the weights, as in separable prospect theory, then increasing the weights of gains 26 

(whether best or worst) improves the value. Combining these ideas suggests a strong 27 

preference for event splitting if it concerns the best outcome, and less clear effects for 28 

the worst outcome, but probably a preference against. Overall, we can then expect 29 

more preference for than against event splitting. In other words, the preceding 30 

arguments suggest more complexity seeking than aversion. This is indeed what our 31 

literature review finds. 32 



 

 

3 

 Our literature search is based on searching the terms “boundary,” “collaps,” 1 

“coalesc,” “complex,” and “split” in Wakker (2020), where we excluded the certainty 2 

effect and followed up on cited papers.  3 

 4 

 The following three papers report prevailing complexity aversion: 5 

Bernheim & Sprenger (2020), Huck & Weizsäcker (1999), Moffatt, Sitzia, & 6 

Zizzo (2015). 7 

 8 

 The following seven papers report prevailing complexity seeking: 9 

Birnbaum (2005), Birnbaum (2007), Humphrey (1995), Humphrey (2000), 10 

Humphrey (2001a), Humphrey (2006), Starmer & Sugden (1993). 11 

 12 

 The following five papers report about as much aversion as seeking: 13 

Birnbaum (2004), Birnbaum, Schmidt, & Schneider (2017), Schmidt & Seidl 14 

(2014), Humphrey (2001b), Weber (2007). 15 

 16 

We conclude that the findings on complexity aversion are volatile, but the literature 17 

has documented more complexity seeking than aversion for gains. 18 
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